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Abstract

The objectives of this paper are to investigate the tradeoffs between a physically constrained neural network and a deep,
convolutional neural network and to design a combined ML approach (“VarioCNN”). Our solution is provided in the framework
of a cyberinfrastructure that includes a newly designed ML software, GEOCLASS-image, modern high-resolution satellite
image datasets (Maxar WorldView data) and instructions/descriptions that may facilitate solving similar spatial classification
problems. Combining the advantages of the physically-driven connectionist-geostatistical classification method with those of an
efficient CNN, VarioCNN, provides a means for rapid and efficient extraction of complex geophysical information from submeter
resolution satellite imagery. A retraining loop overcomes the difficulties of creating a labeled training data set.

Computational analyses and developments are centered on a specific, but generalizable, geophysical problem: The classification

of crevasse types that form during the surge of a glacier system. A surge is a glacial catastrophe, an acceleration of a glacier to

typically 100-200 times its normal velocity, which for a marine-terminating glacier leads to sudden and substantial mass transfer

from the cryosphere to the oceans, contributing significantly to sea-level-rise. The sudden and rapid acceleration characteristic

of a surge results in formation of crevasses, whose spatial characteristics provide informants on the ice-dynamic processes that

occur during the surge. GEOCLASS-image is applied to study the current (2016-2024) surge in the Negribreen Glacier System,

Svalbard. The geophysical result is a description of the structural evolution and expansion of the surge, based on crevasse types

that capture ice deformation in 6 simplified classes.
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ABSTRACT. The objectives of this paper are to investigate the tradeo↵s between a physically

constrained neural network and a deep, convolutional neural network and to design a combined ML

approach (“VarioCNN”). Our solution is provided in the framework of a cyberinfrastructure that

includes a newly designed ML software, GEOCLASS-image, modern high-resolution satellite image

data sets (Maxar WorldView data) and instructions/descriptions that may facilitate solving similar

spatial classification problems. Combining the advantages of the physically-driven connectionist-

geostatistical classification method with those of an e�cient CNN, VarioCNN provides a means for

rapid and e�cient extraction of complex geophysical information from submeter resolution satellite

imagery. A retraining loop overcomes the di�culties of creating a labeled training data set.

Computational analyses and developments are centered on a specific, but generalizable, geophysical

problem: The classification of crevasse types that form during the surge of a glacier system. A

surge is a glacial catastrophe, an acceleration of a glacier to typically 100-200 times its normal

velocity, which for a marine-terminating glacier leads to sudden and substantial mass transfer from

the cryosphere to the oceans, contributing significantly to sea-level-rise. The sudden and rapid

acceleration characteristic of a surge results in formation of crevasses, whose spatial characteristics

provide informants on the ice-dynamic processes that occur during the surge. GEOCLASS-image

is applied to study the current (2016-2024) surge in the Negribreen Glacier System, Svalbard. The

geophysical result is a description of the structural evolution and expansion of the surge, based on

crevasse types that capture ice deformation in 6 simplified classes.

1 Introduction

The objective of this paper is to contribute to three challenges in di↵erent disciplines: (1) Earth

observation and data analysis, (2) climatic and cryospheric change, and (3) machine learning (ML).

Challenge 1. Harnessing the data revolution in Earth observation from space. Observations

of our rapidly changing Earth are largely carried out from space, and the collection of such Earth
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observation data from satellites has rapidly advanced with increasingly large and detailed data

sets becoming available for scientific investigations (Wagner, 2015). The data revolution has led

to both new opportunities and challenges for science, as extraction of information on complex

geophysical processes from large and high-resolution data sets is becoming increasingly di�cult (a

problem that has been summarized as “Harnessing the data revolution” by the U.S National Science

Foundation (U.S. National Science Foundation, 2023)). In turn, this phenomenon has created a

cyberinfrastructure problem in terms of a disconnect between the revolutionary increase in satellite

image data on the one hand and the development of numerical Earth system models on the other

hand, which are employed to aid in assessment of global climatic changes and their manifestations

in warming and sea-level rise (SLR) (Masson-Delmotte et al., 2021; Greve, 1995; Greve and Blatter,

2009; Larour et al., 2012; Lipscomb et al., 2019; Sellevold et al., 2019; Hanna et al., 2020; Payne

et al., 2021; Siahaan et al., 2022; Gettelman et al., 2022). A bottleneck is created - and growing

with the data revolution - as this new wealth of information revealed by the new satellites makes

it hard to incorporate observations into physical-process models as the improved spatio-temporal

scale introduced by the data sheds light onto subprocesses not easily incorporated into models.

In this paper, we will introduce an approach that integrates machine learning and physical knowl-

edge into a physically-driven neural network, whose application will facilitate derivation of physical

process understanding from high-resolution satellite data. Results include parameterized informa-

tion in the form of thematic maps (time series of segmented satellite imagery) that can inform

modeling as well as lend themselves to direct geophysical interpretation and discovery.

Challenge 2. Glacial acceleration and Sea-Level-Rise assessment. We address a climatic and

cryospheric change problem, the phenomenon of glacial acceleration, that has been identified as one

of two main sources of uncertainty SLR assessment, as identified by the Intergovernmental Panel

on Climate Change (IPCC) in their 2013 Assessment Report 5 [the other source is atmospheric]

(Stocker et al., 2013). The most recent IPCC AR 6, published in 2021, does not present a solution

but rather elevates the urgency of understanding glacial acceleration by declaring it a “deep un-

certainty” in SLR assessment (Masson-Delmotte et al., 2021). The di↵erent types of accelerating

glaciers include surge-type glaciers, tidewater glaciers, fjord glaciers (isbræ) and ice streams (Clarke,

1987; Tru↵er and Echelmeyer, 2003; Mayer and Herzfeld, 2000; Jiskoot, 2011; Herzfeld et al., 2013;

Straneo and Cenedese, 2015; Trantow and Herzfeld, 2018; Murray et al., 2003a; Robel et al., 2018;

Hill et al., 2018; Nuth et al., 2019; Benn et al., 2019; Zheng et al., 2019; Alley et al., 2021; Frank

et al., 2022; Grinsted et al., 2022; Ehrenfeucht et al., 2023). Acceleration frequency may be intrinsic

to the glacier type, quasi-periodic, or single-time. Initialization of an acceleration may be due to

internal dynamics of the glacier or externally forced, for instance, induced by warming ocean water

at the front of the glacier or controlled by a combination of several factors (Straneo et al., 2012;

Rignot et al., 2012; Herzfeld et al., 2014; Herzfeld and Wallin, 2014). Spatial acceleration may be

due to subglacial (bed) topography (Herzfeld et al., 2014) or caused by a dynamic event. All types

of acceleration typically lead to the formation of crevasse fields. Surging is the type of acceleration

that has seen the least amount of research, and complexity of ice flow during surging defies many

classic data analysis methods thus rendering most cyberinfrastructures incapable of modeling this

geophysical process.
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In this paper, we focus on an exemplary analysis of glacial acceleration during the surge of an Arctic

glacier system, the Negribreen Glacier System (NGS), through classification of crevasse patterns as

indicators of the drastic and rapid dynamic changes that occur during a surge. The surge has led

to mass transfer from the glacier to the ocean on the order of 0.5-1% of global annual SLR in just a

few months during the height of the surge (Herzfeld et al., 2021; Trantow and Herzfeld, 2023). The

fact that a surge causes sudden mass transfer events from the cryosphere to the ocean leads to a

catastrophic type of uncertainty in SLR estimation (the term “catastrophic” defined as continuous

changes leading to sudden e↵ects). If we are to reconcile SLR assessment, we need to understand

surge processes.

Challenge 3. Integration of physically-constrained classification and modern “Deep Learning”

approaches in satellite image classification. The surge is captured in time series of high-resolution

satellite image data, which motivates a ML-based classification. While deep convolutional neural

network (CNN) architectures have been considered to provide state of the art performance on

standard image classification benchmarks such as the ImageNet dataset (Kamp↵meyer et al., 2016;

Rawat and Wang, 2017; Deng et al., 2009; Krizhevsky et al., 2012; He et al., 2016a), two problems

exist: First, deeper networks only lead to increased performance up to a point, after which increased

network depth results in increasingly worse performance due to the vanishing gradient problem

(Hochreiter, 1998). Second, and more challenging for applications in the cryospheric sciences,

is the fact that no published labeled training data sets exist for tasks of classification of ice-

surface features, such as crevasses (see, Meyer and Pebesma (2021)). The role of crevasse types

in identification of deformation types, which are directly related to glacial acceleration, will be

described in section 3. A main task is thus the creation of such labeled data sets, required for

training of a Neural Net (NN). For CNNs, the problem is exacerbated by the fact that very large

numbers of training data (on the order of 100,000s) are needed.

We have previously developed a physically constrained ML approach, the connectionist-geostatistical

classification method (Herzfeld and Zahner, 2001; Herzfeld, 2008; Herzfeld et al., 2013, 2023b). The

connectionist-geostatistical method uses a two-tiered approach, in which the first step is a physi-

cally informed spatial statistical analysis, carried out in a discrete mathematics framework. The

output of the geostatistical step provides the input for the NN, activating the neurons of the input

layer. In order to carry out an actual classification, a connectionist approach is selected, which

can utilize a multi-layer perceptron with backpropagation of errors (MLP-BP), or simply, a MLP.

The MLP has proven to provide a robust and functional architecture for this type of classification

and provided an e�cient solution already 20 years ago (Herzfeld and Zahner, 2001). To train the

connectionist-geostatistical classification, a small data set su�ces, of a size that can reasonably be

derived by an expert (Herzfeld and Zahner, 2001), on the order of several 100 labeled video-scenes

or small subimages of a satellite image. However, advances in Earth observation, increasing data

resolution and data set size, as well as advances in computer hardware and processing speed warrant

investigation of modern “Deep Learning” architectures to facilitate fast and e�cient processing.

The salient di↵erence in the e↵ectiveness of the two approaches lies less in the NN architecture

(MLP versus CNN) than in the fact that the connectionist-geostatistical classification is a physically
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informed approach (where the physical knowledge informs our approach to geostatistics), whereas

in the case of the CNN the network’s much larger amount of degrees of freedom is what the

determination of classes relies on. CNNs can be trained supervised or unsupervised (Camps-Valls

et al., 2021b).

In this paper, we will investigate the trade-o↵s of a physically constrained NN and a CNN and

introduce a first approach to leverage the advantages of both ML methods in an integrated image

classification system. We propose a solution to natural science problems that takes an approach

of combining and integrating physically constrained neural networks and modern ML methods. To

this end, we will demonstrate that a physically constrained NN can be utilized to aid in creating a

labeled training data set of su�cient size to train a CNN. We emphasize that physical knowledge

needs to be leveraged in designing a ML approach that can be expected to provide solutions for

the physical sciences and advance knowledge there.
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2 Background on Neural Networks, Especially in the Geosciences and in (Satellite)

Image Classification

In this section, we give a brief summary of the state of the art of ML in the geosciences, as well

as ML applied to satellite image classification or analysis. Most works fall into one of several

categories, addressed in the following subsections.

2.1 General References: Classic Papers, Review Papers and Books

While neural networks have seen a sudden rise in public attention in the most recent years, first

research dates back to neural psychology at the end of the 19th century (Bain, 1873; James, 1890).

Rosenblatt (Rosenblatt, 1958) introduced the perceptron, and the first deep learning perceptron

came out in 1967 (Ivakhnenko and Lapa, 1967). The use of neural networks stalled in the early

1970s, mostly due to limitations computation (Minsky and Papert, 1969). Foundational research on

CNNs and thus on Deep Learning dates back to the 1960s (Ivakhnenko and Lapa, 1967; Fukushima,

1980; LeCun et al., 1998; Krizhevsky et al., 2012). Important concepts that mark steps of devel-

opment of NNs include backpropagation of errors and connectionism. Backpropagation of errors

is an application of Leibniz’ chain rule (from 1673) to networks of di↵erentiable nodes that has

become a standard in optimizing MLPs (Werbos, 1990). Designing the connectionist-geostatistical

classification approach, we applied an MLP with backpropagation of errors in the 1990s, using

the Stuttgarter Neural Network software (Zell et al., 1994; Herzfeld and Zahner, 2001). The term

connectionism refers to an approach to the study of human mental processes and cognition that

utilizes mathematical models known as connectionist networks or artificial neural networks (Rumel-

hart et al., 1986; Sun, 2014).

A standard reference for Deep Learning is the book by Goodfellow and others (Goodfellow et al.,

2016). A good general reference related to several topics of this paper is a book titled “Deep

learning for the Earth Sciences: A comprehensive approach to remote sensing, climate science and

geosciences” (Camps-Valls et al., 2021b).

In their review of remote sensing image classification methods, Song et al. (2019) focus on ap-

plications of CNNs for extraction of semantic features in image data. Rawat and Wang (Rawat

and Wang, 2017) present a review of deep convolutional networks for image classification, and

Garcia-Garcia and others write a survey of deep learning techniques for image and video semantic

segmentation (Garcia-Garcia et al., 2020). A review of ML methods for classification of remotely

sensed imagery and applications to sea-ice classification is given in Herzfeld et al. (2016), and a

review of hyperspectral image (HSI) classification using CNNs is presented by Li et al. (2019).
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2.2 Classic Applications of NNs in the Geosciences

Prediction and assessment of sea-ice conditions in the Arctic, based on satellite remote sensing, has

been an important tool for ocean navigation. Synthetic Aperture Radar (SAR) data lend themselves

well for sea-ice observations, because the radar signal penetrates cloud layers and fog, which are

frequent in Arctic atmospheric conditions and obscure optical satellite image data. A short review

of ML methods for classification of remotely sensed imagery and applications to sea-ice classification

is given in Herzfeld et al. (2016). Research on sea-ice classifications based on SAR data goes back

to the 1990s (Kwok et al., 1992; Collins, 1992; Ste↵en and Heinrichs, 1994). These early methods

typically allow distinguishing a small number of sea-ice types, such as 3 or 4. Most methods use

multivariate statistics at pixel values in di↵erent channels, for example Ochilov and Clausi (2012);

Wang et al. (2016); Dabboor and Geldsetzer (2014). The approach of Ochilov and Clausi (2012) is

innovative in that is bases image segmentation on gradients in the original multivariate statistical

parameters, using an edge-detection method. Early applications of NNs include Karvonen (2006);

Zakhvatkina et al. (2013). Karvonen’s work (Karvonen, 2006) was a milestone in state-of-the-

art statistical techniques in sea-ice classification with applications to the seasonal ice cover in the

Baltic Sea, noting that understanding physical processes is an open problem. Zakhvatkina et al.

(2013) introduce an interesting concept that combines a number of statistical parameters and a

NN. Recent publications which utilize sea-ice classification include Roesel et al. (2012); Shen et al.

(2017); Buckley et al. (2020, 2023).

