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Abstract

Using model projections to study the emergence of observable climate signals presumes omniscient knowledge about the climate

system. In reality, observational knowledge suffers from data quality and availability issues. Overlooking such deficiencies leads

to misrepresentations of the time of emergence (ToE). We introduce a new definition of ToE that accounts for observational

limitations (e.g., data gaps, gridding, changes in instrumentation, retrieval algorithms, etc), and show the potential for significant

corrections to achieve the same statistical confidence as would be afforded by omniscient knowledge. We also show how our

method can inform future observational needs and observing systems design.
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Abstract14

Using model projections to study the emergence of observable climate signals presumes15

omniscient knowledge about the climate system. In reality, observational knowledge suf-16

fers from data quality and availability issues. Overlooking such deficiencies leads to mis-17

representations of the time of emergence (ToE). We introduce a new definition of ToE18

that accounts for observational limitations (e.g., data gaps, gridding, changes in instru-19

mentation, retrieval algorithms, etc), and show the potential for significant corrections20

to achieve the same statistical confidence as would be afforded by omniscient knowledge.21

We also show how our method can inform future observational needs and observing sys-22

tems design.23

Plain Language Summary24

Long-term planning for climate change adaptation requires accurate forecasts of25

climate impacts. Such forecasts are produced using computer models, which provide om-26

niscient knowledge of the climate states they simulate. However, real-world knowledge27

is based on incomplete and sometimes flawed observational data. Ignoring these flaws28

yields a distorted view of the timing of observable climate impacts. We propose a method29

to address this issue by accounting for observational limitations such as data gaps, changes30

in measuring equipment, data post-processing, etc. We show how to use the method to31

plan future data collection.32

1 Introduction33

Despite global ambitions for climate action, adaptation gaps persist. Systemic bar-34

riers such as limited climate literacy and data availability (H. Lee et al., 2023) stand in35

the way of progress, along with the growing challenge of maladaptation for vulnerable36

groups (Schipper, 2020; Pörtner et al., 2023) which is aggravated by social inequalities37

(Islam & Winkel, 2017). Addressing these issues will require comprehensive and effec-38

tive policy packages for long-term adaptation (Biesbroek et al., 2013), which rely on quan-39

titative knowledge of climate trends and risk (Pörtner et al., 2023; National Academies of40

Sciences & Medicine, 2018).41

Knowledge about future climate trends is subject to the limitations of climate mod-42

els. In the context of trend detection, misrepresentation of decadal to multidecadal in-43

ternal variability by models is problematic (Collins et al., 2002; Danabasoglu, 2008; Bothe44

et al., 2013; Kim et al., 2018; Tao et al., 2023) especially on regional scales (Laepple et45

al., 2023). The scientific community has addressed uncertainties due to internal variabil-46

ity with the use of large ensemble modeling (Zelle et al., 2005; Drijfhout et al., 2008; Bransta-47

tor & Selten, 2009; Rodgers et al., 2021) and other downscaling or bias-correction tech-48

niques (Wu et al., 2022). Inter-model spread has also been addressed using emergent con-49

straints (Williamson et al., 2021; Qasmi & Ribes, 2022).50

However, disagreements between models and observations persist (e.g., Abalos et51

al., 2021). Disagreements can arise for a variety of reasons including the mere presence52

of internal variability (Jain et al., 2023; Tebaldi & Knutti, 2007; Mitchell et al., 2013;53

McKinnon & Simpson, 2022). As a result, direct comparison of models with observations54

is inappropriate (Collins et al., 2013; Schmidt et al., 2023). In response, recent meth-55

ods integrate both model-based and observational knowledge to better account for in-56

ternal variability. For instance, McKinnon and Deser (2021) quantify uncertainties re-57

lated to sampling of internal variability (see also Shepherd, 2021; Gessner et al., 2021;58

Barnes et al., 2019).59

When observed and simulated trends are at odds, questions arise: are the models60

wrong? Is the observational record long enough, and of high enough quality? If not, how61
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much, and what kind of additional data should be collected? This study addresses the62

latter two questions using the concept of time of emergence (ToE): the time after which63

a trend becomes distinguishable from background variability. The concept of ToE is use-64

ful to:65

1. Incorporate uncertainties due to internal variability in the assessment of climate66

models;67

2. Communicate climate change (e.g. by determining when the effects of climate change68

will likely manifest to convey the urgency of taking action to stakeholders, the gen-69

eral public, and policymakers);70

3. Develop mitigation and conservation strategies (e.g. by providing a timeline for71

the allocation of resources for research, infrastructure upgrades, disaster prepared-72

ness, etc);73

Methods already exist to quantify ToE (see Section 2), but they rely on climate model74

data and exclude observational uncertainties. In this study, we introduce (Section 2) and75

validate (Section 3) a method to quantify the additional length of record needed to ac-76

count for observational limitations in the emergence of observed climate signals. The method77

is useful to analyze historical records and to design future observing systems (Section78

4).79

2 Methods80

The detectability of climate change has long been quantified using the concept of81

signal-to-noise ratio (Madden & Ramanathan, 1980; Wigley & Jones, 1981; Barnett &82

Schlesinger, 1987; Santer et al., 1995; Hegerl et al., 1996, 1997; Bindoff et al., 2014; Wills83

et al., 2020), where the signal is a measure of a trend and the noise one of internal cli-84

mate variability. Drawing from this concept, ToE has often been defined as the length85

of record beyond which the signal-to-noise ratio exceeds a predetermined threshold (Christensen86

et al., 2007; Giorgi & Bi, 2009; Diffenbaugh & Scherer, 2011; Hawkins & Sutton, 2012;87

Deser et al., 2012; Maraun, 2013; Sui et al., 2014; Lyu et al., 2014; Zappa et al., 2015;88

