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Abstract

Global temperature responses from different abrupt CO2 change experiments participating in Coupled Model Intercomparison

Project Phase 6 (CMIP6) and LongRunMIP are systematically compared in order to study the linearity of the responses. For

CMIP6 models, abrupt-4xCO2 experiments warm on average 2.2 times more than abrupt-2xCO2 experiments. A factor of

about 2 can be attributed to the differences in forcing, and the rest is likely due to nonlinear responses. Abrupt-0p5xCO2

responses are weaker than abrupt-2xCO2, mostly because of weaker forcing. CMIP6 abrupt CO2 change experiments respond

linearly enough to well reconstruct responses to other experiments, such as 1pctCO2, but uncertainties in the forcing can give

uncertain responses. We derive also a generalised energy balance box model that includes the possibility of having oscillations

in the global temperature responses. Oscillations are found in some models, and are connected to changes in ocean circulation

and sea ice. Oscillating components connected to a cooling in the North Atlantic can counteract the long-term warming for

decades or centuries and cause pauses in global temperature increase.
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Key Points:7

• We systematically compare different abrupt CO2 change experiments from the Cou-8

pled Model Intercomparison Project 6 and LongRunMIP archives9

• Linear response is overall a good assumption, but there is some uncertainty in how10

forcing varies with CO211

• We derive a linear response model that can reproduce oscillations found in some12

models, linked to ocean circulation and sea ice changes13
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Abstract14

Global temperature responses from different abrupt CO2 change experiments participat-15

ing in Coupled Model Intercomparison Project Phase 6 (CMIP6) and LongRunMIP are16

systematically compared in order to study the linearity of the responses. For CMIP6 mod-17

els, abrupt-4xCO2 experiments warm on average 2.2 times more than abrupt-2xCO2 ex-18

periments. A factor of about 2 can be attributed to the differences in forcing, and the19

rest is likely due to nonlinear responses. Abrupt-0p5xCO2 responses are weaker than abrupt-20

2xCO2, mostly because of weaker forcing. CMIP6 abrupt CO2 change experiments re-21

spond linearly enough to well reconstruct responses to other experiments, such as 1pctCO2,22

but uncertainties in the forcing can give uncertain responses. We derive also a generalised23

energy balance box model that includes the possibility of having oscillations in the global24

temperature responses. Oscillations are found in some models, and are connected to changes25

in ocean circulation and sea ice. Oscillating components connected to a cooling in the26

North Atlantic can counteract the long-term warming for decades or centuries and cause27

pauses in global temperature increase.28

Plain Language Summary29

We compare the global surface temperature responses in climate model experiments where30

the CO2 concentration is abruptly changed from preindustrial levels and thereafter held31

constant. A quadrupling of CO2 is expected to result in approximately twice the response32

to a doubling of CO2. The ratio varies with time, but is on average 2.2 over the first 15033

years. A factor 2 can be attributed to the radiative forcing, that is, how much the en-34

ergy budget changes due to the change in CO2. The remaining increase is likely due to35

stronger feedbacks. Experiments with half the CO2 level are expected to have approx-36

imately the opposite response of a doubling, but we find their responses to be weaker.37

The reason appears to be a weaker radiative forcing. The evolution of the global tem-38

perature with time is also affected by changes in ocean heat uptake, ocean circulation,39

sea ice, cloud changes, etc., and these effects may be different with a stronger warming.40

Changes in the ocean circulation can also lead to oscillations appearing in addition to41

the warming. In some models, this effect may be strong enough to pause the long-term42

warming for decades or centuries, before it catches up again.43

1 Introduction44

Linear response is assumed for global surface temperature in many papers, resulting from45

e.g. box models (Geoffroy, Saint-Martin, Olivié, et al., 2013; Fredriksen & Rypdal, 2017;46

Caldeira & Myhrvold, 2013), and used in emulators like FaIR (Millar et al., 2017; Smith47

et al., 2018; Leach et al., 2021). It is based on the assumption that the global temper-48

ature response is independent of the climate state, and we can think of it as a power-49

ful first-order approximation of the temperature response to a perturbation of the top-50

of-atmosphere (TOA) energy budget. For strong enough responses, state-dependent mech-51

anisms like the albedo feedback will become important, so the question is: In what range52

of climate states can a linear response be considered a good assumption?53

With a linear/impulse response model we can emulate the response to any known forc-54

ing within a few seconds, given knowledge about how the global temperature responds55

to an impulse. Alternatively, we can also gain this knowledge from step responses, since56

these are the integral of the impulse responses. The step-responses from experiments with57

abrupt quadrupling of the CO2 concentration are typically used. This experiment is one58

of the DECK experiments required to participate in the Coupled Model Intercompar-59

ison Project (CMIP), and is therefore widely available.60

Until recently, step-experiments with other CO2 levels have only been available for a few61

models. Following the requests of nonlinMIP (Good et al., 2016), several CMIP6 mod-62

els now make abrupt-2xCO2 and abrupt-0p5xCO2 experiments available. In addition,63
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various abrupt CO2 experiments are published through LongRunMIP (Rugenstein et al.,64

2019). The main motivation of this paper is to investigate the linearity of the temper-65

ature response by systematically comparing these different step experiments. That is,66

we want to test if the impulse response function derived from abrupt doubling of CO267

experiments is equal (within expected uncertainties) to that derived from e.g. quadru-68

pling of CO2. This has implications for the concept of climate sensitivity – will the re-69

sponse to another doubling of CO2 be similar to the first doubling?70

In addition, we will discuss commonly used linear response models, derive the solution71

to a generalised box model, and study how well we can reconstruct the results of exper-72

iments that gradually increase the CO2 concentration. With the generalised box model73

we demonstrate also how oscillations can appear in linear response models. The nega-74

tive phase of oscillatory solutions may counteract the long-term warming for several decades,75

and these solutions can therefore be useful tools in understanding how plateaus or os-76

cillations can appear in the global temperature responses to a step forcing, and how it77

is linked to changes in the ocean circulation and sea ice.78

The generalised box model is described in Section 2. In Section 3 we discuss separation79

of forcing and response, and the linearity of global surface temperature response in the80

context of modifying the forcing-feedback framework to account for the non-constancy81

(or implicit time-dependence (Rohrschneider et al., 2019)) of global feedbacks. A non-82

constant feedback parameter just due to the pattern effect (a modulation of the global83

feedback from different paces of warming in different regions (Armour et al., 2013; Stevens84

et al., 2016; Andrews et al., 2015)) can be consistent with a linear response model, while85

state-dependent feedbacks imply a nonlinear response model. Section 4 describes the data86

included in this study and Section 5 describes estimation methods. Results are presented87

in sections 6 and 7, followed by a discussion in Section 8 and conclusions in Section 9.88

2 Different linear response models, and their physical motivation89

Generally, a linear response model for a climate state variable Φ(t) responding to a forc-
ing F (t) takes the form

Φ(t) = G(t) ∗ F (t) =

∫ t

0

G(t− s)F (s)ds, (1)

assuming F (t) = 0 for t ≤ 0 (Hasselmann et al., 1993). G(t) is the Green’s function,90

and ∗ denotes a convolution.91

For global surface temperature, this integral can be interpreted as a part of the solution
of a multibox energy balance model (see Fredriksen et al. (2021) and Appendix A),

C
dT(t)

dt
= KT(t) + F(t) (2)

where C is a diagonal matrix of heat capacities of different components of the climate
system, K is a matrix of heat exchange coefficients, T is a vector of temperature responses,
and F is a forcing vector. The two-box model (e.g. Geoffroy, Saint-Martin, Olivié, et al.,
2013; Geoffroy, Saint-Martin, Bellon, et al., 2013; Held et al., 2010) is a widely used ex-
ample. In appendix A we derive a general solution that can be applied to any linear K-
box model, and find that in the case of only negative eigenvalues γn in the matrix C−1K,

G(t) =

K∑
n=1

kne
γnt. (3)

Hasselmann et al. (1993) notes that eigenvalues can also appear in complex pairs, where92

kn and γn from one term of the pair are complex conjugates of the other term. To our93

knowledge, complex eigenvalues have never been used for estimating response functions94

in this field before. If pairs of complex eigenvalues are present, pairs from the sum above95
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can be replaced by damped oscillatory responses on the form k1e
pt cos qt+k2e

pt sin qt96

(see Appendix A). For these solutions to be stable, the real part of the eigenvalues (p)97

should be negative.98

The step-forcing responses for negative eigenvalue solutions take the form:

T (t) =

K∑
n=1

Sn(1− eγnt) (4)

and for complex eigenvalues, pairs from this sum are replaced by pairs on the form:

Sosc1

[
1− ept

(
cos qt− q

p
sin qt

)]
+ Sosc2

[
1− ept

(
cos qt+

p

q
sin qt

)]
(5)

In these terms, the exponentially relaxing responses are modulated by sines and cosines.99

So why do we want to expand the method to allow oscillatory responses for some mod-100

els? It is not given that all eigenvalues of the linear model have to be negative if we al-101

low the matrix K to have asymmetric terms. Asymmetric terms could for instance ex-102

plain anomalies in energy fluxes following the ocean circulation, going only in one direc-103

tion between two boxes. So if for instance the Atlantic Meridional Overturning Circu-104

lation (AMOC) has a strong response, this might require complex eigenvalues in a lin-105

ear model for the surface temperature. And as we show in this paper, there are indeed106

models showing oscillations that can be described with such an oscillatory response func-107

tion.108

Since there could be many configurations of the box model (with different physical in-109

terpretations) leading to the same solution, from now on we will just work with the pa-110

rameters in Eqs. (3, 4, 5) and not convert these to the parameters in the original box111

model in Eq. (2). When doing this we only have to specify the number of boxes used,112

and not worry about what is the best configuration of the boxes.113

3 Distinguishing between forcing and response114

The temperature response T (t) = G(t) ∗ F (t) cannot alone tell us how to distinguish
between what is forcing and what is response to the forcing, since we can just move a
factor between G and F without changing T . This separation is often done using the lin-
ear forcing - feedback framework, expressing the global top-of-the-atmosphere radiation
imbalance (N) as

N = F + λT (6)

where λ < 0 is the feedback parameter, T is the global temperature response and F115

is the radiative forcing. This tells us how we can use the additional knowledge about the116

time series N to distinguish between F and T . However, it is now well known that the117

feedback parameter is not well approximated by a constant, so several modifications to118

this framework have been proposed to account for this. Note that how N relates to T119

does not impact the mathematical structure of the temperature response (as long as it120

is a linear relation), only how the forcing and feedbacks should be defined.121

We can distinguish between three main classes of modifications:122

(1) Assuming that N is a nonlinear function of T , e.g:

N = F + c1T + c2T
2 (7)

This describes how λ could change with state (temperature) (Bloch-Johnson et al., 2015,123

2021). Some examples of feedbacks that are well known to depend on temperature are124

the ice-albedo feedback and the water vapour feedback.125
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(2) Decomposing the surface temperature as

T =

K∑
n=1

Tn (8)

and associate a feedback parameter λn with each component Tn, such that:

N = F +

K∑
n=1

λnTn. (9)

This can describe the pattern effect, if assuming different regions have different feedbacks126

and different amplitudes of the temperature response, which modulates the global value127

of λ with time (Armour et al., 2013). Proistosescu and Huybers (2017); Fredriksen et128

al. (2021, 2023) use such a decomposition of the temperature into linear responses with129

different time-scales.130

Extending the decomposition of N in Eq. (9) to include oscillatory components may not131

be straight-forward if oscillations are in fact connected to the North Atlantic temper-132

atures and changes in AMOC. The troposphere is very stable in this region and surface133

temperature changes are therefore confined in the lower troposphere, and not necessar-134

ily causing much change in the TOA radiation (Eiselt & Graversen, 2023; Jiang et al.,135

2023). Increasing surface temperatures in such stable regions lead to increased estimates136

of the climate sensitivity, interpreted as a positive lapse rate feedback (Lin et al., 2019).137

In the framework of Eq. (9) a possibility is to ignore or put less weight on the North At-138

lantic temperature component, due to the weaker connection between T and N here, but139

this needs to be further investigated in a future paper. Related effects can also play a140

role, for instance can AMOC changes lead to TOA radiation changes in surrounding ar-141

eas, such as through low cloud changes in the tropics (Jiang et al., 2023). Such effects142

are likely model dependent.143

(3) Descriptions using a heat-uptake efficacy factor ε, that describe how N depends on144

the heat uptake in the deeper ocean exist as well. This is mathematically equivalent to145

the second class for global quantities (Rohrschneider et al., 2019). In this description,146

the sum T =
∑K

n=1 Tn is not necessarily considered a decomposition of the surface tem-147

perature, but includes also components describing temperature anomalies in the deeper148

ocean. If these temperatures are part of a linear model, typically a two- or three- box149

model, N can still be expressed as in Eq. (9). As these temperature components are just150

linear combinations of the components in Fredriksen et al. (2021); Proistosescu and Huy-151

bers (2017), it is only a matter of choice if expressing N using the temperatures in each152

box, or using the components of the diagonalized system, associated with different time153

scales of the system.154

Descriptions with heat-uptake efficacy take slightly different forms in different papers.155

Winton et al. (2010) describes efficacy without specifying a model for the ocean heat up-156

take, while Held et al. (2010); Geoffroy, Saint-Martin, Bellon, et al. (2013) include it in157

the two-box model:158

cF
dT

dt
= −βT − εH + F (10)

cD
dTD

dt
= H (11)

where T and TD are the temperature anomalies of the surface and deep ocean boxes, re-
spectively, and H = γ(T − TD) is the heat uptake of the deep ocean. The sum of the
heat uptake in both layers equals N , leading to:

N = F − βT − (ε− 1)γ(T − TD) (12)
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The concept of efficacy can be considered a way of retaining a ”pattern effect” in box159

models with only one box connected to the surface, by relating the evolving spatial pat-160

tern of surface temperature change to the oceanic heat uptake (Held et al., 2010; Ge-161

offroy & Saint-Martin, 2020). Similarly, efficacy of forcing (Hansen et al., 2005) has also162

been shown to be related to a ”pattern effect” (Zhou et al., 2023), since forcing in dif-163

ferent regions can trigger different atmospheric feedbacks.164

Cummins et al. (2020); Leach et al. (2021) have modified this description to use it with
a 3-box model, and use the heat uptake from the middle box to the deep ocean box to
modify the radiative response

N(t) = F (t)− λT1(t) + (1− ε)κ3[T2(t)− T3(t)] (13)

If writing this equation in the form of Eq. (9), we find that the feedback parameters as-165

sociated with T2(t) and T3(t) have equal magnitudes and opposite signs. This could put166

unfortunate constraints on parameters in this system, like net positive regional feedbacks,167

if interpreted as a pattern effect. We suggest avoiding this indirect description of the pat-168

tern effect with an efficacy parameter when using more than two boxes, and instead use169

a more direct interpretation of the parameters as describing a spatial pattern, such as170

Eq. (9).171

3.1 Forcing defined using fixed-SST experiments172

An alternative, that is not based on assumptions about the evolution of the feedbacks,173

is to run additional model experiments where sea-surface temperatures are kept fixed174

(Hansen et al., 2005; Pincus et al., 2016). These experiments aim to simulate close to175

0 surface temperature change, such that N ≈ F . Forcing estimated from these exper-176

iments have less uncertainty than regression methods based on the above-mentioned re-177

lationships between N , T and F (P. M. Forster et al., 2016), but are contaminated by178

land temperature responses. A forcing definition that includes all adjustements in N due179

to the forcing, but no adjustments due to surface temperature responses is the effective180

radiative forcing (ERF). This is considered the best predictor of surface temperatures,181

since it has forcing efficacy factors closest to 1 (Richardson et al., 2019). Ideally ERF182

should be estimated in models by fixing all surface temperatures, but this is technically183

challenging (Andrews et al., 2021). Instead, it is more common to correct the fixed-SST184

estimates for the land response (Richardson et al., 2019; Tang et al., 2019; Smith et al.,185

2020). We have not used these estimates in this paper, since they are not available for186

many models.187

4 Choice of data188

We compare abrupt-4xCO2 global temperature responses to all other abrupt CO2 ex-189

periments we can find. In the CMIP6 archive we have 12 models with abrupt-2xCO2 and190

9 models with abrupt-0p5xCO2. In LongRunMIP we find 6 models with at least two dif-191

ferent abrupt CO2 experiments, and we use the notation abruptNx to describe these, where192

N could be 2, 4, 6, 8 or 16. The advantage of models in LongRunMIP is that we can study193

responses also on millennial time scales, while for CMIP6 models the experiments are194

typically 150 years long.195

There exist also similar comparisons of abrupt CO2 experiments for a few other mod-196

els outside of these larger data archives (e.g., Mitevski et al., 2021, 2022; Meraner et al.,197

2013; Rohrschneider et al., 2019). These data are not analysed in this study, but will be198

included in our discussion.199

CMIP6 abrupt CO2 experiments are used to reconstruct 1pctCO2 experiments, and the200

reconstructions are compared to the coupled model output of CMIP6 models. The rea-201

son for choosing this experiment is that the forcing is relatively well known. If assum-202

ing the forcing scales like the superlogarithimic formula of Etminan et al. (2016), it should203

increase slightly more than linearly until CO2 is quadrupled, and end up at the same forc-204
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ing level as the abrupt-4xCO2 experiments. The Etminan et al. (2016) forcing includes205

stratospheric adjustments, but not tropospheric and cloud adjustments like the ERF.206

