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ABSTRACT: Atmospheric models forced with observed sea-surface temperatures (SSTs) suggest

more-stabilizing cloud feedback in recent decades, partly due to the surface cooling trend in the

eastern Pacific (EP) and the warming trend in the western Pacific (WP). Here we show model

evidence that the low-cloud feedback has contributions from both forced and unforced feedback

components, and that its time variation arises in large part through changes in the relative importance

of the two over time, rather than through variations in forced feedbacks as is often assumed. Initial-

condition large ensembles (LEs) suggest that the SST patterns are dominated by unforced variations

for 30-year windows ending prior to the 1980s. In general, unforced SSTs are representative of an

ENSO-like pattern, which corresponds to weak low-level stability in the tropics and less-stabilizing

low-cloud feedback. Since the 1980s, the forced signals have become stronger, outweighing the

unforced signals for the 30-year windows ending after the 2010s. Forced SSTs are characterized

by relatively uniform warming with an enhancement in the WP, corresponding to more-stabilizing

low-cloud feedback in most cases. The time-evolving SST pattern due to this increasing importance

of forced signals is the dominant contributor to the recent stabilizing shift of low-cloud feedback in

the LEs. Observed SST patterns also suggest a reduction in the relative role of unforced ENSO-like

variability since the 1980s. However, the observed SST patterns show strong WP warming and EP

cooling trend, which actuates a shift in low-cloud feedback toward more-stabilizing values with a

trend that lies outside the model ensembles.
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1. Introduction31

Projections of future warming in response to forcing depend on the magnitude of radiative32

feedbacks and, in particular, on how clouds will respond to changing climate conditions (Bony and33

Dufresne 2005; Sherwood et al. 2014; IPCC 2023). Previous research has shown that radiative34

feedbacks have considerable temporal variations (Andrews et al. 2015; Zhou et al. 2016; Andrews35

et al. 2018; Dong et al. 2020; Gregory et al. 2020; Rugenstein et al. 2020; Andrews et al. 2022),36

which adds to the uncertainty of climate prediction (Frey et al. 2017; Sherwood et al. 2020;37

Gjermundsen et al. 2021; Watanabe et al. 2021; IPCC 2023).38

Radiative feedbacks vary over time in both the historical period (since around 1850) and fu-39

ture warming simulations. In most fully-coupled atmosphere-ocean general circulation models40

(AOGCMs) where the atmospheric CO2 concentration is abruptly quadrupled and kept constant41

for the rest of the simulation, the net radiative feedback becomes less stabilizing over time (higher42

effective climate sensitivity) (Geoffroy et al. 2013; Andrews et al. 2015; Ceppi and Gregory 2017;43

Dong et al. 2020; Rugenstein et al. 2020). In the historical period, the feedback shows strong44

variability on decadal timescales. Most AOGCM historical simulations suggest a shift toward less-45

stabilizing net radiative feedback (higher effective climate sensitivity) over the past few decades46

(Gregory et al. 2020; Dong et al. 2021; Salvi et al. 2023). However, atmospheric general circulation47

models (AGCM) with prescribed observational SST and sea ice instead indicate a more-stabilizing48

net radiative feedback (lower effective climate sensitivity) during the same time period (Zhou et al.49

2016; Gregory and Andrews 2016; Andrews et al. 2018, 2022). The time evolution of net radiative50

feedback has been interpreted through changes in SST patterns, also referred to as the pattern effect51

(Stevens et al. 2016; Zhou et al. 2017; Dong et al. 2019). The divergent trends of net radiative52

feedback between the abovementioned AOGCM and AGCM simulations in recent decades can be53

explained by discrepancies between the modeled and observed SST patterns (Dong et al. 2021).54

The potential for radiative feedbacks to vary over time as the SST pattern evolves has largely55

been interpreted in terms of a forced climate response. For instance, as is seen most clearly under56

an abrupt CO2 doubling or quadrupling, SST patterns and thus radiative feedbacks vary as the57

ocean adjusts on a range of timescales (Held et al. 2010; Winton et al. 2010; Armour et al. 2013;58

Geoffroy et al. 2013; Rose et al. 2014; Rose and Rayborn 2016; Rugenstein et al. 2016; Lin et al.59

2019, 2021; Eiselt and Graversen 2023). Moreover, non-CO2 forcing agents, such as anthropogenic60
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aerosols or volcanic eruptions, can produce time-varying SST patterns and radiative feedbacks that61

are distinct from those from CO2 forcing (Shindell 2014; Gregory et al. 2016; Marvel et al. 2016;62

Gregory et al. 2020; Günther et al. 2022; Salvi et al. 2023; Zhou et al. 2023). Another branch63

of literature has also shown that internal variability can influence radiative feedbacks through its64

influence on evolving SST patterns (Huber et al. 2014; Dessler et al. 2018; Gregory et al. 2020) and65

that, in general, the spatial patterns and magnitudes of radiative feedbacks under different modes66

of internal variability (“unforced feedbacks”) are distinct from those induced by radiative forcing67

(“forced feedbacks”) (Donohoe et al. 2014; Proistosescu et al. 2018; Wills et al. 2021; Uribe et al.68

2022).69

Here we investigate another contribution to the time variation of radiative feedbacks. In light70

of the fact that forced and unforced feedbacks have different magnitudes, it is possible that a71

portion of net radiative feedback time evolution may stem from a changing relative importance of72

internal variability and forced response – rather than through variations in the magnitude of forced73

feedbacks alone (as is often assumed). For instance, early in the historical record when radiative74

forcing is small, we might expect the net radiative feedback to largely reflect feedbacks associated75

with internal variability. However, later in the historical record and in the future when radiative76

forcing is strong, we might expect the net radiative feedback to largely reflect feedbacks induced by77

the forcing. A key question is, how important is such a shift in the relative importance of internal78

variability and forced response to the overall time variation of radiative feedbacks?79

To answer the question, we begin by laying out a statistical framework to showcase how forced80

and unforced variations combine to yield a net global radiative feedback (Section 2). Results on the81

relative importance of the forced and unforced signals from three initial-condition large ensembles82

are then shown in Section 2. In Section 3, we focus on the time evolution of low-cloud feedback and83

decompose the feedback change into components related to changes in forced response, changes84

in unforced variability, and changes in their relative importance. Section 4 highlights the role of85

the SST pattern effect in connecting the time-evolving SST pattern and low-cloud feedback. A86

coherent analysis of the CMIP6 models and the observation data is shown in Section 5. In Section87

6, we summarize our findings and discuss the further implications of our research.88
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2. Relative importance of forced and unforced responses89

a. Initial-condition large ensembles90

To isolate the forced responses from the unforced internal variability, we used single-model,91

initial-condition large ensembles, including Community Earth System Model Version 2 large92

ensemble (CESM2-LE; Rodgers et al. (2021)), Max Planck Institute for Meteorology Grand En-93

semble (MPI-GE; Maher et al. (2019)), and simulations from the National Aeronautics and Space94

Administration (NASA) Goddard Institute for Space Studies (GISS-LE; Kelley et al. (2020); Bauer95

et al. (2020); Miller et al. (2021)). The initial-condition large ensembles aim to create a large96

number of simulations with identical forcing and slightly different atmospheric and/or oceanic97

initial conditions. By taking the ensemble mean, the relative contribution of internal variability is98

expected to weaken to 1/
√
𝑁 , where 𝑁 is the size of the ensemble members (Gregory et al. 2020).99

Here CESM2-LE (𝑁 = 100), MPI-GE (𝑁 = 100), and GISS-LE (𝑁 = 48) all have relatively large100

𝑁 . Thus, any target field 𝑋 in large ensemble simulations can be decomposed into two parts: (1)101

the ensemble-mean values of 𝑋 (denoted as ⟨𝑋⟩), which approximates the forced responses (𝑋 𝑓 );102

and (2) the anomalies relative to the ensemble mean of 𝑋 (denoted as 𝑋∗), which approximates103

unforced variability (𝑋𝑢).104

𝑋 = ⟨𝑋⟩ + 𝑋∗, (2.1)

𝑋 𝑓 ≈ ⟨𝑋⟩, (2.2)

𝑋𝑢 ≈ 𝑋∗. (2.3)

b. Radiative feedback estimation105

The evaluation of net radiative feedback often starts with the global-mean energy balance equation106

𝑁 = 𝐹 + 𝑅 ≈ 𝐹 + 𝜆𝑇 (Gregory et al. 2004), where 𝑁 is net downward radiation at the top-of-107

atmosphere (TOA), 𝐹 is effective radiative forcing, and 𝑅 represents radiative responses (positive108

downwards). 𝑅 is often approximated as𝜆𝑇 , where𝑇 indicates the global-mean surface temperature109

responses that act to dampen or amplify 𝑅 through stabilizing or destabilizing feedback processes,110

denoted as 𝜆. Here the net radiative feedback (𝜆) is negative for a stable climate, thus a more111

negative (more-stabilizing) 𝜆 implies a less-sensitive climate.112
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In non-equilibrium climate states, such as for historical warming when the climate is still adjusting113

to forcing, 𝜆 is often quantified using the difference between two states, denoted as subscript 1 and114

2 (Gregory et al. 2002; Dessler et al. 2018).115

𝜆 =
(𝑅2 −𝑅1)
(𝑇2 −𝑇1)

=
(𝑁2 −𝑁1) − (𝐹2 −𝐹1)

(𝑇2 −𝑇1)
. (2.4)