D. Lee et al., 2016; Nguyen et al., 2018). Emergence has also been defined using other89

statistical tests for the difference between a reference state and a perturbed state (Mahlstein90

et al., 2011), with comparable results.91

While these methods provide useful information about climate signals, they dif-92

fer in their definitions of the signal, noise, and threshold (see a discussion in Li et al.,93

2017) and suffer from key limitations. For instance, the choice of signal-to-noise thresh-94

old is arbitrary and does not provide a standardized definition for statistical confidence.95

Additionally, the concept of signal-to-noise ratio does not account for autocorrelation96

in climate time series, leading to underestimated ToE and misrepresented spatial pat-97

terns of emergence (Li et al., 2017).98

The method developed by Li et al. (2017) (L17 hereafter) addresses these short-99

comings by defining emergence as the time when an analytical confidence interval (defined100

by Thompson et al., 2015) about a cumulative trend excludes zero. However, to our knowl-101

edge, no method explicitly accounts for observational limitations. We propose a new def-102

inition of ToE to address this shortfall.103

2.1 New Definition of Emergence104

Applying ordinary least squares regression to a climate time series generates a lin-105

ear trend estimate, denoted b. To assess whether b constitutes a significant departure106

from internal variability, we compare it to the distribution of trends that arise purely as107

a result of internal variability over the same time period. If b is close to the first moment108

of this reference distribution, then it aligns with typical fluctuations seen in the climate109
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system without external forcings. Conversely, if b falls well into the tails of the reference110

distribution, then it is unusually large compared to natural variations. In such a scenario,111

it is reasonable to hypothesize that b may have arisen due to external forcings.112

The reference distribution is derived from a control simulation that excludes ex-113

ternal forcings: a resampling time window of length y (in time steps) is chosen and lin-114

ear trends for all possible y-step periods (with overlap) are calculated using ordinary least115

squares regression. For a control run with monthly outputs, choosing y=120 yields the116

distribution of 10-year unforced trends. Figure 1b shows reference distributions derived117

from a synthetic control run (panel a) for two resampling windows. The control run is118

produced by random number generation based on Pearson distributions (Pearson, 1894;119

Johnson et al., 1995). White noise is used in this example, but the method works for any120

power spectrum of noise. As one may expect, the greater the y, the narrower the trend121

distribution. We define ToE as the resampling window length y needed to obtain a ref-122

erence distribution such that trends larger than b are statistically unlikely to occur, with123

a chosen degree of statistical confidence. This definition handles time series with auto-124

correlation and extends the capabilities of L17 by handling time series with non-Gaussian125

residuals about the trend. Note that internal variability is assumed to be constant over126

time, which may be inappropriate for some climate variables (Rodgers et al., 2021). The127

formalism and procedure are laid out in the next section.128
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Figure 1. a) Sample time series from a synthetic control simulation and b) corresponding

probability density function estimates of linear trends for varying resampling window lengths

y (in time steps). c) Illustration of the resampling method and d-e) adjustment of the ToE for

observational limitations when b∗ < b. Light green and light purple curves show the iterative

process by which equations 1 and 2 are fulfilled. Numerical values are for illustration purposes

only.
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2.2 Time of Emergence with Omniscient Knowledge129

In order to detect trends associated with global warming, the control run can be130

picked from the CMIP6 archive (pre-industrial runs). To detect trends starting at a par-131

ticular time (e.g., the recovery of stratospheric ozone since year 2000), a control run start-132

ing at that time should instead be used (in that case, a “perpetual year 2000” run).133

Climate trends are typically inferred from time series in which known climate os-134

cillations (e.g., El Niño Southern Oscillation, Madden-Julian Oscillation, Quasi-Biennal135

Oscillation, etc) are first removed. Removal techniques include multiple linear regres-136

sion with uncorrelated explanatory variables (Wilks, 2011) and dynamical linear mod-137

eling (Laine et al., 2014). Regardless of the approach chosen, the removal should be per-138

formed on the control run before calculating unforced trend distributions.139

At the desired two-sided confidence level cd (0 < cd < 100%), our method pre-140

dicts that a trend of magnitude b emerges from internal variability when it occurs over141

a period of time long enough that unforced trends over that same time period are smaller142

than b at least c = cd+100
2 % of the time. In other words, the ToE is the number of time143

steps y such that:144

Qy(c) = b (1)145

where Qy : [0, 1] → R is the quantile function for the distribution of y-step unforced146

trends. In practice, y is estimated numerically as follows:147

1. Set y to an appropriate lower bound (e.g., 2);148

2. Determine the reference distribution of y-step unforced trends by resampling;149

3. Compare pc, the c-th percentile (c = cd+100
2 ) in the reference distribution, to b.150

If pc > b, increase y by one step;151

4. Iterate steps 2-3 until pc ≤ b. ToE is the value of y needed to obtain this result.152

These steps are illustrated in Figure 1c. Alternatively, the method can be used to cal-153

culate b given y; b is then the ”smallest detectable trend.” We will use this approach to154

quantify the detection power granted by a record of given length.155

2.3 Time of Emergence with Observational Knowledge156

ToE derived from omniscient knowledge should be interpreted as an ideal quan-157

tity. In reality, observational limitations affect the degree of statistical confidence placed158

in ToE – and by extension, ToE itself. To account for this, we define the operator K(∗)159

which converts model quantile functions to observed quantile functions. The terminol-160

ogy K originates from the first intended application of this method to satellite kernel op-161

erators. K represents the process of resampling the model control run so as to reproduce162

the characteristics of the observing system of interest. For instance, the control run can163

be resampled to match the spatial and temporal coverage of an observing system (sparse164

or missing observing locations, changes in coverage over time, etc), or the quality of a165

data set (instrumental errors, changes in calibration, orbital drift, data processing such166

as averaging, gridding, interpolation, etc). This process is akin to observing system ex-167

periments (OSEs, see e.g., Gelaro & Zhu, 2009).168

Applying the new operator K, equation 1 becomes:169

K(Qy(c)) = b∗ (2)170

where b∗ is the c-th percentile of the distribution of unforced trends as would be seen171

by observations, and can be interpreted as an “observation-equivalent” of b. Should the172

observing system underestimate the true internal variability, the observed distribution173

of unforced trends is narrower than its model counterpart, i.e. |K(Qy(c))| ≤ |Qy(c)|.174

