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Abstract

The impact of carbon fluxes on soil organic carbon (SOC) remains underexplored. We employed machine learning to model

SOC dynamics. Our findings project an increase in China’s SOC through to the year 2100 across various Shared Socioeconomic

Pathways. Sensitivity analyses have identified carbon fluxes as the main drivers for this projected rise, followed by climate

and land use. Further examination using an explainable artificial intelligence method, Shapley Additive Explanations, has

uncovered both spatial and temporal variations in how gross primary production (GPP) influences SOC levels. Notably, GPP’s

contribution on SOC is initially negative at low levels, turning positive once a threshold of approximately 3 gC m-2d-1 is

surpassed. Beyond a GPP of about 7 gC m-2d-1, its positive contribution to SOC plateaus. Critical zones for soil carbon

sequestration are located around 400 mm annual precipitation line.
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Key Points: 10 

• The influence of carbon flux on SOC is more pronounced than that of climate change and 11 

land use change 12 

• We identify two critical thresholds in the relationship between gross primary production 13 

and SOC 14 

• Critical zones for soil carbon sequestration are located around 400 mm annual 15 

precipitation line 16 
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Abstract 18 

The impact of carbon fluxes on soil organic carbon (SOC) remains underexplored. We employed 19 

machine learning to model SOC dynamics. Our findings project an increase in China's SOC 20 

through to the year 2100 across various Shared Socioeconomic Pathways. Sensitivity analyses 21 

have identified carbon fluxes as the main drivers for this projected rise, followed by climate and 22 

land use. Further examination using an explainable artificial intelligence method, Shapley 23 

Additive Explanations, has uncovered both spatial and temporal variations in how gross primary 24 

production (GPP) influences SOC levels. Notably, GPP's contribution on SOC is initially 25 

negative at low levels, turning positive once a threshold of approximately 3 gC m-2d-1 is 26 

surpassed. Beyond a GPP of about 7 gC m-2d-1, its positive contribution to SOC plateaus. Critical 27 

zones for soil carbon sequestration are located around 400 mm annual precipitation line.  28 

Plain Language Summary 29 

Soil's ability to absorb carbon is key to reducing atmospheric carbon dioxide, a major greenhouse 30 

gas. Yet, the influence of carbon fluxes—the exchange of carbon between the soil and the 31 

atmosphere—on soil carbon storage is not well understood. Our study utilized machine learning 32 

to estimate potential soil carbon storage in China by 2100, considering various global 33 

socioeconomic trajectories. We anticipate an uptick in soil carbon, largely due to carbon fluxes, 34 

with climate and land use changes also playing significant roles. Through explainable artificial 35 

intelligence, we've gained insights into how plant growth impacts soil carbon levels. We 36 

discovered that minimal plant growth correlates with lower soil carbon storage. As plants grow 37 

more, they enhance soil carbon storage until reaching a certain growth level, after which the 38 

effect plateaus. Zones critical for maximizing soil carbon storage correspond with areas 39 

receiving about 400 mm of rainfall annually. This understanding of plant growth's effect on soil 40 

carbon is invaluable for developing land management strategies aimed at maximizing carbon 41 

sequestration, thereby contributing to climate change mitigation efforts. 42 

  43 
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1 Introduction 44 

Soil Organic Carbon (SOC) is a fundamental constituent of terrestrial ecosystems, 45 

performing an essential function in bolstering the resilience and productivity of ecosystems 46 

(Batjes, 2014; Lal, 2003; Minasny et al., 2017). SOC is not only crucial for providing nutrients 47 

that support plant growth and yield but also for retaining water and mitigating soil erosion 48 

(Trivedi et al., 2018). Even slight changes in the soil carbon pool can result in significant impacts 49 

on atmospheric carbon (Smith et al., 2008). Soil carbon sequestration, through its ability to 50 

capture and retain environmental carbon, acts as a powerful antidote against the intensification of 51 

the greenhouse effect (Lal et al., 2015). Therefore, predicting future SOC and identifying its key 52 

drivers are essential for understanding the evolving patterns of carbon stock distribution over 53 

time.  54 

Methods for studying SOC are generally categorized into two types: process-based 55 

models and empirical models such as AI (Artificial Intelligence) methods. Process-based models 56 

simulate SOC dynamics based on detailed representations of internal biochemical and physical 57 

processes (Le Quéré et al., 2013). The Earth System Model (ESM) is an example of such a 58 

model, integrating carbon cycle processes with climate models (Intergovernmental Panel on 59 

Climate Change, 2023). These models are capable of projecting SOC distribution and temporal 60 

changes. However, due to the still uncertain physio-ecological mechanisms of SOC in terrestrial 61 

system, different ESMs have shown discrepancies in both historical and future SOC estimations 62 

(Ito et al., 2020). 63 

Recently, AI methods have become powerful tools to for mapping and predicting SOC 64 

(McBratney et al., 2019). The SCORPAN framework (McBratney et al., 2003), introduced for 65 

Digital Soil Mapping (DSM), suggests that soil types or properties can be inferred from a 66 

combination of environmental factors (i.e., covariates). These include soil, climate, organisms, 67 

topography, parent material, age, spatial location, and other environmental variables (Chen et al., 68 

2022; Lamichhane et al., 2019). The application of DSM technology to project future SOC 69 

changes relies on the space-for-time substitution concept (Pickett, 1989), which has been 70 

employed to anticipate SOC trends in regions such as Europe, China and Argentina (Heuvelink 71 

et al., 2021; Yigini & Panagos, 2016; Zhang et al., 2023). Among the various methods, Random 72 
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Forest (RF) has emerged as the most popular method for SOC mapping and prediction, 73 

demonstrating its effectiveness in this domain (Lamichhane et al., 2019; Padarian et al., 2020). 74 

Significant research has been conducted on the anticipated changes in SOC, with climate 75 

change and land use change commonly recognized as the primary factors influencing future SOC 76 

variability (Davidson & Janssens, 2006). SOC are controlled by both carbon input and residence 77 

time (Luo et al, 2022). However, the role of carbon fluxes in shaping SOC dynamics has not 78 

been thoroughly investigated. The CO2 fertilization effect suggests that as atmospheric CO2 79 

concentrations increase, carbon fluxes to ecosystems also rise (Baldocchi et al., 2001; Litton & 80 

Giardina, 2008). Yet, this additional carbon input may also enhance SOC decomposition, 81 

potentially leading to increased SOC loss (Crow et al., 2009; Kuzyakov, 2010; Sayer et al., 82 

2011). Consequently, it remains uncertain whether such fertilization will result in soils becoming 83 

net carbon sources or sinks in the future (Field, 2001; Karnosky, 2003; Nowak et al., 2004; Liang 84 

et al., 2018). 85 

Explainable Artificial Intelligence (XAI) has been successfully applied to attribute 86 

analysis in soil carbon studies (Luo et al., 2019; Patoine et al., 2022). To dissect the impact of 87 

various factors on SOC, with a focus on the influence of carbon flux, we integrated two XAI 88 

methods into our analysis: Random Forest Importance (RFI) and Shapley Additive Explanations 89 

