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Abstract

Synthetic downscaling of tropical cyclones (TCs) is critically important to estimate the long-term hazard of rare high-impact

storm events. Existing downscaling approaches rely on statistical or statistical-deterministic models that are capable of generat-

ing large samples of synthetic storms with characteristics similar to observed storms. However, these models do not capture the

complex two-way interactions between a storm and its environment. In addition, these approaches either necessitate a separate

TC size model to simulate storm size or involve post-processing to introduce asymmetries in the simulated surface wind. In

this study, we present an innovative data-driven approach for TC synthetic downscaling. Using a machine learning-based high-

resolution global weather model (ML-GWM), our approach is able to simulate the full life cycle of a storm with asymmetric

surface wind that accounts for the two-way interactions between the storm and its environment. This approach consists of mul-

tiple components: a data-driven model for generating synthetic TC seeds, a blending method that seamlessly integrate storm

seeds into the surrounding while maintain the seed structure, and a recurrent neural network-based model for correcting the bi-

ases in maximum wind speed. Compared to observations and synthetic storms simulated using existing statistical-deterministic

and statistical downscaling approaches, our method shows the ability to effectively capture many aspects of TC statistics, in-

cluding track density, landfall frequency, landfall intensity, and outermost wind extent. Taking advantage of the computational

efficiency of ML-GWM, our approach shows substantial potential for TC regional hazard and risk assessment.
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Abstract24

Synthetic downscaling of tropical cyclones (TCs) is critically important to estimate the25

long-term hazard of rare high-impact storm events. Existing downscaling approaches rely26

on statistical or statistical-deterministic models that are capable of generating large samples27

of synthetic storms with characteristics similar to observed storms. However, these models28

do not capture the complex two-way interactions between a storm and its environment. In29

addition, these approaches either necessitate a separate TC size model to simulate storm30

size or involve post-processing to introduce asymmetries in the simulated surface wind. In31

this study, we present an innovative data-driven approach for TC synthetic downscaling.32

Using a machine learning-based high-resolution global weather model (ML-GWM), our ap-33

proach is able to simulate the full life cycle of a storm with asymmetric surface wind that34

accounts for the two-way interactions between the storm and its environment. This ap-35

proach consists of multiple components: a data-driven model for generating synthetic TC36

seeds, a blending method that seamlessly integrate storm seeds into the surrounding while37

maintain the seed structure, and a recurrent neural network-based model for correcting the38

biases in maximum wind speed. Compared to observations and synthetic storms simulated39

using existing statistical-deterministic and statistical downscaling approaches, our method40

shows the ability to effectively capture many aspects of TC statistics, including track den-41

sity, landfall frequency, landfall intensity, and outermost wind extent. Taking advantage of42

the computational efficiency of ML-GWM, our approach shows substantial potential for TC43

regional hazard and risk assessment.44

Plain Language Summary45

Tropical cyclones (TCs) cause significant destruction each year. It is crucial to accu-46

rately assess the risks they present, but this is challenging due to a scarcity of historical47

data. A commonly used approach involves creating a large number of synthetic TCs that48

share key characteristics with real storms, enabling an effective regional risk assessment.49

However, traditional synthetic TC generation approaches do not capture the complex inter-50

actions between storms and their larger-scale environment. Furthermore, these approaches51

do not adequately represent the asymmetric structure of TCs, despite the crucial role that52

they play in modeling storm-related hazards such as rainfall and surges. Recently, advances53

in machine learning-based global weather forecasting (ML-GWM) have provided highly ac-54

curate and efficient high-resolution global weather forecasts that surpass the capabilities of55

conventional numerical weather forecasting. In this study, we introduce a novel synthetic TC56

generation approach, which we call the synthetic TC-GENerative Model (or ”TC-GEN”),57

leveraging the state-of-the-art ML-GWM. We show that TC-GEN can generate a large num-58

ber of synthetic storms that allow the interaction between the storm and its environment.59

We evaluate the performance of TC-GEN in various aspects, including several landfall char-60

acteristics, which are of the most importance for local TC risk analysis. Our study also61

serves as a compelling example of the transformative impact of machine learning and data62

science in revolutionizing climate studies during the era of artificial intelligence.63

1 Introduction64

Tropical cyclones (TCs) are among the most destructive natural disasters, causing65

substantial damage and losses in multiple ocean basins annually. In a warming climate, it is66

projected that TCs are likely to become more intense, with an expected increase in both the67

peak maximum wind speed and the proportion of strong TCs in the future (Pörtner et al.,68

2022; H. Lee et al., 2023). Accurate assessment of TC tracks and intensities is fundamental to69

reducing the impacts of landfalling storms. However, with around 90 storms occurring every70

year and an average of only 20 making landfall, this task is challenging due to the shortage of71

historical data required for regional risk assessment. To overcome data deficiency, a widely72

used approach is to generate synthetic TCs that are capable of responding to various climate73
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conditions (K. Emanuel et al., 2008; C.-Y. Lee et al., 2018; Jing & Lin, 2020). Using large74

samples of synthetic storms, including extreme events with extended return periods, enables75

a comprehensive risk assessment for specific regions in both current and future climates.76