In that case, b∗ ≤ b (see Figure 1d), reflecting that the apparent detection power granted175
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by the observational record is inflated. In order to adjust ToE for this effect, we calcu-176

late the observation-equivalent number of time steps y∗ after which the model predicts177

that the observation-equivalent trend b∗ emerges at confidence level cd:178

y∗ | Qy∗(c) = b∗ (3)179

Generally speaking, |Qy(c)| decreases when y increases. Thus, when b∗ < b then y∗ >180

y: it takes longer for a trend to emerge in the observational record when accounting for181

a variability deficit (see Figure 1e).182

In specific cases, observing systems can also overestimate variability. For instance,183

satellite retrieval methods that rely on averaging (or smoothing) kernels redistribute vari-184

ability between levels/grid cells, occasionally producing anomalously high local variabil-185

ity. In that case, the method described above predicts that b∗ > b, and therefore, y∗ <186

y: the ToE estimated from observational knowledge is overestimated, and the adjustment187

therefore yields a shorter ToE. In the rest of the paper, the confidence level cd is set to188

95% (c = 97.5), though we recognize that it is an arbitrary choice. We note that con-189

fidence levels are still relevant for mission design, policy development, and decision mak-190

ing (though they should be one aspect of the broader context rather than the sole fo-191

cus, see e.g. Amrhein et al. (2019)).192

3 Validation and Discussion of the Method193

3.1 Comparison with Other Methods194

As previously discussed, the premise behind the concept of ToE is the statistical195

agreement about a trend in a time series. Given a large ensemble for such a time series,196

emergence can be determined empirically as the time beyond which the fraction of en-197

semble members that predict the same sign change is cd+100
2 % or greater. This empir-198

ical metric is what L17 capture analytically, and serves as benchmark to validate our new199

method.200

Figure 2a shows that for normally distributed residuals (for the sake of compar-201

ison with L17), the new method yields nearly identical results to the other definitions.202

Some differences attributable to the numerical nature of the new method exist, but they203

remain small for trends encompassing orders of magnitude relevant to real climate sig-204

nals (from 0.1% to 10% of the magnitude of the noise per unit time). We conclude that205

the new method provides accurate estimates of ToE, provided the control run is long enough.206

3.2 Precision, Performance, Limitations207

Since the ToE adjustment described in Section 2.3 is based on a control simulation,208

the question of the realism of the control simulation is pertinent. In the context of this209

study, realism most directly concerns the magnitude of internal variability. The analy-210

sis presented in Figure 2b shows that the adjustment to ToE (as a percentage of ToE)211

and stochastic spread around it are largely unaffected by misrepresentations of the mag-212

nitude of internal variability in the control simulation. The outlier at (0.2,28.5) for trend213

magnitude 0.1 results from the unadjusted ToE being extremely small (and unrealistic):214

nearly always 7 time steps, with an adjustment of 2 time steps (in percentage, 28.57%).215

These values lie well outside the range typically relevant to climate studies. Similarly,216

the stochastic spread increases at the largest values of ToE (>1500 time steps for trend217

0.001 and large standard deviation ratios).218

Other aspects of the realism of the control run, such as the frequency distribution219

of its internal variability, are secondary since climate oscillations (peaks in the power spec-220

trum) are removed from the control simulation. That being said, the removal may leave221

behind residual variability at some frequencies. An analysis similar to that shown in Fig-222
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ToE [time steps]

Trend
[arb. units/time step]

Empirical R24 L17

0.001 356.5 357.2 359.4

0.01 77.2 77.5 78.1

0.1 16.9 17.0 17.6
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Figure 2. a) Validation of this method (R24) against the empirical definition of ToE and the

L17 analytical equivalent, shown as the central estimate of 300 realizations. b) Sensitivity of the

ToE adjustment to misrepresentations of the magnitude of internal variability in the control run

for 1000 realizations, shown as the ratio of the standard deviation of its residuals to the ”true”

standard deviation (σtrue=1 arbitrary units). Adjustments to ToE are shown for an arbitrary

observing system which scales the residuals by 0.8. All time series used are synthetic Gaussian

white noise with 1400×12 time steps – matching the length of the Large Ensemble Community

Project (LENS2, Rodgers et al., 2021).

ure 2b (not shown) indicates that this should generally not affect the accuracy of the re-223

sults.224

A practical limitation to the new method is its computational cost. Performing lin-225

ear regressions for all possible y-step periods in a long model run is a time consuming226

task, especially when it has to be repeated for multiple locations, confidence levels, or227

trend magnitudes. Implementing the steps in Section 2.2 by dichotomy ensures that, for228

a control run of length L time steps it always takes ⌊log2(L)⌋ iterations to calculate ToE.229

4 Applications230

While long, uninterrupted, and unbiased records are optimal to evaluate climate231

signals, only few such records exist – even the Keeling Curve experienced minor data gaps,232

and widely used sea surface temperature measurements have been affectede by changes233

in data collection techniques (Kent et al., 2010). Nevertheless, the use of existing records234

for trend analysis remains crucial. This principle extends beyond the historical context:235

in a theoretical scenario involving solar radiation management, the introduction of aerosols236

in the stratosphere should be continuously adjusted using observations (MacMartin et237
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al., 2014), in which case integrating observational uncertainties would be important from238

a policy standpoint. In this section, we discuss the effects of data gaps and data post-239

processing.240

4.1 Effects of Limited Temporal Coverage241

Irregularly sampled time series data can yield biased trend estimates and trend un-242

certainties. The method introduced in this paper can account for the loss of information243

due to the temporal sampling of an observing system, by using an operator K (Section244