At the same time, 𝜆 can be written in a differential form, where the derivatives can be estimated116

through linear regressions (Gregory et al. 2004; Rugenstein and Armour 2021).117

𝜆 =
𝑑𝑅

𝑑𝑇
=
𝑑 (𝑁 −𝐹)
𝑑𝑇

. (2.5)

c. Forced and unforced contributions to OLS regressions: Theory118

The ordinary least squares (OLS) regression is widely used when examining the regression119

form of radiative feedback (e.g., Sherwood et al. (2020)). In a similar regression form, the SST120

pattern is usually calculated by regressing the map of regional SSTs against the global-mean values121

of surface temperature (e.g., Andrews et al. (2015)). The use of OLS regression relies on the122

assumption that the independent variable (i.e., the x-variable) is uncorrelated with the error term in123

the regression model, so the error term only considers unpredictable random error (i.e., the noise124

of the dependent variable). Thus, OLS regression estimates of radiative feedbacks may be biased125

when forced responses and unforced variability are tangled in both the independent variable (e.g.,126

global-mean surface temperature) and the independent variable (e.g., radiation). In the following127

text, we will quantify the relative contribution of forced and unforced signals to OLS regressions.128

We will also show how the two components jointly drive the time variation of SST patterns and129

radiative feedbacks.130

Take the regression of a given field 𝑋 against global-mean surface temperature (𝑇𝑔) in a given131

historical time period, for example. Both the independent variable (𝑇𝑔) and the dependent variable132

(𝑋) consist of two parts that evolve with time: a forced response to net radiative forcing (from133

greenhouse gases, aerosols, land use, etc.) and an unforced response related to internal variability.134
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We can express the two components as follows:135

𝑇𝑔 = 𝑇𝑔, 𝑓 +𝑇𝑔,𝑢, (2.6)

𝑋 = 𝑋 𝑓 + 𝑋𝑢, (2.7)

where the subscripts 𝑓 and 𝑢 indicate the forced and unforced response, respectively. By substituting136

the full response with the forced and unforced components, the regression-based estimate of 𝑑𝑋
𝑑𝑇𝑔

137

can be written as:138

𝑑𝑋

𝑑𝑇𝑔
=
𝑐𝑜𝑣(𝑋,𝑇𝑔)
𝑣𝑎𝑟 (𝑇𝑔)

=
𝑐𝑜𝑣(𝑋 𝑓 + 𝑋𝑢,𝑇𝑔, 𝑓 +𝑇𝑔,𝑢)

𝑣𝑎𝑟 (𝑇𝑔, 𝑓 +𝑇𝑔,𝑢)

=
𝑐𝑜𝑣(𝑋 𝑓 ,𝑇𝑔, 𝑓 ) + 𝑐𝑜𝑣(𝑋 𝑓 ,𝑇𝑔,𝑢) + 𝑐𝑜𝑣(𝑋𝑢,𝑇𝑔, 𝑓 ) + 𝑐𝑜𝑣(𝑋𝑢,𝑇𝑔,𝑢)

𝑣𝑎𝑟 (𝑇𝑔, 𝑓 ) +2𝑐𝑜𝑣(𝑇𝑔, 𝑓 ,𝑇𝑔,𝑢) + 𝑣𝑎𝑟 (𝑇𝑔,𝑢)
,

(2.8)

where 𝑐𝑜𝑣(𝑥, 𝑦) is the covariance between the variable 𝑥 and 𝑦, and 𝑣𝑎𝑟 (𝑥) is the variance of139

𝑥. Both are estimated within a given time period (e.g., a 30-year window). Since there is a140

general difference between the time evolution of forced and unforced response, namely, the former141

is more linear with time due to the accumulating radiative forcing, whereas the latter consists142

of internal variations across different timescales (mainly interannual to decadal oscillations for143

a 30-year window), we assume that the covariance between the forced and unforced response is144

small. Following this assumption, which we will test later, Equation 2.8 can then be expressed as:145

𝑑𝑋

𝑑𝑇𝑔
=
𝑐𝑜𝑣(𝑋 𝑓 ,𝑇𝑔, 𝑓 ) + 𝑐𝑜𝑣(𝑋𝑢,𝑇𝑔,𝑢)

𝑣𝑎𝑟 (𝑇𝑔, 𝑓 ) + 𝑣𝑎𝑟 (𝑇𝑔,𝑢)
+𝜎, (2.9)

where the residual (𝜎) accounts for the combined effect from the three covariances between the146

forced and unforced responses, including 𝑐𝑜𝑣(𝑇𝑔, 𝑓 ,𝑇𝑔,𝑢), 𝑐𝑜𝑣(𝑋 𝑓 ,𝑇𝑔,𝑢), and 𝑐𝑜𝑣(𝑋𝑢,𝑇𝑔, 𝑓 ). By147

re-arranging Equation 2.9, the regression estimate can be decomposed into forced and unforced148

regressions as follows:149

𝑑𝑋

𝑑𝑇𝑔
=
𝑐𝑜𝑣(𝑋 𝑓 ,𝑇𝑔, 𝑓 )
𝑣𝑎𝑟 (𝑇𝑔, 𝑓 )

𝑣𝑎𝑟 (𝑇𝑔, 𝑓 )
𝑣𝑎𝑟 (𝑇𝑔, 𝑓 ) + 𝑣𝑎𝑟 (𝑇𝑔,𝑢)

+
𝑐𝑜𝑣(𝑋𝑢,𝑇𝑔,𝑢)
𝑣𝑎𝑟 (𝑇𝑔,𝑢)

𝑣𝑎𝑟 (𝑇𝑔,𝑢)
𝑣𝑎𝑟 (𝑇𝑔, 𝑓 ) + 𝑣𝑎𝑟 (𝑇𝑔,𝑢)

+𝜎

=
𝑑𝑋 𝑓

𝑑𝑇𝑔, 𝑓

𝑣𝑎𝑟 (𝑇𝑔, 𝑓 )
𝑣𝑎𝑟 (𝑇𝑔, 𝑓 ) + 𝑣𝑎𝑟 (𝑇𝑔,𝑢)

+ 𝑑𝑋𝑢

𝑑𝑇𝑔,𝑢

𝑣𝑎𝑟 (𝑇𝑔,𝑢)
𝑣𝑎𝑟 (𝑇𝑔, 𝑓 ) + 𝑣𝑎𝑟 (𝑇𝑔,𝑢)

+𝜎.
(2.10)
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Equation 2.10 suggests that the overall regression estimate is a linear combination of the forced and150

unforced regressions, with a specific weighting applied to each term. For forced regression ( 𝑑𝑋 𝑓

𝑑𝑇𝑔, 𝑓
),151

it is multiplied by the ratio of forced 𝑇𝑔 variance (𝑣𝑎𝑟 (𝑇𝑔, 𝑓 )) to the sum of forced 𝑇𝑔 variance and152

unforced 𝑇𝑔 variance (𝑣𝑎𝑟 (𝑇𝑔, 𝑓 ) + 𝑣𝑎𝑟 (𝑇𝑔,𝑢)). Similarly, unforced regression ( 𝑑𝑋𝑢
𝑑𝑇𝑔,𝑢

) is multiplied153

by the ratio of unforced 𝑇𝑔 variance (𝑣𝑎𝑟 (𝑇𝑔,𝑢)) to the sum of forced 𝑇𝑔 variance and unforced 𝑇𝑔154

variance (𝑣𝑎𝑟 (𝑇𝑔, 𝑓 ) + 𝑣𝑎𝑟 (𝑇𝑔,𝑢)). We can simplify the equation further by writing it as:155

𝑑𝑋

𝑑𝑇𝑔
=
𝑑𝑋 𝑓

𝑑𝑇𝑔, 𝑓
𝑟 + 𝑑𝑋𝑢

𝑑𝑇𝑔,𝑢
(1− 𝑟) +𝜎, (2.11)

𝑟 =
𝑣𝑎𝑟 (𝑇𝑔, 𝑓 )

𝑣𝑎𝑟 (𝑇𝑔, 𝑓 ) + 𝑣𝑎𝑟 (𝑇𝑔,𝑢)
. (2.12)

The ratio 𝑟 and (1− 𝑟) indicate, respectively, the relative importance of forced and unforced156

temperature variance during the interval over which the regression has been performed. When157

𝑟 is small, the influence of forced regression on overall regression is weak, and the regression is158

largely determined by the unforced variability of 𝑋 and 𝑇𝑔. Vice versa for large 𝑟. If 𝑋 is taken159

to be the net TOA radiation (𝑅), the net radiative feedback can be written as a weighted sum of160

the feedback in response to forced variations and the feedback in response to unforced variations161

(𝜆 = 𝜆 𝑓 𝑟 +𝜆𝑢 (1− 𝑟) +𝜎). Similarly, if 𝑋 represents regional warming, then 𝑑𝑋
𝑑𝑇𝑔

becomes the net162

warming pattern over the time interval, and it will like-wise be a weighted sum of forced and163

unforced components.164

In summary, here we demonstrate how the forced and unforced signals jointly affect the strength165

of the OLS regression, which is widely used to calculate radiative feedback (𝑋 = 𝑅) and quantify166

SST patterns (𝑋 = 𝑆𝑆𝑇). For each OLS regression, changes in either forced or unforced regression167

alter the strength of the overall regression. Even when both components are constant over time,168

changes in their relative importance (quantified as 𝑟 and (1−𝑟)) could lead to time variation in the169

overall regression.170

d. Forced and unforced contributions to OLS regressions: Model results171

Section 2c provides the theory of how the forced and unforced 𝑇𝑔 variance determines their172

relative importance in OLS regressions. Figure 1 shows the model results that echo the theory.173

First, the forced and unforced 𝑇𝑔 in the three LEs are shown (Figs. 1a-c). Note that to be more174
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consistent with observational SSTs (Section 5), here we define 𝑇𝑔 as the area-weighted average of175

near-global (60◦S-60◦N) surface temperature over the ocean. This 𝑇𝑔 definition is different from176

the commonly used global-mean surface temperature due to the exclusion of land and polar regions,177

however, we highlight that the time evolution of the two is highly consistent and the different 𝑇𝑔178

definition does not change the conclusions. Before 1980, all three LEs suggest a relatively mild179

60◦S-60◦N warming due to the forcing (less than 0.4 K increase in 𝑇𝑔, 𝑓 since 1850; approximately180

less than 0.1 K for 30-year intervals). For comparison, the range of unforced 𝑇𝑔 variations over181