Neural networks that address pattern recognition problems such as self-organized maps (Koho-

nen, 2012), a form of unsupervised classification, or “Learning vector quantification”, a supervised

NN approach (Kohonen, 1990), achieved some popularity, but were found to be outperformed by

MLPs with back propagation of errors (MLP-BP) for image analysis of repeated structural pat-

terns (Herzfeld and Zahner, 2001). An overview of pattern recognition using NNs is given in Looney

(1997).

2.3 Spectral Versus Spatial Classification

Most image classification methods are based on spectral or multi-spectral classification, i.e. they

utilize the fact that an image is composed of several spectral bands (Song et al., 2019). The

connectionist-geostatistical classification method that will be utilized in this paper is a form of

spatial classification, which is based on the fact that repeating spatial structures of crevasse fields

lead to characteristic types of vario functions (Herzfeld and Zahner, 2001; Herzfeld, 2008). In

Herzfeld et al. (2016), we compare statistical and geostatistical classification methods to explore

the potential of combined methods for sea-ice classification.

Vario functions are a formulation of the variogram in discrete mathematics (Herzfeld, 2002). Vari-

ograms are employed in satellite image characterization by Garrigues et al. (2007). Garrigues et al.

(2007) explore first and second-order modeled histograms and variograms to characterize land-
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scape spatial structures from remote-sensing imagery (SPOT-HRV NDVI data) and conclude that

the method has potential to distinguish e↵ects of anthropogenic landscape-forming processes from

those of environmental and ecological processes, however they note that the method can be im-

proved. In contrast, the connectionist-geostatistical method in the form used in this paper employs

experimental vario functions directly to initialize the input neurons in a NN.

Most applications of variograms in satellite image analysis are estimations (kriging) or spatial or

temporal analyses, rather than classifications, of satellite data, for example Qing et al. (2003);

Schwartz and Pinel-Puyssegur (2018), specifically, of Synthetic Aperture Radar data (SAR data).

The di↵erences between geostatistical estimation/ interpolation and extrapolation, characterization

and classification are explained in Herzfeld (2008).

2.4 Computer Science Developments of ML Methods for Image Processing and Clas-

sification. CNNs.

Recent advances in NN research, especially for applications to image analysis/processing/classification,

have been led by computer scientists. In the last approximately 10-15 years, Deep Learning methods

have dominated. Within the field of Deep Learning approaches, CNNs are preeminent (Camps-

Valls et al., 2021b). Deep Learning summarizes ML approaches that involve Neural Nets with

large numbers of internal layers (for example, ResNet-1001 has 1001 layers (He et al., 2016c, 2021).

Overviews of these methods are given in (Camps-Valls et al., 2021b; Song et al., 2019). In contrast,

the MLP used in the original (2001) connectionist-geostatistical classification has three layers: an

input layer, an internal layer and output layer (Herzfeld and Zahner, 2001).

Types of CNNs that have been widely used include: (described largely following Song et al. (2019)

with some updated references) (1) AlexNet, a CNN with five convolutional layers and two fully

connected layers, first evaluated for ImageNet (Deng et al., 2009; Krizhevsky et al., 2012), a pro-

totype test data set. AlexNet won the so-called ImageNet challenge in 2012 (He et al., 2016a).

(2) Network-in-Network (NiN) (Lin et al., 2013), where a MLP is added to each convolutional

layer, replacing a simple linear convolutional layer, and an averaging method, called global average

pooling, is applied to counteract overfitting, (3) VGG-Net (Simonyan and Zisserman, 2014), a 19-

layer network with small (3x3) convolutional kernels, (4) GoogLeNet (Tai et al., 2015), a 22-layer

network, (5) ResNet (He et al., 2016a,c, 2021), a family of so-called residual networks with depths

of up to 1001 layers, (6) DenseNet (Huang et al., 2017), a NN type that uses cross-layer connec-

tions to improve network structure, (7) MS-CapsNet (Xiang et al., 2018), a multi-scale capsule

network, ML methods, from multi-spectral statistical methods to CNNs, can be trained supervised

or unsupervised (Camps-Valls et al., 2021b).

The work in this paper uses a form of ResNet, because ResNets have been found to excel at

image classification problems. Hence ResNet principles and architectures will be described in more

detail in section (8). Applications of CNNs in image classification are numerous (see, for example,

Krizhevsky et al. (2012); Kamp↵meyer et al. (2016); Rawat and Wang (2017)).
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2.5 Identified Needs for Advancing Remote-Sensing-Data Classification Using ML

Methods, in General and in the Geosciences

In this paper, we will address some of the shortcomings or challenges associated with applications

of CNNs in image classifications, identified in Song et al. (2019): Lack of su�cient training data

(see also (Virts et al., 2020; Liu et al., 2020b; Meyer and Pebesma, 2021), need for remote-sensing-

specific CNN architectures, time-e�ciency of training CNNs for image classification, and a need for

high-level CNN-based applications in remote-sensing image classification. The first three challenges

concern technical aspects of NN developments, and our work will address all three. Most interesting

to us is the observation (made by Song et al. (2019)) that most current remote-sensing image ML

applications resemble those in computer vision, whereas identification of semantically complex infor-

mation is largely missing in state-of-the-art research. This resonates with the authors’ observations

that many modern CNNs are constructed for the same type of simple applications that were tack-

led with image processing methods several decades ago. For example, the hyper-deep ResNet-1001

(He et al., 2016c, 2021) is derived for multiframe video satellite image super-resolution processing,

but then applied to a problem of di↵erencing aircraft-presence/aircraft-absense already analyzed

decades earlier. Another application to moving object detection is described in Ou et al. (2019).

Note that the ResNets use very small convolutional kernels, which is a match to the fact that many

image denoising or sharpening techniques of the 1900s used 3x3 or 5x5 or 7x7 kernels (Herzfeld

and Zahner, 2001). It appears that the modern ML methods often perform similar applications

as old methods, only faster, at higher resolution, or for more modern observations, e.g. satellite

videography. In our paper, we aim to create an approach that allows to understand a certain,

complex geophysical (cryospheric) phenomenon.

In part, the lack of actual conceptual advances or physical process understanding in the Earth

Science from ML applications to image classification is tied to the fact that ML research is based

on a relatively small number of labeled training data sets (an example is ImageNet (Krizhevsky

et al., 2012)).

Physically-driven NNs fall in the category that is termed “high-level (C)NN-based applications”

(by Song et al. (2019)) or classification of geophysically complex information, such as crevasse

classification for the surge problem in this paper. Identification and classification of complex infor-

mation in imagery requires large sub-images, or large moving windows (not the same) (Herzfeld and

Zahner, 2001), and last not least the creation of labeled training data for cryospheric applications.

Along similar lines, Reichstein et al. (2019) in their review of Earth science applications highlight

NN structures that include modules of data analysis from other than ML fields (see, subsections

(2.5) and (2.6)), however, there are only a small number of such approaches listed - and none in

cryospheric sciences. Our work falls in this category.
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2.6 Recent Applications of NNs in Geosciences

Dominant application fields include land-cover/land-use (urban areas, farmlands, roads, water

bodies), biogeosciences, and military applications, there especially change detection of airplanes

present/absent at terminals (see, for example, Aguilar et al. (2013); Waser et al. (2014); Kamp↵meyer

et al. (2016); Song et al. (2019); Sen et al. (2020); Virts et al. (2020); Vigneshwaran and Vasan-

tha Kumar (2021)). Neural Nets and other ML methods are increasingly finding applications in

the geosciences. Reviews are found in (Luan and Tian, 2022; Herzfeld et al., 2016).

Examples of papers where ML structures are applied include the following: Neural networks have

been utilized in studies of vegetation canopy height, using ICESat-2 and Landsat data (Malambo

and Popescu, 2023; Narine et al., 2019). In a case study of a forest in Texas, Narine et al. (2019)

investigate the potential of using a Deep Neural Net (DNN) or a Random Forest (RF) model for

above-ground biomass assessment based on ICESat-2 and Landsat data, finding similar performance

values for the DNN and the RF. Palm et al. (2021) explore applications of NNs for analysis of

atmospheric data from ICESat-2, treated like image data. Common to these studies is that they

are case studies, which investigate the applicability of previously published types of NNs to satellite

data analysis. Other applications include forest canopy height determination from ICESat-2 and

Landsat data (Li et al., 2020), disaster detection and monitoring (flood detection) using Random

Forests (Ga�net et al., 2023), and geological image classification using CNNs (de Lima et al., 2019).

In summary, recent applications of ML in the geosciences fall into two categories, (1) Computer

scientists taking summative approaches to geoscience data classification (di↵erent formulation) and

(2) geoscientists exploring applications of existing, previously published ML approaches to image

analysis. Notable exceptions include feature augmented neural nets for satellite image classification

(an approach that augments data sets with handcrafted feature data sets, see, for example, Liu

et al. (2020a)) and a new strand of methods that aim to integrate ML and physics (see, next

section).

2.7 Approaches Aimed at Integrating Physical Sciences and ML

Most relevant for the work in this paper is a class of approaches that are aimed at integrating

physical sciences and ML, by either using physical knowledge in ML or by using ML to improve

physical models.

Exemplary approaches that include physics in ML have been termed “physics-aware ML” (Camps-

Valls et al., 2021a), based on the concept that the elementary laws of physics ought to be respected

by ML approaches in the geosciences. Under this label, challenges, more so than solutions, in the

interplay of physics and ML have been identified that may help advance Earth system knowledge

(encoding di↵erential equations from data, constraining data-driven models with physics-priors and

dependence constraints, improving parameterizations, emulating physical models, and blending
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data-driven and process-based models). Ge et al. (2022) propose an approach termed “Geoscience-

aware deep learning” (GADL), which will include geoscience features into Deep Learning models.

This is similar to the concept of including handcrafted features in CNN-based satellite image

classification suggested by Liu et al. (2020a). Other authors recognize the need for collaborative

e↵orts in the field of geoscience and ML (e.g. (Karpatne et al., 2018)).

Physically-guided neural networks (PGNNs) leverage scientific knowledge, physical models and

observational data in a neural network in order to make better predictions (Daw et al., 2022). The

idea of physical consistency is used as a learning objective to allow generalization of the learned

network. PGNN’s have been used to model complex physical systems that either lack required

data constraints or incur large computational costs, such as those found in fluid dynamics problems

Muralidhar et al. (2020) or power flow analysis Hu et al. (2020). These include applications of ML

methods in the determination of numerical modeling parameters.

In a recent overview of ML in the Earth sciences or physical sciences in general, Reichstein et al.

(2019) emphasize that advance of knowledge in the sciences, facilitated with the help of ML meth-

ods, requires development of novel NN approaches. Examples of methods that include non-ML

physical data analysis modules in the NN operations flow/ architecture stem from oceanography

(sea-surface temperature patterns, De Bézenac et al. (2019)) and biological applications (Willis and

von Stosch, 2017).
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3 Glaciology Background

3.1 Importance of Surging

Glacier surging is an important type of glacial acceleration, with surge-type glaciers found around

the world in many but not all geographic regions, however the phenomenon remains poorly under-

stood due to a relative paucity of comprehensive observational data and a lack of model application

to actual, complex ice systems (Clarke, 1987; Tru↵er and Echelmeyer, 2003; Mayer and Herzfeld,

2000; Jiskoot, 2011; Herzfeld et al., 2013). A surge-type glacier experiences a quasi-periodic cycle

between a long quiescent phase of normal flow and gradual retreat, and a short surge phase when

the glacier accelerates to typically 10-200 times its quiescent speeds with heavy crevassing occurring

throughout the ice system.

The recent surge of the Negribreen Glacier System (NGS), an Arctic glacier system located in

eastern Spitsbergen, Svalbard, provides a rare opportunity to study a surge in a large and complex

system (Lefauconnier and Hagen, 1991; Strozzi et al., 2017; Herzfeld et al., 2021). Beginning in

2016, the NGS began to surge with acceleration and heavy crevassing within 10 km of the terminus

(Strozzi et al., 2017; Haga et al., 2020; Herzfeld et al., 2021; Trantow and Herzfeld, 2023). Largest

surge speeds of around 22 m/day, equivalent to 200 times the glaciers quiescent flow velocity,

occurred during the height of the acceleration phase in July 2017 (Herzfeld et al., 2022).

Negribreen last surged in 1935/36 (Lefauconnier and Hagen, 1991), which indicates that the quasi-

cycle of the surge in in the NGS is approximately 80 years. From a methodological point of view,

it is worth noting that there has been no opportunity for modern data analysis and study of the

Negribreen surge process prior to the current surge – this example indicates how the relative paucity

of surges limit our ability for their study, but also that the Negribreen surge has provided a unique

opportunity to advance several branches of science, mathematics and engineering (Herzfeld et al.,

2020, 2022). Relevant to the study in this paper, the NGS has provided a unique collection of ice

surface structures and crevasses types in close proximity, for an Arctic glacier system, and thus

enabled the ML work reported here.

3.2 The Surge in the NGS

Negribreen is located on Spitsbergen in Svalbard, Norway, with the calving front at approximately

(78.57�N, 19.083�E) in 2019, approximately 1000 km south of the North Pole. Negribreen receives

most of its inflowing ice from the accumulation zone above the glacier to the west called Filchn-

erfønna and its northern part, the Lomonosovfønna, through Transparentbreen, Opalbreen and the

Negribreen ice falls. The NGS, as defined by the blue contour in Figure 1(a), has an ice extent

of approximately 500 km
2. The main glacial trunk, referred to simply as Negribreen, is fed by

several major tributaries: Rembebreen to the south, and to the north, Akademikarbreen and Or-

donnansbreen. Rembebreen and Petermannbreen (southwest of Negribreen) flow out of a southern
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part of the Filcherfønnna. Ordonnansbreen does not flow out of an icecap, but its source areas

are mountain cirques. The area of the NGS is classically referenced as 1180 km2 (Lefauconnier

and Hagen, 1991), based on the extent of the glacier system at a time when Petermannbreen and

Gardebreen (east of Ordonnansbreen) and their tributaries were still connected to Negribreen.

The NGS is a polythermal glacier, consisting of ice at and below the pressure melting point, and a

marine-terminating (tidewater) glacier with ice calving into Storfjorden and the Arctic Ocean. Like

other tidewater glacier surges in Svalbard (e.g., Strozzi et al. (2017); Sevestre et al. (2018); Nuth

et al. (2019)), Negribreen began accelerating near the terminus after a collapse near the glacier

front (Trantow and Herzfeld, 2023). Surge e↵ects, such as heavy crevassing and elevated velocities,

proceeded to propagate upglacier through the end of 2020 when it reached the NGS boundary with

Filchnerfønna 30 km upglacier from the terminus (Trantow and Herzfeld, 2023). Mean ice-speeds

remain significantly elevated in 2023 relative to quiescent speeds, with a maximum of 4m/day near

the calving front, though ice-speeds have been decreasing steadily since the peak in 2017 (see Fig.

1(c)). High velocities, large-scale crevassing and enhanced calving during the surge has led to rapid

disintegration of the system and large mass loss (Trantow and Herzfeld, 2023), thus contributing a

significant amount to annual sea level rise during the surge years. Examples of surge crevasses are

shown in aerial photographs in Herzfeld et al. (2022); Trantow and Herzfeld (2023).