Previous studies on synthetic TC generation have primarily employed two main ap-77

proaches: (1) statistical re-sampling, and (2) physical-based downscaling methods. Statisti-78

cal re-sampling models simulate TC genesis, tracks, and intensities (maximum wind speed79

or minimum central pressure) based purely on historical observational datasets, without80

considering environmental conditions. Examples of such models include those developed by81

(Vickery et al., 2000; James & Mason, 2005; Bloemendaal et al., 2020). These models typ-82

ically require a limited number of input variables, have low computational costs, and thus83

are easily applicable on a global scale. However, these models are not based on physical84

principles and cannot be accurately applied to a non-stationary climate due to changes in85

the background environment. On the other hand, physically-based downscaling methods86

relate TC characteristics to the large-scale background environmental conditions, making87

them environment-dependent. These methods can be statistical-deterministic (e.g., models88

developed by (K. Emanuel et al., 2006)) or purely statistical (e.g., models developed by89

(C.-Y. Lee et al., 2018; Jing & Lin, 2020)). Such environment-dependent approaches are90

capable of simulating the TC climatology in future climate scenarios and, therefore, are suit-91

able for climate change studies (K. Emanuel et al., 2008; C.-Y. Lee et al., 2020; Jing et al.,92

2021). Since the first synthetic TC downscaling approach in this family of models appeared93

in 2006, significant advances have been made in each of the three components (Huang et94

al., 2021; Huang, Wang, Jing, et al., 2022), and these approaches have been widely used95

for applications such as TC-induced surge risk assessment(Lin et al., 2012), regional loss96

assessment (Meiler et al., 2022; Huang, Wang, Liu, et al., 2022), and TC-induced wind load97

analysis (Kareem et al., 2019).98

Both statistical and statistical-deterministic synthetic downscaling methods simulate99

the complete lifecycle of TCs using environmental parameters derived from the background100

environment. However, they cannot simultaneously simulate the two-way interactions be-101

tween the storm and its surrounding environment; therefore, the environment cannot re-102

spond correspondingly to the development of the storm. Furthermore, traditional ap-103

proaches do not comprehensively simulate the characteristics of TCs (i.e. genesis, track,104

intensity, and size) as a cohesive system. For example, although the TC intensity is deter-105

mined based on environmental predictors along the track, the storm track is predominantly106

driven by background winds, which is independent of the intensity component. Given the107

clear and strong correlation between these components, it is prudent to consider the poten-108

tial correlations between these components (Ruan & Wu, 2022). Moreover, the asymmetries109

in the TC surface wind field are not directly captured. Some approaches do not output the110

TC size and require a separate size component to determine the outer radius of the storm111

by random sampling from historical data (Jing & Lin, 2020). Other methods provide the112

radius of maximum wind (K. Emanuel et al., 2008); however, they require an additional113

parametric wind model to generate the full surface wind field, followed by post-processing114

to incorporate asymmetries related to storm translation speed and wind shear (Lin et al.,115

2012; Lin & Chavas, 2012).116

The ideal synthetic downscaling method would simultaneously simulate all character-117

istics of the TC as an integrated system, including the interactions between storms and the118

surrounding environment, to generate detailed wind fields with greater accuracy but similar119

computational efficiency to that of traditional statistical and statistical-deterministic down-120

scaling methods. Recent progress in machine learning-based high-resolution global weather121

modeling (ML-GWM) (Pathak et al., 2022; Bi et al., 2022; Lam et al., 2022) has made122

this possible. ML-GWM systems are based on three-dimensional neural networks that are123

trained on high-quality reanalysis datasets, such as the ERA5 reanalysis (Hersbach et al.,124

2020), to predict weather around the globe. A significant advantage of ML-GWMs is their125

substantially lower computational costs compared to traditional numerical weather fore-126
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casting, while still operating at high spatial resolutions. Representing the cutting edge of127

ML-GWM, Pangu-Weather (Bi et al., 2022) has outperformed the operational Integrated128

Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts129

in medium-range forecasting, with speeds more than 10,000 times faster. The high spa-130

tial resolution of 0.25 degrees also enables Pangu-Weather to precisely track TCs based on131

simulation results.132

In this study, we leverage ML-GWM to create a novel ML-based approach for synthetic133

TCs downscaling, which we call the synthetic TC-GENerative Model (or ”TC-GEN”). This134

involves generating a synthetic TC seed for each storm through a data-driven process, merg-135

ing it with the background environment, and simulating both the storm and its surround-136

ings simultaneously with Pangu-Weather. To achieve this, we first determine the annual137

frequency, date, and location of synthetic TCs using an existing environment-based TC138

genesis model. Next, we perform a Principal Component Analysis on all historical TCs at139

genesis, identifying the principal components that effectively capture most of the variances140

in TC genesis. Using these principal components, we generate synthetic TC seeds with141

weights derived from historical data. We then integrate these TC seeds into the surround-142

ing environment using Poisson blending, a technique widely used in image processing to143

seamlessly merge two images, ensuring that the TC seeds are naturally embedded within144

the larger environmental context while still maintaining important wind structures. Finally,145

we run Pangu-Weather using their pre-trained model, which enables the joint simulation146

of both the storm and its surrounding environment, and bias-correct simulated intensity to147

real intensity. This integrated approach allows us to gather key characteristics of the TC,148

such as the track and the maximum wind speed. It also provides spatial details such as149

the full wind field, allowing for a direct derivation of the outermost extent of the storm.150