30-year intervals is around 0.4-0.8 K. Since the 1980s, the forced component has strengthened,182

and so has the forced warming rate.183

Figures 1d-f show the total, forced, and unforced 𝑇𝑔 variance calculated in sliding 30-year184

windows, where the x-axis indicates the end year of each window. For 30-year windows ending185

before 1980 (i.e., before the first green line), the forced 𝑇𝑔 variance is generally weaker than the186

unforced 𝑇𝑔 variance. However, since the 1980s, the forced 𝑇𝑔 variance has strengthened, while the187

unforced 𝑇𝑔 variance remains of similar magnitudes. This different time evolution between forced188

and unforced 𝑇𝑔 variance implies that forced responses have weighed more in OLS regressions189

after the 1980s.190

Indeed, the ratio 𝑟 (defined in Eq. 2.12), which quantifies the relative importance of forced191

signals, remains small for the 30-year windows ending before 1980 (Figs. 1g-i). The averaged 𝑟192

before 1980 (i.e., the average over multiple windows) is 0.18±0.02 in CESM2-LE, 0.28±0.03 in193

MPI-GE, and 0.15±0.02 in GISS-LE, where the ensemble mean and 1 standard deviation (STD)194

across ensembles are shown. After 1980, 𝑟 increases rapidly, in parallel with the rapid increase195

in GHG emissions. The forced and unforced 𝑇𝑔 variances are comparable between the end year196

of the 1990s and the end year of the early 2000s (𝑟 ∼ 0.5). As 𝑣𝑎𝑟 (𝑇𝑔, 𝑓 ) continues to strengthen,197

𝑣𝑎𝑟 (𝑇𝑔, 𝑓 ) generally outweighs 𝑣𝑎𝑟 (𝑇𝑔,𝑢) in the late 2000s (𝑟 > 0.5) and has become more and more198

dominant since then. In GISS-LE, the overtake of forced signals in the 2000s is less obvious than199

in the other two large ensembles. Take the end year of 2010 (1981-2010 window) for example,200

𝑟 = 0.72±0.06 in CESM2-LE, 𝑟 = 0.72±0.07 in MPI-GE, and 𝑟 = 0.58±0.05 in GISS-LE. Despite201

the weaker 𝑟 in 1981-2010 window in GISS-LE, all three models show a pronounced increase in202

𝑟 between the 1951-1980 window and the 1981-2010 window (shown as the two vertical lines in203
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Fig. 1; see the numbers in Table 1), suggesting an increasing dominance of forced signals in SST204

patterns and radiative feedbacks over the past few decades.205

While 𝑟 is generally weak before the end year of 1980, we note that there are two local 𝑟 maxima206

in all three models, which can be linked to major volcanic eruptions (Gregory et al. 2016). The207

first local maximum spans between the end year 1890 to the end year 1910 (i.e., the sliding 30-year208

windows from 1861-1890 to 1881-1910), arising from the volcanic eruption of Krakatau in 1883209

and the Santa Maria eruption in 1902. The second local maximum exists around the end year of210

1930 (1901-1930 window), which includes the influences from both the 1902 Santa Maria eruption211

and the 1912 Novarupta/Katmai eruption. Furthermore, there is a local minimum around the end212

year of 1960, consistent with the decrease in major volcanic eruptions between 1920-1960.213

CESM2-LE MPI-GE GISS-LE

𝑟 |1951−1980 (1) 0.24±0.07 0.38±0.08 0.25±0.04

𝑟 |1981−2010 (1) 0.72±0.06 0.72±0.07 0.58±0.05

𝐶𝑆𝑆𝑇 ave. ( 𝑊

𝑚2𝐾
) 0.57±0.04 0.37±0.04 0.20±0.04

𝐶𝑆𝑆𝑇, 𝑓 ave. ( 𝑊

𝑚2𝐾
) 0.49 0.50 0.44

𝐶𝑆𝑆𝑇,𝑢 ave. ( 𝑊

𝑚2𝐾
) 0.59±0.04 0.31±0.05 0.14±0.04

𝐶𝐸𝐼𝑆 ave. ( 𝑊

𝑚2𝐾
) −0.05±0.10 −0.57±0.10 −0.63±0.08

𝐶𝐸𝐼𝑆, 𝑓 ave. ( 𝑊

𝑚2𝐾
) −0.62 −0.86 −0.68

𝐶𝐸𝐼𝑆,𝑢 ave. ( 𝑊

𝑚2𝐾
) 0.14±0.10 −0.39±0.11 −0.62±0.08

𝐼𝑃𝑊𝑃 |1951−1980 (1) 0.44±0.11 0.82±0.07 0.78±0.05

𝐼𝑃𝑊𝑃 𝑓 |1951−1980 (1) 1.09 1.04 0.97

𝐼𝑃𝑊𝑃𝑢 |1951−1980 (1) 0.30±0.10 0.70±0.07 0.73±0.04

𝐼𝑃𝑊𝑃 |1981−2010 (1) 0.77±0.10 0.96±0.07 0.86±0.05

𝐼𝑃𝑊𝑃 𝑓 |1981−2010 (1) 1.03 1.09 1.03

𝐼𝑃𝑊𝑃𝑢 |1981−2010 (1) 0.32±0.10 0.74±0.08 0.71±0.05

Table 1. Indices used to explain the time variation of low-cloud feedback (𝐶) in the three initial-condition

large ensemble simulations. 𝑟 is the ratio of the forced 𝑇𝑔 variance (Eq. 2.12). 𝐶𝑆𝑆𝑇 and 𝐶𝐸𝐼𝑆 indicate the

low-cloud feedback due to changes in SST patterns and EIS patterns, and the subscripts 𝑓 and 𝑢 denote the

forced and unforced components (Eqs. 3.1-3.4). The ”average” in rows 3-8 indicates the average of multiple

30-year sliding windows before the end year of 1980. Also, the Indo-Pacific Warm Pool warming ratio, noted

as 𝐼𝑃𝑊𝑃, is calculated as the regional average of 𝑑𝑆𝑆𝑇
𝑑𝑇𝑔

in the western Pacific convective regions (30◦S-30◦N,

50◦E-160◦W) over the tropical average of 𝑑𝑆𝑆𝑇
𝑑𝑇𝑔

(30◦S-30◦N). The pipe symbol (|) in this table is followed by the

30-year window that is used to calculate the targeted field. Note that the forced components are calculated based

on the ensemble-mean fields, thus no spread across ensemble members is shown. For the total and unforced

components, the ensemble-mean values and 1 STD across ensembles are shown.
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Fig. 1. Time evolution of forced (red) and unforced (blue)𝑇𝑔 in (a) CESM2-LE (b) MPI-GE, and (c) GISS-LE.

Here 𝑇𝑔 is the area-weighted average of surface temperature within 60◦S-60◦N over the ocean. (d-f) Time

evolution of the variance of 𝑇𝑔 (black), 𝑇𝑔, 𝑓 (red), and 𝑇𝑔,𝑢 (blue) in the three LEs. The variation is calculated

on a sliding 30-year window and the x-axis denotes the end year for each window. (g-i) The ratio of the 𝑇𝑔, 𝑓

variance (red; 𝑟 defined in Eq. 2.12) and the ratio of the 𝑇𝑔,𝑢 variance (blue; 1− 𝑟) in the three LEs. (j-l) Time

evolution of low-cloud feedback due to changes in full SST pattern (𝐶𝑆𝑆𝑇 ), forced SST pattern (𝐶𝑆𝑆𝑇, 𝑓 ; red),

and unforced SST pattern (𝐶𝑆𝑆𝑇,𝑢; blue) in the three LEs. Est. 𝐶𝑆𝑆𝑇 (dashed gray) is calculated as the ensemble

mean of 𝑟𝐶𝑆𝑆𝑇, 𝑓 + (1−𝑟)𝐶𝑆𝑆𝑇,𝑢, meaning that the difference between black and dashed gray line is the residual

term for ensemble mean. (m-o) Similar to (j-l), but for changes in full EIS pattern (𝐶𝐸𝐼𝑆; black), forced EIS

pattern (𝐶𝐸𝐼𝑆, 𝑓 ; red), and unforced EIS pattern (𝐶𝐸𝐼𝑆,𝑢; blue). Note that the range of y-axis in 𝐶𝐸𝐼𝑆 is three

times larger than in 𝐶𝑆𝑆𝑇 . For each figure, dark-colored lines indicate the ensemble mean and light-colored lines

show each ensemble member. The end year of 1980 and 2010 is marked in (d)-(o), which respectively shows the

results from 1951-1980 and 1981-2010 window that we focus on.
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3. Time-evolving low-cloud feedback237

a. Forced and unforced contributions to low-cloud feedback238

Previous research has suggested that the responses of marine low clouds are the primary source239

of inter-model spread in climate sensitivity estimates (e.g., Bony and Dufresne (2005)), and240

that the change in cloud radiative feedback is responsible for the time evolution of net radiative241

feedback (e.g. Zhou et al. (2016)). Therefore, here we focus on the time evolution of low-cloud242

radiative feedback by combining the changes in SST and estimated inversion strength (EIS; Wood243

and Bretherton (2006)) per unit warming with observation-based meteorological cloud radiative244

kernels (Scott et al. 2020; Myers et al. 2021), as illustrated below.245

𝐶𝑆𝑆𝑇 =
𝜕𝑅

𝜕𝑆𝑆𝑇

𝑑𝑆𝑆𝑇

𝑑𝑇𝑔
, (3.1)

𝐶𝐸𝐼𝑆 =
𝜕𝑅

𝜕𝐸𝐼𝑆

𝑑𝐸𝐼𝑆

𝑑𝑇𝑔
. (3.2)