(SHAP) (Huang et al., 2023). These methods will allow us to unravel the complex interactions 90 

between carbon flux and SOC, providing a clearer understanding of their relationship. This study 91 

seeks to elucidate three essential scientific questions: (1) What degree of variation in SOC levels 92 

can be expected in China from 2021 to 2100 under multiple Shared Socioeconomic Pathways 93 

(SSPs)? (2) What is the relative contribution of carbon fluxes to changes in SOC compared to the 94 

effect of climate change and land use change? (3) How will carbon fluxes shape the trajectory of 95 

SOC in the future? 96 

2 Materials and Methods 97 

2.1 Materials and Processing 98 

In this study, we utilized a dataset comprising 8,979 soil profile records from the Second 99 

National Soil Survey of China, with most soil profile data being collected between 1979 and 100 

1984 (Shangguan et al., 2013). SOC data from 2000 to 2014 were obtained from the carbon 101 
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density dataset for China's terrestrial ecosystems (Xu et al., 2019). We focused our analysis on 102 

data from the 0-100 cm soil layer, converting the profile data to SOC density using a specified 103 

equation: 104 

𝑆𝑂𝐶 = 𝑆𝑂𝑀 × 0.58 × 𝐷 × 𝐵𝐷 × (1 − 𝐺)    (1) 105 

where SOM is soil organic matter, D denotes soil layer depth, BD is bulk density and G is gravel 106 

content (>2 mm). To standardize the depth of the data, we employed equal-area second-order 107 

spline interpolation (Odgers et al., 2012).  108 

All covariates were resampled to a uniform resolution of 2.5 arc-minutes. The input 109 

covariates for our analysis were divided into static and dynamic categories, with a 110 

comprehensive list provided in Table S1. For static variables, such as those derived from the 111 

digital elevation model (DEM), we operated under the assumption that relief and parent material 112 

factors would remain constant over long-time scales, and that soil factors would undergo 113 

minimal changes over the span of hundreds of years (Grunwald, 2010).  114 

The dynamic datasets were divided into historical and future periods for analysis. 115 

Historical data were synchronized with the timing of soil profile collection and assessed for each 116 

subsequent twenty-year interval. Covariate data from the periods 1980-1999 and 2000-2015 were 117 

aligned with the soil profile data. For projections into the future, we sourced data from four 118 

ESMs (ACCESS-ESM1-5 (Ziehn et al., 2020), EC-Earth3-Veg (Döscher et al., 2022), IPSL-119 

CM6A-LR (Boucher et al., 2020), and MPI-ESM1-2-LR (Mauritsen et al., 2019)) under four 120 

Shared Socioeconomic Pathways (SSPs), for each twenty-year segment extending from 2021 to 121 

2100, as only these ESMs provide outputs of carbon fluxes in the Coupled Model 122 

Intercomparison Project Phase 6 (CMIP6). The dynamic covariates encompassed climate 123 

variables, land use patterns, and carbon fluxes. Climate data, which included monthly maximum 124 

and minimum temperatures and precipitation, were sourced from the WorldClim2 database (Fick 125 

& Hijmans, 2017). Land use information was provided by the Land Use Harmonization project 126 

(LUH2) (Hurtt et al., 2020), covering four SSP scenarios (SSP126, SSP248, SSP370, and 127 

SSP585) as well as historical periods. Carbon flux data were represented by two key variables: 128 

gross primary productivity (GPP) and net ecosystem productivity (NEP). Historical carbon flux 129 

data were acquired from the Global Carbon Fluxes dataset (GCFD, (Shangguan et al., 2023)), 130 
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while future data were processed from the corresponding ESM data. Given the for analysis. We 131 

subsequently employed the following formula to calculate future carbon fluxes: 132 

𝐶𝐹𝑖,𝑗
∗ = 𝐶𝐹ℎ𝑖𝑠𝑡𝑜𝑟𝑦 + (𝐶𝐹𝑖,𝑗 − 𝐶𝐹ℎ𝑖𝑠𝑡𝑜𝑟𝑦,𝑗)                                    (2) 133 

where CF denotes carbon flux covariates, i denotes each period in the future, and j denotes each 134 

ESM.  135 

2.2 Model Building and Prediction 136 

We developed RF models to predict SOC using data from two historical periods: 1980-137 

1999 and 2000-2015. The regression matrix was constructed using soil profiles and covariates. 138 

After eliminating correlated variables, we selected the thirty most influential variables for 139 

inclusion in the model. The model's accuracy was evaluated using ten-fold cross-validation and 140 

three indicators: R², Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). Our 141 

experiments spanned six timeframes: the historical periods of 1980-1999 and 2000-2015, and the 142 

future period of 2021-2100, divided into four twenty-year intervals. Following the space-for-time 143 

substitution strategy (Blois et al., 2013; Liu et al., 2020), we treated the dynamic covariates from 144 

these six periods as sequential input data for the model. This approach allowed us to map 145 

historical SOC levels and project future SOC across different Earth System Models (ESMs) and 146 

Shared Socioeconomic Pathways (SSPs). 147 

2.3 Attribution Analysis 148 

We conducted a sensitivity analysis as follows. Initially, we held each of the three types 149 

of dynamic covariates—climate, land use, and carbon flux—at their historical values from the 150 

period 2000-2015 and then projected future SOC levels. By comparing these projections with the 151 

original predictions, we evaluated the influence of each covariate type on future SOC levels. 152 

To delve deeper into the impact of specific variables on SOC, we employed XAI tools—153 

RFI and SHAP—for detailed attribution analysis. RFI gauges the significance of variables in 154 

tree-based models by aggregating the decrease in entropy across all trees (Breiman, 2001). A 155 

variable that effectively partitions the data and substantially lowers entropy is deemed crucial for 156 

prediction. For robustness, importance values were averaged over 10 iterations. SHAP, 157 

conceptualized by Lundberg and Lee (Lundberg & Lee, 2017) based on game theory principles, 158 
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computes the marginal contributions of each feature, treating feature values as players in a 159 

coalition. Given the current set of feature value, the estimated SHAP value is the contribution of 160 

a feature value to the difference between the actual prediction and the mean prediction. A low 161 

absolute value signifies that the impact of a feature on the deviation from the mean prediction is 162 

relatively minor. The sign (+/-) does not denote a positive or negative feedback mechanism; 163 

rather, it indicates whether the effect of the feature increases or decreases the deviation from the 164 

mean. For each input variable, we generated SHAP value maps analogous to the SOC 165 

predictions. Due to the intensive computational demands of SHAP, we consolidated the input 166 

covariates into 10x10 patches for analysis. 167 

3 Results 168 

3.1 Model Performance and Predictions 169 

The performance metrics for our RF model indicated an R² of 0.41, an RMSE of 0.30 gC 170 

cm-2, and a MAE of 0.22 gC cm-2. By incorporating covariates from various time periods into the 171 

model, we were able to map SOC for historical periods and project SOC for future periods. 172 