3.3 The Crevasse-Centered Approach

Because analysis of crevasse patterns takes a central role in the physical part of our ML approach, we

give a brief background summary on the role of crevassing in glacial acceleration and to the utiliza-

tion of the crevasse concept in data analysis and modeling. The central idea of the crevasse-centered

approach is that dynamic signatures of fast-moving ice and glacial acceleration are imprinted in

ice in the form of crevasses and consequently the deformation history of a glacier can be recon-

structed through analysis of crevasse patterns. Structural geologic principles provide links between

dynamics, kinematics and deformation, which can be physically formalized and quantified using

continuum mechanics, and simulated in numerical models (Means, 1976; Suppe, 1985; Twiss and

Moore, 1992; Ramsay and Lisle, 2000; Liu, 2002; Greve, 2003; Trantow and Herzfeld, 2018).

Crevasses can be characterized using generalized spatial surface roughness, which is a mathematical

approach that utilizes parameters derived from spatial statistical functions to capture spatial prop-

erties of a surface (Herzfeld, 2008). Roughness-based characterization applies to both crevassed and

non-crevassed ice surfaces and thus allows to map an entire glacier. The approach of combining

structural geology and mathematical roughness analysis to derive deformation characteristics in

fast-moving glaciers is described in theory in Herzfeld et al. (2004) and has been applied to map

deformation provinces in surging and continuously fast-moving glaciers throughout the cryosphere

Herzfeld and Mayer (1997); Herzfeld (1998, 2008); Herzfeld et al. (2000); Mayer and Herzfeld (2000,

2001); Herzfeld and Zahner (2001). Applications of other approaches to structural glaciology are

have been reported by (Vornberger and Whillans, 1990; Marmo and Wilson, 1998; Rist et al., 1999).

These studies have shown that observations of crevasse patterns and surface roughness can be used
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as a source of geophysical or glaciological information.

Furthermore, the crevasse-based geophysical information obtained from remote sensing observa-

tions, such as satellite imagery, can be utilized in numerical models. Trantow and Herzfeld (2018)

use Landsat-7 imagery of Bering Glacier, Alaska, during its peak surge phase in 2011 to derive

crevasse locations, based on roughness characterization, and crevasse orientations, which are also

modeled by simulating the stress regime in a 3D, full-Stokes finite element model. Di↵erences in

crevasse characteristics are minimized by optimizing important surge-model parameters such as

the basal friction coe�cient. This method is extended in Trantow (2020) to include other sources

of model-data comparisons, such as surface velocity, which allows the optimization of additional

model parameters such as those related to ice rheology.

Ice velocity observations are popularly used to constrain unknown model parameters (e.g. Larour

et al. (2014)), however, during a surge the large-scale non-linear dynamics complicate velocity

determination (Fatland and Lingle, 1998; Trantow and Herzfeld, 2018), particularly on short time

scales relevant to a surge. Therefore, crevasse observations are our most reliable source of dynamical

information during peak surge activity and can be used to derive and optimize basal sliding laws

for modeling a surge phase (?).

Crevasse classes, like those derived in the present paper, o↵er a more sophisticated picture of a

glacier’s dynamic and structural state compared to simple crevasse-location and crevasse-orientation

characterization. With more detailed geophysical information from crevasse classification, we expect

to provide better constraints for a numerical model allowing more optimal parameterization, better

error correction for input data sets such as bed topography, and ultimately more realistic simulation

of glacial acceleration and its resulting e↵ects on SLR and the evolving cryosphere.
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4 Summary of the Approach

4.1 Objectives, Summary of Approach, Classification and Analysis Steps

The main objective of this paper is the exploration of the trade-o↵s between a physically constrained

NN, a CNN (“Deep Learning”) for a specific, but generalizable, problem in the geosciences: The

classification of crevasse types that form during the surge in an Arctic glacier system, the Negri-

breen Glacier System, Svalbard, to derive objective information about the evolution of the surge.

To achieve this objective, we create a software system, termed GEOCLASS-image that facilitates

classification of surface features from high-resolution satellite imagery and other imagery, perform

testing and quality assessment (Q/A) of the software system, and release it as core of an associated

Cyberinfrastructure.

Based on the results of the two trade-o↵s studies, we derive an example of a ML approach that

combines the advantages of a physically constrained, classic NN with those of a CNN, thereby

creating a physically constrained NN with a combined architecture, that will be termed VarioCNN.

The final VarioCNN is applied to a time series of WorldView images, to derive information on the

evolution of the surge in an Arctic Glacier System, the Negribreen Glacier System.

The combined NN, VarioCNN, will be applied to a time series of WorldView-1 and WorldView-

2 images, collected in 2016 – 2018 during the acceleration stage and mature stage of the the

surge in the NGS. Each image will be analyzed individually and provide an element in a time

series of thematic maps of crevasse provinces. The goal is to derive geophysical information on

the evolution of the surge during these core stages. Specifically, we aim to create a classification

of crevasse patterns, as they relate to deformation types that occur as a result of ice-dynamic

processes. Crevasses are manifestations of the local strain state of the ice. Occurrence of fresh

crevassing indicates the expansion of the surge, and as the surge progresses, new types of crevasse

patterns form. The time series of crevasse maps will be interpreted geophysically. Lastly, we provide

a description of the GEOCLASS-image software system.

In summary, the work in this paper builds on the following three ideas:

(1) Employ geostatistical parameters as mathematical formulation for physically informed

extraction of complex information from imagery

(2) Utilize di↵erent NN types as connectionist association structures: MLPs and CNNs

(3) Compare and then combine the NNs into a three-tiered approach: Geostatistical-connectionist

with MLP and CNN
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4.2 Approach Steps

Objectives of the work in this paper are the following:

(1) Create a software that

(1.1) encompasses the main principles of the connectionist-geostatistical classification method,

(1.2) is su�ciently tested/ robust/ quality-assessed to form the center-piece of a community

software for image classification in the geosciences and beyond,

(1.3) has a user-friendly GUI for image manipulation, selection of training data, through

classification,

(1.4) facilitates training and classification of several crevasse types

(1.5) allows analysis of di↵erent types of satellite imagery

(1.6) includes utility tools for cartographic projections and other image manipulations,

(1.7) includes several Neural Network Types, including Multi-Layer Perceptrons, Convolu-

tional Neural Networks, and

(1.8) is open to generalization to more architecture types

(2) Explore the trade-o↵s between a physically constrained NN and a CNN for a specific, but

generalizable, problem in the geosciences: the classification of crevasse types that form during

a glacier surge

(3) Create an example of a ML approach that combines the advantages of a physically constrained,

classic NN with those of a CNN, thereby creating a physically constrained NN with a combined

architecture, and

(4) Apply the resultant NN to a time series of WorldView images, to derive information on the

evolution of the surge in an Arctic Glacier System, the Negribreen Glacier System.

4.3 Terminology

We use the following terms to distinguish ML approaches and NNs in this paper; further explained

in sections (6), (7), (8), (9) and in the Appendix A.

(1) The connectionist-geostatistical classification method (Herzfeld and Zahner, 2001) is the orig-

inal approach that combines a physically driven geostatistical analysis of an input data set

and a neural network into a ML approach. As described in Herzfeld (2008), the geostatis-

tical analysis or characterization can take several di↵erent forms, in any case, the output of

the geostatistical analysis is used as input for the neural network. Examples of geostatisti-

cal analysis include (a) the experimental variogram, a discrete function, and (b) results of
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geostatistical characterization parameters. The neural network type applied in most of our

studies is generally a form of a multi-layer perceptron (MLP) with back-propagation of errors

(Herzfeld and Zahner, 2001; Herzfeld et al., 2016; Herzfeld, 2008; Herzfeld et al., 2023b) (see

section (6)).

(2) The acronym VarioMLP is used for connectionist-geostatistical NN type that is applied in

this paper; it employs an four-directional experimental vario function to activate the input

neuron of a MLP with back-propagation of errors (see section (6)).

(3) The term Convolutional Neural Network (CNN) stands for a specific class of neural networks

that realize the concept of “deep learning” (Goodfellow et al., 2016; Camps-Valls et al., 2021b).

(4) ResNet-18 is the acronym for the specific CNN used in this paper (He et al., 2016a,c) (see

section (8)).

(5) The acronym VarioCNN will be used for the combined new method that integrates VarioMLP

and ResNet-18 into a unique, physically constrained ML approach (see section (9)).

(6) Specific architectures of a NN are identified by adding information in square brackets, for

example, VarioMLP[18, 4,(5,2)] identifies a VarioMLP, where 18 is the number of steps in the

vario function (for each direction), 4 the number of directions of vario-fcuntion calculations,

yielding 72 nodes in the input layer, and (5,2) the factor in the number of nodes of hidden

layers; here a MLP with two hidden layer is used, where the first layer includes 72 times 5

nodes and the second layer 72 times 2 nodes (see section (7)).

More generally, V arioMLP [nsteps, ndir, (m1, . . . ,mn)] identifies a VarioMLP, where nsteps is

the number of steps in the vario function (for each of ndir directions ) and (m1, . . . ,mnl) with

nl✏N the factor in the number of nodes in nl hidden layers; here a MLP with nl hidden layers

is used, where layer i has mi nsteps nodes for i = 1, . . . , nl (see section (7)).

(7) GEOCLASS-image is the software system utilized to create the neural networks and labeled

data sets referred to in this paper and carry out the classifications of crevasse types during

the surge of the NGS, Svalbard (Herzfeld et al., 2023a) (see Appendix A)).
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5 Approach Component: Image Classification and Data Sources

5.1 Image Classification Challenges and Approaches

The data analysis challenge is a type of image classification, more specifically, image segmentation.

Di↵erent types of image classification are the following: (1) Each image is associated to a class,

(2) features are extracted from images (an often-analyzed example is the detection of moving

features between consecutive images; e.g. planes at terminals (He et al., 2021). (3) application

of the image classification to videography, i.e. time series of images (e.g. Herzfeld and Zahner

(2001)) or satellite videography (He et al., 2021), (4) Segmentation of a single image into areas

of several di↵erent classes, resulting in thematic maps. Early applications in the geosciences, e.g.

sea-ice classification, land-cover classification, fall in this category. Typically, the classification is

applied as a moving-window operator (i.e. to subimages, which can overlap). From a classification

standpoint, the types of image arrangement can all be treated the same way, with di↵erent data

handling utilities. Challenges in this context lie in the specifics of the observational data, which

may include remotely sensed imagery from any tier of observation (satellite, airborne, subaerial,

ground), in the specific spatial and spectral resolution of the sensor, signal-background separation,

and other characteristics of image. The problem treated in this study is a combination of (4) and

(1), applied to a time series of satellite image data of the glacier surface. The classification will be

applied to each image individually (i.e. without providing information on the previous image).

Because a surge in an Arctic glacier extends over several years, typically 7-10 (Murray et al.,

2003b), data from several di↵erent satellite sources need to be integrated in an analysis. Here, we

utilize Maxar (formerly DigitalGlobe) data from the WorldView-1 and WorldView-2 satellites. Both

satellites carry high-resolution multispectral optical image sensors, but with di↵erent resolutions

and spectral channels (see, Table 1). Thus, a specific challenge lies in the identification of subimages

for training that work for both satellite data types.

In order to facilitate application of our classification system GEOCLASS-image to data from di↵er-

ent sources, a large range of data handling utility modules is included (see, software description).

The software is designed to be generalizable to several data types, both (a) for di↵erent studies,

using a single data type, and (b) to integrate data from several sources into one classification.

The classification will be trained using a set of labeled images. A challenge in a spatially based

classification, but also in any image classification that uses subimages (or: splitimages), is the

selection of a subimage size that is large enough to include several repetitions of the crevasse

pattern, but also small enough to be su�ciently homogenous to be assigned to a single class.
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5.2 Data Sources and Processing

The analysis in this paper utilizes Maxar WorldView-1 and WorldView-2 optical satellite image

data. WorldView-1, WorldView-2 and WorldView-3 data are a widely used type of commercial

satellite imagery (Neigh et al., 2013). Hence the classification approach described in this paper is

relevant to large parts of the Earth science community. For example, an Arctic-wide Mosaic and

DEM has been created from WorldView data (Porter et al., 2022). Immitzer et al. (2012) use a

random forrest classification applied to Worldview-2 imagery to identify tree species in the forests

of Austria at high resolution. WorldView data is used heavily as the data source for classifications

by the Land-Cover/Land-Use and the Vegetation Ecology Communities (e.g., Elsharkawy et al.

(2012); Immitzer et al. (2012); Aguilar et al. (2013); Koc-San (2013); Ghosh and Joshi (2014);

Waser et al. (2014); Li et al. (2015); Gaertner et al. (2017); Melville et al. (2018); Vigneshwaran

and Vasantha Kumar (2021); Caraballo-Vega et al. (2023)).

The Worldview-1,2,3 satellites, owned and operated by Maxar (formerly DigitalGlobe), provide

submeter optical imagery of much of the cryosphere (Porter et al., 2022), including all of Negribreen.

WorldView-1 carries a single high-resolution optical imager called the WorldView 60 camera, which

has a single panchromatic channel with a spectral range of 0.45 µm- 0.90 µm. WorldView 60 is

a pushbroom sensor operating in a swath of 17.9 km with 0.5 m resolution at nadir down to

0.55 m resolution 20� o↵ nadir. (see Table 1). WorldView-2 also carries a single high-resolution

optical imager called the WorldView 110 camera, but has two operational channels. The first is

panchromatic channel with a spectral range of 0.45 µm- 0.80 µm, while the second is an 8-band

multispectral channel ranging from 0.4 µm- 1.05 µm. WorldView 110 is also a pushbroom sensor

with a swath-width of 16.4 km with 0.46 m resolution at nadir down to 0.52 m resolution o↵ nadir.

A full comparison of the WorldView-1 and WorldView-2 specs is given in Table 1.

In this analysis, we utilize panchromatic imagery from WorldView-1 (launched 18 September 2007,

decommissioned September 2023, Earth Observation Portal (EOPortal) (2023a)) and WorldView-

2 (launched 8 October 2009, remains operational in 2024, Earth Observation Portal (EOPortal)

(2023b)) to analyze the NGS surge from its start in 2016 through 2019. Data from the panchro-

matic channel will be utilized for the classification approaches in this paper, because it has the

highest spatial resolution for each satellite (0.45m pixel size for WorldView-1 data and 0.42m for

WorldView-2 data) and thus retains the most information on spatial properties of the ice surface.

While we will not employ data from the other spectral channels, we have described statistical

and geostatistical image classification approaches for multispectral data elsewhere (Herzfeld et al.,

2016).

The VarioMLP has also been applied to classify Negribreen crevasse provinces based on Planet

SkySat data (Herzfeld et al., 2021, 2022) (for data description, see (Fiuczynski, 2006; Peterson

et al., 2006)). Other commonly used satellite imagers include Landsat (Wulder et al., 2019) or

Sentinel-2 (Drusch et al., 2012).