𝐶𝑆𝑆𝑇 and 𝐶𝐸𝐼𝑆 indicate the low-cloud radiative feedback due to changes in SST and EIS pattern,246

respectively. 𝜕𝑅
𝜕𝑆𝑆𝑇

and 𝜕𝑅
𝜕𝐸𝐼𝑆

are the meteorological cloud radiative kernels that quantify low-cloud247

radiative responses to local SST and EIS perturbations, developed by Scott et al. (2020). Note that248

the meteorological cloud radiative kernels are evaluated separately in four different observational249

datasets, and we adopt the average of four kernels due to their similar patterns and overall mag-250

nitudes (Scott et al. 2020; Myers et al. 2021). More importantly, since the meteorological cloud251

radiative kernels are time-invariant and model-independent, any time dependence of the low-cloud252

radiative feedback (𝐶) analyzed here arises from the time evolution of SST or EIS patterns. The253

inter-model spread in 𝐶 can also be fully attributed to the spread in SST or EIS patterns.254

To evaluate the relative contributions from forced and unforced patterns of SST and EIS to the255

time-evolving 𝐶, we combine Equation 2.11 with Equations 3.1-3.2:256

𝐶𝑆𝑆𝑇 =
𝜕𝑅

𝜕𝑆𝑆𝑇
[
𝑑𝑆𝑆𝑇 𝑓

𝑑𝑇𝑔, 𝑓
𝑟 + 𝑑𝑆𝑆𝑇𝑢

𝑑𝑇𝑔,𝑢
(1− 𝑟) +𝜎] = 𝐶𝑆𝑆𝑇, 𝑓 𝑟 +𝐶𝑆𝑆𝑇,𝑢 (1− 𝑟) + 𝜖, (3.3)

𝐶𝐸𝐼𝑆 =
𝜕𝑅

𝜕𝐸𝐼𝑆
[
𝑑𝐸𝐼𝑆 𝑓

𝑑𝑇𝑔, 𝑓
𝑟 + 𝑑𝐸𝐼𝑆𝑢

𝑑𝑇𝑔,𝑢
(1− 𝑟) +𝜎] = 𝐶𝐸𝐼𝑆, 𝑓 𝑟 +𝐶𝐸𝐼𝑆,𝑢 (1− 𝑟) + 𝜖, (3.4)
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where 𝐶𝑆𝑆𝑇, 𝑓 is the forced component and 𝐶𝑆𝑆𝑇,𝑢 is the unforced component of the low-cloud257

feedback that arises from the local impact of the SST pattern. Similarly, 𝐶𝐸𝐼𝑆, 𝑓 and 𝐶𝐸𝐼𝑆,𝑢 indicate258

the forced and unforced component of the EIS-related low-cloud feedback, which can be mostly259

attributed to the remote impact of the SST patterns. 𝜖 represents the residual and is simply 𝜎 (Eq.260

2.11) multiplied by time-invariant meteorological cloud radiative kernels.261

The main advantage of our low-cloud feedback evaluation is to isolate the influences of SST262

and EIS patterns on low-cloud feedback from other factors, such as the inter-model spread of263

time-evolving radiative forcing (𝐹; Pincus et al. (2016)) and the uncertainty of low-cloud radiative264

responses to SST and EIS perturbations. Moreover, using meteorological cloud radiative kernels,265

we have constrained observationally the dependence of low-cloud radiative effects on meteorology.266

However, the caveat is that the low-cloud feedback evaluated here could be different from the low-267

cloud feedback estimated exclusively in the models (i.e., allowing for model-specific coefficients).268

b. Similarity and disparity among models269

Following Equations 3.3-3.4, here we review the time variation of low-cloud feedback from each270

AOGCM large ensembles and explain the shift in low-cloud feedback over the past few decades.271

First, most of the ensemble members in CESM2-LE suggest a trend toward more negative 𝐶𝑆𝑆𝑇272

and 𝐶𝐸𝐼𝑆 between the end year of 1960 and the end year of 2010, with EIS having a stronger273

trend (black lines in Figs. 1j, m). Despite this negative trend in both 𝐶𝑆𝑆𝑇 and 𝐶𝐸𝐼𝑆, we can274

barely see the corresponding change in either forced or unforced components. Instead, we find275

that the negative trend of 𝐶𝑆𝑆𝑇 and 𝐶𝐸𝐼𝑆 is driven by changes in the relative importance of forced276

and unforced components. Between the end year of 1960 and the end year of 2010, there is a277

transition from being dominated by unforced signals (small 𝑟) to being dominated by forced signals278

(large 𝑟; Fig. 1g). When unforced signals dominate, the overall 𝐶 is largely determined by its279

unforced component, thus the two have similar magnitudes (closer blue and black lines when 𝑟 is280

small). Similarly, when forced signals dominate, the overall 𝐶 is largely determined by the forced281

component (closer red and black lines when 𝑟 is large). For both𝐶𝑆𝑆𝑇 and𝐶𝐸𝐼𝑆, since the unforced282

component is generally more positive than the forced component, the decreasing importance of283

unforced feedback (i.e., the increasing importance of forced feedback) in recent decades gives rise284

to a more-negative (more-stabilizing) low-cloud feedback during this time.285
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Similar explanations can be applied to MPI-GE and GISS-LE. For example, if the unforced286

feedback component is more positive than the forced feedback component, such as𝐶𝐸𝐼𝑆 in CESM2-287

LE and MPI-GE and 𝐶𝑆𝑆𝑇 in CESM2-LE (Table 1), the increasing importance of forced signals288

implies a negative trend of the overall low-cloud feedback (Figs. 1j,m,n). If the forced feedback289

component is more positive than the unforced feedback component (e.g., 𝐶𝑆𝑆𝑇 in MPI-GE and290

GISS-LE; Table 1), the increasing importance of forced signals then implies a positive trend of the291

overall feedback (Figs. 1k,l). If, in the last case, the forced and unforced feedback have similar292

values (e.g., 𝐶𝐸𝐼𝑆 in GISS-LE; Table 1), the overall feedback would barely change while 𝑟 varies293

over time (Fig. 1o). For all three models, the ensemble-mean residual (𝜖) is negligible, shown294

as the difference between the gray dashed lines and the black lines in Figures. 1j-o. The result295

indicates small covariances of 𝑐𝑜𝑣(𝑇𝑔, 𝑓 ,𝑇𝑔,𝑢), 𝑐𝑜𝑣(𝑋 𝑓 ,𝑇𝑔,𝑢), and 𝑐𝑜𝑣(𝑋𝑢,𝑇𝑔, 𝑓 ) with 𝑋 as SST or296

EIS, and that the assumption made in Section 2c is generally valid.297

By comparing the forced and unforced feedback among the three large ensembles, we also find298

that the inter-model spread of the𝐶𝑆𝑆𝑇 and𝐶𝐸𝐼𝑆 arises mostly from the unforced component instead299

of the forced component. For SST contribution, 𝐶𝑆𝑆𝑇, 𝑓 is 0.49, 0.50, and 0.44 𝑊

𝑚2𝐾
in CESM2-LE,300

MPI-GE, and GISS-LE, respectively. However, 𝐶𝑆𝑆𝑇,𝑢 is 0.59±0.04, 0.31±0.05, and 0.14±0.04301

𝑊

𝑚2𝐾
at the same model order. As for the EIS contribution, the spread of unforced feedback is even302

larger to the extent that the sign is also uncertain. 𝐶𝐸𝐼𝑆,𝑢 is positive (0.14±0.10 𝑊

𝑚2𝐾
) in CESM2-LE,303

while it is negative in MPI-GE and GISS-LE (−0.39± 0.11 and −0.62± 0.08 𝑊

𝑚2𝐾
, respectively).304

At the same time, the forced components have the same negative sign and similar magnitudes305

(𝐶𝐸𝐼𝑆, 𝑓 = −0.62, −0.86, and −0.68 𝑊

𝑚2𝐾
in CESM2-LE, MPI-GE, and GISS-LE, respectively).306

c. Attribution of time-evolving low-cloud feedback307

As shown in Equations 3.3-3.4, the temporal evolution of low-cloud feedback (𝐶𝑆𝑆𝑇 and 𝐶𝐸𝐼𝑆)308

can be driven by three possible components: (1) changes in the forced low-cloud feedback (𝐶𝑆𝑆𝑇, 𝑓309

and 𝐶𝐸𝐼𝑆, 𝑓 ) (2) changes in the unforced low-cloud feedback (𝐶𝑆𝑆𝑇,𝑢 and 𝐶𝐸𝐼𝑆,𝑢), and (3) changes310

in the relative importance between the forced and unforced signals, expressed as the ratio 𝑟 (Eq.311

2.12). Since the derivation for 𝐶𝑆𝑆𝑇 and 𝐶𝐸𝐼𝑆 is identical, we will drop the subscripts and write312
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the general form for low-cloud feedback as:313

𝐶 (𝑡) = 𝐶 𝑓 (𝑡)𝑟 (𝑡) +𝐶𝑢 (𝑡) [1− 𝑟 (𝑡)] + 𝜖 (𝑡). (3.5)

Here 𝑡 indicates a given 30-year window used to calculate the feedback and the ratio. For the next314

30-year window, we can write the same form with 𝑡 = 𝑡 + 1. The change in 𝐶 between the two315

adjacent 30-year windows is then expressed as:316

𝛿𝐶 (𝑡) = 𝛿𝐶 𝑓 (𝑡)𝑟 (𝑡) + 𝛿𝐶𝑢 (𝑡) [1− 𝑟 (𝑡)] + 𝛿𝑟 (𝑡) [𝐶 𝑓 (𝑡) −𝐶𝑢 (𝑡)] + 𝛿𝜖 (𝑡), (3.6)

𝛿𝑋 (𝑡) = 𝑋 (𝑡 +1) − 𝑋 (𝑡), (3.7)

𝑋 (𝑡) = 𝑋 (𝑡 +1) + 𝑋 (𝑡)
2

. (3.8)

𝑋 can be 𝐶, 𝐶 𝑓 , 𝐶𝑢, or 𝑟. To attribute the 𝐶 difference between the two non-adjacent windows, for317

example, the 30-year windows 1951-1980 and 1981-2010, we can sum all the 𝛿𝐶 (𝑡) between the318

two:319

𝑡=1980−2009∑︁
𝑡=1951−1980

𝛿𝐶 (𝑡) =
𝑡=1980−2009∑︁
𝑡=1951−1980

{𝛿𝐶 𝑓 (𝑡)𝑟 (𝑡) + 𝛿𝐶𝑢 (𝑡) [1− 𝑟 (𝑡)] + 𝛿𝑟 (𝑡) [𝐶 𝑓 (𝑡) −𝐶𝑢 (𝑡)] + 𝛿𝜖 (𝑡)}.