However, we don’t use the absolute values of this forcing, only the forcing ratios. We may207

also take these ratios as approximate ERF ratios if assuming the Etminan et al. (2016)208

forcing can be converted to ERF with a constant factor.209

For other experiments, the uncertainty in forcing estimates is an even more important210

contribution to uncertainties in the responses. Jackson et al. (2022) test emulator responses211

to the Radiative Forcing Model Intercomparison Project (RFMIP) forcing for 8 mod-212

els, and find large model differences in emulator performance. Using a different forcing213

estimation method (Fredriksen et al., 2021) for the CMIP6 models, Fredriksen et al. (2023)214

find a generally good emulator performance for historical and SSP experiments. An im-215

portant difference between the forcing estimates is that the RFMIP forcing used by Jackson216

et al. (2022) is not corrected for land temperature responses, while the regression-based217

forcing in Fredriksen et al. (2023) is defined for no surface temperature response. The218

method described in Fredriksen et al. (2021, 2023) is actually designed to make forcing219

estimates compatible with a linear temperature response, and we therefore refer to these220

results for performance of linear response models for historical and future scenario forc-221

ing. However, if the linear response assumption is poor for the temperatures, this influ-222

ences performance of the forcing estimation method as well. For this reason it is impor-223

tant to test the linear response hypothesis with idealized experiments, which is the fo-224

cus of this paper.225

4.1 AMOC and sea ice226

In our discussion of oscillatory responses and plataeus in global temperature, we con-227

sider also AMOC and sea ice changes in the models. The AMOC index is calculated as228

the maximum of the meridional overturning stream function (mstfmz or mstfyz in CMIP6229

and moc in LongRunMIP) north of 30°N in the Atlantic basin below 500 m depth.230

The sea-ice area is calculated by multiplying the sea-ice concentration (siconc or siconca231

in CMIP6 and sic in LongRunMIP) with the cell area (areacello or areacella) and then232

summing separately over the northern and southern hemispheres.233

5 Estimation234

5.1 Forcing ratios for step experiments235

A linear temperature response assumption predicts the response in any abrupt CO2 ex-236

periment to be a scaled version of that of the abrupt-2xCO2 experiment, since only the237

forcing is different in these experiments. So when comparing abrupt CO2 experiments,238

they are all scaled to correspond to the abrupt-2xCO2 experiment. However, choosing239

the best scaling factor is challenging, since the forcing is uncertain, and it is not easy to240

distinguish between differences due to forcing and possible nonlinear temperature responses.241

Therefore, we have used three different types of scaling factors in our analysis:242

1) Use the same scaling factor for all models, and assume a forcing scaling like the243

superlogarithmic radiative forcing (RF) formula in Etminan et al. (2016) in the244

CO2 range where this formula is valid, and logarithmic forcing outside this range245

(just to have something in lack of a valid non-logarithmic description). The fac-246

tors used are 0.478 for abrupt-4xCO2 and 0.363 for abrupt-6xCO2. A logarith-247

mic dependence on the CO2 concentrations results in the factors -1, 1/4 and 1/8248

for the abrupt- 0p5xCO2, 8xCO2 and 16xCO2 experiments.249

2) Estimate ratios by performing Gregory regressions (Gregory et al., 2004) of the250

first 5, 10, 20 and 30 years of the experiments.251

3) Use the mean temperature ratio to the abrupt-2xCO2 experiment over the first252

150 years as the scaling factor. This is not meant to be an unbiased estimate of253

the forcing ratio, but investigates the forcing ratios in the hypothetical case of per-254
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fectly linear responses. However, some degree of nonlinear response is expected255

e.g. from differences in feedbacks (Bloch-Johnson et al., 2021). After scaling tem-256

perature responses with this factor, it is easier to visualise how nonlinear responses257

affect different time scales of the response.258

5.2 Reconstructing 1pctCO2 experiments259

Performing an integration by parts of Eq. (1) leads to

T (t) =

∫ t

0

dF

ds
R(t− s)ds, (14)

where R(t) =
∫ t

0
G(t−s)ds is the response to a unit-step forcing. Discretising this equa-

tion leads to the expression used to compute impulse responses in Good et al. (2011, 2013,
2016); Larson and Portmann (2016):

Ti =

i∑
j=0

∆FjRi−j

∆Fs
(15)

where ∆Fj are annual forcing increments, and the discretised step response Ri−j is a re-260

sponse to a general step forcing ∆Fs, and must therefore be normalised with this forc-261

ing. Further details of the derivation are provided in Fredriksen et al. (2021) Supplemen-262

tary Text S2.263

With Eq. (15) we can use datapoints from abrupt CO2 experiments and knowledge of264

forcing to directly compute the responses to other experiments. Then we can avoid the265

additional uncertainty related to what model to fit and its parameter uncertainties. Fit-266

ting a box model first would smooth out internal variability from the step response func-267

tion, which could be an advantage when studying responses to experiments with more268

variable forcing. Another advantage of box models is that the response function can be269

extrapolated into the future, while with Eq. (15) the length of the reconstruction is re-270

stricted by the length of the step experiment. Here we will use 140 years of data for the271

reconstruction of 1pctCO2 experiments, and as we will see, the reconstructed responses272

to 1pctCO2 experiments are already very smooth, so smoothing the response function273

with exponential responses should not change the results significantly, as long as the smoothed274

model provides a good fit to the datapoints.275

To test this reconstruction, we will use CMIP6 annual anomalies from the experiments276

abrupt-4xCO2, abrupt-2xCO2 and abrupt-0p5xCO2. The input forcing ratio starts at277

0, and increases either linearly, consistent with a logarithmic dependence on CO2 con-278

centration, or as a ratio scaling like the superlogarithmic formula (Etminan et al., 2016).279

For abrupt-4xCO2, we assume the ratio becomes 1 in year 140, the time of quadrupling,280

and for abrupt-2xCO2, we assume the ratio is 1 in year 70, the time of doubling. The281

positive 1pctCO2 forcing does not equal the negative abrupt-0p5xCO2 forcing at any282

time point, so we just assume the abrupt-0p5xCO2 forcing to be the negative of the abrupt-283

2xCO2 forcing.284

5.3 Fitting response functions285

We will compare estimated response models from a two-box model, three-box model, and286

a four-box model with one pair of complex eigenvalues. These response models consist287

of two or three exponential responses, or two exponential plus two damped oscillatory288

responses. Decomposing the response using box models may also help us gain insight into289

the physical reasons why a linear response model works or not.290

We apply the python package lmfit to estimate the parameters of the response models.291

It takes in an initial parameter guess, and then searches for a solution that minimizes292

the least-squared errors. The final parameter estimates can be sensitive to the initial guesses,293
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Figure 1. Comparing abrupt CO2 experiments for CMIP6 models, where the abrupt-4xCO2

and abrupt-0p5xCO2 experiments are scaled in three different ways to correspond to the abrupt-

2xCO2 experiment. Models are sorted by their abrupt-2xCO2 response in year 150. The black

curves are abrupt-2xCO2 experiments, the red are scaled abrupt-4xCO2 and the blue are scaled

abrupt-0p5xCO2 experiments. Solid curves use the same scaling factor for all models: 0.478 for

abrupt-4xCO2 and -1 for abrupt-0p5xCO2. Thin dotted curves use the mean temperature ratio

as the scaling factor (shown in legends and supplementary figure S1), and shading shows the

range of the ratios of the Gregory regressions given in Supporting Tables S1 and S2.

since the optimization algorithm may just have found a local minimum. The more pa-294

rameters we have in the model, the less we can trust the estimates. We see this in par-295

ticular when including oscillatory responses; then we need to estimate 8 parameters, and296

are at risk of overfitting for the typical 150 year long experiments. As we will see, there297

could be different solutions containing oscillations that all provide good fits to the data.298

Longer time series (or some physical reasoning) would be needed in order to select the299

optimal fit for these records. For longer time series such as those from LongRunMIP we300

obtain more useful estimates.301

6 Linear response results302

6.1 Comparing abrupt CO2 experiments303

The curves in Figures 1 and 2 are all scaled to correspond to the abrupt-2xCO2 exper-304

iment, where the different scaling factors used illustrate the problem with the forcing un-305

certainty. The thick solid curves use the same scaling factor for all models (method 1),306

while the factors from the second and third method are model specific. The shading shows307

the range using the four different forcing ratios computed with Gregory regressions (method308
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2), that is, the minimum and maximum values from Tables S1 - S3. The thin dashed curves309

use the mean temperature ratios (method 3). These values are given in the subfigure leg-310

ends, and shown in supporting figures S1 - S2. By definition, the black curves and the311

dotted red and blue curves all have the same time mean. Model specific factors can be312

explained by their different fast adjustments to the instantaneous radiative forcing. In313

addition, models can have different instantaneous forcing values, as this is shown to de-314

pend on the climatological base state (He et al., 2023). From the mean temperature ra-315

tios of the first 150 years of CMIP6 we find also that abrupt-4xCO2 warms on average316

2.2 times more than abrupt-2xCO2, and abrupt-0p5xCO2 cools on average 9 % less than317

abrupt-2xCO2 warms (see Table S4). For LongRunMIP, abrupt4x warms 2.13 times abrupt2x318

when averaging all available years, or 2.18 times if averaging just the first 150 years (see319

Table S5, and both estimates exclude FAMOUS).320

Significant differences between the curves in Figures 1 and 2 that cannot be explained321

by their different forcing must be explained by a nonlinear/state-dependent response.322

A first order assumption could be that models that warm more should tend to be more323

nonlinear. To investigate this we have ordered the models by their abrupt-2xCO2 response324

in year 150 in Figure 1 and year 500 for the longer experiments in Figure 2. We find that325

there are some clear differences for the warmest CMIP6 models, but also for the cold-326

est (MRI-ESM2-0). The four different GISS models appear to be very linear.327

For the two LongRunMIP models with the strongest 2xCO2 warming (CNRM-CM6-1328

and FAMOUS) there are some clear differences between the curves (see Figure 2). The329

initial warming for CNRM-CM6-1 is halted in the 2xCO2 compared to the 4xCO2 ex-330

periment. For FAMOUS the scaling factor is particularly uncertain, and after a few cen-331

turies the pace of warming is slower in the scaled abrupt-4xCO2 experiment than in the332

abrupt-2xCO2 experiment. We observe only minor differences for MPI-ESM1-2, HadCM3L333

and CCSM3 when scaling with the mean temperature ratios. For CESM104 we observe334

that the abrupt2x experiment has some oscillations that are not seen in the other ex-335

periments, in addition to an abrupt change in the abrupt8x experiment.336

If more warming increases the likelihood of finding nonlinear responses, we should also337

expect nonlinear responses to become more apparent towards the end of the simulations.338

We can then hypothesize that differences in forcing should explain initial differences (maybe339

up to a decade), and nonlinear responses explain differences at later stages. Following340

this, we should put more trust in the forcing scaling factors that make the initial tem-341

perature increase most similar to the abrupt-2xCO2 experiment. Which factor this is342

differs between models. In general, method 2 should put more emphasis on describing343

the first years correctly, while method 3 emphasises a good fit on all scales.344

Although the individual forcing estimates are uncertain, it is a noteworthy result that345

the abrupt-2xCO2 regression forcing (method 2) is on average half of the abrupt-4xCO2346

forcing (see Tables S1 and S3). The uncertainty of this mean is however too large to rule347

out that the forcing for a second CO2 doubling is in fact larger than the first doubling,348

according to the findings of Etminan et al. (2016); He et al. (2023). And consistent with349

these expectations, for CMIP6 abrupt-0p5xCO2 we find a weaker negative forcing than350

logarithmic (Table S2). Our forcing ratios based on the LongRunMIP simulations for351

abrupt 6x, 8x and 16x CO2 indicate that the forcing is weaker than logarithmic for higher352

CO2 concentrations. Although based on very few simulations, this result is the oppo-353

site of the expectation that each CO2 doubling produces stronger forcing (He et al., 2023).354

An average forcing factor of 2 means the forcing alone is unlikely to explain the 2.2 fac-355

tor difference in warming between CMIP6 abrupt-2xCO2 and abrupt-4xCO2. This con-356

clusion is also supported by the differences in the pace of warming between abrupt-2xCO2357

and abrupt-4xCO2 for several models (best visualised with the dotted curves from method358

3 in Figure 1). The abrupt-4xCO2 temperatures scaled using method 2 in Figure 1 are359
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Figure 2. Comparing abrupt CO2 experiments for LongRunMIP models. The scaling factors

for the thick curves are 0.478 for 4x, 0.363 for 6x, 1/4 for 8x, 1/8 for 16x. For the thin dashed

curves, the factors are computed from the mean T ratios to the first 150 years of abrupt2x,

shown in Supporting figure S2, and shown in the legends here. The models are sorted by their

abrupt2x temperature response in year 500. Note their different lengths and temperature scales.

on average 10 % stronger than the abrupt-2xCO2 experiments (computed from the ra-360

tio 2.2/2). The scaled abrupt-0p5xCO2 temperatures are on average 2 % stronger than361

the abrupt-2xCO2 temperatures (see Table S4), suggesting that the weak forcing can ex-362

plain much of the weak response for abrupt-0p5xCO2. For LongRunMIP models, the av-363

erage forcing ratio between 2x and 4x CO2 reduces to 0.46 when excluding FAMOUS,364

making differences in the scaled temperatures over the first 150 years vanish (computed365

with method 2, see Table S5). For some models (CESM104 and CCSM3) the scaled tem-366

peratures deviate more from abrupt2x on millennial time scales.367

Bloch-Johnson et al. (2021) suggests that feedback temperature dependence is the main368

reason why abrupt-4xCO2 warms more than twice the abrupt-2xCO2. This is consis-369

tent with the nonlinear responses we observe for several models. If the mean tempera-370

ture ratio was a valid estimate of the forcing ratio, then in a linear framework, the same371

factors we found for the temperature ratios should be able to explain the ratios in top-372

of-atmosphere radiative imbalance. For some models this is not a good approximation373

(see supporting figures S1 and S2), consistent with the findings of Bloch-Johnson et al.374

(2021). FAMOUS has a particularly large difference in T and N ratios. Its abrupt4x warm-375

ing is also so extreme that the quadratic model in Bloch-Johnson et al. (2021) suggests376

a runaway greenhouse effect.377
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6.2 Reconstructing 1pctCO2 experiments378

In general, we find that both abrupt-4xCO2 experiments (see Figure 3) and abrupt-2xCO2379

experiments (see Figure 4) can reconstruct the 1pctCO2 experiment very well. The largest380

deviation we find for the model KIOST-ESM, but we suspect the 1pctCO2 experiment381

from this model may have errors in the branch time information or the model setup. For382

many models the abrupt-0p5xCO2 experiment can also be used to make a good recon-383

struction, but not all (see Figure 4). For several models where abrupt-0p5xCO2 makes384

a poor reconstruction (TaiESM1, CNRM-CM6-1, CESM2, MIROC6), our assumptions385

about the forcing seems to be the limiting factor. If upscaling the negative of the abrupt-386

0p5xCO2 response for these models with a different factor than −1 to correspond bet-387

ter with the abrupt-2xCO2 experiment, we would have obtained a better reconstruction388

of 1pctCO2.389

For many models we find that reconstructions with abrupt-4xCO2 slightly overestimates390

the 1pctCO2 response in the middle parts of the experiment, similar to earlier findings391

by Good et al. (2013); Gregory et al. (2015). In Figure 3 we compare reconstructions with392

a linear forcing (from logarithmic dependence on CO2) and a forcing scaling like the su-393

perlogarithimic formula (Etminan et al., 2016). We find that reconstructions using the394

superlogarithmic forcing (shown in brown) explains the middle part of the 1pctCO2 ex-395

periment a little better than the logarithmic forcing (shown in red), since this forcing396

is slightly weaker in the middle. Even with the superlogarithmic forcing ratio, the model397

average reconstruction with abrupt-4xCO2 is a little overestimated in the middle part398

of the experiment (Figure 5). The average reconstruction with abrupt-2xCO2 explains399

the middle part of the experiment well, but slightly underestimates the latter part.400

Which of abrupt-2xCO2 or abrupt-4xCO2 make the best reconstruction is model depen-401

dent. The 1pctCO2 experiment goes gradually to 4xCO2, and if there is a state-dependence402

involved in the response, we might expect something in between abrupt-2xCO2 and abrupt-403

4xCO2 responses to make the best prediction. MRI-ESM2-0 is a good example where404

this might be the case. For this model we observe a small underestimation with abrupt-405

2xCO2 and a small overestimation with abrupt-4xCO2. The reconstruction is very good406

with abrupt-0p5xCO2, which has an absolute response looking like an average of abrupt-407

2xCO2 and abrupt-4xCO2 (see Figure 1). CESM2 is also a good example where state-408

dependent effects are visible, since the abrupt-2xCO2 underestimates and abrupt-4xCO2409

overestimates the response in the latest decades of the 1pctCO2 experiment.410

For TaiESM1 and CNRM-CM6-1 the paces of warming differ a little for abrupt-2xCO2411

and abrupt-4xCO2 during the middle/late stages of the experiments. Although the dif-412

ferences are not very significant, this is an indication of a nonlinear response. For some413

models (CanESM5, CNRM-CM6-1, HadGEM3-GC31-LL, IPSL-CM6A-LR, MIROC6)414

it is unclear if the small errors in the reconstructions are due to incorrect scaling of the415

forcing or nonlinear responses. The four GISS models are the most linear models, where416

we make good and very similar reconstructions with both abrupt-4xCO2 and abrupt-417

2xCO2. We observe just a small underestimation in the end of the experiment for GISS-418

E2-2-G abrupt-4xCO2.419
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Figure 3. Red/brown dashed curves show reconstructions of the 1pctCO2 experiment (gray)

using the data from the abrupt-4xCO2 experiment (red). The dashed red curve is a reconstruc-

tion based on a linearly increasing forcing, and the dashed brown curve is a reconstruction based

on a forcing scaling like the superlogarithmic (Etminan et al., 2016) formula. For the experiments

where several members exist, we have plotted the ensemble mean.
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Figure 4. The dashed curves are reconstructions of the 1pctCO2 experiment (gray) using

data from the abrupt-4xCO2 (red), abrupt-2xCO2 (black) and abrupt-0p5xCO2 (blue) exper-

iments (solid curves). The forcing is assumed to scale like the superlogarithmic forcing in the

reconstruction. The sign is flipped when plotting data from the abrupt-0p5xCO2 experiment. For

the experiments where several members exist, we have plotted the ensemble mean.
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Figure 6. a) Result of fitting a two-exp and a pair of oscillatory responses to CESM104

abrupt2x. The dark green curves are the total responses to either an abrupt doubling of CO2

(left) or a forcing increasing linearly to doubling of CO2 in year 140, and is thereafter kept con-

stant (right). The light green curves are components of the total response: Two exponential

responses with time scales of approximately 7 and 639 years, and one oscillatory response with a

period of approximately 410 years and damping time scale of 619 years.