2.3) that samples the control simulation with the same timing as that of the observa-245

tional record of interest. This way, one ensures that the distribution of unforced trends246

built using K captures the effects of temporal sampling. These effects can be large: an247

application of this method in ongoing research shows that the historic timing of the high-248

altitude balloon record (Engel et al., 2009) used to evaluate trends in the circulation of249

the stratosphere is responsible for a 20-year delay in the emergence of potential trends.250

Another application for the development of the STRAtosphere TO Surface (STRATOS)251

satellite mission proposal (to study long-term changes in the stratosphere and their im-252

pacts at the surface) showed that the proposed accompanying in situ validation cam-253

paign would still be useful even if the physical recovery of 50% of its balloon-borne mea-254

surements failed.255

To generalize these results, Figure 3 quantifies the effects of arbitrary data gaps256

and degraded sampling frequency on the magnitude of the smallest detectable trends (at257

the 95% confidence level). As one may expect, the detection power stagnates for the du-258

ration of data gaps. Once data collection resumes, assuming accurate calibration, the259

detection power is recovered at a rate that depends on the size and timing of the gap260

(not shown). In Figure 3, the lower the sampling frequency the lower the detection power.261

The presence of autocorrelation (memory) aggravates the problem, because autocorre-262

lation diminishes the amount of independent information conveyed by individual data263

points (and more data must be collected to compensate). This effect becomes less preva-264

lent as the sampling frequency degrades, because data points that are further apart may265

co-vary less.266

4.2 Effects of Data Post-Processing267

Measures of internal variability derived from observations are sensitive to data col-268

lection and treatment procedures. For instance, averaging and interpolation methods used269

to convert scattered observations into gridded products have detrimental effects: Hofstra270

et al. (2010) find systematically misrepresented variance especially in upper percentiles.271

Relatedly, Lin and Huybers (2019) concluded that changes in spatial sampling must be272

taken into account when reconciling observed trends with climate projections. Other data273

reporting issues are relevant to this section, for instance rounding-related errors (Rhines274

et al., 2015), or the conversion of measured variables into other quantities. For instance,275

in the conversion of N2O measurements into age of air using empirical relationships (Boering276

et al., 1996; Linz et al., 2017), our method showed that seasonal, instead of monthly, mea-277

surements are sufficient to preserve the detection power needed to study trends in the278

age-based Brewer-Dobson circulation (defined by Linz et al., 2016). This result also in-279

formed the budget and logistics of STRATOS.280

Another example particularly relevant to remote sensing is the use of smoothing281

kernels (or averaging kernels) in satellite retrieval algorithms. Such algorithms gener-282

ally estimate a quantity as the weighted average of neighboring observations, often in-283

corporating a priori climatological information. This kind of averaging affects both vari-284

ability and trends. If the averaging kernels and a detailed description of the retrieval al-285

gorithm are available, it is possible to define the operator K to sample the control run286

as the observing system does the real world. Figure 4a shows this process for a simple287
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Figure 3. Loss of detection power due to a) data gaps and b) varying sampling frequencies.

Sampling frequency is relative to an optimal frequency of 1 (e.g., 1/2 indicates that every other

time step is sampled). Frequencies greater (smaller) than 1 indicate redundancy (sparsity) in

the data. Solid lines denote zero lag-one autocorrelation (acf(1)=0) and dashed lines denote

acf(1)=0.5.

hypothetical example, and Figure 4b shows that a significant adjustment to ToE (20-288

40%) is necessary. As a concrete example, uncertainty in satellite-derived trends in the289

midlatitude ozone layer is partly attributable to differences between satellite platforms290

(Ball et al., 2019). An application of our method (not shown) showed that the smooth-291

ing kernels in solar backscatter ultraviolet retrievals (see Kramarova et al., 2013) con-292

siderably reduce the degree of confidence in ozone trends, highlighting the potential for293

complications in direct comparison between products (see Godin-Beekmann et al., 2022).294

Such complications also concern the production of merged satellite products; correction295
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schemes are typically applied to minimize differences between platforms, but residual er-296

rors can be difficult to assess in the presence of natural variability (Randel, 2010), af-297

fecting trend estimates and our understanding of internal variability (CCMVal, 2010; Ran-298

del, 2010).299
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Figure 4. a) Seasonally-varying synthetic time series showing the effect of a retrieval algo-

rithm using a priori information and observational data in a 30%:70% ratio. b) Loss of detection

power due to the influence of the a priori information. The red line is the detection power with

perfect knowledge when imposing a chosen trend onto the ”truth” in a), the black and blue

lines are for observational knowledge without and with adjustment for the retrieval algorithm,

respectively.
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5 Conclusions300

We introduce a new definition for the time of emergence (ToE) of forced climate301

signals, based on the resampling of a control climate simulation. Results compare well302

with the definition from L17 and with an empirical definition. Our definition eliminates303

the key assumption that the ”residuals” representing internal variability be normally dis-304

tributed about the trend of interest.305

Further, the new method can adjust ToE to account for the limitations of observ-306

ing systems, to systematically handle data of varying quality in climate records. We find307

that the relative adjustment to ToE is accurate even when using a control simulation that308

under or overestimates internal variability (though ToE itself is inaccurate in that case).309

Lastly, the new method serves as a quantitative tool to guide the development of310

future observing platforms and mitigation strategies: by taking into consideration sci-311

entific aspects within the framework of budgetary and logistical constraints, one can as-312

sess the cost and technical feasibility of future observing systems (National Academies of313