(3.9)

For clarity, we omit the time index and re-write Equation 3.9 into a more general form:320

Δ𝐶 =
∑︁

𝛿𝐶 𝑓 𝑟 +
∑︁

𝛿𝐶𝑢 (1− 𝑟) +
∑︁

𝛿𝑟 (𝐶 𝑓 −𝐶𝑢) +Δ𝜖 . (3.10)

Δ denotes the 𝐶 difference given two windows and is simply the sum of all the differences from321

adjacent windows between the two. Using Equation 3.10, we attribute the change in low-cloud322

feedback between any two windows to the contribution of forced feedback changes (the first term323

on the RHS), followed by the contribution of unforced feedback changes and the contribution of the324

ratio changes (the second and the third term on the RHS). Δ𝜖 again indicates the residual, which325

is associated with the combined effects from the covariance between forced and unforced signals326

(see Section 2c for more details).327
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1) Historical period328

Figure 2 shows the Δ𝐶 decomposition between the 30-year window 1951-1980 and 1981-2010.329

In both CESM2-LE and MPI-GE, Δ𝐶𝐸𝐼𝑆 is stronger than Δ𝐶𝑆𝑆𝑇 and suggests a negative shift of330

low-cloud feedback during this period, consistent with Figure 1. The decomposition also reveals331

that the change in 𝑟 is the primary reason for the negative shift of 𝐶𝐸𝐼𝑆, shown as strong negative332

values of Δ3. In CESM2-LE, all ensemble members agree that the increasing importance of the333

forced signals (increasing 𝑟) leads to negative Δ𝐶𝐸𝐼𝑆 (Fig. 2d). More than 75% of the ensemble334

members in MPI-GE agree with the above result (Fig. 2e). Meanwhile, the change in the forced335

component gives rise to a small increase in low-cloud feedback (Δ1). The influence of the unforced336

feedback change varies among ensembles and has no robust contribution to Δ𝐶 in recent decades337

(Δ2). In GISS-LE, Δ3 contributes to the weak positive shift of 𝐶𝑆𝑆𝑇 (Fig. 2c). As for Δ𝐶𝐸𝐼𝑆, the338

strength of the forced and unforced components is similar, therefore the contribution of Δ𝑟 is weak339

and insignificant (Fig. 2f).340

By decomposing the low-cloud feedback change between 1951-1980 and 1981-2010, we sum-341

marize that the increasing importance of forced signals (increasing 𝑟) is the main cause for the shift342

in low-cloud feedback over the past few decades in CESM2-LE and MPI-GE.343

CESM2-LE MPI-GE GISS-LE

Fig. 2. Decomposition of Δ𝐶𝑆𝑆𝑇 between the 30-year window 1951-1980 and 1981-2010 in (a) CESM2-LE

(b) MPI-GE, and (c) GISS-LE. (d-f) Same as (a-c), but for Δ𝐶𝐸𝐼𝑆 . Δ1, Δ2, and Δ3 denote the first, the second,

and the third term RHS of Equation 3.10. In each box plot, the orange line indicates the median and the green

triangle indicates the ensemble mean.
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2) Future warming scenarios348

In addition to the shift in low-cloud feedback (𝐶) over the past few decades, we notice that 𝐶349

also evolves with time in future warming projections. In general, we find that 𝐶𝐸𝐼𝑆 becomes more350

positive (less stabilizing) throughout the century in the SSP370 simulations of CEMS2-LE and the351

RCP8.5 simulations of MPI-GE, while the change in 𝐶𝑆𝑆𝑇 is relatively weak (Fig. 1). The result is352

consistent with previous studies suggesting a less-stabilizing net radiative feedback over time due353

to EIS changes in CO2-increasing simulations (Rose and Rayborn 2016; Ceppi and Gregory 2017,354

2019; Dong et al. 2020; Lin et al. 2021).355

To quantify and attribute the change in 𝐶𝐸𝐼𝑆, we decompose Δ𝐶𝐸𝐼𝑆 between the current climate356

(i.e., 1981-2010) and the projected climate at the end of the century (i.e., 2071-2099; Fig. 3). More357

than 50% ensemble members in CESM2-LE and more than 75% ensemble members from MPI-GE358

show positive Δ𝐶𝐸𝐼𝑆 in response to future warming. More importantly, this long-term positive359

change in 𝐶𝐸𝐼𝑆 arises mainly from changes in the forced component, shown as strong positive360

values of Δ1 (Figs. 3c,d). Changes in either unforced component (Δ2) or the relative importance361

between forced and unforced signals (Δ3) instead lead to a more-negative 𝐶𝐸𝐼𝑆 for most of the362

ensemble members.363

CESM2-LE MPI-GE

Fig. 3. Decomposition of Δ𝐶𝑆𝑆𝑇 between the 30-year window 1981-2010 and 2070-2099 in (a) CESM2-LE

and (b) MPI-GE. (c-d) Same as (a-b), but for Δ𝐶𝐸𝐼𝑆 . Δ1, Δ2, and Δ3 denote the first, the second, and the third

term RHS of Equation 3.10. In each box plot, the orange line indicates the median and the green triangle indicates

the ensemble mean.
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4. The role of SST pattern effect368

a. Overview369

In this research, the time variation of low-cloud feedback (𝐶𝑆𝑆𝑇 and 𝐶𝐸𝐼𝑆) solely depends on370

changes in SST and EIS regressions, including their forced and unforced components. To build371

a physical understanding that connects the two, we compare the time-evolving SST and EIS372

regressions among the three large ensembles (Figs. 4-5) and highlight the role of SST pattern373

effect in setting the time-evolving 𝐶. The spatial patterns 𝑑𝑆𝑆𝑇
𝑑𝑇𝑔

and 𝑑𝐸𝐼𝑆
𝑑𝑇𝑔

are obtained by regressing374

local SST and EIS onto global-mean temperature change and separating into forced and unforced375

components following Equation 2.11.376

For all three large ensembles, the overall SST pattern ( 𝑑𝑆𝑆𝑇
𝑑𝑇𝑔

; first column of Fig. 4) is determined377

by both the forced ( 𝑑𝑆𝑆𝑇 𝑓

𝑑𝑇𝑔, 𝑓
; second column) and the unforced component ( 𝑑𝑆𝑆𝑇𝑢

𝑑𝑇𝑔,𝑢
; third column),378

depending on their relative importance indicated by 𝑟 (Fig. 1; Table 1). The residual (𝜎; fourth379

column of Fig. 4) remains small throughout different time periods, again indicating that the380

assumption made in Section 2c is valid. The forced SST pattern characterizes more uniform381

warming per unit increase in 𝑇𝑔, 𝑓 while the unforced SST pattern is more heterogeneous per unit382

change in 𝑇𝑔,𝑢. All three models commonly show this fundamental difference between the forced383

and unforced SST patterns from the preindustrial era to the end of the 21st century.384

b. Historical period385

Within the large ensembles, the unforced SST pattern is similar to the SST anomalies from the386

prevailing climate variability in interannual timescales - El Niño Southern Oscillation (ENSO),387

which we first illustrate for CESM2-LE. Per unit increase in 𝑇𝑔, there is an enhanced surface388

warming in the EP and surface cooling in the WP (Fig. 4, first row, third column). Due to the389

small 𝑟 in the 30-year window of 1951-1980 (𝑟 = 0.24±0.07), the overall SST pattern ( 𝑑𝑆𝑆𝑇
𝑑𝑇𝑔

) also390

holds the ENSO-like SST features (Fig. 4, first row, first column). The surface cooling in the391

WP convective regions leads to an overall cooling in the free troposphere in the tropics, which392

destabilizes the low-level troposphere. The destabilization is particularly strong in the EP because393

of the substantial contrast between the free-tropospheric cooling and the surface enhanced warming394

(Fig. 5, first row, first and third column). Also, the low-level destabilization acts to decrease the395
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marine stratocumulus cloud over the EP (Wood and Bretherton 2006), accounting for more-positive396

low-cloud feedback during this time.397

In the 30-year window of 1981-2010, on the other hand, the overall SST pattern is largely affected398

by the forced signals (𝑟 = 0.72± 0.06). Compared to the unforced SST pattern, the forced SST399

pattern is more spatially uniform, with slightly enhanced warming in the Northern Hemisphere400

(NH) and reduced warming in the Southern Hemisphere (SH). The surface warming in the WP401

convective regions is also stronger than that in the EP stratocumulus cloud regions (Fig. 4,402

second row, second column). As a result, the overall SST pattern in 1981-2010 is less ENSO-like403

compared to that in 1951-1980 (Fig. 4, second row, first column), corresponding to a more-stable404

low-level troposphere in the EP (Fig. 5, second row, first column). The 1981-2010 meteorology405

condition favors low-cloud formation and more-stabilizing low-cloud feedback in comparison to406

that in 1951-1980.407

The above-mentioned mechanism applies to all three LEs, highlighting the distinct forced and408

unforced SST patterns that jointly shape the overall SST pattern with time-dependent weighting (𝑟)409

for each component. We particularly focus on the warming contrast between the WP and EP, which410

explains the time variation of low-cloud feedback through modifying low-level stability (𝐶𝐸𝐼𝑆),411

while 𝐶𝑆𝑆𝑇 that quantifies local SST impacts plays a minor role in adjusting the 𝐶 variations in412

recent decades. To further quantify this radiatively essential SST pattern, we define the Indo-Pacific413