Processing. Images were selected w.r.t spatial coverage, temporal coverage and lack of obfuscation.
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The GEOCLASS-image system includes a tool for evaluation of the area of overlap of a given

WorldView image with the area of interest, as outlined by the polygon encompassing the NGS

region (Fig. 1(a)). Only images with a 50% or more overlap with the NGS area of interest were

used for analysis. To avoid obfuscation, (1) images with a high percentage cloud cover over the

area were avoided, as were images with a deep snow cover on the glacier, which would obliterate

the crevasse patterns. Thus winter images were rejected. Applying these criteria, 11 high-quality

images from spring and summer 2016-2018 were selected from several hundred WorldView data sets

(Table 2). All 11 images were used for creation of the labeled training data sets of split images,

whereas 7 are used in the time-series analysis (leaving out images that are too close in time to other

images already in the time series).

The pixel intensity of the source geoti↵ images was normalized to the 95th percentile and compressed

to an 8-bit range. This was done because although the Worldview-1 and Worldview-2 sensors allow

for 11-bit depth, only a small number of pixels in each image actually reached those intensity values,

the rest being several orders of magnitude below. By normalizing to an 8-bit range data processing

during training and testing was made much faster and more e�cient, and by thresholding the

highest-intensity pixels, the resulting geoti↵ images and the split images extracted from them were

much easier to view for the human eye, a crucial component for a labeling process.

Custom software was written to extract the coordinates in both pixel space and UTM space for each

split image within a given set of geoti↵ images which falls 100% within the NGS area of interest.

These coordinates, along with fields for a class label, class prediction, confidence, and enumerator to

reference the source geoti↵ images were stored in a large table in addition to metadata containing the

filepaths, a�ne transforms to convert between pixel and UTM space, and class enumerations. Thus,

this pipeline produces a standardized and e�cient split image dataset format which can be utilized

by the classification model, visualization tools, labeling tools and utility tools to reproducibly

extract the split images from their corresponding source images at runtime. For the 11 source

geoti↵ images selected (Table 2), a total of 108,623 split images were extracted using this pipeline.

A breakdown of the total number of split images from each source geoti↵ is also given in Table 2.
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6 The Connectionist-Geostatistical Classification Method

The connectionist-geostatistical classification method (Herzfeld and Zahner, 2001; Herzfeld, 2008)

integrates and interleaves physical knowledge, spatial statistical analysis and computational com-

ponents at several levels. The approach includes the following concepts:

(1) The idea of using spatial classification to extract features from image data

(2) The idea of using geostatistical parameters to pre-process the imagery

(3) The vario function and residual vario function

(4) Creation of input data to activate the input-layer neurons of the NN

(5) The feed-forward multi-layer perceptron with back-propagation of errors

The idea of the connectionist-geostatistical classification method is to utilize geostatistical param-

eters to pre-process the input image data, thereby reducing the complexity of a NN required to

identify spatial structures that are surface signatures resultant from cryospheric processes. The

relationship between glacial acceleration, crevassing and resultant spatial structures reflected in

imagery has been explained in section (3.3) and in more detail in (Herzfeld, 2008). In this sec-

tion we describe the mathematical and computational ingredients of this approach, in the form

that is employed in VarioMLP, the type of connectionist-geostatistical classification utilized as a

component of VarioCNN.

6.1 Geostatistical Processing of the Input Image Data

6.1.1 Spatial Homogeneity

Depending on the type of image classification problem at hand, an input image can be a video

frame, a photograph, a subset of a video frame or photograph, or a subimage of a large image such

as a satellite image (termed split-image here). Split-images are created from satellite images by a

moving window process. The goal is to associate each image to a surface class, here a crevasse class,

using the classification method. Considering the entire classification a moving-window operation

applied to a satellite image, a segmentation of the area of the satellite image into crevasse classes

will be obtained, in other terms, a thematic map of structural glaciologic provinces. Similarly,

a time-dependent segmentation of a video stream of a glacier will result in a mapping of surface

classes.

To allow for characterization and classification of the spatial structures captured, the optimal size

of a subimage (split-image) is determined as follows: A feature type needs to repeat approximately
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three times in the split-image, and the split image needs to be spatially homogeneous with respect

to surface structure, here, crevasse type. These two criteria will not be met exactly across an entire

glacier region, thus a split image size needs to be selected that meets the criteria su�ciently often to

make the classification operational. For experiments with only VarioMLP, split-images of sizes 201

pixels by 268 pixels were used, which follow the (3-4-5) rectangle convention and are approximately

123 m by 92 m for WorldView-1 data. An additional constraint is that the structure requires

input imagery of 224 by 224 pixel sizes. For WorldView data and Negribreen surge crevasses, this

requirement can be met, however, it limits generalizability of the approach. The entire training

was rerun for the combined architecture of VarioCNN using square images.

6.1.2 Vario Functions

In order to characterize the spatial surface structure in a given area, recorded in an image or

subimage, we calculate vario functions, defined as follows:

v1(h) =
1

2n

nX

i=1

[z(xi)� z(xi + h)]2 (1)

for pairs of points (xi, z(xi)), (xi + h, z(xi + h))✏D, where D is a region in R2 (case of profile data)

or R3 (case of image data) and n is the number of pairs separated by h; the distance value h is also

termed “lag”. The function v1(h) is called the first-order vario function. This function exists always

and has a finite value.

The residual vario function is often more useful to analyze roughness in situations where a regional

trend or a local drift underlies the data. Using

m(h) =
1

n

nX

i=1

[z(xi)� z(xi + h)], (2)

the residual vario function is defined as:

res1(h) = v1(h)�
1

2
m(h)2. (3)

First-order vario functions are formally equivalent to variograms of geostatistics, but introduced

in a discrete mathematics framework that facilitates easy numerical implementation as well as

generalization to higher order (Herzfeld, 2008).

The variogram is defined for a data set that may be considered a realization of a spatial random

function satisfying the intrinsic hypothesis (see Matheron (1963, 1973)), for which generalization

to higher order is di�cult because of the statistical assumptions that need to be met. Equation (1)

corresponds to the statistical second-order moment and equation (2) to the first-order moment.

Residual vario functions work best for data that underly a trend. The second-order vario function
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and residual vario function can also be used (see, Table 3). Numerical outputs of the first-order

vario function have been used in the original connectionist-geostatistical classification in (Herzfeld

and Zahner, 2001), they correspond to the experimental variogram values.

In VarioMLP, first-order vario functions are calculated sampling along four directions of each image,

paralleling each side and the two diagonals (see, Figure 2). An e�cient sampling algorithm makes

use of the matrix structure of the 2D image. The sampling algorithm in (Herzfeld and Zahner,

2001) utilizes images of relative sizes (3-4-5), where 3 and 4 are the relative lengths of the split

image sides and 5 the diagonal. However, this cannot be transferred to training, which requires

square images.

The discretization of the vario function is determined by the lag value h in pixels. In the final

implementation of the algorithm, the lag value is determined such that 18 lag steps exhaust 80%

of the image size (244). The values of

(v1(1), . . . , v1(m)) (4)

become the activation values for the input layer of the MLP for any value of m✏N , in our final

structure it will be m = 18. Accounting for the 4 directions of directional vario functions calculated

for each split image, we have a matrix of input values

V =
�
v1(i,j)

�i=1,...,m

j=1,...,ndir
(5)

With ndir = 4 for the number of directions, the number of input values is min = ndirm = 72.

6.2 NN Architecture: Multi-layer Perceptron (MLP)

The NN structure of the connectionist-geostatistical classification is a multi-layer perceptron with

back-propagation of errors (MLP-BP or simply MLP). The MLP has an input node per vario-

function value, in the final VarioMLP structure min = 4m = 72, accounting for 18 lag steps and 4

directions. MLPs have been found to be useful NN types for the solution of this type of classification

problem.

The number of nodes (neurons) in the output layer has to equal the number of surface classes, here

crevasse classes. In our experiments, this number is mout = 6. Larger numbers of crevasse classes

have been used, ranging up to 18. In Herzfeld et al. (2023b), we describe a classification with up

to 13 crevasse classes.

This leaves the number and size of internal, hidden layers as variables of the NN architecture that
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will be determined experimentally (see section (7.7.2)). The original work in Herzfeld and Zahner

(2001) uses a single hidden layer, in fully connected or partly connected architectures. Here we

experiment with two or three internal layers.
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7 Image Labeling and Training Approach (for VarioMLP and ResNet-18)

7.1 Training Approach

The training approach reflects the goal of creating a physically constrained NN by combining

knowledge of glaciological processes and Earth observation technology with ML methods at every

step. In the last section, we already saw that the selection of sizes of training images is controlled

by a requirement of spatial homogeneity, constraints associated with the spatial resolution of the

satellite imagery, and the spacing of crevasses on the glacier surface, which results from the glacial

movement and acceleration and we aim to analyze. Training is carried out as a form of supervised

training; training as such is an optimization problem of the model’s internal parameters.

7.2 Crevasse Classes

Crevasse classes are selected by an expert, based on structural glaciology (section (3.3)). Because

a main objective of this paper is the integration of a physically constrained NN and a CNN,

we utilize (only) four basic crevasse classes: (a) one-directional crevasses, (b) multi-directional

crevasses, (c) shear crevasses, and (d) chaos crevasses, or shear-chaos crevasses. The crevasse

types associated with these classes are illustrated in Figure 3. Crevasse types (a), (b) and (c) are

associated with basic deformation matrices (Herzfeld et al., 2004): The one-directional crevasse

type results from an extension in one direction (Fig. 3a). The multi-directional, including two-

directional, crevasse type results from a deformation with more than one stress axis (Fig. 3b). It

can also result from two deformation processes that a↵ect the material ice in sequence. The shear

crevasse type results from shear, a deformation type that typically occurs when fast-moving ice

borders slow-moving ice. In the case of a surge, the ice of one glacier (Negribreen) accelerates,

while the ice of an adjacent glacier (e.g. Ordonnansbreen) continues to flow at normal, much

slower speeds (Fig. 3c). Depending on the spatial and temporal velocity gradient, shear crevasses

can take di↵erent appearances (Fig. 3c and 3d). Transportation, weathering and interaction of

several deformation processes can lead to complex ice-surface and near-surface structures, in which

the signatures of individual processes cannot be distinguished any more, thus they are summarized

as “chaos” crevasse class (Fig. 3d). In some areas, the signature of shear deformation is still evident

in the chaos crevasse fields (Fig. 3f), but separation in an image classification process may be too

di�cult, thus the class is summarized as chaos/shear-chaos. Two additional classes need to be

added to each classification, one for undisturbed snow/ice and a rest class for “other” surfaces,

which can include moraines, rock avalanches, subimages that include snow/ice and rock surfaces,

and indiscernible images, to limit misclassification of the better defined 4 crevasse classes. A

rendering of representative examples of split images, subselected from WorldView satellite imagery,

is seen in Figure 4. The images have a size of 201(=3*67) pixels by 268(=4*67) pixels, i.e. the

follow the (3-4-5) size rule.
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7.3 Image Labeling

A second main objective of this paper is the derivation of a labeled training data set for the problem

of crevasse classification from satellite imagery. With this objective, we address the problem that

application of ML in the geosciences and specifically the cryospheric sciences has been hampered by

the lack of labeled training data sets, as identified by authors working in the field (e.g. Virts et al.

(2020); Liu et al. (2020b); Meyer and Pebesma (2021)) and described in more detail in section (2).

To initiate the training, sets of split-images for each class are identified and selected by the structural

glaciologist. In our experiments, we found that several tens of example images per class are su�cient

for an initial training run of VarioMLP.

Technically, image labeling is carried out using the Split Image Explorer Tool, visualized in Figure 5,

described in more detail in Appendix A. Individual images can be selected from the WorldView

image, optionally with a polygonal area of interest outlined that contains the glacier area, viewed

enlarged at the top left, and associated to a class. The association can be (1) performed initially by

the glaciologist, or (2) displayed as the result of the NN classification, or (3) overwritten (accepted

or rejected) in a control pass in the training loop (see section (7.6)). A sliding bar in the left

middle of the explorer toll allows application of confidence as a filter for visualization (only images

classified with a confidence level exceeding the user-selected confidence threshold are displayed in

color).

7.4 Data Handling and Feature Engineering

Feature engineering is the design of the input for the neural network. Of importance for robustness

of the results is that identification of a crevasse type is independent of orientation and view angle

of the satellite, relative to features on the ground. Directional bias is removed by calculating vario

functions in several di↵erent directions for each split-image.

Prior to extraction of split-images, the satellite image needs to be oriented in a geographic or

rectangular projection framework that facilitates output of the final classification in the form of a

thematic map of crevasse provinces. Raw satellite imagery is typically collected along orbits and

constrained by the view angle of the observatory, which is fixed for some imagers, but adjustable

or sweeping for most (including WorldView). To accomplish mapping larger areas from a single

or multiple satellite images, utility functions for image projection and mosaicking are implemented

as part of the GEOCLASS-image system. To visualize, the reader may compare the di↵erent sizes

and orientations of the input imagery shown in Figure (6).

Data from the panchromatic channel of WorldView-1 and WorldView-2 are utilized, because the

classification principle is a spatial classification. In the more common form of multivariate statisti-

cal classification, data from several spectral channels are used. Our study combines imagery from
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two di↵erent image systems, WorldView-1 and WorldView-2, which result in imagery of some-

what di↵erent pixel size and resolution (0.45 m for WorldView-1 and 0.42 m for WorldView-2,

see section (5.2)). A utility function in GEOCLASS-image facilitates simultaneous analysis and

classification of imagery from both satellite types.

Application of the vario function to a typical image from the classes of (1) undisturbed snow

and ice surfaces and (2) one-dimensional crevasse types, seen in Figure 2, illustrates how the NN

can separate these crevasse types based on the vario function values for di↵erent directions and

distances. First, the maximum of the resultant vario function values is much lower for undisturbed

surfaces than for crevassed surfaces (compare the v1 axes in Fig. 2c and Fig. 2d). Second, an

anisotropic behavior of the set of directional vario functions is typical for one-directional crevasses

(Fig. 2b, 2d), where the direction that is near-parallel to the crevasse direction does not reach the

sill of the vario function (green in Fig. 2d), whereas the other three directional vario functions

exhibit a typical wavy pattern resultant from washed out cross-correlation, with spacing dependent

on the relative angle of the crevasse orientation to the directional calculations.

7.5 Criteria for Evaluation of Training Success

We use the terminology of intrinsic criteria for quantitative, computational criteria (cross-entropy

measure of training loss, confidence of classification result, co-occurence matrix) and extrinsic criteria

for glaciological criteria which are typically based on airborne field observations of the glacier system

during surge and on additional expert knowledge on the evolution of crevasse types during a surge

(Herzfeld and Mayer, 1997; Herzfeld, 1998; Mayer and Herzfeld, 2000; Herzfeld et al., 2013, subm;

Trantow and Herzfeld, 2018). The application of extrinsic criteria is best explained in an applied

example of image labeling and in the geophysical interpretation (see sections (7.6) and (11)).