During the two historical periods analyzed, regions with high SOC values were predominantly 173 

located in the mountainous area of Northeast China and the eastern part of the Qinghai-Tibet 174 

Plateau (Figure 1a and 1b).  175 

We assessed the changes in SOC relative to the historical period (2000-2015) for each 176 

subsequent time interval (Figure 1c-1f). The spatial distribution patterns indicated a modest 177 

increase in SOC across most of the country in the future, although the regions experiencing 178 

significant increases were fewer under the lower carbon emission scenarios. Notably, SOC 179 

declines were primarily observed in the northeastern areas, while increases were concentrated in 180 

the eastern and southern regions of the Qinghai-Tibet Plateau. Under the SSP585 scenario 181 

(Figure 1f), the northeastern region experienced a more pronounced decrease in SOC compared 182 

to other SSPs, and the areas of increase were noticeably smaller than those under SSP370 (Figure 183 

1e). This disparity may contribute to the overall lower SOC projections for SSP585 relative to 184 

SSP370. 185 
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 186 

Figure 1.  Maps depicting the distribution of soil organic carbon (SOC) density during 187 

the historical period and the projected changes in SOC density from 2000-2015 to 2081-2100 188 

under various Shared Socioeconomic Pathways (SSPs). The data are averaged across multiple 189 

Earth System Models (ESMs). 190 
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3.2 Sensitivity Analysis 191 

The aggregated results from four ESMs indicated an upward trend in total SOC stock 192 

across different SSPs (Figure 2a-2c), with the most substantial increase in SOC observed under 193 

SSP370 (Figure 2c). A notable variation was found in the SOC estimates produced by the 194 

different ESMs. Specifically, the SOC values from ACCESS-ESM1-5 and IPSL-CM6A-LR were 195 

markedly lower than those from the other two models, with SOC even showing a decline when 196 

compared to historical levels for ACCESS-ESM1-5. 197 

The influences of climate, land use and carbon fluxes on future SOC were discerned by 198 

comparing the differences between the results obtained after holding these three types of 199 

variables constant and the original predictions (Figure 2e-2p). The discrepancy attributed to 200 

carbon fluxes was the greatest among the three sets of results and their positive effects on SOC 201 

increased as carbon emission increased. When carbon fluxes or land use were held constant, the 202 

projections were lower than the original predictions, whereas the fixed climate variables resulted 203 

in higher projections. This suggests that carbon flux and land use are likely to have a positive 204 

impact on future SOC, while climate variables may exert a negative influence due to faster soil 205 

decomposition. For climate variables, the difference under SSP126 initially increased and then 206 

decreased, implying that the adverse effects of climate on SOC first intensified and then 207 

diminished under the low carbon emission scenario. This phenomenon can be attributed to the 208 

complex interplay between warming effects: while it can lengthen the growing season and 209 

enhance productivity, it accelerates the decomposition rate of SOC. Since all ESMs utilized the 210 

same land use data, their results were consistent. However, as time advanced, the disparities 211 

among the different SSPs grew more pronounced. Notably, under SSP585, the variation due to 212 

land use was significantly less than under the other SSPs, suggesting that land use had a minimal 213 

impact on SOC changes under this pathway, with the other two variable types being more 214 

influential. Furthermore, the trend in SSP585 revealed that the positive contribution of land use 215 

initially rose and then fell over time. 216 
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 217 

Figure 2. The temporal evolution of total SOC stock in peta-grams of carbon (Pg C) and 218 

discrepancies arising from holding specific variables constant. (a-d) the original predictions of 219 

SOC stock; variations resulting from fixing (e-h) climate, (i-l) land use and (m-p) carbon fluxes.  220 

3.3 Attribution Analysis with XAI 221 

Figure S1 displays RFI and SHAP values for various variables, featuring the top two 222 

variables in each category based on RFI for brevity. The results are based on outputs from EC-223 

Earth3-Veg under SSP585, with similar observations across other ESMs and SSPs (not shown).  224 
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The April maximum temperature (tmax_04) emerged as the most important variable, followed 225 

by DEM and carbon flux variables. Notably, the SHAP values of certain variables exhibited 226 

temporal changes. Specifically, the SHAP values for tmax_04 and the carbon flux variables 227 

underwent inversion over time, indicating a reversal in their contributions to SOC.  In the period 228 

2081-2100, tmax_04 transitioned from positive contribution to negative contribution, while GPP 229 

of summer (GPP_S2) exhibited the opposite trend.  230 

In Figure 3a-3d, the tmax_04 variable exhibited a gradual decrease in SHAP over time, 231 

while secmb (secondary mean biomass density), GPP_S2, and NEP_S2 showed a progressive 232 

increase. The SHAP of tmax_04 decreased more rapidly with higher carbon emissions. 233 

Interestingly, under the lowest carbon emission scenario SSP126, the SHAP value showed 234 

recovery in the last two periods. Notably, the SHAP value of secmb peaked under SSP245, 235 

indicating a non-linear relationship to carbon emissions. Initially, as carbon emissions rose, the 236 

SHAP values of GPP_S2 and NEP_S2 increased rapidly. However, in the more distant future, 237 

under some low carbon emission SSPs, their SHAP values decreased. 238 

In Figure 3e-3h, the relationship between the SHAP values of GPP_S2, feature values, 239 

and SOC values is depicted. SHAP values tend to increase with feature values, plateauing 240 

thereafter with minimal change in contribution. Notably, around a feature value of approximately 241 

3 gC m-2d-1, the SHAP values for different SSPs change sign from negative to positive. Beyond a 242 

GPP of about 7 gC m-2d-1, its positive contribution to SOC plateaus. Additionally, regions with a 243 

substantial negative contribution of GPP are primarily associated with data exhibiting low SOC 244 

values.  245 
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 246 

Figure 3. National average SHAP value changes for various variables (a-d) and SHAP values for 247 

four SSPs using EC-Earth3-Veg model outputs for 2081-2100 (e-h).  248 

Figure 4 demonstrates that the contribution of GPP to SOC remained either negative or 249 

positive throughout the entire period in most regions of China. Interestingly, as carbon emissions 250 

increased, the areas undergoing a change from negative to positive contribution (depicted in red) 251 

expanded. Furthermore, the timing of this transition was progressively delayed from scenarios 252 

with lower to higher carbon emissions, indicating that in a future with higher carbon emissions, 253 

areas initially showing negative contributions may eventually shift to positive ones.  Notably, the 254 

regions experiencing this sign change were mainly situated around the 400 mm annual 255 

precipitation line, emphasizing the importance of these zones as key areas for sequential soil 256 

carbon sequestration. 257 
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 258 