Warm Pool warming ratio (𝐼𝑃𝑊𝑃) as the regional average of 𝑑𝑆𝑆𝑇
𝑑𝑇𝑔

in the western Pacific convective414

regions (30◦S-30◦N, 50◦E-160◦W) over the tropical average of 𝑑𝑆𝑆𝑇
𝑑𝑇𝑔

(30◦S-30◦N), consistent with415

the quantification proposed in Dong et al. (2019) and Wills et al. (2022).416

In CESM2-LE, the 𝐼𝑃𝑊𝑃 index becomes larger from 0.44±0.11 in 1951-1980 to= 0.77±0.10 in417

1981-2010 (Table 1), associated with more-stabilizing low-cloud feedback. The increased 𝐼𝑃𝑊𝑃418

index can be explained by the increase in 𝑟, along with small unforced 𝐼𝑃𝑊𝑃 indices and large419

forced 𝐼𝑃𝑊𝑃 indices. In MPI-GE and GISS-LE, we also observe an increase in the 𝐼𝑃𝑊𝑃 index420

but both with weaker magnitudes (Table 1). Given the similar time evolution of 𝑟 among models421

and the large inter-model spread of unforced𝐶𝐸𝐼𝑆, we propose that the inter-model spread of 𝐼𝑃𝑊𝑃422

time evolution arises mostly from the unforced 𝐼𝑃𝑊𝑃 index.423

Indeed, all three models produce similar forced 𝐼𝑃𝑊𝑃 index, ranging from 0.97 to 1.09 in424

1951-1980 and 1.03 to 1.09 in 1981-2010. The close-to-unity values in both time periods indicate425
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that the WP warming is similar to the overall warming in the tropics (i.e., spatially uniform forced426

SST responses). However, the unforced 𝐼𝑃𝑊𝑃 index varies widely among models. In 1951-1980,427

𝐼𝑃𝑊𝑃𝑢 is 0.30± 0.10 in CESM2-LE, associated with the ENSO-like unforced SST pattern in428

which surface cooling occurs in the WP convective regions (Fig. 4, first row, third column).429

Meanwhile, this WP cooling is much more limited and weaker in MPI-GE despite the model still430

projecting an ENSO-like unforced SST pattern (Fig. 4, fourth row, third column). In GISS-LE,431

there is barely any cooling in the WP convective regions. Surface warming is strong in both the432

tropical WP and EP regions (Fig. 4, seventh row, third column). This weak-to-no cooling in the433

WP region would correspond to a higher 𝐼𝑃𝑊𝑃 index in both models (0.70±0.07 in MPI-GE and434

0.73± 0.04 in GISS-LE) in 1951-1980, limiting the 𝐼𝑃𝑊𝑃 increase in 1981-2010 when forced435

signals has become more dominated. In summary, the large inter-model spread of unforced WP436

relative warming (𝐼𝑃𝑊𝑃𝑢) echoes the large spread of unforced𝐶𝐸𝐼𝑆,𝑢 (Fig. 1), which is responsible437

not only for the inter-model spread of 𝐶𝐸𝐼𝑆, but also the diverse time evolution of 𝐶𝐸𝐼𝑆 among438

models.439

c. Future warming scenarios440

The relative importance of the forced response (𝑟) outweighs the unforced variability for the441

30-year window ending around the 2010s and has become increasingly dominant over time since442

then. At the end of the 21st century, 𝑟 reaches 0.85-0.95, depending on the models and warming443

scenarios (Fig. 1). Comparing the SST patterns between the window 1981-2010 and 2071-2099,444

we find that the changes in the overall SST pattern arise mostly from the changes in the forced445

component, except that some of the tropical regions are still influenced by unforced variability446

in the earlier period. The result is expected since 𝑟 has been large, indicating a weak influence447

from the unforced variability. The change in forced SST pattern features delayed warming in the448

southeastern Pacific and the Southern Ocean (Fig. 4), corresponding to a less-positive EIS in the449

two regions (Fig. 5) and a less-stabilizing 𝐶𝐸𝐼𝑆. The time-evolving SST and EIS patterns explain450

the forced contribution to the positive Δ𝐶𝐸𝐼𝑆 shown in Figure 3, highlighting the role of the pattern451

effect.452
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Fig. 4. (from left to right) Overall SST pattern ( 𝑑𝑇
𝑑𝑇𝑔

), the forced component ( 𝑑𝑇𝑓

𝑑𝑇𝑔, 𝑓
), the unforced component

( 𝑑𝑇𝑢
𝑑𝑇𝑔,𝑢

), and the residual term (𝜎) calculated from different 30-year windows in the three AOGCM large ensembles.

For each panel, the 30-year window and the large ensembles used are labeled on the left. In the overall and

unforced SST patterns, contours indicate the ensemble mean and stippling indicates the regions where the 1 STD

calculated across ensembles is larger than the ensemble-mean values. For the forced SST pattern, no stippling is

shown since it is calculated based on the ensemble-mean fields before applying the OLS regression.
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EIS pattern Forced component Unforced component Residual
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Fig. 5. Same as Figure 4, but for overall EIS pattern ( 𝑑𝐸𝐼𝑆
𝑑𝑇𝑔

), the forced component ( 𝑑𝐸𝐼𝑆 𝑓

𝑑𝑇𝑔, 𝑓
), the unforced

component ( 𝑑𝐸𝐼𝑆𝑢
𝑑𝑇𝑔,𝑢

), and the residual term (𝜎) calculated from each 30-year window in each AOGCM large

ensembles.
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461

5. Signal partition based on linear trends462

a. Overview463

In previous sections, we separate forced and unforced signals through initial-condition large464

ensembles. However, the real world has only one realization with mixed forced and unforced signals.465

Also, not all the models conduct initial-condition large ensembles. Therefore, we developed a466

method to approximately discriminate the contributions from forced and unforced signals that can467

be applied to both observations and models (when using only one ensemble member). In particular,468
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we can write:469

𝑋 = 𝑋𝑡𝑟 + 𝑋𝑑𝑒, (5.1)

where 𝑋𝑡𝑟 indicates the linear-trend part of the responses calculated in a given 30-year window470

and 𝑋𝑑𝑒 represents the linearly detrended part. The trend component captures relatively long-471

term responses and is more likely to be driven by accumulative forcings, such as greenhouse gas472

emissions. However, 𝑋𝑡𝑟 does not equal forced responses (𝑋 𝑓 ≠ 𝑋𝑡𝑟). For example, linear trends473

hardly capture the responses to volcanic eruptions, which have short-term yet strong impacts on474

both temperature and radiation. Other natural or anthropogenic forcings might have nonlinear475

influences as well, which won’t be fully represented by linear trends. At the same time, while476

𝑋𝑑𝑒 might be able to capture interannual-to-decadal unforced variations (e.g., ENSO), it does not477

capture multi-decadal variability that fluctuates on a timescale longer than 30 years since the data are478

detrended on sliding 30-year windows. In other words, multi-decadal variability will be included479

as part of the trend component, so 𝑋𝑑𝑒 does not equal unforced responses as well (𝑋𝑢 ≠ 𝑋𝑑𝑒).480

The separation of forced and unforced signals in the observation or in a single model realization481

has remained a difficult issue in multiple research fields. While trend and detrend components482

can not be directly approximated to forced and unforced components as in large ensembles, they483

might serve as proxies of forced and unforced components as they still show the basic differences484

between the two. Similar to the equation derived in Section 2c, the impacts of trend and detrend485

components on OLS regressions can be evaluated as follows.486

𝑑𝑋

𝑑𝑇𝑔
=
𝑑𝑋𝑡𝑟

𝑑𝑇𝑔,𝑡𝑟
𝑟𝑡𝑟 +

𝑑𝑋𝑑𝑒

𝑑𝑇𝑔,𝑑𝑒
(1− 𝑟𝑡𝑟) +𝜎, (5.2)

𝑟𝑡𝑟 =
𝑣𝑎𝑟 (𝑇𝑔,𝑡𝑟)

𝑣𝑎𝑟 (𝑇𝑔,𝑡𝑟) + 𝑣𝑎𝑟 (𝑇𝑔,𝑑𝑒)
. (5.3)

The above equations are the same as Equations 2.11-2.12, with 𝑋 𝑓 replaced by 𝑋𝑡𝑟 and 𝑋𝑢 replaced487

by 𝑋𝑑𝑒. The residual (𝜎) here accounts for the combined effect of 𝑐𝑜𝑣(𝑇𝑔,𝑡𝑟 ,𝑇𝑔,𝑑𝑒), 𝑐𝑜𝑣(𝑋𝑡𝑟 ,𝑇𝑔,𝑑𝑒),488

and 𝑐𝑜𝑣(𝑋𝑑𝑒,𝑇𝑔,𝑡𝑟). To distinguish 𝑟 from the two different approaches, we express the relative489

importance of the trend component as 𝑟𝑡𝑟 , as opposed to 𝑟 which indicates the relative importance490

of the forced component.491
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One way to validate the trend/detrend components as proxies of forced/unforced responses is to492

compare these two approaches of signal partition in the same large ensembles. Figure 6 shows493

𝐶𝑆𝑆𝑇 and 𝐶𝐸𝐼𝑆 in the three large ensembles with their trend/detrend components and the relative494

importance of each component. We find that the trend and detrend components can reproduce a495

number of key features of the forced and unforced components, respectively. For example, both496

𝑟 and 𝑟𝑡𝑟 have increased rapidly over the past few decades, and the two indices remain similar497

throughout the century (compare Figs. 6d-f with Figs. 1g-i). The consistency between the two498

approaches underscores the recent intensification of forced responses, which will dominate the499

sliding linear trends.500

The major difference between 𝑟 and 𝑟𝑡𝑟 occurs for the 30-year windows ending prior to the 1990s.501

𝑟𝑡𝑟 is generally weaker than 𝑟. Here we attribute the difference between 𝑟 and 𝑟𝑡𝑟 mainly to volcanic502

forcings based on the following reasons. First, the climate impacts of volcanic eruptions are strong503

yet relatively short-term. The temperature variation within a short time period is hardly captured by504

30-year sliding linear trends, leading to a weaker 𝑟𝑡𝑟 . Also, the 𝑟𝑡𝑟 time variation does not include505

characteristics related to volcanic eruptions as in 𝑟 (Section 2d), namely, 𝑟𝑡𝑟 does not strengthen506

with more-frequent eruptions and supposedly larger temperature variations, and does not weaken507

with less-frequent eruptions as well (e.g., 1940-1960). As a result, we explore accounting for508

volcanic eruptions in the trend and detrend components (method described in Text S1). We find509

that 𝑟𝑡𝑟 becomes larger and contains time-varying features related to eruptions, as in 𝑟 . However,510

because our main focus is on recent decades when the increasing importance of forced responses511

is already well represented by the trend component without accounting for volcanic eruptions, the512

conclusion of this study is unchanged with and without accounting for volcanic eruptions. For513

simplicity, here we only show the results based on sliding linear trends (trend component) and514

the anomalies (detrend component) without accounting for volcanic forcings, and leave the results515

with volcanic forcings accounted in the Supplemental Material (Figs. S1-S4; Tables S2-S3).516
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end-year of 30yr moving window

Fig. 6. Same as Figs. 1d-o, but for the overall (black), trend component (red), and detrend component (blue)

of each field in three large ensemble simulations.