6.3 Comparing different response functions420

We fit two-exp, three-exp and two-exp + oscillatory response for all CMIP6 models. The421

resulting root mean squared error (RMSE) of these fits are summarised in Tables S6 and422

S7 for abrupt-4xCO2, Table S8 for abrupt-2xCO2 and Table S9 for abrupt-0p5xCO2.423

The results for LongRunMIP experiments are listed in Table S10. As expected, RMSE424

is always smaller or unchanged for the three-exp model compared to the two-exp model.425

With an ideal estimation method, the two-exp + osc. should be reduced to a three-exp426

(by setting q = 0 and S2 = 0) if the oscillatory solution is not a better description than427

the three-exp. Hence all results here with increased RMSE are just the results of not find-428

ing the optimal parameters. However, for the models where we estimate higher RMSE429

values for the two-exp + osc, this model is very unlikely to be a good description. Go-430

ing further, we will therefore just focus on the models where adding oscillations provides431

a better description.432

Including oscillations provides a smaller RMSE compared to the three-exp model for 11/22433

LongRunMIP abrupt experiments. For most of these experiments, the improvement is434

very minor, and probably not worth the additional parameters. However, for one of these435

simulations an oscillatory response provides a visually significant better description: the436

CESM104 abrupt2x, shown in Figure 6 a). This experiment is also studied in further de-437

tail in Section 7.1 and Figure 8.438
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In Figure 6 b) and d) we estimate the temperature response to a forcing that increases439

linearly until doubling (in year 140), and is then kept constant thereafter. This will be440

approximately half the output of 1pctCO2 experiments, and demonstrates that with this441

linear oscillatory model, the oscillations cannot be seen during the 140 years with lin-442

ear forcing. The negative response of the oscillatory part is to a large degree cancelled443

out by the slow exponential part, and the majority of the temperature response is de-444

scribed by the fastest exponential response.445

42/71 runs for CMIP6 abrupt-4xCO2 have smaller RMSE if including oscillations (note446

that we count different members from the same model). Also for these models, most im-447

provements are so minor that we cannot really argue that the extra parameters are needed.448

Despite large estimation uncertainties for these shorter runs, we find indications that there449

may be oscillations in many models. In the following, we highlight results for members450

from the 8 models where we have the largest improvements in RMSE for abrupt-4xCO2:451

ACCESS-CM2, GISS-E2-1-G, ICON-ESM-LR, KIOST-ESM, MRI-ESM2-0, NorESM2-452

LM, SAM0-UNICON, TaiESM1. We note the generally close resemblance between these453

runs (see Figure 7) and the first 150 years of the CESM104 abrupt2x run in Figure 6 c).454

The two-exp and oscillatory fits in Figure 7 show that the oscillatory component can take455

various shapes. For most members (e.g. TaiESM1 r1i1p1f1), the best fit includes an os-456

cillatory component that resembles the purely exponential components, but where the457

initial warming overshoots before stabilizing at a lower equilibrium temperature. In these458

cases the estimated oscillations have a quick damping time scale (τp), typically 20-30 years.459

For MRI-ESM2-0 members r7 and r10 we have instead an oscillation starting with an460

initial cooling, which is part of a slow oscillation that could develop as in the CESM104461

abrupt2x run. When including this slow oscillation, we find only shorter time scales (an-462

nual and decadal) for the two purely exponential parts. For the members where the os-463

cillation has a shorter period, we have a centennial-scale purely exponential part to ex-464

plain the slow variations in the temperature. Since we know from longer runs that a centennial-465

millennial scale exponential component is necessary to explain the full path to equilib-466

rium, the fits for MRI-ESM2-0 members r7 and r10 are unlikely to explain the future467

of these experiments. This could in theory be resolved by combining the two short time-468

scale exponential parts to one, and allowing the second exponential part to take a long469

time scale instead. However, with only 150 years of data, a fit containing several com-470

ponents varying on centennial to millennial scales will be poorly constrained. The take-471

home message from this is that we cannot really tell from the global surface tempera-472

ture of these short experiments if we deal with a short-period and quickly damped out473

oscillation or an oscillation lasting for centuries. Longer experiments are needed, but a474

closer look at the AMOC evolution and the spatial pattern of warming may also give some475

hints.476

Of these 8 models, 3 models have also run abrupt-2xCO2 and abrupt-0p5xCO2 exper-477

iments. We see no clear signs of oscillations in these abrupt-0p5xCO2 runs. For GISS-478

E2-1-G abrupt-2xCO2 we observe a small flattening out of the temperature as for abrupt-479

4xCO2, for MRI-ESM2-0 abrupt-2xCO2 the temperature flattens out, and does not start480

to increase again. For TaiESM1 abrupt-2xCO2, the temperature behaves similarly as for481

abrupt-4xCO2 (although our estimated decomposition looks a bit different). Hence there482

are hints that the same phenomenon appears also for abrupt-2xCO2, but the responses483

may not be perfectly linear.484

7 Oscillations and plateaus in global temperatures485

7.1 Oscillation in CESM1 warming experiments486

The CESM1 abrupt CO2 responses are further investigated (Figure 8) by looking at the487

Northern Hemisphere (NH) and Southern Hemisphere (SH) temperatures separately (a),488

and by comparing with the AMOC index (b) and NH and SH sea ice areas (c). We find489

that the oscillations happen only in the NH, and that the abrupt2x (blue) NH temper-490
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Figure 7. The two-exponential + oscillatory model fits (blue curves) for 16 different abrupt-

4xCO2 runs (black curves). The light blue curves show the decomposition of the blue curve into

two exponential components and one oscillatory component. The estimated parameters are listed

in the figures, and the % change refers to the improvement in RMSE from three-exponential fit

to the two-exponential + oscillatory model fit.
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Figure 8. Mean surface temperature (a), AMOC index (b) and sea-ice area (c) for CESM104

abrupt2x (blue), abrupt4x (orange) and abrupt 8x (red). In a) and c), dashed curves are means

over the Northern Hemisphere, and dotted (thinner) curves are means over the Southern Hemi-

sphere.
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ature is strongly correlated with the AMOC index (R = 0.796) and anticorrelated with491

the NH sea ice area (R = -0.919) if using all 2500 annual values for computation. If look-492

ing only at the first decades after the abrupt CO2 doubling, we observe an anticorrela-493

tion between temperatures (which increase) and AMOC (which weakens). A plausible494

mechanism for this is that the strong initial warming inhibits the sinking of water in the495

North Atlantic by reducing its density. On longer time scales, AMOC changes also im-496

pact temperatures, by bringing more/less warm water northwards, which could explain497

the positive correlation.498

The comparison with the abrupt 4x (orange) and 8x (red) simulations from the same model499

shows that all NH temperatures have a small plateau for some decades after the initial500

temperature increase, likely connected to their initial decrease in AMOC strength and501

sea-ice area. There are also some long-term variations later on in these experiments, but502

not following a similar oscillatory behaviour as the 2x experiment. We note for instance503

that the abrupt change around year 2500 in the abrupt8x experiment is strongly con-504

nected to an AMOC recovery. Hence, while linear response models estimated from the505

abrupt2x simulation may well describe the long-term responses to these other abrupt CO2506

experiments, the oscillatory behavior does not transfer to the same degree. In lack of more507

simulations with weaker forcing from this model, it is difficult to judge if the oscillatory508

phenomenon really is part of a linear model that can only be used for weaker forcings,509

or if it is a nonlinear effect or a random fluctuation.510

7.2 Oscillation in cooling HadGEM experiment511

Among models with abrupt-0p5xCO2 experiments, we find one (HadGEM-GC31-LL)512

with an interesting oscillation. This oscillation appears to have an increasing amplitude513

(see Figure 9 a)). To fit our model to these data, we need to allow the oscillatory part514

of the solution to have a positive real part eigenvalue, such that we get unstable/growing515

oscillations. This corresponds to a negative damping time scale τp. In b) we note that516

the oscillation appears mainly in the Southern Hemisphere, and is tightly connected to517

oscillations in the SH sea-ice extent. The Northern Hemisphere temperature is only slightly518

influenced by the oscillation, possibly through the atmosphere or because AMOC cou-519

ples it to the SH. AMOC data are not provided for this experiment, but temperature520

changes in the North Atlantic (not shown) indicate that AMOC is changing. The esti-521

mated parameters are listed in the figure, and shows also that we have allowed negative522

values of Sosc1 and Sosc2. The physical interpretation of this is that the SH sea ice ac-523

tually decreases on average in extent, hence contributing to a warming on an otherwise524

cooling globe.525

This oscillation seems to have a different physical origin than the oscillations/plateaus526

we observe in warming experiments. Similar changes in the SH were observed in the pi-527

Control experiment of this model (Ridley et al., 2022). In the piControl the deeper ocean528

has not yet reached an equilibrium state and the drifting temperatures eventually cause529

the water column in the Weddell and Ross seas to become unstable, and start to con-530

vect up warmer deeper ocean water that melts the sea ice. We suspect the oscillations531

in the abrupt-0p5xCO2 experiment is a similar phenomenon, except that in this run the532

cooling of the atmosphere and ocean surface layer brings the ocean column in the south-533

ern oceans faster into an unstable state. The more the surface is cooling, the larger the534

area can become where this instability and melting of sea ice happens, which can explain535

the growing oscillation and overall reduced sea ice cover.536

7.3 Multidecadal pauses in global temperature increase537

In Fig. 7 it can observed that the abrupt-4xCO2 simulations for several models (e.g., GISS-538

E2.1-G, MRI-ESM2.0, SAM0-UNICON) exhibit a plateau in their global mean surface539

temperature evolution after the initial fast-paced increase. This happens typically be-540

tween years 30 and 70 and after year 70 the temperature starts increasing again. Av-541

eraging the temperature separately over northern and southern hemisphere (NH and SH,542
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Figure 9. Results from HadGEM-GC31-LL abrupt-0p5xCO2 r1i1p1f3, where allowing an

unstable (growing) oscillation makes a good fit. a) The black curve is the global surface air tem-

perature change relative to piControl, the thick blue curve is the fitted model consisting of two

exponential components (slowly varying light blue curves) and one oscillatory pair (plotted to-

gether as the oscillating light blue curve). Note that to make the fit the signs were flipped, such

that the listed parameters S1, S2, Sosc1, Sosc2 are consistent with a positive response. b) The

global temperature response (black) split up in Northern Hemisphere (NH, dashed blue) tem-

perature and Southern Hemisphere (SH, dotted red) temperature. On the right axis we have the

sea-ice area, which is plotted for the SH (dotted gray) and NH (dashed gray).

respectively; see Fig. 10 for the example of GISS-E2.1-G) reveals that the plateau of the543

global mean temperature results from a plateauing or even decrease of the NH temper-544

ature while the SH temperature increases monotonically. More specifically, maps of time545

slices of surface warming make clear that it is the North Atlantic that cools in response546

to the CO2-forcing (Fig. 10, left column). Models that do not exhibit the plateauing global547

mean temperature typically exhibit neither the plateauing in the NH nor the cooling (or548

lack of warming) in the North Atlantic (E3SM-1.0 shown as an example in Fig. 10, right549

column). Though there may be models where the North Atlantic cools/warms less, but550

not enough to cause a significant slowdown of global temperature increase.551

The difference in North Atlantic temperatures between models with and without plateau552

is found to be concomitant with a difference in the development of AMOC and the de-553

velopment of Arctic sea ice (see Figure 10), consistent with earlier studies (Bellomo et554

al., 2021; Mitevski et al., 2021). Models with plateauing global mean temperature tend555

to simulate a stronger AMOC decline in response to the CO2-forcing (e.g. GISS-E2-1-556

G and SAM0-UNICON) than do the models without plateau. Notably, the pre-industrial557

AMOC also tends to be stronger in models with plateau than in those without plateau.558

Furthermore, models with plateau retain more of their Arctic sea ice than models with-559

out plateau. The connection between a plateauing global temperature, weakening AMOC,560

and enhanced NH sea ice cover was also noted by Held et al. (2010) for the GFDL Cli-561

mate Model version 2.1.562

A stronger decline in AMOC is consistent with lower North Atlantic temperatures (Bellomo563

et al., 2021) and less sea ice melt (Yeager et al., 2015; Liu et al., 2020; Eiselt & Graversen,564

2023). The AMOC constitutes a part of the poleward energy transport in the climate565

system that is necessary to balance the differential energy input from solar radiation. The566

AMOC accomplishes northward energy transport by transporting warm water from the567

Tropics into the Arctic increasing the ocean heat release there and thus warming the North568

Atlantic. A decline of the AMOC will hence lead to a cooling or at least a hampering569

of the warming in response to a CO2-forcing. Growing sea ice in response to a cooling570
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Figure 10. Example of models with and without plateaus in global temperature.
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will contribute to keeping the temperature low for a while. Changes in sea ice has also571

been shown to affect AMOC (Sévellec et al., 2017; Liu et al., 2019; Madan et al., 2023).572

The growth of sea ice can therefore be an explanation for an eventual AMOC recovery,573

and finally lead to a decay of the oscillating component.574

8 Discussion575

Many earlier studies comparing different abrupt CO2 experiments focus on experiments576

from single models, and are often mainly interested in the equilibrium response. Such577

studies find both decreasing and increasing climate sensitivities with stronger CO2 forc-578

ing (see discussions in Meraner et al. (2013); Bloch-Johnson et al. (2021)), but the more579

comprehensive analysis by Bloch-Johnson et al. (2021) (including many of the same mod-580

els as this paper) finds that climate sensitivity increases in most models.581

Slab-ocean models are used in several studies (Colman & McAvaney, 2009; Meraner et582

al., 2013), and are useful tools for studying the temperature-dependence of atmospheric583

feedbacks. They are relatively cheap to run, and the pattern effect is somewhat suppressed584

in these models, partly because they go quicker to equilibrium and partly due to the lack585

of ocean dynamics that can change the pattern of the temperature response. This makes586

it easier to separate the nonlinear/temperature dependent feedbacks from the pattern587

effect, but ignores also possible permanent changes in feedbacks due to changes in the588

ocean circulation.589

For a wide range of abrupt CO2 increase experiments (1x to 8x), Mitevski et al. (2021)590

finds that the increase in effective climate sensitivity with increasing CO2 is not mono-591

tonic in two fully coupled models (GISS-E2.1-G and CESM-LE), in contrast to the mono-592

tonic increase found in slab-ocean experiments (Meraner et al., 2013; Mitevski et al., 2021).593

The nonmonotonic increase is related to the decreasing temperatures in the North At-594

lantic and the weakening AMOC. For small enough abrupt CO2 concentration increases595

(up to 2x and 3x CO2 for GISS-E2.1-G and CESM-LE, respectively) the AMOC recov-596

ers after the initial decrease, while for higher concentrations it does not. For higher con-597

centrations, the North Atlantic cools less however, because of the increased warming from598

CO2.599

Manabe and Stouffer (1993, 1994) also focused on studying the thermohaline circulation600

in the Atlantic Ocean in different abrupt CO2 experiments. In their 2x and 4x exper-601

iments they observe a weakening of the thermohaline circulation. The circulation recov-602

ered again for 2xCO2, but remained weak for 4xCO2. For 0.5xCO2 Stouffer and Man-603

abe (2003) finds a weak and shallow thermohaline circulation in the Atlantic.604

The collapse of AMOC above a certain CO2 level is an example of how a change in the605

ocean circulation can cause a nonlinear global temperature response. A change in cir-606

culation changes the surface temperature pattern, which further modulates which atmo-607

spheric feedbacks are triggered. In the case of a permanent collapse of AMOC, the new608

pattern and associated feedbacks are also permanently changed. In general, any change609

in effectiveness of deeper ocean heat uptake can depend on state, and therefore result610

in a nonlinear response. A warming of the surface can lead to a more stratified ocean611

with reduced vertical mixing. To some extent, however, the reduced heat uptake can still612

be approximated as a linear function of the surface temperature increase. We have also613

demonstrated the opposite effect here, that a cooling of the surface can lead to a linear614

oscillating response, as a result of ocean-sea ice dynamics in the Southern Ocean.615

Linear response models can take many forms. Examples of physically motivated mod-616

els are the upwelling-diffusion models (Hoffert et al., 1980) used in the First IPCC re-617

port, and the temperature component of the FaIR emulator (Millar et al., 2017; Smith618

et al., 2018; Leach et al., 2021) used in AR6 (P. Forster et al., 2021). They are power-619

ful tools for e.g. the IPCC reports since they can be used to quickly explore a wider range620
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of forcing scenarios than that simulated by coupled models. We suggest that a gener-621

alised box model is easier to interpret, test and generalise than box models using an ef-622

ficacy factor, since temperature components and different feedback parameters are more623

directly associated with the pattern of surface temperature evolution, instead of being624

indirectly associated through an efficacy factor. We do not have to assume anything about625

the distribution of the boxes as long as we are interested in global quantities, but in or-626

der to better constrain the values of the different feedback parameters, the additional627

information about the pattern can be useful.628

9 Conclusions629

We find that linear response is overall a good assumption for global surface temperatures.630

However, good predictions with linear response models are crucially dependent on good631

forcing estimates. Distinguishing between forcing and response is a challenge, and the632

uncertainty of forcing estimates is the main limitation to determining if a model has a633

linear response or not.634

Mitevski et al. (2022) and Geoffroy and Saint-Martin (2020) highlight the importance635

of taking into account the nonlogarithmic dependence of the forcing on the CO2 concen-636

tration. This implies stronger forcing for each CO2 doubling, also consistent with recent637

findings of (He et al., 2023). He et al. (2023) finds that the stratospheric temperature638

impacts CO2 forcing, and that other forcing agents affecting the stratospheric temper-639

ature therefore can modulate the CO2 forcing. Such nonlinear interaction between forc-640

ing agents should be studied in further detail, as this deviates from a linear framework.641

We hope also the effort initiated by RFMIP (Pincus et al., 2016) to better constrain forc-642

ing estimates will be continued for more models and experiments in the future.643

For models with a plateau in the global temperature response to an abrupt increase in644

CO2 stemming from a cooling of the North Atlantic, the cooling component (which can645

be modelled with an oscillatory part) can counteract the warming from the slow centennial-646

millennial scale component for a long time. For these models, a response model with a647

single exponential response can actually be sufficient for many short-term prediction pur-648

poses. In CESM104 abrupt2x a single exponential explains the majority of the first decades649

after abrupt doubling of CO2, and for all 140 years with linearly increasing forcing.650

Parameter estimation taking into account the possibility for centennial-scale oscillations651

is difficult for short time series, like the typical 150 year abrupt CO2 experiments. We652

encourage more models to run longer abrupt CO2 experiments, also for different levels653

of CO2. Longer runs will help constrain linear response models better on the longer term,654

which can then further be used to quickly predict a wide range of other forcing scenar-655

ios. In particular, more and longer abrupt-2xCO2 would be useful, since these are very656

likely to be within the range where a linear response is a good approximation. Linear657

responses estimated from abrupt-4xCO2 are also quite good approximations, but there658

are some signs of nonlinear responses playing a role in these experiments (Fredriksen et659

al., 2023; Bloch-Johnson et al., 2021). CMIP6 abrupt-4xCO2 warms on average 2.2 times660

abrupt-2xCO2, and we estimate that about a factor 2 can be attributed to the forcing661

difference. The remaining 10% extra warming in abrupt-4xCO2 is likely attributed to662

nonlinear responses, such as feedback changes (Bloch-Johnson et al., 2021).663
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Appendix A Solution of generalized box model893

Here we will derive the solution of a generalized box model, based on theory from Edwards894

and Penney (2007).895

The general box model is given by the linear system:

dT(t)

dt
= C−1KT(t) +C−1F(t) (A1)

We consider first the homogeneous problem

dTh(t)

dt
= ATh(t)

where A = C−1K. We note that the matrix of possible solutions (the fundamental ma-
trix) is:

Φ(t) = [v1e
γ1t v2e

γ2t . . . vne
γnt].

where vn are the eigenvectors corresponding to the eigenvalues γn of the matrix A. If
we also set an initial condition T(0) = T0, the homogeneous solution takes the form:

Th(t) = Φ(t)Φ(0)−1T0 (A2)

An alternative notation when A consists of constant coefficients is the matrix exponen-
tial eAt = Φ(t)Φ(0)−1, since

dΦ(t)Φ(0)−1

dt
=

deAt

dt
= AeAt = AΦ(t)Φ(0)−1.