Sciences & Medicine, 2018) to ensure that observational priorities are aligned with fu-314

ture scientific and societal needs.315

6 Open Research316
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Abstract14

Using model projections to study the emergence of observable climate signals presumes15

omniscient knowledge about the climate system. In reality, observational knowledge suf-16

fers from data quality and availability issues. Overlooking such deficiencies leads to mis-17

representations of the time of emergence (ToE). We introduce a new definition of ToE18

that accounts for observational limitations (e.g., data gaps, gridding, changes in instru-19

mentation, retrieval algorithms, etc), and show the potential for significant corrections20

to achieve the same statistical confidence as would be afforded by omniscient knowledge.21

We also show how our method can inform future observational needs and observing sys-22

tems design.23

Plain Language Summary24

Long-term planning for climate change adaptation requires accurate forecasts of25

climate impacts. Such forecasts are produced using computer models, which provide om-26

niscient knowledge of the climate states they simulate. However, real-world knowledge27

is based on incomplete and sometimes flawed observational data. Ignoring these flaws28

yields a distorted view of the timing of observable climate impacts. We propose a method29

to address this issue by accounting for observational limitations such as data gaps, changes30

in measuring equipment, data post-processing, etc. We show how to use the method to31

plan future data collection.32

1 Introduction33

Despite global ambitions for climate action, adaptation gaps persist. Systemic bar-34

riers such as limited climate literacy and data availability (H. Lee et al., 2023) stand in35

the way of progress, along with the growing challenge of maladaptation for vulnerable36

groups (Schipper, 2020; Pörtner et al., 2023) which is aggravated by social inequalities37

(Islam & Winkel, 2017). Addressing these issues will require comprehensive and effec-38

tive policy packages for long-term adaptation (Biesbroek et al., 2013), which rely on quan-39

titative knowledge of climate trends and risk (Pörtner et al., 2023; National Academies of40

Sciences & Medicine, 2018).41

Knowledge about future climate trends is subject to the limitations of climate mod-42

els. In the context of trend detection, misrepresentation of decadal to multidecadal in-43

ternal variability by models is problematic (Collins et al., 2002; Danabasoglu, 2008; Bothe44

et al., 2013; Kim et al., 2018; Tao et al., 2023) especially on regional scales (Laepple et45

al., 2023). The scientific community has addressed uncertainties due to internal variabil-46

ity with the use of large ensemble modeling (Zelle et al., 2005; Drijfhout et al., 2008; Bransta-47

tor & Selten, 2009; Rodgers et al., 2021) and other downscaling or bias-correction tech-48

niques (Wu et al., 2022). Inter-model spread has also been addressed using emergent con-49

straints (Williamson et al., 2021; Qasmi & Ribes, 2022).50

However, disagreements between models and observations persist (e.g., Abalos et51

al., 2021). Disagreements can arise for a variety of reasons including the mere presence52

of internal variability (Jain et al., 2023; Tebaldi & Knutti, 2007; Mitchell et al., 2013;53

McKinnon & Simpson, 2022). As a result, direct comparison of models with observations54

is inappropriate (Collins et al., 2013; Schmidt et al., 2023). In response, recent meth-55

ods integrate both model-based and observational knowledge to better account for in-56

ternal variability. For instance, McKinnon and Deser (2021) quantify uncertainties re-57

lated to sampling of internal variability (see also Shepherd, 2021; Gessner et al., 2021;58

Barnes et al., 2019).59

When observed and simulated trends are at odds, questions arise: are the models60

wrong? Is the observational record long enough, and of high enough quality? If not, how61
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much, and what kind of additional data should be collected? This study addresses the62

latter two questions using the concept of time of emergence (ToE): the time after which63

a trend becomes distinguishable from background variability. The concept of ToE is use-64

ful to:65

1. Incorporate uncertainties due to internal variability in the assessment of climate66

models;67

2. Communicate climate change (e.g. by determining when the effects of climate change68

will likely manifest to convey the urgency of taking action to stakeholders, the gen-69

eral public, and policymakers);70

3. Develop mitigation and conservation strategies (e.g. by providing a timeline for71

the allocation of resources for research, infrastructure upgrades, disaster prepared-72

ness, etc);73

Methods already exist to quantify ToE (see Section 2), but they rely on climate model74

data and exclude observational uncertainties. In this study, we introduce (Section 2) and75

validate (Section 3) a method to quantify the additional length of record needed to ac-76

count for observational limitations in the emergence of observed climate signals. The method77

is useful to analyze historical records and to design future observing systems (Section78

4).79

2 Methods80

The detectability of climate change has long been quantified using the concept of81

signal-to-noise ratio (Madden & Ramanathan, 1980; Wigley & Jones, 1981; Barnett &82

Schlesinger, 1987; Santer et al., 1995; Hegerl et al., 1996, 1997; Bindoff et al., 2014; Wills83

et al., 2020), where the signal is a measure of a trend and the noise one of internal cli-84

mate variability. Drawing from this concept, ToE has often been defined as the length85

of record beyond which the signal-to-noise ratio exceeds a predetermined threshold (Christensen86

et al., 2007; Giorgi & Bi, 2009; Diffenbaugh & Scherer, 2011; Hawkins & Sutton, 2012;87

Deser et al., 2012; Maraun, 2013; Sui et al., 2014; Lyu et al., 2014; Zappa et al., 2015;88

D. Lee et al., 2016; Nguyen et al., 2018). Emergence has also been defined using other89

statistical tests for the difference between a reference state and a perturbed state (Mahlstein90

et al., 2011), with comparable results.91

While these methods provide useful information about climate signals, they dif-92

fer in their definitions of the signal, noise, and threshold (see a discussion in Li et al.,93