517

518

b. Relative importance of trend and detrend components519

Having validated the application of trend and detrend components, we proceed to examine 23520

atmosphere-ocean coupled models participating in Coupled Model Intercomparison Project phase521

6 (CMIP6; Eyring et al. (2016)), along with three observational datasets. For each CMIP6 model,522

only one ensemble member is used for the historical and SSP370 simulations. In observations, we523

analyze time-varying SST patterns from version 1.1 of the Met Office Hadley Centre sea ice and sea524

surface temperature data set (HadISST1.1; Rayner et al. (2003)), NOAA Extended Reconstruction525

SSTs Version 5 (ERSSTv5; Huang et al. (2017)), and NOAA-CIRES-DOE Twentieth Century526

Reanalysis version 3 (20CRv3). Time-varying patterns of EIS can also be calculated from NOAA-527

CIRES-DOE 20CRv3.528

The relative importance of the trend component (𝑟𝑡𝑟) remains small for the 30-year windows529

ending prior to the 1980s, and has increased rapidly over the past few decades in CMIP6 models530
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and observations (Figs. 7c-d). The result is consistent with both 𝑟 and 𝑟𝑡𝑟 in large ensembles,531

highlighting the agreement between models and observations on the robust strengthening of forced532

and linear responses over the past few decades. Still, we note that the 𝑟𝑡𝑟 values are slightly weaker533

than 𝑟 in NOAA-CIRES-DOE and ERSSTv5, and are even weaker in the CMIP6 models and534

HadISST, partly due to the lack of volcanic eruptions in the trend component (compare Table 2535

with Table 1).536

end-year of 30yr moving window

CMIP6 NOAA-CIRES-DOE

Fig. 7. Time variation of the variance of 𝑇𝑔 (black), 𝑇𝑔,𝑡𝑟 (red), and 𝑇𝑔,𝑑𝑒 (blue) in (a) CMIP6 models and (b)

NOAA-CIRES-DOE 20CRv3. Variance is calculated on a sliding 30-year window. (c-d) Similar to (a-b), but

for the ratio of the 𝑇𝑔 variance (defined in Eq. 5.3). (e-f) Time variation of low-cloud feedback due to changes

in the overall SST pattern (𝐶𝑆𝑆𝑇 ) along with its trend (red) and detrend (blue) components in (e) CMIP6 models

and (f) NOAA-CIRES-DOE 20CRv3. Est. 𝐶𝑆𝑆𝑇 (dashed gray) is calculated as 𝑟𝑡𝑟𝐶𝑆𝑆𝑇,𝑡𝑟 + (1− 𝑟𝑡𝑟 )𝐶𝑆𝑆𝑇,𝑑𝑒,

meaning that the difference between black and dashed gray line is the residual term. (g-h) Same as (e-f), but for

the low-cloud feedback due to changes in EIS patterns (𝐶𝐸𝐼𝑆). Dark-colored lines indicate the ensemble mean

and light-colored lines show each ensemble member.

537

538

539

540

541

542

543

544

27



CMIP6 NOAA-
CIRES-DOE

ERSSTv5 HadISST

𝑟𝑡𝑟 |1951−1980 (1) 0.10±0.12 0.27 0.22 0.03

𝑟𝑡𝑟 |1981−2010 (1) 0.62±0.15 0.59 0.61 0.56

Table 2. The relative importance of the trend component (𝑟𝑡𝑟 ; Eq. 5.3) in CMIP6 models and three different

observational SST datasets. The pipe symbol (|) is followed by the 30-year window that is used to calculate 𝑟𝑡𝑟 .

For CMIP6 models, the multimodel-mean values and 1 STD across models are shown.

545

546

547

c. Time-evolving low-cloud feedback in historical period548

Most of the CMIP6 models and the observation suggest a more-stabilizing 𝐶𝐸𝐼𝑆 in the recent549

30-50 years while the change in 𝐶𝑆𝑆𝑇 stays weaker (Figs. 7e-h; Fig. 8), consistent with the550

results obtained from large ensemble simulations (CESM2-LE and MPI-GE, less consistent with551

GISS-LE). Regarding the cause of the 𝐶𝐸𝐼𝑆 change between 1951-1980 and 1981-2010, most552

CMIP6 models agree that the increasing importance of trend component is the main contributor553

(strong negative Δ3 in Fig. 8c), with the other two terms also slightly contributing to the negative554

shift of 𝐶𝐸𝐼𝑆. The result is aligned with the three large ensembles (Fig. 2). However, the NOAA-555

CIRES-DOE reanalysis (NOAA-CIRES-DOE 20CRv3) reveals that the change in trend component556

is the dominant contributor to the overall negative shift of 𝐶𝐸𝐼𝑆 (strong negative Δ1 in Fig. 8d),557

inconsistent with the Δ𝐶𝐸𝐼𝑆 decomposition from the CMIP6 models and the large ensembles.558

Similar LEs-observations differences can be found in the corresponding SST patterns. In 1951-559

1980, all three observations analyzed here show an enhanced warming in the Southern Hemisphere560

(SH) and a reduced warming in the Northern Hemisphere (NH) for the trend component (Fig. 9,561

second column), while the large ensembles show a more uniform warming with slight enhancement562

in the NH extratropics and the WP region for the forced component (Fig. 4, second column). Since563

both 𝑟 and 𝑟𝑡𝑟 are small during this time, the overall SST/EIS patterns are less affected by the forced564

or trend component. In 1981-2010 when 𝑟 and 𝑟𝑡𝑟 are large, the difference between the models565

(forced component) and the observations (trend component) is essential in interpreting the models-566

observations differences. The major difference between the two is the large-scale, triangle-shaped567

Eastern Pacific cooling in the observation (trend component; Fig. 9) that is not reproduced in the568

forced responses of AOGCM’s large ensemble simulations (Fig. 4). The ultimate reason for the569

contrasting SST patterns between the models and observations is not well understood at this point,570

but below we provide two plausible explanations.571
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First, the difference between models and observations might come from the fact that the572

trend/detrend components do not fully represent the forced/unforced responses. Despite the mod-573

ification based on major eruptions that has been made, other issues such as nonlinear forced574

responses (included in detrend component) or multi-decadal natural variability (included in trend575

component) would also affect the partition between the trend and detrend components. Pacific576

Decadal Oscillation (PDO), for example, is expected to affect the global SST pattern. During the577

1980s to the 2010s, the PDO index shows a negative trend, which is aligned with the large-scale578

Eastern Pacific cooling in the trend component of the three observations.579

Second, it is possible that the models fail to project the correct forced responses as in the580

observation, leading to biased SST patterns and weak negative to near-zero trends of low-cloud581

feedback over the past few decades, consistent with previous research pointing out the systematic582

model biases on recent surface warming patterns (Dong et al. 2021; Wills et al. 2022).583

CMIP6 NOAA-CIRES-DOE

Fig. 8. Attribution of the change in𝐶𝑆𝑆𝑇 between the 30-year window 1951-1980 and 1981-2010 in (a) CMIP6

models and (b) NOAA-CIRES-DOE 20CRv3. (c-d) Same as (a-c), but for the change in 𝐶𝐸𝐼𝑆 . In CMIP6, the

orange line indicates the median and the green triangle indicates the multimodel mean.
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Fig. 9. (from left to right) Overall SST pattern ( 𝑑𝑇
𝑑𝑇𝑔

), the trend component ( 𝑑𝑇𝑡𝑟
𝑑𝑇𝑔,𝑡𝑟

), the detrend component

( 𝑑𝑇𝑑𝑒
𝑑𝑇𝑔,𝑑𝑒

), and the residual term (𝜎) calculated from different 30-year windows in the three observations. For each

panel, the 30-year window and the observation used are labeled on the left.
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6. Summary and discussion590