We note that the elements of eAt are a linear combination of elements of Φ(t).896

Consider the case where we have a pair of complex conjugate eigenvalues, γ1 = γ2, v1 =
v2. Let v2 = a+ ib and γ2 = p+ iq, such that

v2e
γ2t = (a+ ib)e(p+iq)t

= (a+ ib)ept(cos qt+ i sin qt)

= ept(a cos qt− b sin qt) + iept(b cos qt+ a sin qt)

Then the pair of complex eigenvalue solutions can instead be given by the real and com-
plex part of the expression above, such that:

Φ(t) = [ept(a cos qt− b sin qt) ept(b cos qt+ a sin qt) v3e
γ3t . . . vne

γnt].

The fundamental matrix of the homogeneous problem is also used to describe the par-
ticular solution to the original nonhomogeneous system:

Tp(t) = eAt

∫
e−AtC−1F(t)dt =

∫
eA(t−s)C−1F(s)ds.

We assume that the forcing vector F(t) is a vector of constants w multiplied by the global897

mean forcing F (t). Further, we note that computing the matrix product eA(t−s)C−1 only898

results in extra constant factors to each entry of eA(t−s), such that the resulting column899

vector obtained from eA(t−s)C−1w will therefore be a linear combination of the entries900

of eA(t−s) (or Φ(t)).901
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Finally, the global mean surface temperature T (t) can be described as a linear combi-
nation (area-weighted average) of the components of the vector Tp(t) +Th(t),

T (t) = G∗(t)T0 +

∫ t

0

G(t− s)F (s)ds (A3)

where

G(t) = ept(c1 cos qt− c2 sin qt) + ept(c3 cos qt+ c4 sin qt) +

K∑
n=3

kne
γnt (A4)

= k1e
pt cos qt+ k2e

pt sin qt+

K∑
n=3

kne
γnt (A5)

and G∗(t) takes the same form as G(t), but has different coefficients kn. In case of more902

pairs of complex solutions, we can replace more pairs from
∑K

n=3 kne
γnt by oscillatory903

solutions of the same form as k1e
pt cos qt+k2e

pt sin qt. For the system to be stable we904

must require the real part of each eigenvalue to be negative. And in the case of only real905

negative eigenvalues, all terms including cosines and sines are dropped from G(t).906

If we know the full history of the system instead of setting an initial value, the solution
is given by

T (t) =

∫ t

−∞
G(t− s)F (s)ds (A6)

Step-response907

When studying the response to a unit-step forcing, we first decompose the response:

T (t) =

∫ t

0

G(t− s) · 1 ds =

K∑
n=1

∫ t

0

Gn(t− s)ds (A7)

where G1(t) = k1e
pt cos qt and G2(t) = k2e

pt sin qt describe the damped oscillatory
responses, and Gn(t) = kne

γnt describe responses associated with real negative eigen-
values. For the latter, we have the temperature responses

Tn(t) =

∫ t

0

Gn(t− s)ds =

∫ t

0

kne
γn(t−s)ds = Sn(1− eγnt) (A8)

where Sn = −kn/γn. For G1(t), we find the step-response

T1(t) =

∫ t

0

G1(t− s)ds =

∫ t

0

k1e
p(t−s) cos q(t− s) ds

= k1

[
ept (p cos qt+ q sin qt)− p

p2 + q2

]
= Sosc1 − Sosc1e

pt cos qt+
k1q

p2 + q2
ept sin qt

= Sosc1

[
1− ept

(
cos qt− q

p
sin qt

)]
(A9)

where Sosc1 = − k1p
p2+q2 , and similarly for G2(t), we find

T2(t) =

∫ t

0

G2(t− s)ds =

∫ t

0

k2e
p(t−s) sin q(t− s) ds

= k2

[
ept (p sin qt− q cos qt) + q

p2 + q2

]
= Sosc2 − Sosc2e

pt cos qt+
k2p

p2 + q2
ept sin qt

= Sosc2

[
1− ept

(
cos qt+

p

q
sin qt

)]
(A10)
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where Sosc2 = k2q
p2+q2 . The total step-response is therefore,

T (t) = Sosc1

[
1− ept

(
cos qt− q

p
sin qt

)]
+Sosc2

[
1− ept

(
cos qt+

p

q
sin qt

)]
+

K∑
n=3

Sn(1−eγnt)

(A11)

Finally, we note that if the forcing was stepped up to a different value than 1, this value908

will be a factor included in Sosc1, Sosc2, . . . , Sn.909

Using step-response to derive other responses910

If we have estimates of the parameters Sosc1, Sosc2, . . . , Sn, p, q, γn, we find that k1 =911

−Sosc1(p
2+q2)

p , k2 = Sosc2(p
2+q2)

q , kn = −Snγn, which we can plug into the expression912

for G(t) and compute the response to other forcings.913
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Abstract14

Global temperature responses from different abrupt CO2 change experiments participat-15

ing in Coupled Model Intercomparison Project Phase 6 (CMIP6) and LongRunMIP are16

systematically compared in order to study the linearity of the responses. For CMIP6 mod-17

els, abrupt-4xCO2 experiments warm on average 2.2 times more than abrupt-2xCO2 ex-18

periments. A factor of about 2 can be attributed to the differences in forcing, and the19

rest is likely due to nonlinear responses. Abrupt-0p5xCO2 responses are weaker than abrupt-20

2xCO2, mostly because of weaker forcing. CMIP6 abrupt CO2 change experiments re-21

spond linearly enough to well reconstruct responses to other experiments, such as 1pctCO2,22

but uncertainties in the forcing can give uncertain responses. We derive also a generalised23

energy balance box model that includes the possibility of having oscillations in the global24

temperature responses. Oscillations are found in some models, and are connected to changes25

in ocean circulation and sea ice. Oscillating components connected to a cooling in the26

North Atlantic can counteract the long-term warming for decades or centuries and cause27

pauses in global temperature increase.28

Plain Language Summary29

We compare the global surface temperature responses in climate model experiments where30

the CO2 concentration is abruptly changed from preindustrial levels and thereafter held31

constant. A quadrupling of CO2 is expected to result in approximately twice the response32

to a doubling of CO2. The ratio varies with time, but is on average 2.2 over the first 15033

years. A factor 2 can be attributed to the radiative forcing, that is, how much the en-34

ergy budget changes due to the change in CO2. The remaining increase is likely due to35

stronger feedbacks. Experiments with half the CO2 level are expected to have approx-36

imately the opposite response of a doubling, but we find their responses to be weaker.37

The reason appears to be a weaker radiative forcing. The evolution of the global tem-38

perature with time is also affected by changes in ocean heat uptake, ocean circulation,39

sea ice, cloud changes, etc., and these effects may be different with a stronger warming.40

Changes in the ocean circulation can also lead to oscillations appearing in addition to41

the warming. In some models, this effect may be strong enough to pause the long-term42

warming for decades or centuries, before it catches up again.43

1 Introduction44

Linear response is assumed for global surface temperature in many papers, resulting from45

e.g. box models (Geoffroy, Saint-Martin, Olivié, et al., 2013; Fredriksen & Rypdal, 2017;46

Caldeira & Myhrvold, 2013), and used in emulators like FaIR (Millar et al., 2017; Smith47

et al., 2018; Leach et al., 2021). It is based on the assumption that the global temper-48

ature response is independent of the climate state, and we can think of it as a power-49

ful first-order approximation of the temperature response to a perturbation of the top-50

of-atmosphere (TOA) energy budget. For strong enough responses, state-dependent mech-51

anisms like the albedo feedback will become important, so the question is: In what range52

of climate states can a linear response be considered a good assumption?53

With a linear/impulse response model we can emulate the response to any known forc-54

ing within a few seconds, given knowledge about how the global temperature responds55

to an impulse. Alternatively, we can also gain this knowledge from step responses, since56

these are the integral of the impulse responses. The step-responses from experiments with57

abrupt quadrupling of the CO2 concentration are typically used. This experiment is one58

of the DECK experiments required to participate in the Coupled Model Intercompar-59

ison Project (CMIP), and is therefore widely available.60

Until recently, step-experiments with other CO2 levels have only been available for a few61

models. Following the requests of nonlinMIP (Good et al., 2016), several CMIP6 mod-62

els now make abrupt-2xCO2 and abrupt-0p5xCO2 experiments available. In addition,63
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various abrupt CO2 experiments are published through LongRunMIP (Rugenstein et al.,64

2019). The main motivation of this paper is to investigate the linearity of the temper-65

ature response by systematically comparing these different step experiments. That is,66

we want to test if the impulse response function derived from abrupt doubling of CO267

experiments is equal (within expected uncertainties) to that derived from e.g. quadru-68

pling of CO2. This has implications for the concept of climate sensitivity – will the re-69

sponse to another doubling of CO2 be similar to the first doubling?70

In addition, we will discuss commonly used linear response models, derive the solution71

to a generalised box model, and study how well we can reconstruct the results of exper-72

iments that gradually increase the CO2 concentration. With the generalised box model73

we demonstrate also how oscillations can appear in linear response models. The nega-74

tive phase of oscillatory solutions may counteract the long-term warming for several decades,75

and these solutions can therefore be useful tools in understanding how plateaus or os-76

cillations can appear in the global temperature responses to a step forcing, and how it77

is linked to changes in the ocean circulation and sea ice.78

The generalised box model is described in Section 2. In Section 3 we discuss separation79

of forcing and response, and the linearity of global surface temperature response in the80

context of modifying the forcing-feedback framework to account for the non-constancy81

(or implicit time-dependence (Rohrschneider et al., 2019)) of global feedbacks. A non-82

constant feedback parameter just due to the pattern effect (a modulation of the global83

feedback from different paces of warming in different regions (Armour et al., 2013; Stevens84

et al., 2016; Andrews et al., 2015)) can be consistent with a linear response model, while85

state-dependent feedbacks imply a nonlinear response model. Section 4 describes the data86

included in this study and Section 5 describes estimation methods. Results are presented87

in sections 6 and 7, followed by a discussion in Section 8 and conclusions in Section 9.88

2 Different linear response models, and their physical motivation89

Generally, a linear response model for a climate state variable Φ(t) responding to a forc-
ing F (t) takes the form

Φ(t) = G(t) ∗ F (t) =

∫ t

0

G(t− s)F (s)ds, (1)

assuming F (t) = 0 for t ≤ 0 (Hasselmann et al., 1993). G(t) is the Green’s function,90

and ∗ denotes a convolution.91

For global surface temperature, this integral can be interpreted as a part of the solution
of a multibox energy balance model (see Fredriksen et al. (2021) and Appendix A),

C
dT(t)

dt
= KT(t) + F(t) (2)

where C is a diagonal matrix of heat capacities of different components of the climate
system, K is a matrix of heat exchange coefficients, T is a vector of temperature responses,
and F is a forcing vector. The two-box model (e.g. Geoffroy, Saint-Martin, Olivié, et al.,
2013; Geoffroy, Saint-Martin, Bellon, et al., 2013; Held et al., 2010) is a widely used ex-
ample. In appendix A we derive a general solution that can be applied to any linear K-
box model, and find that in the case of only negative eigenvalues γn in the matrix C−1K,

G(t) =

K∑
n=1

kne
γnt. (3)

Hasselmann et al. (1993) notes that eigenvalues can also appear in complex pairs, where92

kn and γn from one term of the pair are complex conjugates of the other term. To our93

knowledge, complex eigenvalues have never been used for estimating response functions94

in this field before. If pairs of complex eigenvalues are present, pairs from the sum above95
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can be replaced by damped oscillatory responses on the form k1e
pt cos qt+k2e

pt sin qt96

(see Appendix A). For these solutions to be stable, the real part of the eigenvalues (p)97

should be negative.98

The step-forcing responses for negative eigenvalue solutions take the form:

T (t) =

K∑
n=1

Sn(1− eγnt) (4)

and for complex eigenvalues, pairs from this sum are replaced by pairs on the form:

Sosc1

[
1− ept

(
cos qt− q

p
sin qt

)]
+ Sosc2

[
1− ept

(
cos qt+

p

q
sin qt

)]
(5)

In these terms, the exponentially relaxing responses are modulated by sines and cosines.99

So why do we want to expand the method to allow oscillatory responses for some mod-100

els? It is not given that all eigenvalues of the linear model have to be negative if we al-101

low the matrix K to have asymmetric terms. Asymmetric terms could for instance ex-102

plain anomalies in energy fluxes following the ocean circulation, going only in one direc-103

tion between two boxes. So if for instance the Atlantic Meridional Overturning Circu-104

lation (AMOC) has a strong response, this might require complex eigenvalues in a lin-105

ear model for the surface temperature. And as we show in this paper, there are indeed106

models showing oscillations that can be described with such an oscillatory response func-107

tion.108

Since there could be many configurations of the box model (with different physical in-109

terpretations) leading to the same solution, from now on we will just work with the pa-110

rameters in Eqs. (3, 4, 5) and not convert these to the parameters in the original box111

model in Eq. (2). When doing this we only have to specify the number of boxes used,112

and not worry about what is the best configuration of the boxes.113

3 Distinguishing between forcing and response114

The temperature response T (t) = G(t) ∗ F (t) cannot alone tell us how to distinguish
between what is forcing and what is response to the forcing, since we can just move a
factor between G and F without changing T . This separation is often done using the lin-
ear forcing - feedback framework, expressing the global top-of-the-atmosphere radiation
imbalance (N) as

N = F + λT (6)

where λ < 0 is the feedback parameter, T is the global temperature response and F115

is the radiative forcing. This tells us how we can use the additional knowledge about the116

time series N to distinguish between F and T . However, it is now well known that the117

feedback parameter is not well approximated by a constant, so several modifications to118

this framework have been proposed to account for this. Note that how N relates to T119

does not impact the mathematical structure of the temperature response (as long as it120

is a linear relation), only how the forcing and feedbacks should be defined.121

We can distinguish between three main classes of modifications:122

(1) Assuming that N is a nonlinear function of T , e.g:

N = F + c1T + c2T
2 (7)

This describes how λ could change with state (temperature) (Bloch-Johnson et al., 2015,123

2021). Some examples of feedbacks that are well known to depend on temperature are124

the ice-albedo feedback and the water vapour feedback.125
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(2) Decomposing the surface temperature as

T =

K∑
n=1

Tn (8)

and associate a feedback parameter λn with each component Tn, such that:

N = F +

K∑
n=1

λnTn. (9)

This can describe the pattern effect, if assuming different regions have different feedbacks126

and different amplitudes of the temperature response, which modulates the global value127

of λ with time (Armour et al., 2013). Proistosescu and Huybers (2017); Fredriksen et128

al. (2021, 2023) use such a decomposition of the temperature into linear responses with129

different time-scales.130

Extending the decomposition of N in Eq. (9) to include oscillatory components may not131

be straight-forward if oscillations are in fact connected to the North Atlantic temper-132

atures and changes in AMOC. The troposphere is very stable in this region and surface133

temperature changes are therefore confined in the lower troposphere, and not necessar-134

ily causing much change in the TOA radiation (Eiselt & Graversen, 2023; Jiang et al.,135

2023). Increasing surface temperatures in such stable regions lead to increased estimates136

of the climate sensitivity, interpreted as a positive lapse rate feedback (Lin et al., 2019).137

In the framework of Eq. (9) a possibility is to ignore or put less weight on the North At-138

lantic temperature component, due to the weaker connection between T and N here, but139

this needs to be further investigated in a future paper. Related effects can also play a140

role, for instance can AMOC changes lead to TOA radiation changes in surrounding ar-141

eas, such as through low cloud changes in the tropics (Jiang et al., 2023). Such effects142

are likely model dependent.143

(3) Descriptions using a heat-uptake efficacy factor ε, that describe how N depends on144

the heat uptake in the deeper ocean exist as well. This is mathematically equivalent to145

the second class for global quantities (Rohrschneider et al., 2019). In this description,146

the sum T =
∑K

n=1 Tn is not necessarily considered a decomposition of the surface tem-147

perature, but includes also components describing temperature anomalies in the deeper148

ocean. If these temperatures are part of a linear model, typically a two- or three- box149

model, N can still be expressed as in Eq. (9). As these temperature components are just150

linear combinations of the components in Fredriksen et al. (2021); Proistosescu and Huy-151

bers (2017), it is only a matter of choice if expressing N using the temperatures in each152

box, or using the components of the diagonalized system, associated with different time153

scales of the system.154

Descriptions with heat-uptake efficacy take slightly different forms in different papers.155

Winton et al. (2010) describes efficacy without specifying a model for the ocean heat up-156

take, while Held et al. (2010); Geoffroy, Saint-Martin, Bellon, et al. (2013) include it in157

the two-box model:158

cF
dT

dt
= −βT − εH + F (10)

cD
dTD

dt
= H (11)

where T and TD are the temperature anomalies of the surface and deep ocean boxes, re-
spectively, and H = γ(T − TD) is the heat uptake of the deep ocean. The sum of the
heat uptake in both layers equals N , leading to:

N = F − βT − (ε− 1)γ(T − TD) (12)
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The concept of efficacy can be considered a way of retaining a ”pattern effect” in box159

models with only one box connected to the surface, by relating the evolving spatial pat-160

tern of surface temperature change to the oceanic heat uptake (Held et al., 2010; Ge-161

offroy & Saint-Martin, 2020). Similarly, efficacy of forcing (Hansen et al., 2005) has also162

been shown to be related to a ”pattern effect” (Zhou et al., 2023), since forcing in dif-163

ferent regions can trigger different atmospheric feedbacks.164

Cummins et al. (2020); Leach et al. (2021) have modified this description to use it with
a 3-box model, and use the heat uptake from the middle box to the deep ocean box to
modify the radiative response

N(t) = F (t)− λT1(t) + (1− ε)κ3[T2(t)− T3(t)] (13)