Figure 4. Sign shifts in GPP's contribution to SOC. Green signifies a consistent negative 259 

contribution, and orange indicates a consistent positive. Blue (PtN) denotes a shift from positive 260 

to negative, while red (NtP) indicates a shift from negative to positive. The numbers 1-4 261 

represent the periods when the shift occurred: 1 for 2021-2040, 2 for 2041-2060, 3 for 2061-262 

2080, and 4 for 2081-2100.  263 

4 Discussions 264 

Building upon the insights provided in our study, it is important to contextualize the 265 

projected increases in soil organic carbon (SOC) within the broader framework of global carbon 266 

cycling and climate change mitigation strategies. Our findings suggest that the carbon flux plays 267 

a pivotal role in determining SOC levels in China, with its impact varying across different SSPs. 268 

Compared to other studies, the total soil organic carbon (SOC) stocks for historical 269 

periods reported in our study (Figure 1 and 2) are consistent with expected ranges (Liang et al., 270 

2019; Li et al., 2022; Liu et al., 2022; Song et al., 2020; Yang et al., 2023; Zhang et al., 2023). 271 
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The increase in SOC under all SSPs, contrary to some studies predicting declines (Zhang et al., 272 

2023), underscores the complexity of SOC dynamics and the need for comprehensive models 273 

that incorporate a wide array of variables. The carbon flux variables, which include both GPP 274 

and NEP, emerged as key drivers of SOC changes, potentially offsetting the negative effects of 275 

increased soil respiration due to rising temperatures.  276 

Sensitivity analyses reveal that carbon flux is the variable with the most substantial 277 

impact on future SOC changes (Figure 2), with its promoting effect intensifying under SSPs with 278 

higher carbon emissions. This suggests that the CO2 fertilization effect may continue to enhance 279 

SOC in environments with elevated CO2 levels. This effect is particularly relevant in the context 280 

of global efforts to increase carbon sinks as a means to combat climate change. The diminishing 281 

negative impact of climate variables on SOC under SSP126 indicates that such effects may 282 

decrease only under scenarios with the lowest carbon emissions. Conversely, the positive 283 

influence of land use on SOC may weaken under SSP585, the scenario with the highest carbon 284 

emissions. Interestingly, the two ESMs with the largest total SOC stocks also exhibit the greatest 285 

reductions when carbon flux is held constant, suggesting that differences in SOC between ESMs 286 

may be partly due to the carbon flux simulation. It is generally accepted that warmer 287 

temperatures associated with climate change will increase soil respiration and reduce SOC, but 288 

some studies suggest that SOC may increase under conditions of higher atmospheric carbon 289 

dioxide due to increased carbon sequestration by vegetation (Terrer et al., 2021). Terrestrial 290 

carbon fluxes serve as a robust indicator of vegetation carbon sequestration. Figure S1 reveals 291 

that forthcoming enhancements in SOC predominantly stem from GPP and NEP. Notably, 292 

temperature emerges as the foremost adverse factor, exerting a significant negative influence by 293 

fostering the decomposition of soil carbon. The spatial analysis of GPP (Figure 4) reveals that 294 

areas with sign changes in its contribution to SOC are near the 400 mm precipitation line, 295 

indicates that precipitation patterns play a significant role in SOC sequestration. This finding has 296 

implications for land management practices, suggesting that regions with intermediate 297 

precipitation levels may be key targets for interventions aimed at increasing SOC stocks.  298 

 Furthermore, our study posits that GPP's contribution to SOC is negative at low values 299 

but becomes positive above a certain threshold. After reaching a peak, the positive contribution 300 

of GPP stabilizes and does not further increase. This finding implies that regions at the 301 

intersection of positive and negative contributions could enhance SOC accumulation through 302 
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targeted interventions. Specifically, near the 400 mm precipitation line, vegetation restoration 303 

efforts could elevate GPP beyond the threshold, shifting its contribution from negative to 304 

positive. However, in areas already characterized by high GPP, additional planting may not yield 305 

further increases in SOC accumulation. 306 

In our study, we opted to use carbon fluxes to represent the CO2 fertilization effect rather 307 

than directly employing CO2 concentration. Although we tested incorporating CO2 concentration 308 

as a covariate in our machine learning model, it failed to accurately capture the fertilization 309 

effect. This discrepancy stems from the relatively minor spatial and seasonal changes in CO2 310 

concentration compared to the anticipated future increases, rendering the space-for-time 311 

substitution approach ineffective as it involves extrapolation. Consequently, our proposed 312 

method of utilizing carbon fluxes as covariates proves to be a valuable approach for addressing 313 

the CO2 fertilization effect in machine learning models of SOC. 314 

While our study provides valuable insights into the potential for SOC sequestration in 315 

China, it also highlights the inherent uncertainties in modeling the complex earth systems. The 316 

discrepancies between ESMs underscore the need for continued refinement of these tools and for 317 

the integration of diverse data sources to improve predictive accuracy. Additionally, the machine 318 

learning model trained on historical data face constraints in extrapolating future conditions due 319 

to potential alterations in the relationship between SOC and its influencing factors under climate 320 

change (Pickett, 1989). This constraint arises because changes in climate can introduce novel 321 

dynamics that may not be fully represented or captured by historical records, thereby impacting 322 

the predictive power of models for SOC behavior in a changing environment. Moreover, 323 

interpretive methods themselves may introduce additional uncertainty (Huang et al., 2023). 324 

5 Conclusions 325 

Our comprehensive study has provided valuable insights into the dynamics of SOC in 326 

China, projecting an overall increase in SOC stocks across various SSPs until the year 2100. This 327 

positive trend contrasts with some existing literature that anticipates declines in SOC under 328 

certain scenarios, highlighting the critical role of carbon flux, particularly GPP, in influencing 329 

SOC outcomes. Our findings underscore the significance of carbon flux as the most influential 330 

variable affecting future SOC changes, with its impact being more pronounced under higher 331 

carbon emission scenarios. This suggests that the CO2 fertilization effect may continue to play a 332 
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vital role in enhancing SOC, even in high CO2 environments. The spatial analysis within our 333 

study has revealed that areas near the 400 mm precipitation line are critical zones for SOC 334 

sequestration, indicating that precipitation patterns are key determinants in the carbon cycle. Our 335 

analyses identify thresholds in the GPP-SOC relationship, with GPP's contribution to SOC 336 

transitioning from negative to positive beyond a certain level. However, this positive 337 

contribution does not increase indefinitely, indicating a plateau effect that has important 338 

implications for land management and carbon sequestration strategies. 339 

Despite the promising projections, our study acknowledges the inherent uncertainties 340 

associated with ESMs and the interpretation of complex environmental data. The variability 341 

between ESMs highlights the need for ongoing research and model refinement to enhance the 342 

accuracy of SOC predictions. 343 

As the global community continues to seek solutions for climate change mitigation, 344 

understanding the factors that influence SOC is crucial for developing effective carbon 345 

management strategies. Our research contributes to this understanding by providing a nuanced 346 

view of the interactions between carbon fluxes, climate variables, land use, and SOC. It is our 347 

hope that these insights will inform future land management practices and policies aimed at 348 

maximizing the potential of soils as carbon sinks, thereby supporting global efforts to combat 349 

climate change and promote sustainable development. 350 
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Key Points: 10 