7.5.1 Softmax Function

A softmax function is used to convert the NN output layer to a probability distribution for the

possible classes. Each output node is assigned a value between 0 and 1 (pi), with all outputs

summing to 1, so that they can be interpreted as probabilities. The class with the largest probability

is selected as the NN’s final classification of a given input and the confidence of the classification

result is equal to that probability, i.e., the maximum of the softmax function. The loss function

associated with the softmax function is given by the cross-entropy loss, which is used for training

purposes (see, section 7.5.2). The softmax function is commonly used in many CNNs (Krizhevsky

et al., 2012; He et al., 2016a) due to its simplicity and probabilistic interpretation.
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7.5.2 Cross Entropy

Training an MLP is an optimization of the model’s internal parameters, carried out iteratively. At

each iteration, VarioMLP predicts the class of each training example and uses the cross entropy loss

function as a quantification of the di↵erence between predicted values and training data. Entropy

was first introduced in Shannon (1951) to quantify the level of uncertainty of a random variable X

based on possible outcomes pi according to

H(X) = �
nX

i=1

pi log(pi) (6)

for i = 1, . . . , n and n✏N is the number of classes. For VarioMLP, the outcomes are the crevasse

classes and the probabilities are those which the model assigns to each output neuron. The DDA-

MLP uses cross entropy loss as its loss criterion, calculated as

Lossce = �
nX

i=1

ti log(pi) (7)

where n is the number of classes, ti is the truth label for class i, and pi is the model-predicted

probability for class i as its loss criterion. The optimization problem is then for the model to learn

an internal parameter set which minimizes this loss function, and to accomplish this the DDA-MLP

employs stochastic gradient descent (SGD) via the Adam algorithm for first-order gradient-descent

based optimization problems introduced by Kingma and Ba (2014). During training, backpropaga-

tion, as defined in Hecht-Nielsen (1992), involves computing the gradient of the loss layer by layer,

starting from the output and moving backward towards the input layer. In this case, the Adam

algorithm for SGD only computes the first-order gradient, and employs adaptive learning rates for

parameters based on estimates of first and second order moments, and updates the parameters pro-

portionally to the learning rate hyperparameter in the direction of steepest descent of the gradient

(Kingma and Ba, 2014). Application of cross-entropy loss for training of deep NNs is described in

Zhang and Sabuncu (2018).

Cross-entropy loss is utilized to identify functional training runs and reject training mistakes. For

example, overfitting in a test-run of the model is illustrated in Figure 7.

7.5.3 Confidence

Classification confidence is a measurement of the probability that the association of an input image

to a class is correct. Confidence approaches have been discussed in Papadopoulos et al. (2001). We

27



utilize confidence to accept or reject classified crevasse images into the training data set, applying a

threshold of 90% confidence. The Split-Image Explorer Tool allows user-selected confidence values.

7.5.4 Other Training Hyperparameters

Overall, the training and feedback-loop experiments were repeated several times with di↵erent

parameters and variations of the classification models. The split of the training data into actual

training images and validation images was held constant at 80% (training) and 20% (evaluation)

for all experiments training VarioMLP and ResNet-18. This means that however many labeled

training images existed for a given run, 80% were randomly selected at runtime for the actual

training process, and 20% were reserved to evaluate model performance after each epoch. It is

important to separate the training and evaluation datasets, because if the model is not evaluated

on images it did not see during training, it will simply memorize the training dataset if the model

is su�ciently complex. Each training run was carried out with a maximum number of 50 epochs.

For each epoch which resulted in a new best validation loss, a checkpoint of the classification model

was saved for further evaluation. For all training experiments, cross entropy loss was used with the

Adam optimizer as the method for gradient descent calculation (section 7.5.2).

7.6 Interleave of Split Image Labeling with the Training Process: The Feedback Loop

Following creation of an initial set of expert-labeled training data, a VarioMLP is trained. The

resultant network architecture can be applied to simply classify an entire satellite image. However,

in order to derive a large data set of labeled training images, an iterative approach to split-image

labeling and VarioMLP training is taken. The goal is the creation of a data set that is large enough

to train a CNN, which in turn can be expected facilitate rapid classification of many satellite images

for similar problems, i.e. a higher level of generalization of the task of crevasse classification.

The iterative approach is implemented in as a feedback loop in VarioMLP, executed as a mix of

computational criteria and expert interaction, interleaved in the training process of VarioMLP as

follows (see, Figure 8). The initial data set is considered the first-order data set, used to train the

NN. Validation loss and training loss are evaluated as quantified by the cross-entropy measure (see,

section 7.5.2). A trained VarioMLP architecture results.

The VarioMLP, with first-approximation final structure, is then applied to classify the entire set

of all split-images from a given satellite image (all split-images inside the polygon that outlines

the NGS). Each split image is associated to a class and written out into a directory of that class.

Next, only split images with a classification confidence at least 0.9 are retained in the crevasse class

directories. Then, the glaciology expert quickly views all new images in each class (i.e. any images

that were not part of the original labeled data set) and rejects images that are misclassified. This

process is much faster, requiring a fraction of human expert time, than labeling thousands of split-

images initially. The VarioMLP is then rerun, using the larger set of labeled data as training data.
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By repeating the feedback loop, a labeled data set with 3933 images was obtained in a reasonable

amount of time. The final labeled data set of 3993 split images includes between 522 and 953

images per crevasse class, with a distribution given in Table 4. This distribution is relatively even

and not varied enough to cause a significant potential source of inaccuracy for the model training.

In this exemplary application, the expert that selected the initial data set was a glaciologist ex-

perienced in structural glaciology, especially observation of glacier surfaces during surges (the lead

author of the paper), whereas in later iterations, the sorting of images was performed by a com-

puter science student, indicating that the sorting procedure grows increasingly fast and simple, as

the training goes through several iteration steps. To simplify the process, only a set of four main

crevasse classes, plus undisturbed plus a rest class/chaos class were chosen for this study.

On the other hand, to ascertain general application of the labeled training data set to a range of

previously unseen WorldView data sets from the NGS and other regions of surge glaciers, as well

as to analysis and classification of data from WorldView-1 and WorldView-2, split-images were

sourced from 11 di↵erent WorldView data sets collected over the NGS in 2016, 2017 and 2018.

This resulted in a total of 108,623 split-images. The distribution of split images in the final 3933

data set per WorldView source files is given in (Table 2).

At this point, we have achieved two results: (1) The derivation of a labeled training data set, and

(2) The VarioMLP together with the feedback loop as either a standalone NN or a component in

a physically constrained CNN, the VarioCNN.

In the next sections, we will describe ResNet-18, the CNN component selected for VarioCNN, its

training, comparison to VarioMLP, and finally design of the combined classification system, Vari-

oCNN, and the classification software system, GEOCLASS-image. Experiments with VarioCNN,

using GEOCLASS-image, are rounded o↵ by geophysical application and interpretation of the

evolution of crevasse provinces during the surge in the NGS.

7.7 Determination of VarioMLP Hyperparameters

The VarioMLP architecture includes hyperparameters which can be optimized to tune the model

for testing performance and generalization. Both the Directional Variogram and Multi-Layer Per-

ceptron steps of the VarioMLP architecture have hyperparameters which a↵ect the training and

testing in di↵erent ways. Input image size and resolution has already been discussed in section

(6.1.1), as this is constrained by the observations technology, the surface signatures and the as-

sumption of spatial homogeneity. To optimize the architecture of VarioMLP, experiments were

carried out to determine the optimum number of lag steps in the vario function and the shape and

number of the internal layers. In both series of experiments, cross entropy loss was used as the

measure for assessment of training quality and network performance.
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7.7.1 Number of Vario Function Steps

The optimal number of lag steps in the directional variogram becomes a function of the input

image size in pixels. If the number of lag steps used is too small, the directional variogram may

not be able to provide su�ciently di↵erent characteristics for a given set of surface types for

reliable classification. If the number of lag steps is too high, the characteristics provided by the

directional variogram can be polluted by noise and small-scale features that are present in multiple

surface types. These characteristics may bury the salient features of each surface type needed for

classification. During training, the lag step parameter was tested at values of 10, 12, 14, 16, 18 and

20 (Table 5). In this experiment, the hidden layer shape was fixed at [5,2] and the final validation

data set included 786 images (20% of the final 3,933-image labeled data set.) The best performance

was achieved with a lag step value of 18. It is interesting to note that performance is not correlated

with the number of lag steps used in the Variogram phase. Rather, the model seems to perform

relatively well with values of 12, 14 and 18, and relatively poorly with values of 10, 16 and 20.

7.7.2 Hidden Layer Structure in the MLP

The number of hidden layers in the MLP step of the VarioMLP architecture is a function of the size

of the input layer, as well as the size of the training dataset. If the number of hidden layers is too

large relative to the input layer size, then the model becomes unnecessarily complex and thus more

susceptible to overfitting. Too few hidden layers produce the opposite problem - the model lacks the

complexity necessary to capture the full variance of the dataset and su↵ers from underfitting. This

is an example of what is commonly referred to in machine learning as the bias-variance tradeo↵

(Geman et al., 1992; Briscoe and Feldman, 2011; Belkin et al., 2019). Choosing a perfect model size

and depth becomes increasingly di�cult for problems where there is no existing reference dataset of

labeled training examples, since as the size of the training dataset increases so too does the optimal

fully-connected model size. However this relationship is nearly impossible to calculate, so trial-

based estimation is necessary. To reduce the scope of this optimization during training, the shape

of the hidden layers of MLP architecture were limited to being exact multiples of the input layer

size. An MLP model denoted as [5, 10, 2] refers to a model with 3 fully-connected hidden layers,

which contain 5, 10 and 2 times as many nodes as the input layer respectively. During training,

model architectures of [2, 2], [5, 2], [5, 5, 2], [10, 5, 2], and [10, 10, 2] were tested (Table 6). For

each test run, the lag steps for the variogram stage were fixed at 18. The best performing hidden

layer shape was [5, 2]. For networks both wider and deeper than this, the performance significantly

decreased. This is likely due to the fact that for the relatively small amount of information at the

input layer (the concatenated output of the variogram stage), larger networks simply converge on

memorizing the training dataset. This is another example of the bias-variance tradeo↵ at play, the

network must not be overly complex for the scope of the input data.
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8 ResNet-18

8.1 Description of the CNN ResNet-18

The term ResNet summarizes a family of convolutional neural networks with depths of up to 1001

layers (He et al., 2016a,c, 2021), based on residual learning. ResNet-18 is the deep learning network

with the fewest internal layers that is commonly used today (e.g. Kochgaven et al. (2021); Ramzan

et al. (2020); Jiang et al. (2023)) and the ResNet type that will used for the stuides in this paper.

In medical sciences, labeled training data exist (Kochgaven et al., 2021). Notably, for image feature

detection in medicine (brain tumors, alzheimers, to name a few) labeled data sets exist, which is

not the case for image classification in geoscience studies.

8.1.1 Mathematical Principles of ResNets

The following mathematical description of deep residual networks (ResNets) is summarized from

(He et al., 2016c), the basic paper that introduces ResNets. ResNets consist of many stacked

so-called “Residual Units”. The defining equations of a ResNet are the following two:

yl = h(xl) + F(xl,Wl) (8)

xl+1 = f(yl) (9)

where xl and xl+1 are input and output of the l-th unit, F is a residual function and Wl denotes the

set of weights (and biases) associated with the l-th residual unit, which may consist of K number

of layers itself (K = 2 or K = 3 are typical values). The residual units form the building blocks

of the modularized architecture that characterizes a ResNet. In He et al. (2016a), only h(xl) is

an identity mapping and f is a ReLU function, whereas in He et al. (2016c), both h(xl) and f(yl)

are identity mappings. The work in He et al. (2016c) shows that in the case that both these are

identity mappings, the signal can be directly propagated from one unit to any other unit; this

finding leads to the definition of skip connections. The identity mapping h(xl) = xl (already derived

in their first paper, (He et al., 2016a)), achieves fastest error reduction and lowest training loss

(among a number of model variants studied in (He et al., 2016c)). The use of the second identity

mapping, f(yl) = yl , is a new interpretation of the activation functions (which can be, for example,

ReLU, the function used in our ResNet-18 model) as so-called pre-activation of the weight layers, as

opposed to a hitherto view of post-activation. This paper (He et al., 2016c) introduces a 1001-layer

ResNet, which is easier to train and generalizes better than the original ResNet described in (He

et al., 2016a).
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The essential mapping of the ResNet is reduced to equation (3), by using the two identity equations

and applying them to equations (1) and (2):

xl+1 = xl + F(xl,Wl) (10)

and then, using definitions of the elements in a building block, the following recursive equation is

obtained

xL = xl +
L�1X

i=l

F(xl,Wl) (11)

that associates any deeper unit L with any shallower unit l. The summation term
PL�1

i=l F(xl,Wl) is

the residual between units L and l. The innovative property of the ResNet is this residual function,

which distinguishes it from previous designs of so-called plain networks, where a feature xL is a

series of matrix-vector products. The simplification used in the defining equations of a ResNet not

only introduces the skip connections, but also results in the consequence that the gradient of a

layer does not vanish, even when the weights are arbitrarily small. The signal can be propagated

both forward and backward between layers L and l. This paper also states explicitly that deeper

(plain) networks su↵er from increased errors.

He and others (He et al., 2016c) compare n = {3, 5, 7, 9}, leading to 20, 32, 44, and 56-layer net-

works, and n = 18 that leads to a 110-layer ResNet. (He et al., 2016c) conclude that ResNets

(including ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152, whose main di↵erence

lies in the number of network layers) perform better in image classification aimed at feature extrac-

tion than other CNN models, evaluated for the ImageNet dataset. In our work, we will investigate

the potential of ResNets for identification and classification of complex cryospheric spatial patterns,

namely crevasse patterns.

8.1.2 Properties of ResNet-18

A few facts about ResNet-18 are the following:

(a) Layer structure. ResNet-18 consists of 16 convolutional layers, 2 downsampling layers and several

fully connected layers. Convolution kernels are of size 7x7 for the first convolution layer and of size

3x3 for the following convolutional layers. A ResNet-18 can include shortcut connections.

(b) Size of input images. The input images need to have a size of 224 by 224 pixels, as a result of

the requirement that the number of input neurons of the fully connected layer is fixed. This is

a very limiting fact, because it cannot be assumed that patterns or objects can be identified in
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a (sub)image of a specific size. After identifying optimal sizes for input images in the crevasse

detection, the creation of labeled data sets was re-run, using images of 224x224 size, in order to

allow training of a ResNet-18 model. The connectionist-geostatistical method and VarioMLP do not

require a certain size of input imagery. Vario-function calculation is computationally most e�cient

when images of a size of 3-4-5 are used (Herzfeld and Zahner, 2001), however a rectangular input

image of any size can be utilized. This type of flexibility is important, because it does not require

a-priori assumptions about the relationship between sensor resolution, data fields and physical sizes

of cryospheric or other patterns.