If writing this equation in the form of Eq. (9), we find that the feedback parameters as-165

sociated with T2(t) and T3(t) have equal magnitudes and opposite signs. This could put166

unfortunate constraints on parameters in this system, like net positive regional feedbacks,167

if interpreted as a pattern effect. We suggest avoiding this indirect description of the pat-168

tern effect with an efficacy parameter when using more than two boxes, and instead use169

a more direct interpretation of the parameters as describing a spatial pattern, such as170

Eq. (9).171

3.1 Forcing defined using fixed-SST experiments172

An alternative, that is not based on assumptions about the evolution of the feedbacks,173

is to run additional model experiments where sea-surface temperatures are kept fixed174

(Hansen et al., 2005; Pincus et al., 2016). These experiments aim to simulate close to175

0 surface temperature change, such that N ≈ F . Forcing estimated from these exper-176

iments have less uncertainty than regression methods based on the above-mentioned re-177

lationships between N , T and F (P. M. Forster et al., 2016), but are contaminated by178

land temperature responses. A forcing definition that includes all adjustements in N due179

to the forcing, but no adjustments due to surface temperature responses is the effective180

radiative forcing (ERF). This is considered the best predictor of surface temperatures,181

since it has forcing efficacy factors closest to 1 (Richardson et al., 2019). Ideally ERF182

should be estimated in models by fixing all surface temperatures, but this is technically183

challenging (Andrews et al., 2021). Instead, it is more common to correct the fixed-SST184

estimates for the land response (Richardson et al., 2019; Tang et al., 2019; Smith et al.,185

2020). We have not used these estimates in this paper, since they are not available for186

many models.187

4 Choice of data188

We compare abrupt-4xCO2 global temperature responses to all other abrupt CO2 ex-189

periments we can find. In the CMIP6 archive we have 12 models with abrupt-2xCO2 and190

9 models with abrupt-0p5xCO2. In LongRunMIP we find 6 models with at least two dif-191

ferent abrupt CO2 experiments, and we use the notation abruptNx to describe these, where192

N could be 2, 4, 6, 8 or 16. The advantage of models in LongRunMIP is that we can study193

responses also on millennial time scales, while for CMIP6 models the experiments are194

typically 150 years long.195

There exist also similar comparisons of abrupt CO2 experiments for a few other mod-196

els outside of these larger data archives (e.g., Mitevski et al., 2021, 2022; Meraner et al.,197

2013; Rohrschneider et al., 2019). These data are not analysed in this study, but will be198

included in our discussion.199

CMIP6 abrupt CO2 experiments are used to reconstruct 1pctCO2 experiments, and the200

reconstructions are compared to the coupled model output of CMIP6 models. The rea-201

son for choosing this experiment is that the forcing is relatively well known. If assum-202

ing the forcing scales like the superlogarithimic formula of Etminan et al. (2016), it should203

increase slightly more than linearly until CO2 is quadrupled, and end up at the same forc-204
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ing level as the abrupt-4xCO2 experiments. The Etminan et al. (2016) forcing includes205

stratospheric adjustments, but not tropospheric and cloud adjustments like the ERF.206

However, we don’t use the absolute values of this forcing, only the forcing ratios. We may207

also take these ratios as approximate ERF ratios if assuming the Etminan et al. (2016)208

forcing can be converted to ERF with a constant factor.209

For other experiments, the uncertainty in forcing estimates is an even more important210

contribution to uncertainties in the responses. Jackson et al. (2022) test emulator responses211

to the Radiative Forcing Model Intercomparison Project (RFMIP) forcing for 8 mod-212

els, and find large model differences in emulator performance. Using a different forcing213

estimation method (Fredriksen et al., 2021) for the CMIP6 models, Fredriksen et al. (2023)214

find a generally good emulator performance for historical and SSP experiments. An im-215

portant difference between the forcing estimates is that the RFMIP forcing used by Jackson216

et al. (2022) is not corrected for land temperature responses, while the regression-based217

forcing in Fredriksen et al. (2023) is defined for no surface temperature response. The218

method described in Fredriksen et al. (2021, 2023) is actually designed to make forcing219

estimates compatible with a linear temperature response, and we therefore refer to these220

results for performance of linear response models for historical and future scenario forc-221

ing. However, if the linear response assumption is poor for the temperatures, this influ-222

ences performance of the forcing estimation method as well. For this reason it is impor-223

tant to test the linear response hypothesis with idealized experiments, which is the fo-224

cus of this paper.225

4.1 AMOC and sea ice226

In our discussion of oscillatory responses and plataeus in global temperature, we con-227

sider also AMOC and sea ice changes in the models. The AMOC index is calculated as228

the maximum of the meridional overturning stream function (mstfmz or mstfyz in CMIP6229

and moc in LongRunMIP) north of 30°N in the Atlantic basin below 500 m depth.230

The sea-ice area is calculated by multiplying the sea-ice concentration (siconc or siconca231

in CMIP6 and sic in LongRunMIP) with the cell area (areacello or areacella) and then232

summing separately over the northern and southern hemispheres.233

5 Estimation234

5.1 Forcing ratios for step experiments235

A linear temperature response assumption predicts the response in any abrupt CO2 ex-236

periment to be a scaled version of that of the abrupt-2xCO2 experiment, since only the237

forcing is different in these experiments. So when comparing abrupt CO2 experiments,238

they are all scaled to correspond to the abrupt-2xCO2 experiment. However, choosing239

the best scaling factor is challenging, since the forcing is uncertain, and it is not easy to240

distinguish between differences due to forcing and possible nonlinear temperature responses.241

Therefore, we have used three different types of scaling factors in our analysis:242

1) Use the same scaling factor for all models, and assume a forcing scaling like the243

superlogarithmic radiative forcing (RF) formula in Etminan et al. (2016) in the244

CO2 range where this formula is valid, and logarithmic forcing outside this range245

(just to have something in lack of a valid non-logarithmic description). The fac-246

tors used are 0.478 for abrupt-4xCO2 and 0.363 for abrupt-6xCO2. A logarith-247

mic dependence on the CO2 concentrations results in the factors -1, 1/4 and 1/8248

for the abrupt- 0p5xCO2, 8xCO2 and 16xCO2 experiments.249

2) Estimate ratios by performing Gregory regressions (Gregory et al., 2004) of the250

first 5, 10, 20 and 30 years of the experiments.251

3) Use the mean temperature ratio to the abrupt-2xCO2 experiment over the first252

150 years as the scaling factor. This is not meant to be an unbiased estimate of253

the forcing ratio, but investigates the forcing ratios in the hypothetical case of per-254
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fectly linear responses. However, some degree of nonlinear response is expected255

e.g. from differences in feedbacks (Bloch-Johnson et al., 2021). After scaling tem-256

perature responses with this factor, it is easier to visualise how nonlinear responses257

affect different time scales of the response.258

5.2 Reconstructing 1pctCO2 experiments259

Performing an integration by parts of Eq. (1) leads to

T (t) =

∫ t

0

dF

ds
R(t− s)ds, (14)

where R(t) =
∫ t

0
G(t−s)ds is the response to a unit-step forcing. Discretising this equa-

tion leads to the expression used to compute impulse responses in Good et al. (2011, 2013,
2016); Larson and Portmann (2016):

Ti =

i∑
j=0

∆FjRi−j

∆Fs
(15)

where ∆Fj are annual forcing increments, and the discretised step response Ri−j is a re-260

sponse to a general step forcing ∆Fs, and must therefore be normalised with this forc-261

ing. Further details of the derivation are provided in Fredriksen et al. (2021) Supplemen-262

tary Text S2.263

With Eq. (15) we can use datapoints from abrupt CO2 experiments and knowledge of264

forcing to directly compute the responses to other experiments. Then we can avoid the265

additional uncertainty related to what model to fit and its parameter uncertainties. Fit-266

ting a box model first would smooth out internal variability from the step response func-267

tion, which could be an advantage when studying responses to experiments with more268

variable forcing. Another advantage of box models is that the response function can be269

extrapolated into the future, while with Eq. (15) the length of the reconstruction is re-270

stricted by the length of the step experiment. Here we will use 140 years of data for the271

reconstruction of 1pctCO2 experiments, and as we will see, the reconstructed responses272

to 1pctCO2 experiments are already very smooth, so smoothing the response function273

with exponential responses should not change the results significantly, as long as the smoothed274

model provides a good fit to the datapoints.275

To test this reconstruction, we will use CMIP6 annual anomalies from the experiments276

abrupt-4xCO2, abrupt-2xCO2 and abrupt-0p5xCO2. The input forcing ratio starts at277

0, and increases either linearly, consistent with a logarithmic dependence on CO2 con-278

centration, or as a ratio scaling like the superlogarithmic formula (Etminan et al., 2016).279

For abrupt-4xCO2, we assume the ratio becomes 1 in year 140, the time of quadrupling,280

and for abrupt-2xCO2, we assume the ratio is 1 in year 70, the time of doubling. The281

positive 1pctCO2 forcing does not equal the negative abrupt-0p5xCO2 forcing at any282

time point, so we just assume the abrupt-0p5xCO2 forcing to be the negative of the abrupt-283

2xCO2 forcing.284

5.3 Fitting response functions285

We will compare estimated response models from a two-box model, three-box model, and286

a four-box model with one pair of complex eigenvalues. These response models consist287

of two or three exponential responses, or two exponential plus two damped oscillatory288

responses. Decomposing the response using box models may also help us gain insight into289

the physical reasons why a linear response model works or not.290

We apply the python package lmfit to estimate the parameters of the response models.291

It takes in an initial parameter guess, and then searches for a solution that minimizes292

the least-squared errors. The final parameter estimates can be sensitive to the initial guesses,293
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Figure 1. Comparing abrupt CO2 experiments for CMIP6 models, where the abrupt-4xCO2

and abrupt-0p5xCO2 experiments are scaled in three different ways to correspond to the abrupt-

2xCO2 experiment. Models are sorted by their abrupt-2xCO2 response in year 150. The black

curves are abrupt-2xCO2 experiments, the red are scaled abrupt-4xCO2 and the blue are scaled

abrupt-0p5xCO2 experiments. Solid curves use the same scaling factor for all models: 0.478 for

abrupt-4xCO2 and -1 for abrupt-0p5xCO2. Thin dotted curves use the mean temperature ratio

as the scaling factor (shown in legends and supplementary figure S1), and shading shows the

range of the ratios of the Gregory regressions given in Supporting Tables S1 and S2.

since the optimization algorithm may just have found a local minimum. The more pa-294

rameters we have in the model, the less we can trust the estimates. We see this in par-295

ticular when including oscillatory responses; then we need to estimate 8 parameters, and296

are at risk of overfitting for the typical 150 year long experiments. As we will see, there297

could be different solutions containing oscillations that all provide good fits to the data.298

Longer time series (or some physical reasoning) would be needed in order to select the299

optimal fit for these records. For longer time series such as those from LongRunMIP we300

obtain more useful estimates.301

6 Linear response results302

6.1 Comparing abrupt CO2 experiments303

The curves in Figures 1 and 2 are all scaled to correspond to the abrupt-2xCO2 exper-304

iment, where the different scaling factors used illustrate the problem with the forcing un-305

certainty. The thick solid curves use the same scaling factor for all models (method 1),306

while the factors from the second and third method are model specific. The shading shows307

the range using the four different forcing ratios computed with Gregory regressions (method308
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2), that is, the minimum and maximum values from Tables S1 - S3. The thin dashed curves309

use the mean temperature ratios (method 3). These values are given in the subfigure leg-310

ends, and shown in supporting figures S1 - S2. By definition, the black curves and the311

dotted red and blue curves all have the same time mean. Model specific factors can be312

explained by their different fast adjustments to the instantaneous radiative forcing. In313

addition, models can have different instantaneous forcing values, as this is shown to de-314

pend on the climatological base state (He et al., 2023). From the mean temperature ra-315

tios of the first 150 years of CMIP6 we find also that abrupt-4xCO2 warms on average316

2.2 times more than abrupt-2xCO2, and abrupt-0p5xCO2 cools on average 9 % less than317

abrupt-2xCO2 warms (see Table S4). For LongRunMIP, abrupt4x warms 2.13 times abrupt2x318

when averaging all available years, or 2.18 times if averaging just the first 150 years (see319

Table S5, and both estimates exclude FAMOUS).320

Significant differences between the curves in Figures 1 and 2 that cannot be explained321

by their different forcing must be explained by a nonlinear/state-dependent response.322

A first order assumption could be that models that warm more should tend to be more323

nonlinear. To investigate this we have ordered the models by their abrupt-2xCO2 response324

in year 150 in Figure 1 and year 500 for the longer experiments in Figure 2. We find that325

there are some clear differences for the warmest CMIP6 models, but also for the cold-326

est (MRI-ESM2-0). The four different GISS models appear to be very linear.327

For the two LongRunMIP models with the strongest 2xCO2 warming (CNRM-CM6-1328

and FAMOUS) there are some clear differences between the curves (see Figure 2). The329

initial warming for CNRM-CM6-1 is halted in the 2xCO2 compared to the 4xCO2 ex-330

periment. For FAMOUS the scaling factor is particularly uncertain, and after a few cen-331

turies the pace of warming is slower in the scaled abrupt-4xCO2 experiment than in the332

abrupt-2xCO2 experiment. We observe only minor differences for MPI-ESM1-2, HadCM3L333

and CCSM3 when scaling with the mean temperature ratios. For CESM104 we observe334

that the abrupt2x experiment has some oscillations that are not seen in the other ex-335

periments, in addition to an abrupt change in the abrupt8x experiment.336

If more warming increases the likelihood of finding nonlinear responses, we should also337

expect nonlinear responses to become more apparent towards the end of the simulations.338

We can then hypothesize that differences in forcing should explain initial differences (maybe339

up to a decade), and nonlinear responses explain differences at later stages. Following340

this, we should put more trust in the forcing scaling factors that make the initial tem-341

perature increase most similar to the abrupt-2xCO2 experiment. Which factor this is342

differs between models. In general, method 2 should put more emphasis on describing343

the first years correctly, while method 3 emphasises a good fit on all scales.344

Although the individual forcing estimates are uncertain, it is a noteworthy result that345

the abrupt-2xCO2 regression forcing (method 2) is on average half of the abrupt-4xCO2346

forcing (see Tables S1 and S3). The uncertainty of this mean is however too large to rule347

out that the forcing for a second CO2 doubling is in fact larger than the first doubling,348

according to the findings of Etminan et al. (2016); He et al. (2023). And consistent with349

these expectations, for CMIP6 abrupt-0p5xCO2 we find a weaker negative forcing than350

logarithmic (Table S2). Our forcing ratios based on the LongRunMIP simulations for351

abrupt 6x, 8x and 16x CO2 indicate that the forcing is weaker than logarithmic for higher352

CO2 concentrations. Although based on very few simulations, this result is the oppo-353

site of the expectation that each CO2 doubling produces stronger forcing (He et al., 2023).354

An average forcing factor of 2 means the forcing alone is unlikely to explain the 2.2 fac-355

tor difference in warming between CMIP6 abrupt-2xCO2 and abrupt-4xCO2. This con-356

clusion is also supported by the differences in the pace of warming between abrupt-2xCO2357

and abrupt-4xCO2 for several models (best visualised with the dotted curves from method358

3 in Figure 1). The abrupt-4xCO2 temperatures scaled using method 2 in Figure 1 are359
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Figure 2. Comparing abrupt CO2 experiments for LongRunMIP models. The scaling factors

for the thick curves are 0.478 for 4x, 0.363 for 6x, 1/4 for 8x, 1/8 for 16x. For the thin dashed

curves, the factors are computed from the mean T ratios to the first 150 years of abrupt2x,

shown in Supporting figure S2, and shown in the legends here. The models are sorted by their

abrupt2x temperature response in year 500. Note their different lengths and temperature scales.

on average 10 % stronger than the abrupt-2xCO2 experiments (computed from the ra-360

tio 2.2/2). The scaled abrupt-0p5xCO2 temperatures are on average 2 % stronger than361

the abrupt-2xCO2 temperatures (see Table S4), suggesting that the weak forcing can ex-362

plain much of the weak response for abrupt-0p5xCO2. For LongRunMIP models, the av-363

erage forcing ratio between 2x and 4x CO2 reduces to 0.46 when excluding FAMOUS,364

making differences in the scaled temperatures over the first 150 years vanish (computed365

with method 2, see Table S5). For some models (CESM104 and CCSM3) the scaled tem-366

peratures deviate more from abrupt2x on millennial time scales.367

Bloch-Johnson et al. (2021) suggests that feedback temperature dependence is the main368

reason why abrupt-4xCO2 warms more than twice the abrupt-2xCO2. This is consis-369

tent with the nonlinear responses we observe for several models. If the mean tempera-370

ture ratio was a valid estimate of the forcing ratio, then in a linear framework, the same371

factors we found for the temperature ratios should be able to explain the ratios in top-372

of-atmosphere radiative imbalance. For some models this is not a good approximation373

(see supporting figures S1 and S2), consistent with the findings of Bloch-Johnson et al.374

(2021). FAMOUS has a particularly large difference in T and N ratios. Its abrupt4x warm-375

ing is also so extreme that the quadratic model in Bloch-Johnson et al. (2021) suggests376

a runaway greenhouse effect.377
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6.2 Reconstructing 1pctCO2 experiments378

In general, we find that both abrupt-4xCO2 experiments (see Figure 3) and abrupt-2xCO2379

experiments (see Figure 4) can reconstruct the 1pctCO2 experiment very well. The largest380

deviation we find for the model KIOST-ESM, but we suspect the 1pctCO2 experiment381

from this model may have errors in the branch time information or the model setup. For382

many models the abrupt-0p5xCO2 experiment can also be used to make a good recon-383

struction, but not all (see Figure 4). For several models where abrupt-0p5xCO2 makes384

a poor reconstruction (TaiESM1, CNRM-CM6-1, CESM2, MIROC6), our assumptions385

about the forcing seems to be the limiting factor. If upscaling the negative of the abrupt-386

0p5xCO2 response for these models with a different factor than −1 to correspond bet-387

ter with the abrupt-2xCO2 experiment, we would have obtained a better reconstruction388

of 1pctCO2.389

For many models we find that reconstructions with abrupt-4xCO2 slightly overestimates390

the 1pctCO2 response in the middle parts of the experiment, similar to earlier findings391

by Good et al. (2013); Gregory et al. (2015). In Figure 3 we compare reconstructions with392

a linear forcing (from logarithmic dependence on CO2) and a forcing scaling like the su-393

perlogarithimic formula (Etminan et al., 2016). We find that reconstructions using the394

superlogarithmic forcing (shown in brown) explains the middle part of the 1pctCO2 ex-395

periment a little better than the logarithmic forcing (shown in red), since this forcing396

is slightly weaker in the middle. Even with the superlogarithmic forcing ratio, the model397

average reconstruction with abrupt-4xCO2 is a little overestimated in the middle part398

of the experiment (Figure 5). The average reconstruction with abrupt-2xCO2 explains399

the middle part of the experiment well, but slightly underestimates the latter part.400