• The influence of carbon flux on SOC is more pronounced than that of climate change and 11 

land use change 12 

• We identify two critical thresholds in the relationship between gross primary production 13 

and SOC 14 

• Critical zones for soil carbon sequestration are located around 400 mm annual 15 

precipitation line 16 
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Abstract 18 

The impact of carbon fluxes on soil organic carbon (SOC) remains underexplored. We employed 19 

machine learning to model SOC dynamics. Our findings project an increase in China's SOC 20 

through to the year 2100 across various Shared Socioeconomic Pathways. Sensitivity analyses 21 

have identified carbon fluxes as the main drivers for this projected rise, followed by climate and 22 

land use. Further examination using an explainable artificial intelligence method, Shapley 23 

Additive Explanations, has uncovered both spatial and temporal variations in how gross primary 24 

production (GPP) influences SOC levels. Notably, GPP's contribution on SOC is initially 25 

negative at low levels, turning positive once a threshold of approximately 3 gC m-2d-1 is 26 

surpassed. Beyond a GPP of about 7 gC m-2d-1, its positive contribution to SOC plateaus. Critical 27 

zones for soil carbon sequestration are located around 400 mm annual precipitation line.  28 

Plain Language Summary 29 

Soil's ability to absorb carbon is key to reducing atmospheric carbon dioxide, a major greenhouse 30 

gas. Yet, the influence of carbon fluxes—the exchange of carbon between the soil and the 31 

atmosphere—on soil carbon storage is not well understood. Our study utilized machine learning 32 

to estimate potential soil carbon storage in China by 2100, considering various global 33 

socioeconomic trajectories. We anticipate an uptick in soil carbon, largely due to carbon fluxes, 34 

with climate and land use changes also playing significant roles. Through explainable artificial 35 

intelligence, we've gained insights into how plant growth impacts soil carbon levels. We 36 

discovered that minimal plant growth correlates with lower soil carbon storage. As plants grow 37 

more, they enhance soil carbon storage until reaching a certain growth level, after which the 38 

effect plateaus. Zones critical for maximizing soil carbon storage correspond with areas 39 

receiving about 400 mm of rainfall annually. This understanding of plant growth's effect on soil 40 

carbon is invaluable for developing land management strategies aimed at maximizing carbon 41 

sequestration, thereby contributing to climate change mitigation efforts. 42 
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1 Introduction 44 

Soil Organic Carbon (SOC) is a fundamental constituent of terrestrial ecosystems, 45 

performing an essential function in bolstering the resilience and productivity of ecosystems 46 

(Batjes, 2014; Lal, 2003; Minasny et al., 2017). SOC is not only crucial for providing nutrients 47 

that support plant growth and yield but also for retaining water and mitigating soil erosion 48 

(Trivedi et al., 2018). Even slight changes in the soil carbon pool can result in significant impacts 49 

on atmospheric carbon (Smith et al., 2008). Soil carbon sequestration, through its ability to 50 

capture and retain environmental carbon, acts as a powerful antidote against the intensification of 51 

the greenhouse effect (Lal et al., 2015). Therefore, predicting future SOC and identifying its key 52 

drivers are essential for understanding the evolving patterns of carbon stock distribution over 53 

time.  54 

Methods for studying SOC are generally categorized into two types: process-based 55 

models and empirical models such as AI (Artificial Intelligence) methods. Process-based models 56 

simulate SOC dynamics based on detailed representations of internal biochemical and physical 57 

processes (Le Quéré et al., 2013). The Earth System Model (ESM) is an example of such a 58 

model, integrating carbon cycle processes with climate models (Intergovernmental Panel on 59 

Climate Change, 2023). These models are capable of projecting SOC distribution and temporal 60 

changes. However, due to the still uncertain physio-ecological mechanisms of SOC in terrestrial 61 

system, different ESMs have shown discrepancies in both historical and future SOC estimations 62 

(Ito et al., 2020). 63 

Recently, AI methods have become powerful tools to for mapping and predicting SOC 64 

(McBratney et al., 2019). The SCORPAN framework (McBratney et al., 2003), introduced for 65 

Digital Soil Mapping (DSM), suggests that soil types or properties can be inferred from a 66 

combination of environmental factors (i.e., covariates). These include soil, climate, organisms, 67 

topography, parent material, age, spatial location, and other environmental variables (Chen et al., 68 

2022; Lamichhane et al., 2019). The application of DSM technology to project future SOC 69 

changes relies on the space-for-time substitution concept (Pickett, 1989), which has been 70 

employed to anticipate SOC trends in regions such as Europe, China and Argentina (Heuvelink 71 

et al., 2021; Yigini & Panagos, 2016; Zhang et al., 2023). Among the various methods, Random 72 
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Forest (RF) has emerged as the most popular method for SOC mapping and prediction, 73 

demonstrating its effectiveness in this domain (Lamichhane et al., 2019; Padarian et al., 2020). 74 

Significant research has been conducted on the anticipated changes in SOC, with climate 75 

change and land use change commonly recognized as the primary factors influencing future SOC 76 

variability (Davidson & Janssens, 2006). SOC are controlled by both carbon input and residence 77 

time (Luo et al, 2022). However, the role of carbon fluxes in shaping SOC dynamics has not 78 

been thoroughly investigated. The CO2 fertilization effect suggests that as atmospheric CO2 79 

concentrations increase, carbon fluxes to ecosystems also rise (Baldocchi et al., 2001; Litton & 80 

Giardina, 2008). Yet, this additional carbon input may also enhance SOC decomposition, 81 

potentially leading to increased SOC loss (Crow et al., 2009; Kuzyakov, 2010; Sayer et al., 82 

2011). Consequently, it remains uncertain whether such fertilization will result in soils becoming 83 

net carbon sources or sinks in the future (Field, 2001; Karnosky, 2003; Nowak et al., 2004; Liang 84 

et al., 2018). 85 

Explainable Artificial Intelligence (XAI) has been successfully applied to attribute 86 

analysis in soil carbon studies (Luo et al., 2019; Patoine et al., 2022). To dissect the impact of 87 

various factors on SOC, with a focus on the influence of carbon flux, we integrated two XAI 88 

methods into our analysis: Random Forest Importance (RFI) and Shapley Additive Explanations 89 

(SHAP) (Huang et al., 2023). These methods will allow us to unravel the complex interactions 90 

between carbon flux and SOC, providing a clearer understanding of their relationship. This study 91 

seeks to elucidate three essential scientific questions: (1) What degree of variation in SOC levels 92 

can be expected in China from 2021 to 2100 under multiple Shared Socioeconomic Pathways 93 