(c) Class association is carried out by an eigenvector composed of multiple probabilities, the class

with the highest probability will be associated to the image to be classified.

(d) Performance. There is research that indicates (Ou et al., 2019) that ResNet-18 can actually not

be expected to perform a complex class association, such as the crevasse classification, but only

extraction of low-level features such as edge detection and texture. Ou et al. (2019) state that deeper

ResNets (with more layers) would be needed for detection or classification of more complex features,

such as spatial context, global semantic and local features of objects. As demonstrated in the work

in this paper, the ResNet-18 model that was derived from a combination with the VarioMLP has

resulted in classification of crevasse patterns. Of note, in classic satellite image processing and

other image processing, edge-detection and texture analysis are obtained by convolution with small

kernel images of sizes 3x3 to 7x7 (Herzfeld and Zahner, 2001), so the finding of limitations caused by

small kernels in ResNets are an analogue of limitations in image processing known several decades

ago.

(e) Activation functions: Pandey and Srivastava (2023) explore the e↵ect of di↵erent activation

functions on image classification results. They note that CNNs perform better than machine

learning techniques because of their multi-layer hierarchical feature extraction which is controlled

by variables such as number of hidden layers, activation functions, learning rates, initial weights,

and decay functions, however, they attribute non-linearity of the network only to the activation

function which motivates their comparative investigation, regarding under-researched problems

including (a) vanishing and exploding gradients during back-propagation, (b) zero-mean and range

of outputs, (c) compute complexity of activation functions and (d) predictive performance of the

model. The activation function used in our ResNet-18 experiments is the Rectified Linear Unit

(ReLU), which is commonly used elsewhere in the literature.

8.1.3 Applications of ResNets

Examples of studies that utilize ResNet-18 include applications to moving object detection in

super-resolution videos (He et al., 2021) or complex scenes (Ou et al., 2019), an analysis of COVID

presence (Kochgaven et al., 2021), an application to Alzheimer’s diagnosis (Ramzan et al., 2020),

an engineering application to classification images of bearing faults (Jiang et al., 2023). In medical

sciences, labeled training data exist (Kochgaven et al., 2021), other than in geosciences. In order
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to process video satellite image sequences of relatively low resolution, collected by Chinese video

surveillance satellites Jilin-1 and OVS-1, into data streams that have super-high spatial resolution

while maintaining the high temporal resolution of the video data allowing to detect moving objects,

He et al. (2021) develop a multiframe video super-resolution neural network (MVSRnet). The

resultant MVSRnet is a ResNet with a 1001-layer depth, the largest depth published to date and

first mentioned in He et al. (2016c), and it includes an attention mechanism to improve moving

feature detection. While the complexity of the MVSRnet is impressive, it performs a relatively

simple task, the detection of moving objects. In contrast, our research aims at extraction of complex

information. In the next subsection, we cast some light on the expected and reported di↵erences

in capabilities and performance of comparatively shallow (such as ResNet-18) and deeper CNNs.

8.2 Selection of ResNet-18 as the CNN Structure for the Work in this Paper

ResNet-18 was chosen as the convolutional architecture. The ResNet architecture was first devel-

oped in 2015 in response to a growing set of problems with CNN image classification architectures

at the time (He et al., 2016a,c). While deep convolutional architectures had been shown to provide

state of the art performance on standard image classification benchmarks such as the ImageNet

dataset (Deng et al., 2009; Krizhevsky et al., 2012; He et al., 2016a), it was quickly discovered that,

in a somewhat counter-intuitive fashion, deeper networks only led to increased performance up to

a point, after which increased network depth resulted in increasingly worse performance. This was

due to what is known as the vanishing gradients problem (Pandey and Srivastava, 2023; Ruder,

2016). In essence, the deeper a network becomes, the smaller the derivative used to adjust model

weights becomes during backpropagation. After a certain point during backpropagation, this value

becomes so insignificantly small that the initial layers of the network are no longer trained at all.

This results in significantly worse performance, and overall training ine�ciency at scale. ResNet

solves this problem by allowing skip or shortcut connections between convolutional layers, in which

the output from a given layer is both fed directly to the next layer, and several layers later in

the model. This e↵ectively solves the vanishing gradient problem, as it provides a much shorter

path for the gradient to adjust the initial layers of the model during backpropagation. Not only do

ResNet models achieve similar or better performance to other state-of-the art convolutional image

classification models of its time such as VGG (Simonyan and Zisserman, 2014) or AlexNet (Deng

et al., 2009; He et al., 2016a), they do so with far fewer trainable parameters. ResNet-18, the most

shallow commonly used variation containing 18 layers has roughly 11 million trainable parameters,

whereas VGG16 (a state of the art convolutional model contemporary to ResNet) contains around

138 million. This drastically reduced model complexity with comparable performance results in

faster, more e�cient and more generalizable training for ResNet models as opposed to traditional

convolutional architectures (He et al., 2016c). Furthermore, deeper ResNet architectures have been

shown to result strictly in increased performance models with even hundreds of ResNet layers

perform better on benchmark datasets than shallower versions of the same architecture.

For this project, ResNet-18 was chosen because of its overall e�ciency and demonstrably high
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performance on similar image classification tasks. Because the problem domain requires building a

custom dataset from scratch, deeper and wider convolutional network architectures which mainly

show increased performance over ResNet-18 on benchmark datasets with millions of training exam-

ples are not necessary. In summary, ResNet-18 provides an e�cient and lightweight reference for

convolutional image classification architectures. The reference ResNet-18 architecture was left es-

sentially unmodified for the purposes of this paper, in order to serve as a reasonable benchmark for

convolutional models on the glacier surface type classification problem, and for ease of comparison

with the VarioMLP model.

8.3 Determination of ResNet-18 Hyperparameters

Because the main goal of this paper is to evaluate a CNN compared to a physically constrained

NN, and the ResNet-18 model was selected as explained above (section 8.2), the commonly used

hyperparameters of the ResNet-18 model were not reevaluated. The purpose of the ResNet CNN

architecture in this project is to provide a benchmark for CNN models on the surface classification

problem to compare against the VarioMLP. The goal is to provide a methodology which inherits

the strengths of both the “shallow” fully-connected VarioMLP architecture with the deep ResNet

model.

For ResNet-18, the one parameter tested is the batch size (Table 7). Batch size refers to the number

of input examples which are fed forward through the MLP before backpropagation is performed

during training. The resulting loss and gradient for backpropagation is then an average of the

losses from each input in the “batch”. With a larger batch size, the model sees a greater variety of

examples for which to tune its weights and biases, and this can improve the model’s generalizability.

Too large of a batch size relative to the amount of training data can result in a poorly directed

gradient during backpropagation. For the Resnet-18 model, batch sizes of 1, 2, 4 and 8 were tested,

with 2 achieving the lowest loss of any tested model or training hyperparameter set (Table 7). It

is interesting to note that after a batch size of 2, performance degrades significantly. This is likely

a factor of the size of the training dataset. The larger the ratio of batch size to overall training set

size, the less directed the gradient will be during backpropagation.
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9 Comparison and Integration of VarioMLP and ResNet-18 in a Combined NN Model:

VarioCNN

9.1 Comparison of Capabilities and Performance of VarioMLP and ResNet-18

The primary advantage of VarioMLP over the CNN (ResNet-18) is that VarioMLP can be trained

with a relatively small set of labeled training data, of a number of input images that can feasibly

be labeled by an expert in the field. This is simply not possible for a CNN, not even a relatively

shallow CNN such as ResNet-18, because the number of training images ranges in the 100,000s

(and is orders of magnitudes higher for other types of CNNs, as reported in section (2)). Data

sets of several hundred initially labeled images of crevasse types su�ce to train VarioMLP, and

thereafter an e�cient training feed-back loop, developed here, can be applied to increase the size

of the training data set, until a number is achieved that facilitates training of ResNet-18.

In comparisons of the e�ciency and performance of VarioMLP and ResNet-18, the VarioMLP

outperformed the CNN for training data sets for up to several 1000 (3500 or 5000) labeled im-

ages. An explanation for this lies in the fact that we utilize a physically informed spatial anal-

ysis/geostatistical approach to NN neuron activation is more important that the NN model ar-

chitecture. In other words, the performance-determining factor is not the selection of a shallow,

potentially outdated model structure, here, the perceptron, but rather the pre-training e↵ect of

the geostatistical analysis, combined with expert understanding of the relationship between surface

signatures of crevasses on the ice surface and resultant outputs of experimental vario-functions.

The MLP turns out to remain an e�cient model architecture for this first classification task.

For classification tasks of many more images, ResNet-18 is faster and trained more e�ciently. For

this study, we have only carried out a limited number of experiments with CNNs.

9.2 Derivation and Application of a Three-Tiered VarioCNN

The main idea is to use the physically constrained Vario-MLP to drive the CNN. Thereby we employ

the main advantage of the VarioMLP, to derive labeled data sets of 4000 (3933) training images,

starting with approximately 300 labeled images and using the iterative active learning approach.

The combined architecture, illustrated in Figure 8, consists of three tiers: (1) the vario-function

calculation for each input image data set, which is used to activate the nodes in the VarioMLP, using

the connectionist geostatistical method, (2) the MLP component of Vario MLP, which employs error

backpropagation through the layers as a means for optimization of weights, and (3) ResNet-18, a

CNN that can take input from satellite split images of a size of 244 by 244 pixels, which are piped

through the convolutional structure and associated with 6 output classes, here, 6 crevasse classes. A

retraining loop around VarioMLP serves to grow a training data set from a size of several hundred

images, selected by an expert, to a size that su�ciently large to train the CNN (here 4000 images
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approximately). The ResNet-18 has a stable and robust outcome for classification. Based on the

research in this paper, we can formulate the hypothesis that a CNN can be used as a component

in a physically constrained NN. We have tested this hypothesis for ResNet-18.

In the next section, we will use the trained ResNet-18 to perform a classification of a time series

of WorldView-1 and WorldView-2 data sets to analyze the evolution of the surge in the NGS,

based on insights from formation and expansion of 6 basic crevasse classes (4 classes and two rest

classes). Experiments using VarioMLP alone for classification of crevasse types of the Negribreen

surge from WorldView imagery and Planet SkySat imagery are described and analysed in Herzfeld

et al. (2023b).
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10 Experiments with VarioCNN: Application to Classification of Crevasse Types from

a Time Series of WordView Satellite Imagery

Following training of VarioCNN using the 3933 set of labeled training images, a final architecture

of VarioCNN was derived. The final, trained VarioCNN was then applied to a time series of 7

WorldView-1 and WorldView-2 data sets (Table 2). From a large catalog of WorldView images,

11 images were found to be suitable w.r.t. cloud cover and area coverage, of those, 7 images were

selected to represent the time interval between May 2016 to May 2018. A disadvantage of any

analysis that utilizes WorldView imagery is the large delay between the time of data collection and

the time when imagery is first made available to the glaciological research community. All useful

images are WorldView-1 or WorldView-2 data.

As described in section (3), crevasse types are the results of ice-dynamic processes that occur

during the surge. The spatial patterns recorded in the satellite image provide a snap-shot of the

local result of the dynamic state of the material ice, which is the kinematic force/ state associated

with the deformation that results in the crevasse type.

At the beginning of the classification work for this paper, 22 crevasse classes (including ancil-

lary classes), were created. To facilitate e�cient implementation and application of the software,

crevasse classes were combined into four larger classes: The current selection of classes ((1) one-

directional, (2) multi–directional, (3) shear and (4) shear/chaos) provides relatively simple descrip-

tors of deformation kinematics, but allows to capture the formation of main crevasse provinces, as

the following analysis will demonstrate.

The resultant time series of thematic maps of the 6 surface classes, which include four crevasse

types, undisturbed surface and a rest class, is shown in Figure 9. A criterion for the consistency

and geophysical interpretability of the results is the fact that the areas of each crevasse class consist

of one or several simply connected regions, without being post-processed, such as smoothed. The

region of crevassed ice expands up-glacier, as time evolves and the surge progresses. Therefore,

interpretation of our results from the physically constrained CNN, VarioCNN, is warranted and

will be presented in the next section.

11 Geophysical Application: Evolution of the Surge in the NGS

The following geophysical analysis is based on the time series of thematic maps of crevasse classes,

derived from WorldView imagery using VarioCNN (Figure 9).
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11.1 Evolution of Crevasse Classes in 2016

The first image, collected in 2016-06-20 (Figs. 6(a) and 9(a)), corresponds to the time when the

start of a surge was first detected in Sentinel imagery (Strozzi et al., 2017). The area of crevassing

at this time coincides with an area of fast movement (Trantow and Herzfeld, 2023; Herzfeld et al.,

2023b). At this time, one-directional crevasses form the center of the fast-moving region, which is

flanked by shear crevassing on both its northern and southern edge. This classification is correct,

assessed by visual interpretation and field observations that (1) acceleration occurs in an along-flow

direction near the calving front, and the basic physical notion that (2) shear crevasses form between

fast-moving and slow-moving ice. Only five days later, on 2016-06-25, the crevassed area had already

expanded in both upglacier and across-flow directions (Fig. 9(b)), as indicated by the increased

region of ice classified as crevassed. This rapid change matches existing knowledge that a surge

is a catastrophic event, which expands rapidly in the acceleration phase (Raymond, 1987; Lingle

et al., 1993; Molnia and Post, 1995; Herzfeld, 1998; Mayer et al., 2002; Molnia, 2008; Molnia and

Post, 2010; Herzfeld et al., 2013; Trantow and Herzfeld, 2018; ?). At this point, two new crevasse

classes occur, (2) multi-directional and (4) shear/chaos. Multi-directional crevasses form, as the

next acceleration wave a↵ects existing one-directional crevasses (so these are multi-generational

crevasses) near the calving front. Further progression of deformation results in crevasses that

are summatively termed “chaos”, as the ice is too fractured to allow identification of crevasse

phases (Fig. 3(d, f)). Notably, the new crevasse types occur first in the oldest regions of crevassed

ice. Thus, the analysis of crevasse formation allows reconstruction of the surge evolution (beyond

velocity). By 2016-July-08 (Fig. 9(c)), the surge has expanded further upglacier, with its leading

edge reaching almost as far upglcaier as the Negribreen-Ordonnansbreen junction. Fields of one-

directional crevasses directional crevasses are always on the upglacier edge of the surge expansion

(see also Figs. 9(d),(e),(f), and (g)).

11.2 Evolution of Crevasse Classes in 2017

In 2017, the surge in the NGS reached maximal velocities of 22m/day in July, which marked the

height of the acceleration phase and the most intensive phase of new crevassing. This result was

obtained from velocity analysis of Sentinel-1 SAR data and from field observations of the authors

(Trantow and Herzfeld, 2023) (see also Fig. 3). Leading up to this, the surge expanded far upglacier,

as seen in analysis of WorldView imagery from 2017-04-25 (Figs. 6(d)) and 9(d)) and 2017-05-30

(Figs. 6 (e) and 9(e)). The image collected 2017-04-25 only covers the lower glacier region, but the

image from 2017-05-30 shows that the surge has expanded as far as the Negribreen-Akademikarbreen

junction, indicated by isolated fields of one-directional crevasses, separated by undisturbed ice.