Which of abrupt-2xCO2 or abrupt-4xCO2 make the best reconstruction is model depen-401

dent. The 1pctCO2 experiment goes gradually to 4xCO2, and if there is a state-dependence402

involved in the response, we might expect something in between abrupt-2xCO2 and abrupt-403

4xCO2 responses to make the best prediction. MRI-ESM2-0 is a good example where404

this might be the case. For this model we observe a small underestimation with abrupt-405

2xCO2 and a small overestimation with abrupt-4xCO2. The reconstruction is very good406

with abrupt-0p5xCO2, which has an absolute response looking like an average of abrupt-407

2xCO2 and abrupt-4xCO2 (see Figure 1). CESM2 is also a good example where state-408

dependent effects are visible, since the abrupt-2xCO2 underestimates and abrupt-4xCO2409

overestimates the response in the latest decades of the 1pctCO2 experiment.410

For TaiESM1 and CNRM-CM6-1 the paces of warming differ a little for abrupt-2xCO2411

and abrupt-4xCO2 during the middle/late stages of the experiments. Although the dif-412

ferences are not very significant, this is an indication of a nonlinear response. For some413

models (CanESM5, CNRM-CM6-1, HadGEM3-GC31-LL, IPSL-CM6A-LR, MIROC6)414

it is unclear if the small errors in the reconstructions are due to incorrect scaling of the415

forcing or nonlinear responses. The four GISS models are the most linear models, where416

we make good and very similar reconstructions with both abrupt-4xCO2 and abrupt-417

2xCO2. We observe just a small underestimation in the end of the experiment for GISS-418

E2-2-G abrupt-4xCO2.419
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Figure 3. Red/brown dashed curves show reconstructions of the 1pctCO2 experiment (gray)

using the data from the abrupt-4xCO2 experiment (red). The dashed red curve is a reconstruc-

tion based on a linearly increasing forcing, and the dashed brown curve is a reconstruction based

on a forcing scaling like the superlogarithmic (Etminan et al., 2016) formula. For the experiments

where several members exist, we have plotted the ensemble mean.
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iments (solid curves). The forcing is assumed to scale like the superlogarithmic forcing in the

reconstruction. The sign is flipped when plotting data from the abrupt-0p5xCO2 experiment. For

the experiments where several members exist, we have plotted the ensemble mean.
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Figure 6. a) Result of fitting a two-exp and a pair of oscillatory responses to CESM104

abrupt2x. The dark green curves are the total responses to either an abrupt doubling of CO2

(left) or a forcing increasing linearly to doubling of CO2 in year 140, and is thereafter kept con-

stant (right). The light green curves are components of the total response: Two exponential

responses with time scales of approximately 7 and 639 years, and one oscillatory response with a

period of approximately 410 years and damping time scale of 619 years.

6.3 Comparing different response functions420

We fit two-exp, three-exp and two-exp + oscillatory response for all CMIP6 models. The421

resulting root mean squared error (RMSE) of these fits are summarised in Tables S6 and422

S7 for abrupt-4xCO2, Table S8 for abrupt-2xCO2 and Table S9 for abrupt-0p5xCO2.423

The results for LongRunMIP experiments are listed in Table S10. As expected, RMSE424

is always smaller or unchanged for the three-exp model compared to the two-exp model.425

With an ideal estimation method, the two-exp + osc. should be reduced to a three-exp426

(by setting q = 0 and S2 = 0) if the oscillatory solution is not a better description than427

the three-exp. Hence all results here with increased RMSE are just the results of not find-428

ing the optimal parameters. However, for the models where we estimate higher RMSE429

values for the two-exp + osc, this model is very unlikely to be a good description. Go-430

ing further, we will therefore just focus on the models where adding oscillations provides431

a better description.432

Including oscillations provides a smaller RMSE compared to the three-exp model for 11/22433

LongRunMIP abrupt experiments. For most of these experiments, the improvement is434

very minor, and probably not worth the additional parameters. However, for one of these435

simulations an oscillatory response provides a visually significant better description: the436

CESM104 abrupt2x, shown in Figure 6 a). This experiment is also studied in further de-437

tail in Section 7.1 and Figure 8.438
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In Figure 6 b) and d) we estimate the temperature response to a forcing that increases439

linearly until doubling (in year 140), and is then kept constant thereafter. This will be440

approximately half the output of 1pctCO2 experiments, and demonstrates that with this441

linear oscillatory model, the oscillations cannot be seen during the 140 years with lin-442

ear forcing. The negative response of the oscillatory part is to a large degree cancelled443

out by the slow exponential part, and the majority of the temperature response is de-444

scribed by the fastest exponential response.445

42/71 runs for CMIP6 abrupt-4xCO2 have smaller RMSE if including oscillations (note446

that we count different members from the same model). Also for these models, most im-447

provements are so minor that we cannot really argue that the extra parameters are needed.448

Despite large estimation uncertainties for these shorter runs, we find indications that there449

may be oscillations in many models. In the following, we highlight results for members450

from the 8 models where we have the largest improvements in RMSE for abrupt-4xCO2:451

ACCESS-CM2, GISS-E2-1-G, ICON-ESM-LR, KIOST-ESM, MRI-ESM2-0, NorESM2-452

LM, SAM0-UNICON, TaiESM1. We note the generally close resemblance between these453

runs (see Figure 7) and the first 150 years of the CESM104 abrupt2x run in Figure 6 c).454

The two-exp and oscillatory fits in Figure 7 show that the oscillatory component can take455

various shapes. For most members (e.g. TaiESM1 r1i1p1f1), the best fit includes an os-456

cillatory component that resembles the purely exponential components, but where the457

initial warming overshoots before stabilizing at a lower equilibrium temperature. In these458

cases the estimated oscillations have a quick damping time scale (τp), typically 20-30 years.459

For MRI-ESM2-0 members r7 and r10 we have instead an oscillation starting with an460

initial cooling, which is part of a slow oscillation that could develop as in the CESM104461

abrupt2x run. When including this slow oscillation, we find only shorter time scales (an-462

nual and decadal) for the two purely exponential parts. For the members where the os-463

cillation has a shorter period, we have a centennial-scale purely exponential part to ex-464

plain the slow variations in the temperature. Since we know from longer runs that a centennial-465

millennial scale exponential component is necessary to explain the full path to equilib-466

rium, the fits for MRI-ESM2-0 members r7 and r10 are unlikely to explain the future467

of these experiments. This could in theory be resolved by combining the two short time-468

scale exponential parts to one, and allowing the second exponential part to take a long469

time scale instead. However, with only 150 years of data, a fit containing several com-470

ponents varying on centennial to millennial scales will be poorly constrained. The take-471

home message from this is that we cannot really tell from the global surface tempera-472

ture of these short experiments if we deal with a short-period and quickly damped out473

oscillation or an oscillation lasting for centuries. Longer experiments are needed, but a474

closer look at the AMOC evolution and the spatial pattern of warming may also give some475

hints.476

Of these 8 models, 3 models have also run abrupt-2xCO2 and abrupt-0p5xCO2 exper-477

iments. We see no clear signs of oscillations in these abrupt-0p5xCO2 runs. For GISS-478

E2-1-G abrupt-2xCO2 we observe a small flattening out of the temperature as for abrupt-479

4xCO2, for MRI-ESM2-0 abrupt-2xCO2 the temperature flattens out, and does not start480

to increase again. For TaiESM1 abrupt-2xCO2, the temperature behaves similarly as for481

abrupt-4xCO2 (although our estimated decomposition looks a bit different). Hence there482

are hints that the same phenomenon appears also for abrupt-2xCO2, but the responses483

may not be perfectly linear.484

7 Oscillations and plateaus in global temperatures485

7.1 Oscillation in CESM1 warming experiments486

The CESM1 abrupt CO2 responses are further investigated (Figure 8) by looking at the487

Northern Hemisphere (NH) and Southern Hemisphere (SH) temperatures separately (a),488

and by comparing with the AMOC index (b) and NH and SH sea ice areas (c). We find489

that the oscillations happen only in the NH, and that the abrupt2x (blue) NH temper-490
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Figure 7. The two-exponential + oscillatory model fits (blue curves) for 16 different abrupt-

4xCO2 runs (black curves). The light blue curves show the decomposition of the blue curve into

two exponential components and one oscillatory component. The estimated parameters are listed

in the figures, and the % change refers to the improvement in RMSE from three-exponential fit

to the two-exponential + oscillatory model fit.
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Figure 8. Mean surface temperature (a), AMOC index (b) and sea-ice area (c) for CESM104

abrupt2x (blue), abrupt4x (orange) and abrupt 8x (red). In a) and c), dashed curves are means

over the Northern Hemisphere, and dotted (thinner) curves are means over the Southern Hemi-

sphere.
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ature is strongly correlated with the AMOC index (R = 0.796) and anticorrelated with491

the NH sea ice area (R = -0.919) if using all 2500 annual values for computation. If look-492

ing only at the first decades after the abrupt CO2 doubling, we observe an anticorrela-493

tion between temperatures (which increase) and AMOC (which weakens). A plausible494

mechanism for this is that the strong initial warming inhibits the sinking of water in the495

North Atlantic by reducing its density. On longer time scales, AMOC changes also im-496

pact temperatures, by bringing more/less warm water northwards, which could explain497

the positive correlation.498

The comparison with the abrupt 4x (orange) and 8x (red) simulations from the same model499

shows that all NH temperatures have a small plateau for some decades after the initial500

temperature increase, likely connected to their initial decrease in AMOC strength and501

sea-ice area. There are also some long-term variations later on in these experiments, but502

not following a similar oscillatory behaviour as the 2x experiment. We note for instance503

that the abrupt change around year 2500 in the abrupt8x experiment is strongly con-504

nected to an AMOC recovery. Hence, while linear response models estimated from the505

abrupt2x simulation may well describe the long-term responses to these other abrupt CO2506

experiments, the oscillatory behavior does not transfer to the same degree. In lack of more507

simulations with weaker forcing from this model, it is difficult to judge if the oscillatory508

phenomenon really is part of a linear model that can only be used for weaker forcings,509

or if it is a nonlinear effect or a random fluctuation.510

7.2 Oscillation in cooling HadGEM experiment511

Among models with abrupt-0p5xCO2 experiments, we find one (HadGEM-GC31-LL)512

with an interesting oscillation. This oscillation appears to have an increasing amplitude513

(see Figure 9 a)). To fit our model to these data, we need to allow the oscillatory part514

of the solution to have a positive real part eigenvalue, such that we get unstable/growing515

oscillations. This corresponds to a negative damping time scale τp. In b) we note that516

the oscillation appears mainly in the Southern Hemisphere, and is tightly connected to517

oscillations in the SH sea-ice extent. The Northern Hemisphere temperature is only slightly518

influenced by the oscillation, possibly through the atmosphere or because AMOC cou-519

ples it to the SH. AMOC data are not provided for this experiment, but temperature520

changes in the North Atlantic (not shown) indicate that AMOC is changing. The esti-521

mated parameters are listed in the figure, and shows also that we have allowed negative522

values of Sosc1 and Sosc2. The physical interpretation of this is that the SH sea ice ac-523

tually decreases on average in extent, hence contributing to a warming on an otherwise524

cooling globe.525

This oscillation seems to have a different physical origin than the oscillations/plateaus526

we observe in warming experiments. Similar changes in the SH were observed in the pi-527

Control experiment of this model (Ridley et al., 2022). In the piControl the deeper ocean528

has not yet reached an equilibrium state and the drifting temperatures eventually cause529

the water column in the Weddell and Ross seas to become unstable, and start to con-530

vect up warmer deeper ocean water that melts the sea ice. We suspect the oscillations531

in the abrupt-0p5xCO2 experiment is a similar phenomenon, except that in this run the532

cooling of the atmosphere and ocean surface layer brings the ocean column in the south-533

ern oceans faster into an unstable state. The more the surface is cooling, the larger the534

area can become where this instability and melting of sea ice happens, which can explain535

the growing oscillation and overall reduced sea ice cover.536

7.3 Multidecadal pauses in global temperature increase537

In Fig. 7 it can observed that the abrupt-4xCO2 simulations for several models (e.g., GISS-538

E2.1-G, MRI-ESM2.0, SAM0-UNICON) exhibit a plateau in their global mean surface539

temperature evolution after the initial fast-paced increase. This happens typically be-540

tween years 30 and 70 and after year 70 the temperature starts increasing again. Av-541

eraging the temperature separately over northern and southern hemisphere (NH and SH,542
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Figure 9. Results from HadGEM-GC31-LL abrupt-0p5xCO2 r1i1p1f3, where allowing an

unstable (growing) oscillation makes a good fit. a) The black curve is the global surface air tem-

perature change relative to piControl, the thick blue curve is the fitted model consisting of two

exponential components (slowly varying light blue curves) and one oscillatory pair (plotted to-

gether as the oscillating light blue curve). Note that to make the fit the signs were flipped, such

that the listed parameters S1, S2, Sosc1, Sosc2 are consistent with a positive response. b) The

global temperature response (black) split up in Northern Hemisphere (NH, dashed blue) tem-

perature and Southern Hemisphere (SH, dotted red) temperature. On the right axis we have the

sea-ice area, which is plotted for the SH (dotted gray) and NH (dashed gray).

respectively; see Fig. 10 for the example of GISS-E2.1-G) reveals that the plateau of the543

global mean temperature results from a plateauing or even decrease of the NH temper-544

ature while the SH temperature increases monotonically. More specifically, maps of time545

slices of surface warming make clear that it is the North Atlantic that cools in response546

to the CO2-forcing (Fig. 10, left column). Models that do not exhibit the plateauing global547

mean temperature typically exhibit neither the plateauing in the NH nor the cooling (or548

lack of warming) in the North Atlantic (E3SM-1.0 shown as an example in Fig. 10, right549

column). Though there may be models where the North Atlantic cools/warms less, but550

not enough to cause a significant slowdown of global temperature increase.551

The difference in North Atlantic temperatures between models with and without plateau552

is found to be concomitant with a difference in the development of AMOC and the de-553

velopment of Arctic sea ice (see Figure 10), consistent with earlier studies (Bellomo et554

al., 2021; Mitevski et al., 2021). Models with plateauing global mean temperature tend555

to simulate a stronger AMOC decline in response to the CO2-forcing (e.g. GISS-E2-1-556

G and SAM0-UNICON) than do the models without plateau. Notably, the pre-industrial557

AMOC also tends to be stronger in models with plateau than in those without plateau.558

Furthermore, models with plateau retain more of their Arctic sea ice than models with-559

out plateau. The connection between a plateauing global temperature, weakening AMOC,560

and enhanced NH sea ice cover was also noted by Held et al. (2010) for the GFDL Cli-561

mate Model version 2.1.562

A stronger decline in AMOC is consistent with lower North Atlantic temperatures (Bellomo563

et al., 2021) and less sea ice melt (Yeager et al., 2015; Liu et al., 2020; Eiselt & Graversen,564

2023). The AMOC constitutes a part of the poleward energy transport in the climate565

system that is necessary to balance the differential energy input from solar radiation. The566

AMOC accomplishes northward energy transport by transporting warm water from the567

Tropics into the Arctic increasing the ocean heat release there and thus warming the North568

Atlantic. A decline of the AMOC will hence lead to a cooling or at least a hampering569

of the warming in response to a CO2-forcing. Growing sea ice in response to a cooling570

–20–



manuscript submitted to JGR: Atmospheres

0 25 50 75 100 125 150
Year

0

1

2

3

4

5

6

T 
[K

]

GISS-E2.1-G

0 25 50 75 100 125 150
Year

0

2

4

6

8

10

T 
[K

]

E3SM-1.0

0

10

20

30

40

AM
OC

 in
de

x 
[S

v]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Se
a-

ice
 a

re
a 

[1
06  k

m
2 ]

0

10

20

30

40

AM
OC

 in
de

x 
[S

v]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Se
a-

ice
 a

re
a 

[1
06  k

m
2 ]

120°W

12
0°W

0°

0°

60°E

60°E

60°S 60°S

30°S 30°S

0° 0°

30°N 30°N

60°N 60°N

Surface warming years 13-17

6

4

2

0

2

4

6
T 

[K
]

120°W

12
0°W

0°

0°

60°E

60°E

60°S 60°S

30°S 30°S

0° 0°

30°N 30°N

60°N 60°N

Surface warming years 13-17

10
8
6
4
2

0
2
4
6
8
10

T 
[K

]
120°W

12
0°W

0°

0°

60°E

60°E

60°S 60°S

30°S 30°S

0° 0°

30°N 30°N

60°N 60°N

Surface warming years 68-72

6

4

2

0

2

4

6

T 
[K

]

120°W

12
0°W

0°

0°

60°E

60°E

60°S 60°S

30°S 30°S

0° 0°

30°N 30°N

60°N 60°N

Surface warming years 68-72

10
8
6
4
2

0
2
4
6
8
10

T 
[K

]

120°W

12
0°W

0°

0°

60°E

60°E

60°S 60°S

30°S 30°S

0° 0°

30°N 30°N

60°N 60°N

Surface warming years 146-150

6

4

2

0

2

4

6

T 
[K

]

120°W

12
0°W

0°

0°

60°E

60°E

60°S 60°S

30°S 30°S

0° 0°

30°N 30°N

60°N 60°N

Surface warming years 146-150

10
8
6
4
2

0
2
4
6
8
10

T 
[K

]

Figure 10. Example of models with and without plateaus in global temperature.
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will contribute to keeping the temperature low for a while. Changes in sea ice has also571

been shown to affect AMOC (Sévellec et al., 2017; Liu et al., 2019; Madan et al., 2023).572