(SSPs)? (2) What is the relative contribution of carbon fluxes to changes in SOC compared to the 94 

effect of climate change and land use change? (3) How will carbon fluxes shape the trajectory of 95 

SOC in the future? 96 

2 Materials and Methods 97 

2.1 Materials and Processing 98 

In this study, we utilized a dataset comprising 8,979 soil profile records from the Second 99 

National Soil Survey of China, with most soil profile data being collected between 1979 and 100 

1984 (Shangguan et al., 2013). SOC data from 2000 to 2014 were obtained from the carbon 101 
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density dataset for China's terrestrial ecosystems (Xu et al., 2019). We focused our analysis on 102 

data from the 0-100 cm soil layer, converting the profile data to SOC density using a specified 103 

equation: 104 

𝑆𝑂𝐶 = 𝑆𝑂𝑀 × 0.58 × 𝐷 × 𝐵𝐷 × (1 − 𝐺)    (1) 105 

where SOM is soil organic matter, D denotes soil layer depth, BD is bulk density and G is gravel 106 

content (>2 mm). To standardize the depth of the data, we employed equal-area second-order 107 

spline interpolation (Odgers et al., 2012).  108 

All covariates were resampled to a uniform resolution of 2.5 arc-minutes. The input 109 

covariates for our analysis were divided into static and dynamic categories, with a 110 

comprehensive list provided in Table S1. For static variables, such as those derived from the 111 

digital elevation model (DEM), we operated under the assumption that relief and parent material 112 

factors would remain constant over long-time scales, and that soil factors would undergo 113 

minimal changes over the span of hundreds of years (Grunwald, 2010).  114 

The dynamic datasets were divided into historical and future periods for analysis. 115 

Historical data were synchronized with the timing of soil profile collection and assessed for each 116 

subsequent twenty-year interval. Covariate data from the periods 1980-1999 and 2000-2015 were 117 

aligned with the soil profile data. For projections into the future, we sourced data from four 118 

ESMs (ACCESS-ESM1-5 (Ziehn et al., 2020), EC-Earth3-Veg (Döscher et al., 2022), IPSL-119 

CM6A-LR (Boucher et al., 2020), and MPI-ESM1-2-LR (Mauritsen et al., 2019)) under four 120 

Shared Socioeconomic Pathways (SSPs), for each twenty-year segment extending from 2021 to 121 

2100, as only these ESMs provide outputs of carbon fluxes in the Coupled Model 122 

Intercomparison Project Phase 6 (CMIP6). The dynamic covariates encompassed climate 123 

variables, land use patterns, and carbon fluxes. Climate data, which included monthly maximum 124 

and minimum temperatures and precipitation, were sourced from the WorldClim2 database (Fick 125 

& Hijmans, 2017). Land use information was provided by the Land Use Harmonization project 126 

(LUH2) (Hurtt et al., 2020), covering four SSP scenarios (SSP126, SSP248, SSP370, and 127 

SSP585) as well as historical periods. Carbon flux data were represented by two key variables: 128 

gross primary productivity (GPP) and net ecosystem productivity (NEP). Historical carbon flux 129 

data were acquired from the Global Carbon Fluxes dataset (GCFD, (Shangguan et al., 2023)), 130 
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while future data were processed from the corresponding ESM data. Given the for analysis. We 131 

subsequently employed the following formula to calculate future carbon fluxes: 132 

𝐶𝐹𝑖,𝑗
∗ = 𝐶𝐹ℎ𝑖𝑠𝑡𝑜𝑟𝑦 + (𝐶𝐹𝑖,𝑗 − 𝐶𝐹ℎ𝑖𝑠𝑡𝑜𝑟𝑦,𝑗)                                    (2) 133 

where CF denotes carbon flux covariates, i denotes each period in the future, and j denotes each 134 

ESM.  135 

2.2 Model Building and Prediction 136 

We developed RF models to predict SOC using data from two historical periods: 1980-137 

1999 and 2000-2015. The regression matrix was constructed using soil profiles and covariates. 138 

After eliminating correlated variables, we selected the thirty most influential variables for 139 

inclusion in the model. The model's accuracy was evaluated using ten-fold cross-validation and 140 

three indicators: R², Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). Our 141 

experiments spanned six timeframes: the historical periods of 1980-1999 and 2000-2015, and the 142 

future period of 2021-2100, divided into four twenty-year intervals. Following the space-for-time 143 

substitution strategy (Blois et al., 2013; Liu et al., 2020), we treated the dynamic covariates from 144 

these six periods as sequential input data for the model. This approach allowed us to map 145 

historical SOC levels and project future SOC across different Earth System Models (ESMs) and 146 

Shared Socioeconomic Pathways (SSPs). 147 

2.3 Attribution Analysis 148 

We conducted a sensitivity analysis as follows. Initially, we held each of the three types 149 

of dynamic covariates—climate, land use, and carbon flux—at their historical values from the 150 

period 2000-2015 and then projected future SOC levels. By comparing these projections with the 151 

original predictions, we evaluated the influence of each covariate type on future SOC levels. 152 

To delve deeper into the impact of specific variables on SOC, we employed XAI tools—153 

RFI and SHAP—for detailed attribution analysis. RFI gauges the significance of variables in 154 

tree-based models by aggregating the decrease in entropy across all trees (Breiman, 2001). A 155 

variable that effectively partitions the data and substantially lowers entropy is deemed crucial for 156 

prediction. For robustness, importance values were averaged over 10 iterations. SHAP, 157 

conceptualized by Lundberg and Lee (Lundberg & Lee, 2017) based on game theory principles, 158 
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computes the marginal contributions of each feature, treating feature values as players in a 159 

coalition. Given the current set of feature value, the estimated SHAP value is the contribution of 160 

a feature value to the difference between the actual prediction and the mean prediction. A low 161 

absolute value signifies that the impact of a feature on the deviation from the mean prediction is 162 

relatively minor. The sign (+/-) does not denote a positive or negative feedback mechanism; 163 

rather, it indicates whether the effect of the feature increases or decreases the deviation from the 164 

mean. For each input variable, we generated SHAP value maps analogous to the SOC 165 

predictions. Due to the intensive computational demands of SHAP, we consolidated the input 166 

covariates into 10x10 patches for analysis. 167 

3 Results 168 

3.1 Model Performance and Predictions 169 

The performance metrics for our RF model indicated an R² of 0.41, an RMSE of 0.30 gC 170 

cm-2, and a MAE of 0.22 gC cm-2. By incorporating covariates from various time periods into the 171 

model, we were able to map SOC for historical periods and project SOC for future periods. 172 

During the two historical periods analyzed, regions with high SOC values were predominantly 173 

located in the mountainous area of Northeast China and the eastern part of the Qinghai-Tibet 174 