Notably, the marginal area of Negribreen is not part-taking in the surge acceleration at this point

in time (summer 2017). In both April and May 2017, a large area of multi-directional crevasses

is mapped, that extends upglacier from the calving front to the Negribreen-Ord-breen junction,

which is as far upglacier as the crevasse provinces of one-dimensional crevassing extended in 2016.

In consequence, we conclude that a new surge wave, or acceleration phase, has a↵ected the area
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of the 2016 surge in summer 2017. Based on these results, it is likely that surge speeds decreased

in winter 2016 and increased again in summer 2017, reaching the all-time maximum. However,

crevasse classification maps provide information on the deformation type at a high resolution,

whereas velocity maps yield only a single parameter (ice-flow speed). The classification map from

2017-05-30 shows an expansion of the shear zone (class 3: shear) along the southern margin of

Negribreen, upglacier to the Negribreen-Rembebreen junction, bordering the most extensive region

of on-dimensional crevassing. In comparison, the shear zone (class (3)) in the northern margin only

extends to about 5 km or 10 km upglacier of the Negribreen-Ordonnansbreen Junction (Fig. 1a).

Hence, there is a clear asymmetry in progression of the surge through the NGS, with a far more

extensive surge region in the longitudinally southern part of the glacier. In the 2017 crevasse

maps, we see two regions of class 4: shear/chaos. The northern region follows the northern edge of

class (3) “shear”, with slow-flowing ice of non-surging Ordonannsbreen running along the northern

edge of the class-(3) province, and thus this region is classified correctly. The new and stronger

acceleration in 2017 induced a stronger shear pattern, identified in training images for this class.

The strong velocity gradient leads to so-called shear holes near the folded moraines (Fig. 3(c),(e)).

However, the region identified as class (4) includes a wider part, which actually coincides with

the region of the “retreating bay” (Herzfeld et al., subm), where the ice has retreated along the

previous Negribreen-Ordonnansbreen medial moraine, leaving an area where open water is covered

with ice chunks of various sizes, rendering “chaos class” (class 4) surface types. The second area,

where class (4) is identified, covers much of the region of multi-directional crevasses (class (3)) in

2016, and field observations and imagery show that this is a region of “chaos”, as described above

(Fig. 3(d), (f)). The significant di↵erences between strong shear and chaos crevasse types show the

limitations of a classification that is based on insu�cient numbers of characteristic crevasse classes.

Furthermore, the 2017 classifications indicate that Ordonannsbreen has not been a↵ected by the

surge in Negribreen.

11.3 Evolution of Crevasse Classes in 2018

Classification results from two WorldView images from 2018 allows analysis of the surge progression

in that summer. The images were collected on 2018-04-29 and 2018-05-26. In 2018, the marginal

area of Negribreen is also a↵ected by surge crevassing, and crevassing is overall more pervasive

(see, Figs. 9(f) and (g)). Thus, we conclude that in 2018 the surge is expanding into areas of

shallower bed topography, which coincide generally with marginal glacier areas. Comparison of

the width of the crevassed regions in the maps in Figures 9(f) (2018-04-29) and 9(g) (2018-05-

26) suggests that this process of across-glacier expansion happens in summer 2018. However, the

longitudinally southern part of the glacier continues to be more crevassed than the northern part, as

was already noted for summer 2017. Crevasse patterns may still be evolving, as the map for Figures

9(f) (2018-04-29) shows. The northernmost shear zone that parallels the glacier edge between the

Negribreen-Ordonnansbreen junction and the Negribreen-Akademikarbreen junction is misclassified

as “other”, but shown on the map for (2018-05-30; Fig. 9(g)) correctly as a shear margin (class

3). Similar to progression of crevasse types observed for 2017 compared to 2016, the new surge

wave leads to changes of crevasse type, with type (2) “multi-directional” following areas where
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type (1) “one-dimensional” formed in 2017, especially in central Negribreen. The regions of class

4 “shear/chaos” increased, expanding the regions pf complex shear as well as the regions of chaos

crevasses, compared to regions where these types occurred in 2017, with the problem of lack of

separation of “complex shear” and ”chaos” persisting.

Of note is the mapping of crevasse types in upper Negribreen, south of the Negribreen-Akademikar-

breen junction and north of the Rembebreen, and downstream of the Filchnerfønna ice falls. The

Negribreen-Akademikarbreen medial moraine is classified correctly as class (5) “other” in its up-

stream (eastern) part, but as class 2 “shear” in its downstream half, which is incorrect, as moraine

material covers this part of the glacier (seen in airborne imagery from summer 2018, cf. Figure 1

in (Herzfeld et al., 2022)).

In this area, crevasse fields overflown by our ICESat-2 validation campaign and analyzed in Herzfeld

et al. (2021, 2022) (RGT450-RGT594 areas) are clearly seen and correctly classified in Fig. 9(g) of

2018-05-26. The one-directional crevasses south of the Negribreen-Akademikarbreen medial moraine

are the subtype of thin, parallel, freshly opened crevasses, measured by airborne altimetry and

ICESat-2 satellite altimetry (Herzfeld et al., 2021). Furthermore, the classification of uncrevassed

regions as class (1), demonstrates that the surge has not transgressed the medial moraines between

Negribreen and Akademikarbreen, nor advanced into Rembebreen in the south. In conclusion, as of

summer 2018, the surge in the NGS has not or not yet a↵ected side glaciers of Negribreen. However,

it has been hyothesized in Lefauconnier and Hagen (1991) that some side glaciers may surge in a

later part of the surge process.

11.4 Summary of Geophysical Findings

In summary, we conclude that crevasse classification using a physically constrained neural net yields

a segmentation of a surging glacier into crevasse provinces, that allows geophysical interpretation.

A time series of crevasse provinces, based on a time series of WV images, provides evidence of the

complex deformation processes that occur during the evolution of the surge. Individual findings

are, in summarized form, as follows:

(1) More classes form, as the surge progresses.

(2) Fields of one-directional crevasses directional crevasses are always on the upglacier, leading edge

of the surge expansion. From airborne observations and numerical analyses, we know that these

crevasses are of extensional crevasse type with direction of extension in the direction of largest

strain (strain rate) (Herzfeld et al., 2013, 2022; Trantow and Herzfeld, 2023).

(3) Fields of shear crevasse type form between areas of accelerating and fast-moving ice and areas

of slow-moving ice that is not (or not yet) a↵ected by the surge.

(4) Multi-generational, multi-directional crevasse types form, as a new wave of the surge forces
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a↵ects regions with pre-existing crevasses. Multi-directional crevasses can also form as a result of a

two-directional, expensive force field, as observed during the surge of the BBGS (Herzfeld, 1998),

however, these types are not di↵erentiated in the experiments in this paper.

(5) Lastly, continued deformation can render the crevassed area as a region “chaos class”, where

individual deformation events cannot be traced back from the crevasse patterns any more.

(6) Combining complex shear and chaos into a single class limits the ability for geophysical inter-

pretation. For simplicity, these two di↵erent processes are not di↵erentiated in the experiments in

this paper. In a paper in preparation, we discriminate up to 13 crevasse classes (Herzfeld et al.,

2023b).

(7) Over time, the surge expands into marginal areas, in addition to expanding upglacier.
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12 Summary, Discussion and Conclusions

The work in this paper has addressed three challenges, posed in the introduction: Challenge 1.

Harnessing the data revolution in Earth observation from space; Challenge 2. Glacial acceleration

and Sea-Level-Rise assessment; and Challenge 3. Integration of physically-constrained classification

and modern “Deep Learning” approaches in satellite image classification.

Challenge 1. Harnessing the data revolution in Earth observation from space. Through the

integration of physical knowledge and two di↵erent ML approaches into a physically-driven NN,

the VarioCNN, we have provided a means for rapid and e�cient extraction of complex information

from submeter resolution satellite imagery (and other imagery). The new NN, VarioCNN, combines

the advantages of a physically-driven, relatively easily trainable MLP, with those of an e�cient

CNN, and thus directly provides an answer to Challenge 3. Integration of physically-constrained

classification and modern “Deep Learning” approaches in satellite image classification.

There are several key concepts which have been instrumental in the mathematical and compu-

tational formulation of a connection between physical understanding and physically constrained

classification: (1) ice dynamics of glacial acceleration, especially surging, (2) deformation of the

material ice during rapid acceleration, (3) resultant surface signatures: crevasse patterns, and

their formation, transport and overprinting, (4) recording of ice-surface structures in optical satel-

lite imagery (and other imagery), and (5) mathematical representation of crevasse patterns in

multi-directional vario functions – all these components comprise the physical constraints of the

VarioMLP. VarioMLP utilizes the connectionist-geostatistical classification method (Herzfeld and

Zahner, 2001; Herzfeld, 2008; Herzfeld et al., 2013) to first process satellite imagery by calculation

of directional vario functions, which are then used to activate the neurons of an input layer of a

MLP.

While there has been an increasing acceptance of deep learning methods in the geosciences, the

lack of adequate, problem-specific labeled training data has hampered derivation of new knowledge

using said deep learning approaches, because CNNs require training data sets with on the order of

100,000s to millions of labeled data. Science applications of CNNs have been limited to areas where

more training data exist, including (a) biology and medicine, (b) atmospheric sciences and weather

forecasting, and (c) sea surface temperature (ocean remote sensing) (Reichstein et al., 2019).

In a comparison of VarioMLP and ResNet-18, the shallowest “deep” NN that is commonly used (He

et al., 2016a,c), we find that the primary advantage of VarioMLP over the CNN is that VarioMLP

can be trained with a relatively small set of labeled training data, of a number of input images that

can feasibly be labeled by an expert in the field. Starting from a set of several hundred training data

sets of crevassed surface images, associated to six classes by a structural glaciologist, a feedback

loop of retraining and reinforcement, with a fast rejection/acceptance feature supported by a GUI

in a combination of a confidence measure and expert-controlled decision, leads to creation of a

labeled crevasse class data set of 4000 images.
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We proceed to create a combined three tiered network, termed VarioCNN, which consists of Var-

ioMLP, the feedback loop and a backend of a CNN (ResNet-18); this NN can be trained with the

4000-image labeled data set and has better training properties than VarioMLP alone. A flexible

and versatile open-source software system, GEOCLASS-image (Herzfeld et al., 2023a), was de-

signed and built for image classification. It performs all the tasks in this analysis and more; it

is easily generalizable to other network structures and applications because of its modular design.

GEOCLASS-image is user friendly, it includes a functional GUI that appeals to the expert and non-

expert in glaciology or computer science alike (i.e. it does not require a lot of knowledge of ML,

however, it has a pytorch framework). With GEOCLASS-image and VarioCNN, we have created

an infrastructure that facilitates rapid analysis of submeter resolution commercial satellite image

data, such as Maxar WorldView data, thus answering to Challenge 1. Furthermore, the work in

this paper presents an approach for a path forward in harnessing the data revolution towards ob-

taining an advanced understanding of complex geophysical phenomena (here: glacial acceleration)

in a climate-change science framework.

Challenge 2. Glacial acceleration and Sea-Level-Rise assessment. Our research in this paper

presents an advance in the complexity of physics that can be extracted from satellite imagery

(crevasse classification, deformation), in an area where such research has not been conducted yet.

In the introduction, we have summarized the relationship between glacial acceleration and sea-

level rise. In summary, glacial acceleration constitutes a deep uncertainty in SLR assessment, a

term coined by the 6th Assessment Report of the IPCC (Masson-Delmotte et al., 2021). Surges

are the least understood form of glacial acceleration. The work in this paper culminates in an

application of VarioCNN to study the evolution of crevasse provinces during the current (2016-2024)

surge of an Arctic glacier system, the Negribreen Glacier system, Svalbard, based on classification

of crevasse types in a time series of WorldView images for 2016-2018. This constitutes a novel

approach, resulting in new results in glaciology. The classification is the first of its kind, carried

out for an entire Arctic glacier system and for WorldView data. Negribreen last surged in 1935/36

(Lefauconnier and Hagen, 1991; Herzfeld et al., 2021, 2023b).

Using four principle crevasse types (one-directional, multi-directional, shear and chaos), plus a class

for undisturbed snow/ice surfaces and a rest class, we have derived segmentations of a surging glacier

into crevasse provinces that allow geophysical interpretation of the surge evolution in 2016-2018,

which includes most of the acceleration phase of the surge. Some results are: More crevasses form,

as the surge expands. Fields of one-directional crevasses always form on the upglacier, leading

edge of the surge expansion. Fields of shear crevasse type form between areas of accelerating

and fast-moving ice and areas of slow-moving ice that is not, or not yet, a↵ected by the surge.

Multi-generational, multi-directional crevasse types form, as a new wave of the surge forces a↵ects

regions with pre-existing crevasses. Lastly, continued deformation can render the crevassed area as

a region of “chaos class”, where individual deformation events cannot be traced back to individual

deformation events any more. Over time, the surge expands upglacier and into marginal areas.

Links to modeling are outlined.

A limitation of the current analysis is the small number of crevasse classes, chosen to more easily
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derive the first combined network that integrates the connectionist-geostatistical approach and a

CNN. A classification that distinguishes up to 13 crevasse classes is in preparation (Herzfeld et al.,

2023b). ResNet-18 requires square input images of 244 by 244 pixels, which VarioMLP does not

require, however, this limitation is not severe, as split-images of any size can be created using the

Split Image Explorer Tool in GEOCLASS-image (Herzfeld et al., 2023a) and capture the crevasse

patterns.

More generally, the specific glaciological results obtained in this paper demonstrate that geoscience

and computer science are equally important disciplines in the development of physically constrained

NNs (i.e. glaciology is not merely “domain knowledge”), in light of the goal to utilize modern

observation technology to advance geophysical understanding.
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APPENDIX A: The GEOCLASS-image Software System

In this section, we describe the GEOCLASS-image Software System, as publicly shared under

Herzfeld et al. (2023a), its functionalities, install and application. All components of the work in

this paper were achieved by application of the GEOCLASS-image system.

A.1 The GEOCLASS Software System: Functionalities and Software Description

The GEOCLASS-image software includes subsystems that facilitate the following functionalities

(see, Table 3). (A) Utility Scripts, (B) Geostatistical Methods: Functions, (C) Geostatistical

Methods: Feature Vectors, (D) Machine Learning Models, (E) Machine Learning Training and

Validation, and (F) Dataset Management.

Building Matlab and C classification software (lib-geoclass) developed in the group of the authors

over the years, the GEOCLASS-image system includes features from the world of Geographical

Information Systems (GISs), summarized under (A), (E) and (F). GEOCLASS-image has strengths

in satellite image data input and handling, including di↵erent types of projections.

Types of satellite data that can be used include WorldView-1 and WorldView-2 data. The utility

functions are implemented in a way that allows generalization to other types of satellite data

relatively easily. The GUI has several features and capabilities which make it especially user

friendly. Data handling, image projections and the selection of the split images as well as training

features are integrated seamlessly and have been tested extensively (see, section (F) in Table 3).