This research examines the role of the SST pattern effect in driving the time-varying low-591

cloud feedback (𝐶), with a particular focus on the relative importance between forced responses592

and unforced variability. We provide evidence that the time variation of 𝐶 estimated via OLS593

regressions can be attributed to three main contributors: changes in its forced component, changes594

in its unforced component, and changes in the relative importance between the forced and unforced595

components (see Sections 2c and 3c for more details).596

Using initial-condition large ensembles, we find that the unforced signals outweigh the forced597

signals for 30-year windows ending prior to the 1980s (Figs. 1d-f), thus the overall SST and EIS598

patterns are strongly influenced by the unforced components, characterizing ENSO-like surface599

conditions (Figs. 4-5). For 30-year windows ending after the 1980s, the forced signals have600

strengthened, surpassing unforced signals around the 2010s (Figs. 1d-f), in parallel with the rapid601

increase of external forcings. Since the forced SST patterns are relatively uniform (the second602

column of Fig. 4), the overall SST patterns after the 1980s have become less heterogeneous (the603

first column of Fig. 4). The time-evolving SST pattern gives rise to changes in low-cloud feedback604

directly (𝐶𝑆𝑆𝑇 ) and through modifying low-level stability (𝐶𝐸𝐼𝑆). 𝐶𝑆𝑆𝑇 and 𝐶𝐸𝐼𝑆 are the low-cloud605

radiative feedbacks due to changes in SST and EIS, respectively. Most of the ensemble members606

in CESM2-LE and MPI-GE agree on the stabilizing shift of 𝐶𝐸𝐼𝑆 in the recent 30-50 years, with a607

magnitude larger than the change in𝐶𝑆𝑆𝑇 . More importantly, we find that the increasing importance608

of forced signals is the dominant contributor to the negative shift of 𝐶𝐸𝐼𝑆 over the past few decades609

(Fig. 2).610

These results highlight the crucial role of strengthening forced responses relative to unforced611

variations in modifying 𝐶, especially within recent decades when the overall radiative feedback612

shifts from being dominated by unforced signals to being dominated by forced signals. This613

shift can lead to large apparent time variations in feedbacks that are distinct from the type of614

pattern-effect mechanisms related to ocean heat uptake that are invoked to explain time-varying615

feedbacks in CO2 doubling or quadrupling simulations. Rather, the time-evolving pattern described616

here arises from the fact that OLS estimates have a time-varying mix of forced and unforced SST617

patterns and feedbacks. Thus, a “pattern-effect” may arise even if both forced and unforced patterns618

are themselves time-invariant. This influence has not been clearly quantified or demonstrated to619
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our knowledge. Therefore, we suggest the forced and unforced component of radiative feedbacks620

should be evaluated separately. When available, large ensembels should be used. When large621

ensembles are not available, computing the ratio of trends in radiation and temperature rather than622

regressing radiation against temperature can help filter out unforced high-frequency variability, as623

well as volcanic events.624

To conduct a coherent analysis on multiple CMIP6 models and observations for which large625

ensembles are not available, we develop a method based on linear trends, aiming to approximately626

isolate forced responses from unforced variations (which roughly correspond to trend and detrend627

components). Consistent with the large ensembles, the detrend component dominates the trend628

component for 30-year windows ending prior to the 1980s. The trend component has strengthened629

since then, taking over the detrend component recently in most CMIP6 models and the observations630

(Figs. 7c-d). Despite the similar time evolution of the relative importance of forced/unforced and631

trend/detrend components, we find a much stronger stabilizing shift of 𝐶𝐸𝐼𝑆 in the observation632

that lies outside the model ensembles over the past few decades (Fig. 8). The change in the trend633

component is the main factor causing a strong and negative shift of 𝐶𝐸𝐼𝑆 in the observation, which634

is inconsistent with the large ensembles that highlight the increasing importance of the forced635

component in driving the negative change of 𝐶𝐸𝐼𝑆 (compare Fig. 8 with Fig. 2). The discrepancy636

between the observation and large ensembles arises from the observed SST trends in the recent637

decades that are not included in the model ensembles (compare Fig. 9 with Fig. 4).638
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S1. Modification based on volcanic eruptions14

Large volcanic eruptions can influence global climate and can be considered as external forcings.15

However, since their impacts are strong but relatively short-term (compared with other forcing16

agents), they are barely captured by 30-year linear trends. Here, by estimating the impacts of major17

volcanic eruptions and redistributing them into the trend components, we are able to improve18

consistency between 𝑟 and 𝑟𝑡𝑟 .19

The procedures to modify the trend/detrend components are described as follows. First, we20

identify six major volcanic eruptions and assume their impacts on global temperature will last21

for around five years (Impact Period in Table S1). For the 30-year windows that include these22

impact periods, we compute the linear-trend part of the target field 𝑋 without these impact periods23

(𝑋𝑡𝑟,𝑛𝑜𝑉𝐸 (𝑡)), thus those linear components outside the impact periods are less affected by major24

volcanic eruptions.25

Modified 𝑋𝑡𝑟 (𝑡) =


𝑋𝑡𝑟,𝑛𝑜𝑉𝐸 (𝑡) if 𝑡 ∉ impact period,

𝑋𝑡𝑟,𝑛𝑜𝑉𝐸 (𝑡) + 𝜅 [𝑋 (𝑡) − 𝑋𝑡𝑟,𝑛𝑜𝑉𝐸 (𝑡)] if 𝑡 ∈ impact period.
(S1)

Second, within the impact periods, we calculate the differences between full responses and linear26

responses of 𝑋 (i.e., 𝑋 (𝑡) − 𝑋𝑡𝑟,𝑛𝑜𝑉𝐸 (𝑡)) and suggest that the differences, to a varying extent, are27

related to major volcanic eruptions and thus should be included in our modified trend components28

to better represent the forced responses. Third, we multiplied these nonlinear anomalies with an29

eruption-dependent, time-invariant 𝜅 that indicates the relative importance of volcanic eruptions30

among all other nonlinear factors, such as internal variability, responses to aerosol forcing, etc.31

Here we design the values of 𝜅 based on the strength of ENSO as it is the dominant interannual32

climate variability and has global climate impacts. 𝜅 is weaker when the major volcanic eruption33

coincides with strong ENSO events. Fourth and the last step, we compute modified 𝑋𝑑𝑒 (𝑡) by34

subtracting modified 𝑋𝑡𝑟 (𝑡) from 𝑋 (𝑡). The modified 𝑋𝑡𝑟 (𝑡) and 𝑋𝑑𝑒 (𝑡) can then be used to35

calculate modified 𝑟𝑡𝑟 , SST/EIS patterns, and low-cloud feedback in sliding windows as usual.36

Table S2 shows the skill improvement of the modified trend/detrend components as proxies of37

forced/unforced components. For example, in CESM2-LE, modified 𝑟𝑡𝑟 = 0.25±0.14 in 1951-198038

(𝑟 = 0.24±0.07) and 𝑟𝑡𝑟 = 0.67±0.11 in 1981-2010 (𝑟 = 0.72±0.06). The improvement of 𝑟𝑡𝑟 also39
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helps to reduce the number of extreme feedback values (compare Fig. 6 with Fig. S1), thus the40

trend/detrend components of low-cloud feedback become more comparable to the forced/unforced41

components.42

Despite the improvement of using trend/detrend components as proxies of forced/unforced com-43

ponents, the outcome remains consistent whether major volcanic eruptions are considered or not.44

To maintain simplicity, we present the results excluding major volcanic eruptions in the main paper45

and reserve the corresponding discussion here.46

Major Eruptions Impact Period 𝜅 Strong/super ENSO

Krakatau 1883-1887 0.7 NA

Santa Maria 1902-1906 0.5 1902-03 (MEI> 2)

Novarupta/Katmai 1912-1916 0.5 1916-17 (MEI< −2)

Agung 1963-1967 0.7 NA

El Chichón 1982-1986 0.3 1982-83 (MEI> 3)

Pinatubo 1991-1995 0.5 1991-92 (MEI> 2)

Table S1. Six historical major volcanic eruptions considered in the modification of trend/detrend components.

Impact period is approximated to five years (starting at the eruption year). For each impact period, the relative

importance of the major volcanic eruption to other nonlinear responses (e.g., natural variability) is parameterized

to 𝜅. Here 𝜅 is set based on the strength of ENSO. We use Multivariate ENSO Index Version 2 (MEI.v2) and

define strong ENSO as MEI > 2 (< −2) and super ENSO as MEI > 3 (< −3). When there is no strong ENSO

(−2 <MEI< 2), 𝜅 is set to 0.7. When there is one or more strong (super) ENSO, 𝜅 is set to 0.5 (0.3).
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CESM2-LE MPI-GE GISS-LE

𝑟𝑡𝑟 |1951−1980 (1) 0.08±0.11 0.14±0.12 0.03±0.04

𝑟𝑡𝑟 |1981−2010 (1) 0.67±0.11 0.61±0.13 0.49±0.13

mod 𝑟𝑡𝑟 |1951−1980 (1) 0.25±0.14 0.32±0.13 0.20±0.08

mod 𝑟𝑡𝑟 |1981−2010 (1) 0.73±0.09 0.67±0.13 0.54±0.14

Table S2. The relative importance of the trend component before modification (𝑟𝑡𝑟 ) and after modification

(mod 𝑟𝑡𝑟 ). The modification is made by accounting for the influences of the historical major volcanic eruptions.

Both are calculated in the windows 1951-1980 and 1981-2010 in the three large ensembles, with the ensemble-

mean value and 1 standard deviation across ensembles are shown.
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CMIP6 NOAA-CIRES-
DOE

ERSSTv5 HadISST

mod 𝑟𝑡𝑟 |1951−1980 (1) 0.28±0.13 0.34 0.29 0.10

mod 𝑟𝑡𝑟 |1981−2010 (1) 0.70±0.15 0.66 0.60 0.51

Table S3. The relative importance of the modified trend component (mod 𝑟𝑡𝑟 ) in CMIP6 models and three

different observational SST datasets. The pipe symbol (|) is followed by the 30-year window that is used to

calculate modified 𝑟𝑡𝑟 . For CMIP6 models, the multimodel-mean value and 1 standard deviation across models

are shown.
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end-year of 30yr moving window

Fig. S1. Same as Figure 6, but with modification made by accounting for the influences of the historical major

volcanic eruptions.

61

62

4



end-year of 30yr moving window

CMIP6 NOAA-CIRES-DOE

Fig. S2. Same as Figure 7, but with modification made by accounting for the influences of the historical major

volcanic eruptions.
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CMIP6 NOAA-CIRES-DOE

Fig. S3. Same as Figure 8, but with modification made by accounting for the influences of the historical major

volcanic eruptions.
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Fig. S4. Same as Figure 9, but with modification made by accounting for the influences of the historical major

volcanic eruptions.
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