Plateau (Figure 1a and 1b).  175 

We assessed the changes in SOC relative to the historical period (2000-2015) for each 176 

subsequent time interval (Figure 1c-1f). The spatial distribution patterns indicated a modest 177 

increase in SOC across most of the country in the future, although the regions experiencing 178 

significant increases were fewer under the lower carbon emission scenarios. Notably, SOC 179 

declines were primarily observed in the northeastern areas, while increases were concentrated in 180 

the eastern and southern regions of the Qinghai-Tibet Plateau. Under the SSP585 scenario 181 

(Figure 1f), the northeastern region experienced a more pronounced decrease in SOC compared 182 

to other SSPs, and the areas of increase were noticeably smaller than those under SSP370 (Figure 183 

1e). This disparity may contribute to the overall lower SOC projections for SSP585 relative to 184 

SSP370. 185 
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 186 

Figure 1.  Maps depicting the distribution of soil organic carbon (SOC) density during 187 

the historical period and the projected changes in SOC density from 2000-2015 to 2081-2100 188 

under various Shared Socioeconomic Pathways (SSPs). The data are averaged across multiple 189 

Earth System Models (ESMs). 190 
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3.2 Sensitivity Analysis 191 

The aggregated results from four ESMs indicated an upward trend in total SOC stock 192 

across different SSPs (Figure 2a-2c), with the most substantial increase in SOC observed under 193 

SSP370 (Figure 2c). A notable variation was found in the SOC estimates produced by the 194 

different ESMs. Specifically, the SOC values from ACCESS-ESM1-5 and IPSL-CM6A-LR were 195 

markedly lower than those from the other two models, with SOC even showing a decline when 196 

compared to historical levels for ACCESS-ESM1-5. 197 

The influences of climate, land use and carbon fluxes on future SOC were discerned by 198 

comparing the differences between the results obtained after holding these three types of 199 

variables constant and the original predictions (Figure 2e-2p). The discrepancy attributed to 200 

carbon fluxes was the greatest among the three sets of results and their positive effects on SOC 201 

increased as carbon emission increased. When carbon fluxes or land use were held constant, the 202 

projections were lower than the original predictions, whereas the fixed climate variables resulted 203 

in higher projections. This suggests that carbon flux and land use are likely to have a positive 204 

impact on future SOC, while climate variables may exert a negative influence due to faster soil 205 

decomposition. For climate variables, the difference under SSP126 initially increased and then 206 

decreased, implying that the adverse effects of climate on SOC first intensified and then 207 

diminished under the low carbon emission scenario. This phenomenon can be attributed to the 208 

complex interplay between warming effects: while it can lengthen the growing season and 209 

enhance productivity, it accelerates the decomposition rate of SOC. Since all ESMs utilized the 210 

same land use data, their results were consistent. However, as time advanced, the disparities 211 

among the different SSPs grew more pronounced. Notably, under SSP585, the variation due to 212 

land use was significantly less than under the other SSPs, suggesting that land use had a minimal 213 

impact on SOC changes under this pathway, with the other two variable types being more 214 

influential. Furthermore, the trend in SSP585 revealed that the positive contribution of land use 215 

initially rose and then fell over time. 216 
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 217 

Figure 2. The temporal evolution of total SOC stock in peta-grams of carbon (Pg C) and 218 

discrepancies arising from holding specific variables constant. (a-d) the original predictions of 219 

SOC stock; variations resulting from fixing (e-h) climate, (i-l) land use and (m-p) carbon fluxes.  220 

3.3 Attribution Analysis with XAI 221 

Figure S1 displays RFI and SHAP values for various variables, featuring the top two 222 

variables in each category based on RFI for brevity. The results are based on outputs from EC-223 

Earth3-Veg under SSP585, with similar observations across other ESMs and SSPs (not shown).  224 
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The April maximum temperature (tmax_04) emerged as the most important variable, followed 225 

by DEM and carbon flux variables. Notably, the SHAP values of certain variables exhibited 226 

temporal changes. Specifically, the SHAP values for tmax_04 and the carbon flux variables 227 

underwent inversion over time, indicating a reversal in their contributions to SOC.  In the period 228 

2081-2100, tmax_04 transitioned from positive contribution to negative contribution, while GPP 229 

of summer (GPP_S2) exhibited the opposite trend.  230 

In Figure 3a-3d, the tmax_04 variable exhibited a gradual decrease in SHAP over time, 231 

while secmb (secondary mean biomass density), GPP_S2, and NEP_S2 showed a progressive 232 

increase. The SHAP of tmax_04 decreased more rapidly with higher carbon emissions. 233 

Interestingly, under the lowest carbon emission scenario SSP126, the SHAP value showed 234 

recovery in the last two periods. Notably, the SHAP value of secmb peaked under SSP245, 235 

indicating a non-linear relationship to carbon emissions. Initially, as carbon emissions rose, the 236 

SHAP values of GPP_S2 and NEP_S2 increased rapidly. However, in the more distant future, 237 

under some low carbon emission SSPs, their SHAP values decreased. 238 

In Figure 3e-3h, the relationship between the SHAP values of GPP_S2, feature values, 239 

and SOC values is depicted. SHAP values tend to increase with feature values, plateauing 240 

thereafter with minimal change in contribution. Notably, around a feature value of approximately 241 

3 gC m-2d-1, the SHAP values for different SSPs change sign from negative to positive. Beyond a 242 

GPP of about 7 gC m-2d-1, its positive contribution to SOC plateaus. Additionally, regions with a 243 

substantial negative contribution of GPP are primarily associated with data exhibiting low SOC 244 

values.  245 
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 246 

Figure 3. National average SHAP value changes for various variables (a-d) and SHAP values for 247 

four SSPs using EC-Earth3-Veg model outputs for 2081-2100 (e-h).  248 

Figure 4 demonstrates that the contribution of GPP to SOC remained either negative or 249 

positive throughout the entire period in most regions of China. Interestingly, as carbon emissions 250 

increased, the areas undergoing a change from negative to positive contribution (depicted in red) 251 

expanded. Furthermore, the timing of this transition was progressively delayed from scenarios 252 

with lower to higher carbon emissions, indicating that in a future with higher carbon emissions, 253 

areas initially showing negative contributions may eventually shift to positive ones.  Notably, the 254 

regions experiencing this sign change were mainly situated around the 400 mm annual 255 

precipitation line, emphasizing the importance of these zones as key areas for sequential soil 256 

carbon sequestration. 257 
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 258 

Figure 4. Sign shifts in GPP's contribution to SOC. Green signifies a consistent negative 259 

contribution, and orange indicates a consistent positive. Blue (PtN) denotes a shift from positive 260 

to negative, while red (NtP) indicates a shift from negative to positive. The numbers 1-4 261 

represent the periods when the shift occurred: 1 for 2021-2040, 2 for 2041-2060, 3 for 2061-262 