Dataset management includes a split-image labeling tool, which allows to select individual images

or utilize a batch loader. The GUI and visualizations adapt dynamically to the creation of new

classes. Multiple satellite images can be analyzed at the same time. To facilitate creation of labeled

training data, classifications and labels can be output in NetCDF format.

The NN functionalities are embedded in the data management and utility-function0enabled envi-

ronment. All functionalities can be performed within the GUI or using data handling scripts to

meet di↵erent user preferences and working styles, as well as allow for e�cient handling of large

data sets. Because the lack of existence of labeled training sets for the cryospheric science prob-

lems and geoscience problems in general, particular attention was given to the Split Image Explorer

Tool (included in modules under (F)) and its interaction with modules under (E) Machine Learning

Training and Validation. Classifications can be visually assessed, which allows direct comparison

with external information, such as visually analyzed satellite imagery or any other mapped data

(field or airborne observations), or computationally evaluated using threshold values and confidence

measures.

GEOCLASS-image has an open structure with respect to ML models (D) and geostatistical func-

tions (B) and feature vectors (F). In the current version, the multi-layer perceptron and the model
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are implemented and tested. Geostatistical functions include first- and second order vario functions

and residual vario functions, with room for other functions. The analysis in this paper employs

the values of the experimental vario function directly and this workflow has been realized in the

computational infrastructure as well. The classification software lib.geoclass o↵ers a number of

additional functions, feature vectors and parameters that will be included in a future version of

GEOCLASS-image.

A.2 Install and Use of the GEOCLASS-image Software System

In this section, we give a brief description of the components of the GEOCLASS-image software

used for classifying crevasse provinces in satellite imagery. GEOCLASS-image is publicly available

through GitHub in its first release version (v1, Herzfeld et al. (2023a)). The GitHub repository

contains guides for installing and running the software, along with a more comprehensive docu-

mentation of its features and functionality. GEOCLASS-image is written mostly in python3 and is

meant to be run on Unix-based systems, such as Mac OS and Ubuntu.

A.2.1 Dataset Generation

After installation and configuration, the user begins by creating a dataset of split imagery to by

classified. First, one creates a contour outline of their region of interest, which can be imported or

generated using the software. At present, the dataset generation script expects a GeoTi↵-formatted

image as input, which is a standard product for WorldView data and other satellite image products

such as those from Landsat and Sentinel missions. The GeoTi↵ format allows geolocation of each

pixel within the image and contains projection information that is utilized by the software. Given

the input GeoTi↵ image, the software generates split images of ice regions within the contour which

are to be classified.

A.2.2 Labeling Training Data using the Split Image Explorer Tool

A main feature of GEOCLASS-image is the graphical user interface (GUI) created to label, visualize

and ultimately classify crevasses in an intuitive and visually appealing way. This interface is called

the Split Image Explorer Tool, but here we refer to it simply as the GUI. After generating the split

image data set from the desired GeoTi↵s, the GUI is launched in order to start labeling split-images

for training. This step is done only in the case when training data is not available and the user

wishes to label their own crevasses classes for training a new neural network. The GUI displays

a GeoTi↵ image with the contour plotted on top, and multiple full images can be loaded in at

one time with easy switching between them. The user can then select any split image within the

contour and visualize it at full resolution. Split images are then labeled based on the classes the

user set up during the configuration step. The progress of the labeling process can be visualized at
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anytime by selecting the “Visualize Labels” button within the GUI.

Many times, split images that are near each other in the source GeoTIFF image will be classified

similarly. In this case, one can use the “batch labeling” option within the GUI to label a group of

split images together at one time.

A.2.3 Training

After labelling training data with the GUI tool, the next step is to train the classification model,

which is done by executing the training script via the terminal. The model parameters, speci-

fied in the configuration file, define the hyperparameters of the classification model. At present,

GEOCLASS-image has the option to use either the VarioMLP model or the ResNet-18 model.

With the structure well-defined (He et al., 2016b), only the VarioMLP requires specification of

structure-based model parameters for the neural network. These include the number of lag values

to be used in the directional variogram and the shape of the hidden layers of the VarioMLP net-

work. Currently, only the Rectified Linear Unit (ReLU) can be chosen for an activation function

for either model.

Training-based parameters are also defined in the configuration file. These include an option to

utilize the power of GPU’s in processing via CUDA (Luebke, 2008), the maximum number of epochs

to run the training loop, the initial learning rate for the optimizer, and the number of split images

to be passed through network before each iteration of the backpropagation. At present, only the

Adam optimization algorithm is available for training (Kingma and Ba, 2014).

Data augmentation options are also available in order to make classification more robust (Shorten

and Khoshgoftaar, 2019). For example, the user can set data augmentation parameters in the

configuration file that randomly rotate and shift variograms before being fed into a network.

Once the training script is executed, it displays the relevant training parameters in the terminal

and provides estimates for training loss and validation loss for each epoch throughout the training

process. Upon completion, loss data are stored in an output folder. The software also saves

model checkpoints throughout the training process. By default, the training script saves a model

checkpoint at the end of each epoch if and only if the validation loss is better than the previous

best validation loss. The training script supports the ability to load and resume training from a

previously defined model checkpoint.

A.2.4 Testing

After looking at the losses from the training run and selecting a desired model checkpoint, the

testing script can be used to label all split images in the dataset using the trained classification
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model. Upon completion, a file containing the classification labels for all split images in the dataset

is generated which can be loaded into the GUI and visualized. Confidence measures are also

provided and can be used as a filter within the GUI. Figure 5 shows the visualization of a simple

crevasse classification result within the GUI.

A.3 Generalizations

While the above description largely lines up with the application described in this paper, the

GEOCLASS-image system includes several utility functions that facilitate application to other

types of satellite data sets, other geostatistical functions, di↵erent types of using the classification

approach (Herzfeld, 2008), and a suite of ML training and validation tools, as well as dataset

management tools (see, Table 3). Di↵erent combinations of these tools and features allow a user-

specific development of ML architectures with geostatistical preprocessing modules.
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Software/ Open Science Section

The data and code supporting the findings of this study are openly available in the GEOCLASS-

image GitHub repository (Herzfeld et al., 2023a) found at

https://github.com/Herzfeld-Lab/GEOCLASS-image/releases/tag/v1.0.

The repository contains all the necessary datasets, scripts, and code used for analysis and repro-

duction of the results presented in the article. Researchers interested in accessing and utilizing the

first release of this software may find them at the specified GitHub link.

Additionally, specific instructions, descriptions, and necessary dependencies to replicate and con-

duct similar experiments and analyses are documented within the repository’s README file.

All materials in this repository are released under the MIT License. Please refer to the reposi-

tory’s LICENSE file for detailed information on the permissions and restrictions regarding the use,

reproduction, and distribution of the data and code.
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(a)
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Figure (1). Location of study area and surface velocities from Sentinel-1 SAR data.

(a) The Negribreen Glacier System with important geographical features labeled. The location of
the NGS within the Svalbard archipelago is indicated by the red box in the upper-right corner
insert. (b) NGS mean surface velocity between 2016-07-03 and 2016-07-15 shortly after the surge
began. (c) NGS mean surface velocity between 2017-07-10 and 2017-07-22 when peak surge speeds
were reached (upwards of 22 m/day). (d) NGS mean surface velocity between 2018-05-10 and
2018-05-22. Each of the velocity maps in (b)-(d) are in m/day with black arrows indicating the
magnitude and direction of mean surface velocity between the baseline dates. Background image
for each subfigure: Landsat-8 RGB image acquired 2019-08-05.
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Figure (2). Typical images and associated directional variograms. (a) An example of an input image
containing only undisturbed snow, which displays relatively uniform surface characteristics. (b) An example of an
input image containing strong parallel crevasses, a prominent and repeating surface characteristic. (c) Output of the
directional variogram v1(h) from 3.2a in 4 directions for 14 values of h. Note the relative uniformity of output values
across all directions. (d) Output of the directional variogram v1(h) from (b) in 4 directions for 14 values of h. Note
the much higher baseline values than in (c). Also note and the sharp contrast between the Diag1 direction (defined as
diagonally from top left to bottom right) and the other directions. In this case, the Diag1 direction is nearly parallel
to the direction of the crevasses and thus it does not reach the same sill as the other directions until a much higher
lag value.
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(a) (b)

(c) (d)

(e) (f)

Figure (3). Airborne photographs of the four basic crevasse types.

Photographs acquired during the 2017 Negribreen campaign of the authors (Flight 2, 2017-07-15).
(a) One-directional crevasses (DSC 0063). (b) Multi-directional crevasses (foreground, DSC 245).
(c) Shear crevasses (DSC 0221). (d) Chaos or shear/chaos crevasses (DSC 0199). (e) Shear
crevasses, co-called “shear holes” (DSC 0344). (f) Chaos or shear/chaos crevasses (DSC 0198).
Example of chaos crevasses with a shear component.
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Figure (4). Examples of “split images” of the 6 surface classes, subselected from WorldView
satellite imagery. (a) Undisturbed snow/ice, (b) One-directional crevasses, (c) Multi-directional crevasses, (d)
Shear crevasses (shear holes), (e) Chaos crevasses (shear/chaos) and (f) Other (not classified). Same crevasse classes
as illustrated in aerial photographs in Figure 2, with a class for undisturbed snow/ice and a rest class “other” added.
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Figure (5). Split Image Explorer tool in action. Red cross-hairs select the split-image viewed in the upper
left. Label options are displayed in the lower left. On the right, full classification and/or labeling results are viewed
overlaying the full starting image (here a Worldview-2 image from 2016-06-25). The sliding bar at the center left
allows visualization filters based on confidence levels. Finally, the tool has the options to switch between classification
results for di↵erent starting images as seen in the upper left for various Worldview images.
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(a) (b)

(c)
(d)

(e) (f)

(g)

Figure (6). Full Worldview imagery used in classification time series analysis. (a) Worldview-1
acquired 2016-05-20, (b) Worldview-2 acquired 2016-06-25, (c) Worldview-1 acquired 2016-07-08, (d) Worldview-1
acquired 2017-04-25, (e) Worldview-1 acquired 2017-05-30, (f) Worldview-1 acquired 2018-04-29 and (g) Worldview-1
acquired 2018-05-26.
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Figure (7). An example of overfitting from a test run of the Resnet18 model trained with a
training dataset of 1,362 split images. The loss function used is the cross-entropy loss. The training loss
approximates zero, whereas the validation loss stays high.
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Figure (8). VarioCNN, derivation and architecture. Training data set (step(1)) derived by expert
(structural glaciologist), includes split images representing 6 crevasse classes. Vario functions calculated per input
image, vario values activate input nodes of VarioMLP (number of input nodes=number of vario values; number of
input nodes is a variable model parameter). VarioMLP example with two internal layers of sizes [5,2]=[5 x 18, 2
x 18], output layer with 6 nodes; number of output nodes=number of crevasse classes, a variable model parameter.
Retraining loop used for augmentation of training images per class from step (i) to step (i+1), for n steps. Full
labeled training data set used to train ResNet-18. Note training images must be of size 244 by 244 pixels (fixed due
to ResNet-18 architecture requirements).
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(a) (b)

(c) (d)

(e) (f)

(g)

(h)

Figure (9). Time series of crevasse classes showing surge evolution. Classification of the following
imagery: (a) Worldview-1 acquired 2016-05-20, (b) Worldview-2 acquired 2016-06-25, (c) Worldview-1 acquired
2016-07-08, (d) Worldview-1 acquired 2017-04-25, (e) Worldview-1 acquired 2017-05-30, (f) Worldview-1 acquired
2018-04-29 and (g) Worldview-1 acquired 2018-05-26. (h) Crevasse-type legend for the classification time series.
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TABLES

Worldview-1 Worldview-2
Dates of Operation 18 September 2007 - September

2023
8 October 2009 - present

Sensor Name WorldView-60 camera WorldView-110 camera
Channel(s) (1) Panchromatic channel, spec-

tral range: 450 nm - 900 nm
(1) Panchromatic channel, spec-
tral range: 450 nm - 800 nm,
(2) 8-band Multispectral chan-
nel, spectral range: 400 nm -
1050 nm

Resolution 0.50 m - 0.55 m Ground Sampling
Distance (GSD)

(1) 0.46 m - 0.52 m GSD, (2) 1.8
m - 2.4 m GSD

Swath Width 17.9 km 16.4 km
Field of View 2.12� 1.28�

Orbit Altitude 496 km 767 km
Inclination 97.2� 97.8�

Orbit Period 94.6 minutes 100.2 minutes
Revisit Time 1.7 days - 5.9 days ⇠1.1 days

Table (1). Instrument specifications for the Worldview-1 and Worldview-2 satellites (Maxar).
Both satellites provide high-resolution imagery using the pushbroom scanning technique.
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Source image Total split images
generated

Labeled split images
final dataset

Time series subfigure

WV01 20160520215109 10,142 67 (a)
WV02 20160625170309 11,834 608 (b)
WV01 20160708211932 10,379 164 (c)
WV01 20170425150931 4797 380 (d)
WV01 20170530144716 9209 319 (e)
WV01 20170808153226 8448 23 N/A
WV01 20180429140517 11,002 479 (f)
WV01 20180429140558 7614 543 N/A
WV01 20180526211954 12,191 634 N/A
WV01 20180526211859 13,647 228 (g)
WV01 20180530151039 9370 488 N/A

Total 108,623 3933

Table (2). List of WoldView satellite image data sets and distribution of split images per source files in the final
labeled training dataset of 3993 split images.
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Class Total labeled examples

Undisturbed Snow 538
One-Directional 953
Multi-Directional 614
Shear Holes 742
Shear / Chaos 564
Other 522

Total 3933

Table (4). Number of split images for each of the 6 crevasse classes in the final labeled training data set of 3933
split-images, derived using VarioMLP and several training and reinforcement loops.
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Lag steps in variogram Min. loss achieved

10 1.56
12 0.61
14 0.88
16 1.14
18 0.54

20 1.48

Table (5). Minimum cross entropy loss achieved by VariogramMLP model with di↵erent values for number of lag
steps in the variogram step. Hidden layer shape was fixed at [5, 2] for all runs.

80



Hidden layer shape Min. validation loss

[2, 2] 0.54
[5 ,2] 0.52

[5, 5, 2] 1.21
[10, 5, 2] 0.80
[10, 10, 2] 0.78

Table (6). Minimum cross entropy loss achieved by VarioMLP model for each of the 5 hidden layer shapes tested.
Variogram lag steps was fixed at 18 for all runs. It is interesting to note that after [5, 2], adding both depth and
width to the hidden layers results in decreased validation performance.
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Batch size Min. validation loss achieved

1 0.169
2 0.115

4 0.245
8 0.925

Table (7). Minimum validation loss achieved on the full-sized validation dataset of 786 split images using batch
sizes of 1, 2, 4 and 8. The best result was achieved from a batch size of 2, a slight improvement from 1.
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