The growth of sea ice can therefore be an explanation for an eventual AMOC recovery,573

and finally lead to a decay of the oscillating component.574

8 Discussion575

Many earlier studies comparing different abrupt CO2 experiments focus on experiments576

from single models, and are often mainly interested in the equilibrium response. Such577

studies find both decreasing and increasing climate sensitivities with stronger CO2 forc-578

ing (see discussions in Meraner et al. (2013); Bloch-Johnson et al. (2021)), but the more579

comprehensive analysis by Bloch-Johnson et al. (2021) (including many of the same mod-580

els as this paper) finds that climate sensitivity increases in most models.581

Slab-ocean models are used in several studies (Colman & McAvaney, 2009; Meraner et582

al., 2013), and are useful tools for studying the temperature-dependence of atmospheric583

feedbacks. They are relatively cheap to run, and the pattern effect is somewhat suppressed584

in these models, partly because they go quicker to equilibrium and partly due to the lack585

of ocean dynamics that can change the pattern of the temperature response. This makes586

it easier to separate the nonlinear/temperature dependent feedbacks from the pattern587

effect, but ignores also possible permanent changes in feedbacks due to changes in the588

ocean circulation.589

For a wide range of abrupt CO2 increase experiments (1x to 8x), Mitevski et al. (2021)590

finds that the increase in effective climate sensitivity with increasing CO2 is not mono-591

tonic in two fully coupled models (GISS-E2.1-G and CESM-LE), in contrast to the mono-592

tonic increase found in slab-ocean experiments (Meraner et al., 2013; Mitevski et al., 2021).593

The nonmonotonic increase is related to the decreasing temperatures in the North At-594

lantic and the weakening AMOC. For small enough abrupt CO2 concentration increases595

(up to 2x and 3x CO2 for GISS-E2.1-G and CESM-LE, respectively) the AMOC recov-596

ers after the initial decrease, while for higher concentrations it does not. For higher con-597

centrations, the North Atlantic cools less however, because of the increased warming from598

CO2.599

Manabe and Stouffer (1993, 1994) also focused on studying the thermohaline circulation600

in the Atlantic Ocean in different abrupt CO2 experiments. In their 2x and 4x exper-601

iments they observe a weakening of the thermohaline circulation. The circulation recov-602

ered again for 2xCO2, but remained weak for 4xCO2. For 0.5xCO2 Stouffer and Man-603

abe (2003) finds a weak and shallow thermohaline circulation in the Atlantic.604

The collapse of AMOC above a certain CO2 level is an example of how a change in the605

ocean circulation can cause a nonlinear global temperature response. A change in cir-606

culation changes the surface temperature pattern, which further modulates which atmo-607

spheric feedbacks are triggered. In the case of a permanent collapse of AMOC, the new608

pattern and associated feedbacks are also permanently changed. In general, any change609

in effectiveness of deeper ocean heat uptake can depend on state, and therefore result610

in a nonlinear response. A warming of the surface can lead to a more stratified ocean611

with reduced vertical mixing. To some extent, however, the reduced heat uptake can still612

be approximated as a linear function of the surface temperature increase. We have also613

demonstrated the opposite effect here, that a cooling of the surface can lead to a linear614

oscillating response, as a result of ocean-sea ice dynamics in the Southern Ocean.615

Linear response models can take many forms. Examples of physically motivated mod-616

els are the upwelling-diffusion models (Hoffert et al., 1980) used in the First IPCC re-617

port, and the temperature component of the FaIR emulator (Millar et al., 2017; Smith618

et al., 2018; Leach et al., 2021) used in AR6 (P. Forster et al., 2021). They are power-619

ful tools for e.g. the IPCC reports since they can be used to quickly explore a wider range620
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of forcing scenarios than that simulated by coupled models. We suggest that a gener-621

alised box model is easier to interpret, test and generalise than box models using an ef-622

ficacy factor, since temperature components and different feedback parameters are more623

directly associated with the pattern of surface temperature evolution, instead of being624

indirectly associated through an efficacy factor. We do not have to assume anything about625

the distribution of the boxes as long as we are interested in global quantities, but in or-626

der to better constrain the values of the different feedback parameters, the additional627

information about the pattern can be useful.628

9 Conclusions629

We find that linear response is overall a good assumption for global surface temperatures.630

However, good predictions with linear response models are crucially dependent on good631

forcing estimates. Distinguishing between forcing and response is a challenge, and the632

uncertainty of forcing estimates is the main limitation to determining if a model has a633

linear response or not.634

Mitevski et al. (2022) and Geoffroy and Saint-Martin (2020) highlight the importance635

of taking into account the nonlogarithmic dependence of the forcing on the CO2 concen-636

tration. This implies stronger forcing for each CO2 doubling, also consistent with recent637

findings of (He et al., 2023). He et al. (2023) finds that the stratospheric temperature638

impacts CO2 forcing, and that other forcing agents affecting the stratospheric temper-639

ature therefore can modulate the CO2 forcing. Such nonlinear interaction between forc-640

ing agents should be studied in further detail, as this deviates from a linear framework.641

We hope also the effort initiated by RFMIP (Pincus et al., 2016) to better constrain forc-642

ing estimates will be continued for more models and experiments in the future.643

For models with a plateau in the global temperature response to an abrupt increase in644

CO2 stemming from a cooling of the North Atlantic, the cooling component (which can645

be modelled with an oscillatory part) can counteract the warming from the slow centennial-646

millennial scale component for a long time. For these models, a response model with a647

single exponential response can actually be sufficient for many short-term prediction pur-648

poses. In CESM104 abrupt2x a single exponential explains the majority of the first decades649

after abrupt doubling of CO2, and for all 140 years with linearly increasing forcing.650

Parameter estimation taking into account the possibility for centennial-scale oscillations651

is difficult for short time series, like the typical 150 year abrupt CO2 experiments. We652

encourage more models to run longer abrupt CO2 experiments, also for different levels653

of CO2. Longer runs will help constrain linear response models better on the longer term,654

which can then further be used to quickly predict a wide range of other forcing scenar-655

ios. In particular, more and longer abrupt-2xCO2 would be useful, since these are very656

likely to be within the range where a linear response is a good approximation. Linear657

responses estimated from abrupt-4xCO2 are also quite good approximations, but there658

are some signs of nonlinear responses playing a role in these experiments (Fredriksen et659

al., 2023; Bloch-Johnson et al., 2021). CMIP6 abrupt-4xCO2 warms on average 2.2 times660

abrupt-2xCO2, and we estimate that about a factor 2 can be attributed to the forcing661

difference. The remaining 10% extra warming in abrupt-4xCO2 is likely attributed to662

nonlinear responses, such as feedback changes (Bloch-Johnson et al., 2021).663

References664

Andrews, T., Gregory, J. M., & Webb, M. J. (2015). The Dependence of Ra-665

diative Forcing and Feedback on Evolving Patterns of Surface Temperature666

Change in Climate Models. Journal of Climate, 28 (4), 1630–1648. doi:667

10.1175/JCLI-D-14-00545.1668

Andrews, T., Smith, C. J., Myhre, G., Forster, P. M., Chadwick, R., & Ackerley, D.669

(2021). Effective Radiative Forcing in a GCM With Fixed Surface Tempera-670

–23–



manuscript submitted to JGR: Atmospheres

tures. Journal of Geophysical Research: Atmospheres, 126 , e2020JD033880.671

doi: 10.1029/2020JD033880672

Armour, K. C., Bitz, C. M., & Roe, G. H. (2013). Time-Varying Climate Sensitiv-673

ity from Regional Feedbacks. Journal of Climate, 26 , 4518–4534. doi: 10.1175/674

JCLI-D-12-00544.1675

Bellomo, K., Angeloni, M., Corti, S., & von Hardenberg, J. (2021). Future cli-676

mate change shaped by inter-model differences in Atlantic meridional over-677

turning circulation response. Nature Communications, 12 , 3659. doi:678

10.1038/s41467-021-24015-w679

Bloch-Johnson, J., Pierrehumbert, R. T., & Abbot, D. S. (2015). Feedback temper-680

ature dependence determines the risk of high warming. Geophysical Research681

Letters, 42 (12), 4973-4980. doi: 10.1002/2015GL064240682

Bloch-Johnson, J., Rugenstein, M., Stolpe, M. B., Rohrschneider, T., Zheng, Y., &683

Gregory, J. M. (2021). Climate Sensitivity Increases Under Higher CO2 Levels684

Due to Feedback Temperature Dependence. Geophysical Research Letters, 48 ,685

e2020GL089074. doi: 10.1029/2020GL089074686

Caldeira, K., & Myhrvold, N. P. (2013). Projections of the pace of warming follow-687

ing an abrupt increase in atmospheric carbon dioxide concentration. Environ-688

mental Research Letters, 8 (3), 034039. doi: 10.1088/1748-9326/8/3/034039689

Colman, R., & McAvaney, B. (2009). Climate feedbacks under a very broad range of690

forcing. Geophysical Research Letters, 36 (1). doi: 10.1029/2008GL036268691

Cummins, D. P., Stephenson, D. B., & Stott, P. A. (2020). Optimal Estimation692

of Stochastic Energy Balance Model Parameters. Journal of Climate, 33 (18),693

7909–7926. doi: 10.1175/JCLI-D-19-0589.1694

Edwards, C., & Penney, D. (2007). Differential equations and boundary value prob-695

lems: Computing and modelling (Fourth edition). Pearson.696

Eiselt, K.-U., & Graversen, R. G. (2023). On the Control of Northern Hemispheric697

Feedbacks by AMOC: Evidence from CMIP and Slab Ocean Modeling. Journal698

of Climate, 36 (19), 6777–6795. doi: 10.1175/JCLI-D-22-0884.1699

Etminan, M., Myhre, G., Highwood, E. J., & Shine, K. P. (2016). Radiative forc-700

ing of carbon dioxide, methane, and nitrous oxide: A significant revision of701

the methane radiative forcing. Geophysical Research Letters, 43 (24), 12,614–702

12,623. doi: 10.1002/2016GL071930703

Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame, D., . . .704

Zhang, H. (2021). The Earth’s Energy Budget, Climate Feedbacks, and Cli-705

mate Sensitivity [Book Section]. In V. Masson-Delmotte et al. (Eds.), Climate706

change 2021: The physical science basis. contribution of working group i to707

the sixth assessment report of the intergovernmental panel on climate change708

(p. 923–1054). Cambridge, United Kingdom and New York, NY, USA: Cam-709

bridge University Press. doi: 10.1017/9781009157896.009710

Forster, P. M., Richardson, T., Maycock, A. C., Smith, C. J., Samset, B. H., Myhre,711

G., . . . Schulz, M. (2016). Recommendations for diagnosing effective radiative712

forcing from climate models for CMIP6. Journal of Geophysical Research:713

Atmospheres, 121 (20), 12,460–12,475. doi: 10.1002/2016JD025320714

Fredriksen, H.-B., Rugenstein, M., & Graversen, R. (2021). Estimating Radiative715

Forcing With a Nonconstant Feedback Parameter and Linear Response. Jour-716

nal of Geophysical Research: Atmospheres, 126 (24), e2020JD034145. doi: 10717

.1029/2020JD034145718

Fredriksen, H.-B., & Rypdal, M. (2017). Long-range persistence in global surface719

temperatures explained by linear multibox energy balance models. Journal of720

Climate, 30 , 7157–7168. doi: 10.1175/JCLI-D-16-0877.1721

Fredriksen, H.-B., Smith, C. J., Modak, A., & Rugenstein, M. (2023). 21st Century722

Scenario Forcing Increases More for CMIP6 Than CMIP5 Models. Geophysical723

Research Letters, 50 (6), e2023GL102916. doi: 10.1029/2023GL102916724

Geoffroy, O., & Saint-Martin, D. (2020). Equilibrium- and Transient-State Depen-725

–24–



manuscript submitted to JGR: Atmospheres

dencies of Climate Sensitivity: Are They Important for Climate Projections?726

Journal of Climate, 33 (5), 1863 – 1879. doi: 10.1175/JCLI-D-19-0248.1727

Geoffroy, O., Saint-Martin, D., Bellon, G., Voldoire, A., Olivié, D., & Tytéca, S.728
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Appendix A Solution of generalized box model893

Here we will derive the solution of a generalized box model, based on theory from Edwards894

and Penney (2007).895

The general box model is given by the linear system:

dT(t)

dt
= C−1KT(t) +C−1F(t) (A1)

We consider first the homogeneous problem

dTh(t)

dt
= ATh(t)

where A = C−1K. We note that the matrix of possible solutions (the fundamental ma-
trix) is:

Φ(t) = [v1e
γ1t v2e

γ2t . . . vne
γnt].

where vn are the eigenvectors corresponding to the eigenvalues γn of the matrix A. If
we also set an initial condition T(0) = T0, the homogeneous solution takes the form:

Th(t) = Φ(t)Φ(0)−1T0 (A2)

An alternative notation when A consists of constant coefficients is the matrix exponen-
tial eAt = Φ(t)Φ(0)−1, since

dΦ(t)Φ(0)−1

dt
=

deAt

dt
= AeAt = AΦ(t)Φ(0)−1.

We note that the elements of eAt are a linear combination of elements of Φ(t).896

Consider the case where we have a pair of complex conjugate eigenvalues, γ1 = γ2, v1 =
v2. Let v2 = a+ ib and γ2 = p+ iq, such that

v2e
γ2t = (a+ ib)e(p+iq)t

= (a+ ib)ept(cos qt+ i sin qt)

= ept(a cos qt− b sin qt) + iept(b cos qt+ a sin qt)

Then the pair of complex eigenvalue solutions can instead be given by the real and com-
plex part of the expression above, such that:

Φ(t) = [ept(a cos qt− b sin qt) ept(b cos qt+ a sin qt) v3e
γ3t . . . vne

γnt].

The fundamental matrix of the homogeneous problem is also used to describe the par-
ticular solution to the original nonhomogeneous system:

Tp(t) = eAt

∫
e−AtC−1F(t)dt =

∫
eA(t−s)C−1F(s)ds.

We assume that the forcing vector F(t) is a vector of constants w multiplied by the global897

mean forcing F (t). Further, we note that computing the matrix product eA(t−s)C−1 only898

results in extra constant factors to each entry of eA(t−s), such that the resulting column899

vector obtained from eA(t−s)C−1w will therefore be a linear combination of the entries900

of eA(t−s) (or Φ(t)).901
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Finally, the global mean surface temperature T (t) can be described as a linear combi-
nation (area-weighted average) of the components of the vector Tp(t) +Th(t),

T (t) = G∗(t)T0 +

∫ t

0

G(t− s)F (s)ds (A3)

where

G(t) = ept(c1 cos qt− c2 sin qt) + ept(c3 cos qt+ c4 sin qt) +

K∑
n=3

kne
γnt (A4)

= k1e
pt cos qt+ k2e

pt sin qt+

K∑
n=3

kne
γnt (A5)

and G∗(t) takes the same form as G(t), but has different coefficients kn. In case of more902

pairs of complex solutions, we can replace more pairs from
∑K

n=3 kne
γnt by oscillatory903

solutions of the same form as k1e
pt cos qt+k2e

pt sin qt. For the system to be stable we904

must require the real part of each eigenvalue to be negative. And in the case of only real905

negative eigenvalues, all terms including cosines and sines are dropped from G(t).906

If we know the full history of the system instead of setting an initial value, the solution
is given by

T (t) =

∫ t

−∞
G(t− s)F (s)ds (A6)

Step-response907

When studying the response to a unit-step forcing, we first decompose the response:

T (t) =

∫ t

0

G(t− s) · 1 ds =

K∑
n=1

∫ t

0

Gn(t− s)ds (A7)

where G1(t) = k1e
pt cos qt and G2(t) = k2e

pt sin qt describe the damped oscillatory
responses, and Gn(t) = kne

γnt describe responses associated with real negative eigen-
values. For the latter, we have the temperature responses

Tn(t) =

∫ t

0

Gn(t− s)ds =

∫ t

0

kne
γn(t−s)ds = Sn(1− eγnt) (A8)

where Sn = −kn/γn. For G1(t), we find the step-response

T1(t) =

∫ t

0

G1(t− s)ds =

∫ t

0

k1e
p(t−s) cos q(t− s) ds

= k1

[
ept (p cos qt+ q sin qt)− p

p2 + q2

]
= Sosc1 − Sosc1e

pt cos qt+
k1q

p2 + q2
ept sin qt

= Sosc1

[
1− ept

(
cos qt− q

p
sin qt

)]
(A9)

where Sosc1 = − k1p
p2+q2 , and similarly for G2(t), we find

T2(t) =

∫ t

0

G2(t− s)ds =

∫ t

0

k2e
p(t−s) sin q(t− s) ds

= k2

[
ept (p sin qt− q cos qt) + q

p2 + q2

]
= Sosc2 − Sosc2e

pt cos qt+
k2p

p2 + q2
ept sin qt

= Sosc2

[
1− ept

(
cos qt+

p

q
sin qt

)]
(A10)
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where Sosc2 = k2q
p2+q2 . The total step-response is therefore,

T (t) = Sosc1

[
1− ept

(
cos qt− q

p
sin qt

)]
+Sosc2

[
1− ept

(
cos qt+

p

q
sin qt

)]
+

K∑
n=3

Sn(1−eγnt)

(A11)

Finally, we note that if the forcing was stepped up to a different value than 1, this value908

will be a factor included in Sosc1, Sosc2, . . . , Sn.909

Using step-response to derive other responses910

If we have estimates of the parameters Sosc1, Sosc2, . . . , Sn, p, q, γn, we find that k1 =911

−Sosc1(p
2+q2)

p , k2 = Sosc2(p
2+q2)

q , kn = −Snγn, which we can plug into the expression912

for G(t) and compute the response to other forcings.913
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Figure S1. Ratios of T and N between abrupt-4xCO2 (red)/abrupt-0p5xCO2 (blue) experi-

ments and abrupt-2xCO2 experiments. Solid curves are T ratios and noisy thinner curves are N

ratios.
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January 16, 2024, 12:21pm



X - 4 :

0

1

2

3

4

5

N
 [W

/m
2 ]

CNRMCM61

0.478 x abrupt4x

FAMOUS

0.478 x abrupt4x

MPIESM12

0.478 x abrupt4x
1/4 x abrupt8x
1/8 x abrupt16x

0 1 2 3 4 5
T [K]

0

1

2

3

4

5

N
 [W

/m
2 ]

HadCM3L

0.478 x abrupt4x
0.363 x abrupt6x
1/4 x abrupt8x

0 1 2 3 4 5
T [K]

CESM104

0.478 x abrupt4x
1/4 x abrupt8x

0 1 2 3 4 5
T [K]

CCSM3

0.478 x abrupt4x
1/4 x abrupt8x

Figure S3. N and T both scaled to correspond to abrupt2x, using the scaling factors in the

legends. Black dots are from the abrupt2x experiment, red is scaled abrupt4x, yellow is scaled

abrupt6x, green is scaled abrupt8x, and pink is scaled abrupt16x.