2017) and suffer from key limitations. For instance, the choice of signal-to-noise thresh-94

old is arbitrary and does not provide a standardized definition for statistical confidence.95

Additionally, the concept of signal-to-noise ratio does not account for autocorrelation96

in climate time series, leading to underestimated ToE and misrepresented spatial pat-97

terns of emergence (Li et al., 2017).98

The method developed by Li et al. (2017) (L17 hereafter) addresses these short-99

comings by defining emergence as the time when an analytical confidence interval (defined100

by Thompson et al., 2015) about a cumulative trend excludes zero. However, to our knowl-101

edge, no method explicitly accounts for observational limitations. We propose a new def-102

inition of ToE to address this shortfall.103

2.1 New Definition of Emergence104

Applying ordinary least squares regression to a climate time series generates a lin-105

ear trend estimate, denoted b. To assess whether b constitutes a significant departure106

from internal variability, we compare it to the distribution of trends that arise purely as107

a result of internal variability over the same time period. If b is close to the first moment108

of this reference distribution, then it aligns with typical fluctuations seen in the climate109
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system without external forcings. Conversely, if b falls well into the tails of the reference110

distribution, then it is unusually large compared to natural variations. In such a scenario,111

it is reasonable to hypothesize that b may have arisen due to external forcings.112

The reference distribution is derived from a control simulation that excludes ex-113

ternal forcings: a resampling time window of length y (in time steps) is chosen and lin-114

ear trends for all possible y-step periods (with overlap) are calculated using ordinary least115

squares regression. For a control run with monthly outputs, choosing y=120 yields the116

distribution of 10-year unforced trends. Figure 1b shows reference distributions derived117

from a synthetic control run (panel a) for two resampling windows. The control run is118

produced by random number generation based on Pearson distributions (Pearson, 1894;119

Johnson et al., 1995). White noise is used in this example, but the method works for any120

power spectrum of noise. As one may expect, the greater the y, the narrower the trend121

distribution. We define ToE as the resampling window length y needed to obtain a ref-122

erence distribution such that trends larger than b are statistically unlikely to occur, with123

a chosen degree of statistical confidence. This definition handles time series with auto-124

correlation and extends the capabilities of L17 by handling time series with non-Gaussian125

residuals about the trend. Note that internal variability is assumed to be constant over126

time, which may be inappropriate for some climate variables (Rodgers et al., 2021). The127

formalism and procedure are laid out in the next section.128
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Figure 1. a) Sample time series from a synthetic control simulation and b) corresponding

probability density function estimates of linear trends for varying resampling window lengths

y (in time steps). c) Illustration of the resampling method and d-e) adjustment of the ToE for

observational limitations when b∗ < b. Light green and light purple curves show the iterative

process by which equations 1 and 2 are fulfilled. Numerical values are for illustration purposes

only.
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2.2 Time of Emergence with Omniscient Knowledge129

In order to detect trends associated with global warming, the control run can be130

picked from the CMIP6 archive (pre-industrial runs). To detect trends starting at a par-131

ticular time (e.g., the recovery of stratospheric ozone since year 2000), a control run start-132

ing at that time should instead be used (in that case, a “perpetual year 2000” run).133

Climate trends are typically inferred from time series in which known climate os-134

cillations (e.g., El Niño Southern Oscillation, Madden-Julian Oscillation, Quasi-Biennal135

Oscillation, etc) are first removed. Removal techniques include multiple linear regres-136

sion with uncorrelated explanatory variables (Wilks, 2011) and dynamical linear mod-137

eling (Laine et al., 2014). Regardless of the approach chosen, the removal should be per-138

formed on the control run before calculating unforced trend distributions.139

At the desired two-sided confidence level cd (0 < cd < 100%), our method pre-140

dicts that a trend of magnitude b emerges from internal variability when it occurs over141

a period of time long enough that unforced trends over that same time period are smaller142

than b at least c = cd+100
2 % of the time. In other words, the ToE is the number of time143

steps y such that:144

Qy(c) = b (1)145

where Qy : [0, 1] → R is the quantile function for the distribution of y-step unforced146

trends. In practice, y is estimated numerically as follows:147

1. Set y to an appropriate lower bound (e.g., 2);148

2. Determine the reference distribution of y-step unforced trends by resampling;149

3. Compare pc, the c-th percentile (c = cd+100
2 ) in the reference distribution, to b.150

If pc > b, increase y by one step;151

4. Iterate steps 2-3 until pc ≤ b. ToE is the value of y needed to obtain this result.152

These steps are illustrated in Figure 1c. Alternatively, the method can be used to cal-153

culate b given y; b is then the ”smallest detectable trend.” We will use this approach to154

quantify the detection power granted by a record of given length.155

2.3 Time of Emergence with Observational Knowledge156

ToE derived from omniscient knowledge should be interpreted as an ideal quan-157

tity. In reality, observational limitations affect the degree of statistical confidence placed158

in ToE – and by extension, ToE itself. To account for this, we define the operator K(∗)159

which converts model quantile functions to observed quantile functions. The terminol-160

ogy K originates from the first intended application of this method to satellite kernel op-161

erators. K represents the process of resampling the model control run so as to reproduce162

the characteristics of the observing system of interest. For instance, the control run can163

be resampled to match the spatial and temporal coverage of an observing system (sparse164

or missing observing locations, changes in coverage over time, etc), or the quality of a165

data set (instrumental errors, changes in calibration, orbital drift, data processing such166

as averaging, gridding, interpolation, etc). This process is akin to observing system ex-167

periments (OSEs, see e.g., Gelaro & Zhu, 2009).168

Applying the new operator K, equation 1 becomes:169

K(Qy(c)) = b∗ (2)170

where b∗ is the c-th percentile of the distribution of unforced trends as would be seen171

by observations, and can be interpreted as an “observation-equivalent” of b. Should the172

observing system underestimate the true internal variability, the observed distribution173

of unforced trends is narrower than its model counterpart, i.e. |K(Qy(c))| ≤ |Qy(c)|.174