2080, and 4 for 2081-2100.  263 

4 Discussions 264 

Building upon the insights provided in our study, it is important to contextualize the 265 

projected increases in soil organic carbon (SOC) within the broader framework of global carbon 266 

cycling and climate change mitigation strategies. Our findings suggest that the carbon flux plays 267 

a pivotal role in determining SOC levels in China, with its impact varying across different SSPs. 268 

Compared to other studies, the total soil organic carbon (SOC) stocks for historical 269 

periods reported in our study (Figure 1 and 2) are consistent with expected ranges (Liang et al., 270 

2019; Li et al., 2022; Liu et al., 2022; Song et al., 2020; Yang et al., 2023; Zhang et al., 2023). 271 
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The increase in SOC under all SSPs, contrary to some studies predicting declines (Zhang et al., 272 

2023), underscores the complexity of SOC dynamics and the need for comprehensive models 273 

that incorporate a wide array of variables. The carbon flux variables, which include both GPP 274 

and NEP, emerged as key drivers of SOC changes, potentially offsetting the negative effects of 275 

increased soil respiration due to rising temperatures.  276 

Sensitivity analyses reveal that carbon flux is the variable with the most substantial 277 

impact on future SOC changes (Figure 2), with its promoting effect intensifying under SSPs with 278 

higher carbon emissions. This suggests that the CO2 fertilization effect may continue to enhance 279 

SOC in environments with elevated CO2 levels. This effect is particularly relevant in the context 280 

of global efforts to increase carbon sinks as a means to combat climate change. The diminishing 281 

negative impact of climate variables on SOC under SSP126 indicates that such effects may 282 

decrease only under scenarios with the lowest carbon emissions. Conversely, the positive 283 

influence of land use on SOC may weaken under SSP585, the scenario with the highest carbon 284 

emissions. Interestingly, the two ESMs with the largest total SOC stocks also exhibit the greatest 285 

reductions when carbon flux is held constant, suggesting that differences in SOC between ESMs 286 

may be partly due to the carbon flux simulation. It is generally accepted that warmer 287 

temperatures associated with climate change will increase soil respiration and reduce SOC, but 288 

some studies suggest that SOC may increase under conditions of higher atmospheric carbon 289 

dioxide due to increased carbon sequestration by vegetation (Terrer et al., 2021). Terrestrial 290 

carbon fluxes serve as a robust indicator of vegetation carbon sequestration. Figure S1 reveals 291 

that forthcoming enhancements in SOC predominantly stem from GPP and NEP. Notably, 292 

temperature emerges as the foremost adverse factor, exerting a significant negative influence by 293 

fostering the decomposition of soil carbon. The spatial analysis of GPP (Figure 4) reveals that 294 

areas with sign changes in its contribution to SOC are near the 400 mm precipitation line, 295 

indicates that precipitation patterns play a significant role in SOC sequestration. This finding has 296 

implications for land management practices, suggesting that regions with intermediate 297 

precipitation levels may be key targets for interventions aimed at increasing SOC stocks.  298 

 Furthermore, our study posits that GPP's contribution to SOC is negative at low values 299 

but becomes positive above a certain threshold. After reaching a peak, the positive contribution 300 

of GPP stabilizes and does not further increase. This finding implies that regions at the 301 

intersection of positive and negative contributions could enhance SOC accumulation through 302 
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targeted interventions. Specifically, near the 400 mm precipitation line, vegetation restoration 303 

efforts could elevate GPP beyond the threshold, shifting its contribution from negative to 304 

positive. However, in areas already characterized by high GPP, additional planting may not yield 305 

further increases in SOC accumulation. 306 

In our study, we opted to use carbon fluxes to represent the CO2 fertilization effect rather 307 

than directly employing CO2 concentration. Although we tested incorporating CO2 concentration 308 

as a covariate in our machine learning model, it failed to accurately capture the fertilization 309 

effect. This discrepancy stems from the relatively minor spatial and seasonal changes in CO2 310 

concentration compared to the anticipated future increases, rendering the space-for-time 311 

substitution approach ineffective as it involves extrapolation. Consequently, our proposed 312 

method of utilizing carbon fluxes as covariates proves to be a valuable approach for addressing 313 

the CO2 fertilization effect in machine learning models of SOC. 314 

While our study provides valuable insights into the potential for SOC sequestration in 315 

China, it also highlights the inherent uncertainties in modeling the complex earth systems. The 316 

discrepancies between ESMs underscore the need for continued refinement of these tools and for 317 

the integration of diverse data sources to improve predictive accuracy. Additionally, the machine 318 

learning model trained on historical data face constraints in extrapolating future conditions due 319 

to potential alterations in the relationship between SOC and its influencing factors under climate 320 

change (Pickett, 1989). This constraint arises because changes in climate can introduce novel 321 

dynamics that may not be fully represented or captured by historical records, thereby impacting 322 

the predictive power of models for SOC behavior in a changing environment. Moreover, 323 

interpretive methods themselves may introduce additional uncertainty (Huang et al., 2023). 324 

5 Conclusions 325 

Our comprehensive study has provided valuable insights into the dynamics of SOC in 326 

China, projecting an overall increase in SOC stocks across various SSPs until the year 2100. This 327 

positive trend contrasts with some existing literature that anticipates declines in SOC under 328 

certain scenarios, highlighting the critical role of carbon flux, particularly GPP, in influencing 329 

SOC outcomes. Our findings underscore the significance of carbon flux as the most influential 330 

variable affecting future SOC changes, with its impact being more pronounced under higher 331 

carbon emission scenarios. This suggests that the CO2 fertilization effect may continue to play a 332 
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vital role in enhancing SOC, even in high CO2 environments. The spatial analysis within our 333 

study has revealed that areas near the 400 mm precipitation line are critical zones for SOC 334 

sequestration, indicating that precipitation patterns are key determinants in the carbon cycle. Our 335 

analyses identify thresholds in the GPP-SOC relationship, with GPP's contribution to SOC 336 

transitioning from negative to positive beyond a certain level. However, this positive 337 

contribution does not increase indefinitely, indicating a plateau effect that has important 338 

implications for land management and carbon sequestration strategies. 339 

Despite the promising projections, our study acknowledges the inherent uncertainties 340 

associated with ESMs and the interpretation of complex environmental data. The variability 341 

between ESMs highlights the need for ongoing research and model refinement to enhance the 342 

accuracy of SOC predictions. 343 

As the global community continues to seek solutions for climate change mitigation, 344 

understanding the factors that influence SOC is crucial for developing effective carbon 345 

management strategies. Our research contributes to this understanding by providing a nuanced 346 

view of the interactions between carbon fluxes, climate variables, land use, and SOC. It is our 347 

hope that these insights will inform future land management practices and policies aimed at 348 

maximizing the potential of soils as carbon sinks, thereby supporting global efforts to combat 349 

climate change and promote sustainable development. 350 
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