January 16, 2024, 12:21pm



: X - 5

0

1

2

3

4

5

N
 [W

/m
2 ]

HadGEM3-GC31-LL TaiESM1 CanESM5

0

1

2

3

4

5

N
 [W

/m
2 ]

CNRM-CM6-1 IPSL-CM6A-LR CESM2

0

1

2

3

4

5

N
 [W

/m
2 ]

GISS-E2-1-H GISS-E2-2-H GISS-E2-1-G

0 1 2 3 4
T [K]

0

1

2

3

4

5

N
 [W

/m
2 ]

GISS-E2-2-G

0 1 2 3 4
T [K]

MIROC6

0 1 2 3 4
T [K]

MRI-ESM2-0

0.478 x abrupt-4xCO2
-1 x abrupt-0x5CO2

Figure S4. N and T both scaled to correspond to abrupt-2xCO2, using the same scaling factors

for all models (see legend in the bottom right). The black circles are from the abrupt-2xCO2

experiment, red is the scaled abrupt-4xCO2 experiment and blue the scaled abrupt-0p5xCO2

experiment.

January 16, 2024, 12:21pm



X - 6 :

Table S1. Forcing ratios of abrupt-2xCO2 to abrupt-4xCO2 experiments, estimated from

Gregory regressions of the first 5, 10, 20 and 30 years. The ensemble mean is the result of first

averaging all model data for each year, and then perform regressions.

5 10 20 30 Mean
CESM2 0.50 0.54 0.54 0.55 0.53
CNRM-CM6-1 0.51 0.50 0.50 0.54 0.51
CanESM5 0.48 0.48 0.49 0.49 0.49
GISS-E2-1-G 0.49 0.49 0.48 0.49 0.49
GISS-E2-1-H 0.49 0.51 0.49 0.52 0.50
GISS-E2-2-G 0.53 0.53 0.56 0.57 0.55
GISS-E2-2-H 0.48 0.51 0.49 0.45 0.48
IPSL-CM6A-LR 0.64 0.54 0.52 0.53 0.56
MIROC6 0.53 0.44 0.42 0.45 0.46
MRI-ESM2-0 0.50 0.49 0.46 0.47 0.48
TaiESM1 0.50 0.49 0.51 0.52 0.51
HadGEM3-GC31-LL 0.43 0.48 0.48 0.49 0.47
Ensemble mean 0.50 0.50 0.49 0.50 0.50
Mean of model results 0.51 0.50 0.50 0.51 0.50

Table S2. Forcing ratios of abrupt-2xCO2 to abrupt-0p5xCO2 experiments, estimated from

Gregory regressions of the first 5, 10, 20 and 30 years. The ensemble mean is the result of first

averaging all model data for each year, and then perform regressions.

5 10 20 30 Mean
CESM2 -0.75 -1.11 -1.18 -1.28 -1.08
CNRM-CM6-1 -1.11 -1.16 -1.13 -1.22 -1.15
CanESM5 -1.06 -1.16 -1.11 -1.08 -1.10
GISS-E2-1-G -1.03 -0.99 -1.00 -1.02 -1.01
IPSL-CM6A-LR -1.53 -1.32 -1.40 -1.37 -1.41
MIROC6 -1.33 -1.14 -1.07 -1.14 -1.17
MRI-ESM2-0 -0.94 -0.95 -0.87 -0.86 -0.90
TaiESM1 -1.26 -1.28 -1.34 -1.36 -1.31
HadGEM3-GC31-LL -1.05 -1.02 -0.98 -0.99 -1.01
Ensemble mean -1.16 -1.15 -1.12 -1.15 -1.15
Mean of model results -1.12 -1.12 -1.12 -1.15 -1.13
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Table S3. Forcing ratios of longrunmip abrupt-2x to abrupt-Nx experiments, estimated from

Gregory regressions of the first 5, 10, 20 and 30 years. The ensemble mean is the result of first

averaging all model data for each year, and then perform regressions. If excluding FAMOUS for

N=4, the model mean result is reduced to 0.46.

N = 4 5 10 20 30 Mean
MPIESM12 0.44 0.45 0.45 0.46 0.45
HadCM3L 0.31 0.54 0.55 0.52 0.48
FAMOUS 0.60 0.65 0.66 0.67 0.64
CNRMCM61 0.49 0.48 0.48 0.52 0.49
CESM104 0.38 0.41 0.45 0.45 0.42
CCSM3 0.48 0.49 0.41 0.43 0.45
Ensemble mean 0.46 0.50 0.51 0.53 0.50
Mean of model results 0.45 0.50 0.50 0.51 0.49

N = 6 5 10 20 30 Mean
HadCM3L 0.22 0.41 0.40 0.38 0.35

N = 8 5 10 20 30 Mean
MPIESM12 0.30 0.32 0.33 0.33 0.32
HadCM3L 0.22 0.41 0.40 0.38 0.35
CESM104 0.23 0.26 0.27 0.27 0.26
CCSM3 0.29 0.30 0.26 0.26 0.28
Ensemble mean 0.26 0.32 0.31 0.32 0.30
Mean of model results 0.26 0.32 0.31 0.31 0.30

N = 16 5 10 20 30 Mean
MPIESM12 0.22 0.24 0.24 0.25 0.24
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T4x/T2x (T4x/T2x) / (F4x/F2x) T0p5x/T2x (T0p5x/T2x) / (F0p5x/F2x)
CESM2 2.57 1.37 -0.78 0.85
CNRM-CM6-1 2.23 1.15 -0.76 0.88
CanESM5 2.34 1.14 -1.15 1.27
GISS-E2-1-G 2.10 1.02 -0.95 0.96
GISS-E2-1-H 2.08 1.05 nan nan
GISS-E2-2-G 1.86 1.01 nan nan
GISS-E2-2-H 2.09 1.01 nan nan
IPSL-CM6A-LR 2.27 1.26 -1.00 1.41
MIROC6 2.28 1.05 -0.72 0.84
MRI-ESM2-0 2.48 1.18 -1.08 0.98
TaiESM1 1.87 0.95 -0.81 1.06
HadGEM3-GC31-LL 2.24 1.05 -0.90 0.90
Mean 2.20 1.10 -0.91 1.02
Table S4. Mean ratios for CMIP6 models. The mean over 150 years are used, and the forcing

ratios used are taken from the Mean columns in Tables S1 and S2.

T4x/T2x (T4x/T2x) / (F4x/F2x)
MPIESM12 2.23 1.00
HadCM3L 1.96 0.94
FAMOUS 3.33 2.14
CNRMCM61 2.37 1.17
CESM104 2.16 0.91
CCSM3 2.16 0.98
Mean 2.18 1.00

Table S5. Mean ratios for LongRunMIP, using the first 150 years for estimation. The

anomalous values for FAMOUS are omitted when computing the mean values. The forcing

ratios are taken from the Mean column in Table S3.
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Table S6. RMSE values for CMIP6 abrupt-4xCO2 experiments, part I.

model member two-exp three-exp two-exp + osc % change1 % change2
ACCESS-CM2 r1i1p1f1 0.096 0.096 0.089 0.000 -7.261
ACCESS-ESM1-5 r1i1p1f1 0.127 0.114 0.111 -10.392 -2.389
ACCESS-ESM1-5 r2i1p1f1 0.104 0.101 0.102 -3.036 0.872
AWI-CM-1-1-MR r1i1p1f1 0.125 0.118 0.118 -5.490 0.188
BCC-CSM2-MR r1i1p1f1 0.092 0.076 0.078 -17.366 1.891
BCC-ESM1 r1i1p1f1 0.075 0.064 0.067 -13.916 4.082
CAMS-CSM1-0 r1i1p1f1 0.083 0.071 0.071 -13.784 0.015
CAMS-CSM1-0 r2i1p1f1 0.087 0.084 0.084 -3.756 0.620
CAS-ESM2-0 r1i1p1f1 0.097 0.088 0.085 -9.554 -3.548
CESM2 r1i1p1f1 0.088 0.075 0.078 -14.594 4.346
CESM2-FV2 r1i1p1f1 0.131 0.122 0.116 -7.310 -4.958
CESM2-WACCM r1i1p1f1 0.086 0.081 0.079 -6.122 -3.109
CESM2-WACCM-FV2 r1i1p1f1 0.118 0.115 0.108 -2.287 -6.181
CIESM r1i1p1f1 0.111 0.096 0.091 -13.337 -5.750
CMCC-CM2-SR5 r1i1p1f1 0.153 0.152 0.153 -0.812 0.661
CMCC-ESM2 r1i1p1f1 0.167 0.162 0.165 -3.219 2.117
CNRM-CM6-1 r1i1p1f2 0.111 0.097 0.097 -13.008 -0.048
CNRM-CM6-1-HR r1i1p1f2 0.111 0.079 0.076 -28.670 -3.629
CNRM-ESM2-1 r1i1p1f2 0.120 0.120 0.115 0.000 -4.169
CNRM-ESM2-1 r2i1p1f2 0.101 0.101 0.096 0.000 -4.404
CNRM-ESM2-1 r3i1p1f2 0.096 0.096 0.094 0.000 -2.530
CanESM5 r1i1p1f1 0.113 0.093 0.096 -17.727 4.128
CanESM5 r1i1p2f1 0.117 0.092 0.092 -21.178 -0.593
E3SM-1-0 r1i1p1f1 0.144 0.125 0.140 -13.432 12.680
EC-Earth3 r3i1p1f1 0.153 0.147 0.141 -4.366 -3.906
EC-Earth3 r8i1p1f1 0.134 0.134 0.133 -0.136 -1.099
EC-Earth3-AerChem r1i1p1f1 0.138 0.137 0.134 -0.844 -2.366
EC-Earth3-CC r1i1p1f1 0.142 0.139 0.142 -2.506 2.150
EC-Earth3-Veg r1i1p1f1 0.138 0.134 0.136 -2.425 1.091
FGOALS-f3-L r1i1p1f1 0.129 0.121 0.125 -6.581 3.522
FGOALS-f3-L r2i1p1f1 0.128 0.122 0.126 -4.244 3.469
FGOALS-f3-L r3i1p1f1 0.115 0.108 0.109 -6.213 0.413
FGOALS-g3 r1i1p1f1 0.073 0.072 0.072 -1.265 0.290
GFDL-CM4 r1i1p1f1 0.113 0.108 0.107 -4.819 -0.520
GFDL-ESM4 r1i1p1f1 0.090 0.084 0.090 -5.993 6.326

January 16, 2024, 12:21pm



X - 10 :

Table S7. RMSE values for CMIP6 abrupt-4xCO2 experiments, part II.

model member two-exp three-exp two-exp + osc % change1 % change2
GISS-E2-1-G r102i1p1f1 0.147 0.146 0.134 -0.275 -8.424
GISS-E2-1-G r1i1p1f1 0.129 0.129 0.119 -0.239 -7.836
GISS-E2-1-G r1i1p3f1 0.158 0.157 0.150 -0.306 -4.785
GISS-E2-1-G r1i1p5f1 0.185 0.179 0.171 -3.199 -4.465
GISS-E2-1-H r1i1p1f1 0.122 0.112 0.112 -7.558 -0.109
GISS-E2-1-H r1i1p3f1 0.123 0.121 0.123 -1.764 1.795
GISS-E2-1-H r1i1p5f1 0.141 0.129 0.131 -8.242 0.850
GISS-E2-2-G r1i1p1f1 0.103 0.101 0.101 -2.055 -0.028
GISS-E2-2-H r1i1p1f1 0.094 0.087 0.086 -7.596 -0.242
HadGEM3-GC31-LL r1i1p1f3 0.109 0.098 0.099 -9.806 0.502
HadGEM3-GC31-MM r1i1p1f3 0.143 0.092 0.089 -35.752 -3.257
ICON-ESM-LR r1i1p1f1 0.158 0.140 0.130 -11.601 -6.992
IITM-ESM r1i1p1f1 0.106 0.099 0.102 -5.885 2.634
INM-CM4-8 r1i1p1f1 0.068 0.057 0.063 -15.632 10.321
INM-CM5-0 r1i1p1f1 0.087 0.077 0.079 -11.543 1.974
IPSL-CM5A2-INCA r1i1p1f1 0.123 0.114 0.114 -7.165 -0.060
IPSL-CM6A-LR r1i1p1f1 0.150 0.122 0.119 -18.672 -2.691
KIOST-ESM r1i1p1f1 0.115 0.108 0.092 -6.742 -14.876
MIROC-ES2L r1i1p1f2 0.159 0.155 0.156 -2.856 0.730
MIROC6 r1i1p1f1 0.167 0.164 0.163 -1.915 -0.269
MPI-ESM-1-2-HAM r1i1p1f1 0.108 0.089 0.089 -17.801 0.455
MPI-ESM1-2-HR r1i1p1f1 0.079 0.076 0.078 -3.200 2.185
MPI-ESM1-2-LR r1i1p1f1 0.129 0.119 0.118 -7.906 -1.435
MRI-ESM2-0 r10i1p1f1 0.118 0.116 0.099 -1.781 -14.644
MRI-ESM2-0 r13i1p1f1 0.101 0.099 0.088 -2.800 -10.852
MRI-ESM2-0 r1i1p1f1 0.103 0.102 0.085 -0.614 -16.470
MRI-ESM2-0 r1i2p1f1 0.111 0.109 0.083 -2.222 -23.718
MRI-ESM2-0 r4i1p1f1 0.104 0.101 0.097 -2.958 -4.137
MRI-ESM2-0 r7i1p1f1 0.111 0.101 0.094 -9.111 -7.172
NESM3 r1i1p1f1 0.104 0.088 0.088 -14.984 0.006
NorCPM1 r1i1p1f1 0.091 0.091 0.090 0.000 -0.935
NorESM2-LM r1i1p1f1 0.175 0.175 0.162 0.000 -7.727
NorESM2-MM r1i1p1f1 0.172 0.172 0.172 -0.000 -0.197
SAM0-UNICON r1i1p1f1 0.127 0.127 0.111 0.000 -13.109
TaiESM1 r1i1p1f1 0.145 0.117 0.103 -19.762 -11.485
UKESM1-0-LL r1i1p1f2 0.111 0.102 0.108 -8.126 5.738
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Table S8. RMSE values for CMIP6 abrupt-2xCO2 experiments

model member two-exp three-exp two-exp + osc % change1 % change2
CESM2 r1i1p1f1 0.096 0.096 0.096 0.000 -0.029
CNRM-CM6-1 r1i1p1f2 0.106 0.106 0.104 -0.046 -1.814
CanESM5 r1i1p2f1 0.117 0.115 0.113 -1.786 -1.919
GISS-E2-1-G r102i1p1f1 0.144 0.144 0.143 0.000 -0.376
GISS-E2-1-G r1i1p1f1 0.140 0.140 0.136 0.000 -3.105
GISS-E2-1-G r1i1p3f1 0.164 0.158 0.153 -3.483 -3.061
GISS-E2-1-G r1i1p5f1 0.180 0.180 0.179 -0.167 -0.606
GISS-E2-1-H r1i1p1f1 0.121 0.120 0.119 -0.310 -0.914
GISS-E2-1-H r1i1p5f1 0.143 0.139 0.139 -2.329 0.022
GISS-E2-2-G r1i1p1f1 0.116 0.116 0.112 -0.219 -3.268
GISS-E2-2-H r1i1p1f1 0.085 0.081 0.080 -4.737 -1.617
HadGEM3-GC31-LL r1i1p1f3 0.094 0.094 0.094 -0.000 -0.095
IPSL-CM6A-LR r1i1p1f1 0.132 0.127 0.132 -3.902 3.989
MIROC6 r1i1p1f1 0.158 0.158 0.158 -0.049 -0.151
MRI-ESM2-0 r1i1p1f1 0.105 0.105 0.103 0.000 -1.220
TaiESM1 r1i1p1f1 0.111 0.111 0.097 -0.000 -12.556

Table S9. RMSE values for CMIP6 abrupt-0p5xCO2 experiments

model member two-exp three-exp two-exp + osc % change1 % change2
CESM2 r1i1p1f1 0.108 0.107 0.107 -1.232 -0.015
CNRM-CM6-1 r1i1p1f2 0.099 0.098 0.092 -1.013 -6.314
CanESM5 r1i1p2f1 0.104 0.104 0.099 -0.085 -4.829
GISS-E2-1-G r1i1p1f1 0.120 0.119 0.119 -0.775 -0.067
HadGEM3-GC31-LL r1i1p1f3 0.174 0.166 0.103 -4.880 -37.868
IPSL-CM6A-LR r1i1p1f1 0.137 0.119 0.109 -13.440 -7.981
MIROC6 r1i1p1f1 0.074 0.074 0.070 -0.012 -4.546
MRI-ESM2-0 r1i1p1f1 0.100 0.100 0.098 -0.000 -1.767
TaiESM1 r1i1p1f1 0.100 0.094 0.098 -5.397 3.457
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Table S10. RMSE values for LongRunMIP experiments

model exp two-exp three-exp two-exp + osc % change1 % change2
MPIESM12 abrupt2x 0.124 0.119 0.119 -4.066 0.012
MPIESM12 abrupt4x 0.143 0.132 0.132 -8.095 0.026
MPIESM12 abrupt8x 0.146 0.114 0.114 -22.206 0.188
MPIESM12 abrupt16x 0.171 0.097 0.123 -43.441 27.638
HadCM3L abrupt2x 0.179 0.175 0.174 -2.113 -0.403
HadCM3L abrupt4x 0.125 0.117 0.118 -6.782 0.811
HadCM3L abrupt6x 0.123 0.117 0.116 -5.587 -0.104
HadCM3L abrupt8x 0.128 0.124 0.125 -3.127 1.440
FAMOUS abrupt2x 0.180 0.177 0.177 -1.652 -0.171
FAMOUS abrupt4x 0.215 0.142 0.143 -33.919 0.778
CNRMCM61 abrupt2x 0.111 0.107 0.106 -3.359 -1.105
CNRMCM61 abrupt4x 0.117 0.100 0.100 -14.394 0.002
CESM104 abrupt2x 0.153 0.145 0.134 -4.755 -7.499
CESM104 abrupt4x 0.168 0.133 0.132 -20.924 -0.396
CESM104 abrupt8x 0.222 0.168 0.156 -24.219 -7.707
CCSM3 abrupt2x 0.092 0.091 0.091 -1.229 -0.452
CCSM3 abrupt4x 0.102 0.096 0.094 -5.082 -2.096
CCSM3 abrupt8x 0.111 0.086 0.086 -22.644 0.028
IPSLCM5A abrupt4x 0.132 0.107 0.107 -18.925 0.007
HadGEM2 abrupt4x 0.133 0.104 0.104 -21.529 0.357
GISSE2R abrupt4x 0.093 0.080 0.079 -13.923 -0.800
ECHAM5MPIOM abrupt4x 0.195 0.180 0.178 -7.719 -1.045

January 16, 2024, 12:21pm