In that case, b∗ ≤ b (see Figure 1d), reflecting that the apparent detection power granted175
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by the observational record is inflated. In order to adjust ToE for this effect, we calcu-176

late the observation-equivalent number of time steps y∗ after which the model predicts177

that the observation-equivalent trend b∗ emerges at confidence level cd:178

y∗ | Qy∗(c) = b∗ (3)179

Generally speaking, |Qy(c)| decreases when y increases. Thus, when b∗ < b then y∗ >180

y: it takes longer for a trend to emerge in the observational record when accounting for181

a variability deficit (see Figure 1e).182

In specific cases, observing systems can also overestimate variability. For instance,183

satellite retrieval methods that rely on averaging (or smoothing) kernels redistribute vari-184

ability between levels/grid cells, occasionally producing anomalously high local variabil-185

ity. In that case, the method described above predicts that b∗ > b, and therefore, y∗ <186

y: the ToE estimated from observational knowledge is overestimated, and the adjustment187

therefore yields a shorter ToE. In the rest of the paper, the confidence level cd is set to188

95% (c = 97.5), though we recognize that it is an arbitrary choice. We note that con-189

fidence levels are still relevant for mission design, policy development, and decision mak-190

ing (though they should be one aspect of the broader context rather than the sole fo-191

cus, see e.g. Amrhein et al. (2019)).192

3 Validation and Discussion of the Method193

3.1 Comparison with Other Methods194

As previously discussed, the premise behind the concept of ToE is the statistical195

agreement about a trend in a time series. Given a large ensemble for such a time series,196

emergence can be determined empirically as the time beyond which the fraction of en-197

semble members that predict the same sign change is cd+100
2 % or greater. This empir-198

ical metric is what L17 capture analytically, and serves as benchmark to validate our new199

method.200

Figure 2a shows that for normally distributed residuals (for the sake of compar-201

ison with L17), the new method yields nearly identical results to the other definitions.202

Some differences attributable to the numerical nature of the new method exist, but they203

remain small for trends encompassing orders of magnitude relevant to real climate sig-204

nals (from 0.1% to 10% of the magnitude of the noise per unit time). We conclude that205

the new method provides accurate estimates of ToE, provided the control run is long enough.206

3.2 Precision, Performance, Limitations207

Since the ToE adjustment described in Section 2.3 is based on a control simulation,208

the question of the realism of the control simulation is pertinent. In the context of this209

study, realism most directly concerns the magnitude of internal variability. The analy-210

sis presented in Figure 2b shows that the adjustment to ToE (as a percentage of ToE)211

and stochastic spread around it are largely unaffected by misrepresentations of the mag-212

nitude of internal variability in the control simulation. The outlier at (0.2,28.5) for trend213

magnitude 0.1 results from the unadjusted ToE being extremely small (and unrealistic):214

nearly always 7 time steps, with an adjustment of 2 time steps (in percentage, 28.57%).215

These values lie well outside the range typically relevant to climate studies. Similarly,216

the stochastic spread increases at the largest values of ToE (>1500 time steps for trend217

0.001 and large standard deviation ratios).218

Other aspects of the realism of the control run, such as the frequency distribution219

of its internal variability, are secondary since climate oscillations (peaks in the power spec-220

trum) are removed from the control simulation. That being said, the removal may leave221

behind residual variability at some frequencies. An analysis similar to that shown in Fig-222
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ToE [time steps]

Trend
[arb. units/time step]

Empirical R24 L17

0.001 356.5 357.2 359.4

0.01 77.2 77.5 78.1

0.1 16.9 17.0 17.6
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Figure 2. a) Validation of this method (R24) against the empirical definition of ToE and the

L17 analytical equivalent, shown as the central estimate of 300 realizations. b) Sensitivity of the

ToE adjustment to misrepresentations of the magnitude of internal variability in the control run

for 1000 realizations, shown as the ratio of the standard deviation of its residuals to the ”true”

standard deviation (σtrue=1 arbitrary units). Adjustments to ToE are shown for an arbitrary

observing system which scales the residuals by 0.8. All time series used are synthetic Gaussian

white noise with 1400×12 time steps – matching the length of the Large Ensemble Community

Project (LENS2, Rodgers et al., 2021).

ure 2b (not shown) indicates that this should generally not affect the accuracy of the re-223

sults.224

A practical limitation to the new method is its computational cost. Performing lin-225

ear regressions for all possible y-step periods in a long model run is a time consuming226

task, especially when it has to be repeated for multiple locations, confidence levels, or227

trend magnitudes. Implementing the steps in Section 2.2 by dichotomy ensures that, for228

a control run of length L time steps it always takes ⌊log2(L)⌋ iterations to calculate ToE.229

4 Applications230

While long, uninterrupted, and unbiased records are optimal to evaluate climate231

signals, only few such records exist – even the Keeling Curve experienced minor data gaps,232

and widely used sea surface temperature measurements have been affectede by changes233

in data collection techniques (Kent et al., 2010). Nevertheless, the use of existing records234

for trend analysis remains crucial. This principle extends beyond the historical context:235

in a theoretical scenario involving solar radiation management, the introduction of aerosols236

in the stratosphere should be continuously adjusted using observations (MacMartin et237
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al., 2014), in which case integrating observational uncertainties would be important from238

a policy standpoint. In this section, we discuss the effects of data gaps and data post-239

processing.240

4.1 Effects of Limited Temporal Coverage241

Irregularly sampled time series data can yield biased trend estimates and trend un-242

certainties. The method introduced in this paper can account for the loss of information243

due to the temporal sampling of an observing system, by using an operator K (Section244

2.3) that samples the control simulation with the same timing as that of the observa-245

tional record of interest. This way, one ensures that the distribution of unforced trends246

built using K captures the effects of temporal sampling. These effects can be large: an247

application of this method in ongoing research shows that the historic timing of the high-248

altitude balloon record (Engel et al., 2009) used to evaluate trends in the circulation of249

the stratosphere is responsible for a 20-year delay in the emergence of potential trends.250

Another application for the development of the STRAtosphere TO Surface (STRATOS)251

satellite mission proposal (to study long-term changes in the stratosphere and their im-252

pacts at the surface) showed that the proposed accompanying in situ validation cam-253

paign would still be useful even if the physical recovery of 50% of its balloon-borne mea-254

surements failed.255

To generalize these results, Figure 3 quantifies the effects of arbitrary data gaps256

and degraded sampling frequency on the magnitude of the smallest detectable trends (at257

the 95% confidence level). As one may expect, the detection power stagnates for the du-258

ration of data gaps. Once data collection resumes, assuming accurate calibration, the259

detection power is recovered at a rate that depends on the size and timing of the gap260

(not shown). In Figure 3, the lower the sampling frequency the lower the detection power.261

The presence of autocorrelation (memory) aggravates the problem, because autocorre-262

lation diminishes the amount of independent information conveyed by individual data263

points (and more data must be collected to compensate). This effect becomes less preva-264

lent as the sampling frequency degrades, because data points that are further apart may265

co-vary less.266

4.2 Effects of Data Post-Processing267

Measures of internal variability derived from observations are sensitive to data col-268

lection and treatment procedures. For instance, averaging and interpolation methods used269

to convert scattered observations into gridded products have detrimental effects: Hofstra270

et al. (2010) find systematically misrepresented variance especially in upper percentiles.271

Relatedly, Lin and Huybers (2019) concluded that changes in spatial sampling must be272

taken into account when reconciling observed trends with climate projections. Other data273

reporting issues are relevant to this section, for instance rounding-related errors (Rhines274

et al., 2015), or the conversion of measured variables into other quantities. For instance,275

in the conversion of N2O measurements into age of air using empirical relationships (Boering276

et al., 1996; Linz et al., 2017), our method showed that seasonal, instead of monthly, mea-277

surements are sufficient to preserve the detection power needed to study trends in the278

age-based Brewer-Dobson circulation (defined by Linz et al., 2016). This result also in-279

formed the budget and logistics of STRATOS.280

Another example particularly relevant to remote sensing is the use of smoothing281

kernels (or averaging kernels) in satellite retrieval algorithms. Such algorithms gener-282

ally estimate a quantity as the weighted average of neighboring observations, often in-283

corporating a priori climatological information. This kind of averaging affects both vari-284

ability and trends. If the averaging kernels and a detailed description of the retrieval al-285

gorithm are available, it is possible to define the operator K to sample the control run286

as the observing system does the real world. Figure 4a shows this process for a simple287
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Figure 3. Loss of detection power due to a) data gaps and b) varying sampling frequencies.

Sampling frequency is relative to an optimal frequency of 1 (e.g., 1/2 indicates that every other

time step is sampled). Frequencies greater (smaller) than 1 indicate redundancy (sparsity) in

the data. Solid lines denote zero lag-one autocorrelation (acf(1)=0) and dashed lines denote

acf(1)=0.5.

hypothetical example, and Figure 4b shows that a significant adjustment to ToE (20-288

40%) is necessary. As a concrete example, uncertainty in satellite-derived trends in the289

midlatitude ozone layer is partly attributable to differences between satellite platforms290

(Ball et al., 2019). An application of our method (not shown) showed that the smooth-291

ing kernels in solar backscatter ultraviolet retrievals (see Kramarova et al., 2013) con-292

siderably reduce the degree of confidence in ozone trends, highlighting the potential for293

complications in direct comparison between products (see Godin-Beekmann et al., 2022).294

Such complications also concern the production of merged satellite products; correction295
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schemes are typically applied to minimize differences between platforms, but residual er-296

rors can be difficult to assess in the presence of natural variability (Randel, 2010), af-297

fecting trend estimates and our understanding of internal variability (CCMVal, 2010; Ran-298

del, 2010).299
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Figure 4. a) Seasonally-varying synthetic time series showing the effect of a retrieval algo-

rithm using a priori information and observational data in a 30%:70% ratio. b) Loss of detection

power due to the influence of the a priori information. The red line is the detection power with

perfect knowledge when imposing a chosen trend onto the ”truth” in a), the black and blue

lines are for observational knowledge without and with adjustment for the retrieval algorithm,

respectively.
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5 Conclusions300

We introduce a new definition for the time of emergence (ToE) of forced climate301

signals, based on the resampling of a control climate simulation. Results compare well302

with the definition from L17 and with an empirical definition. Our definition eliminates303

the key assumption that the ”residuals” representing internal variability be normally dis-304

tributed about the trend of interest.305

Further, the new method can adjust ToE to account for the limitations of observ-306

ing systems, to systematically handle data of varying quality in climate records. We find307

that the relative adjustment to ToE is accurate even when using a control simulation that308

under or overestimates internal variability (though ToE itself is inaccurate in that case).309

Lastly, the new method serves as a quantitative tool to guide the development of310

future observing platforms and mitigation strategies: by taking into consideration sci-311

entific aspects within the framework of budgetary and logistical constraints, one can as-312

sess the cost and technical feasibility of future observing systems (National Academies of313

Sciences & Medicine, 2018) to ensure that observational priorities are aligned with fu-314

ture scientific and societal needs.315

6 Open Research316

No actual measurements or data sources were used in this manuscript; the data are317

synthetic in nature and produced by random number generation (process described in318

Section 2.1).319
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