It is worth noting that several key steps of this ML-based method are data driven, relying151

heavily on historical data that lack substantial input from physics. Furthermore, while the152

spatial resolution of 0.25 ° is a high resolution for global climate models, it is still too coarse153

to accurately resolve the inner core and the structure of a storm. Therefore, we should use154

the simulated three-dimensional structure including the horizontal surface wind field with155

care, as it is likely to be unrealistic.156

Despite these limitations, our ML-based method offers a unique set of collective ad-157

vantages compared to previous TC downscaling approaches: 1) Holistic simulation: unlike158

previous studies where the genesis, track, and intensity of the storm are simulated sep-159

arately, this approach can simulate these three storm components together as a cohesive160

system; 2) Integrated simulation: similar to numerical modeling, this approach can sim-161

ulate both the storm and its environment simultaneously, thus allowing for the two-way162

interactions between the storm and the environment; 3) Intrinsic asymmetry: while the TC163

core and intensity may not be fully resolved, this approach has the capability to provide164

crucial asymmetric characteristics in the TC surface wind field. This, in turn, allows for the165

inference of the asymmetric outermost wind extent of a storm, which is essential for studying166

tropical cyclone-induced hazards such as surges and heavy rainfall; 4) Efficiency: utilizing167

pre-trained Pangu-Weather, this approach inherits the efficiency of statistical downscaling168

methods that require little computational resources, enabling large samples of synthetic TCs169

to be generated in days, a time frame comparable to the work of (Bloemendaal et al., 2020);170

5) Scalability: this approach can be easily applied to other ocean basins and other high-171

resolution climate datasets, including future climate projections such as those in CMIP6. A172

successful extension of this approach is achieved when the climate dataset used for training173

processes high resolution for detecting storm eyes, provides a reasonable representation of174

the storm’s outer size, and involves the development of a corresponding pre-trained machine175

learning model as the core simulator.176

To evaluate TC-GEN, we generate a large sample of synthetic TCs and compare those177

simulated storms with historical observations. We also place TC-GEN in context with178

an existing statistical-deterministic downscaling approach, represented by Emaneul et al.179
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(2008) (KE08, (K. Emanuel et al., 2008)) and a statistical downscaling method, represented180

by the Princeton environment-dependent probabilistic model (PepC, (Jing & Lin, 2020)).181

We choose these two existing approaches as they are both environment dependent and182

have distinct model components. The metrics we use for comparison include the density of183

the tracks over the ocean, the maximum lifetime intensity, the landfall frequency, and the184

landfall intensity distributions. Given that KE08 and PepC lack the ability to simulate the185

outer size of TC, we only compare the distribution of TC outer size simulated by TC-GEN186

with that of the historical TCs identified using renalaysis data. In all of these metrics,187

we demonstrate a strong alignment between simulated storms and observational data. We188

further assess the adaptability of TC-GEN to different reanalysis datasets through two189

analyses: one with the ERA5 reanalysis, on which Pangu-Weather is trained, but using190

different temporal resolutions for model initialization, and the other using an alternative191

reanalysis dataset from the National Centers for Environmental Prediction (NCEP). We192

show that the effectiveness of TC-GEN depends on the consistency between the training193

reanalysis dataset used to train the ML-GMW and the data used for model initialization.194

Based on these analyses, we summarize the strength and limitations of TC-GEN and propose195

potential improvements for future work.196

2 Pre-trained Models and Data197

2.1 Neural network-based global weather model198

In this study, we use Pangu-Weather as the core ML-GWM to generate synthetic TCs.199

Pangu-weather is an artificial intelligence-based model for medium-range global weather200

forecasting, which has been shown to outperform the operational integrated forecasting201

system of the European Center for Medium-Range Weather Forecasts (ECMWF) (Bi et al.,202

2022).203

Pangu-Weather is trained on atmospheric reanalysis data from the ERA5 reanalysis204

data (Hersbach et al., 2020), using 69 atmospheric and surface variables as input and fore-205

casting these variables for the subsequent time step. The 69 variables include 65 upper-air206

variables (geopotential height, specific humidity, temperature, u and v component of wind at207

13 pressure levels) plus four surface weather variables (2m temperature, u- and v- component208

of 10m wind speed, and mean sea level pressure). Pangu-Weather offers four pre-trained209

models that are capable of forecasting global weather data 1, 3, 6, and 24 hours ahead. We210

use the model with a lead time of 6 hours since it is consistent with the temporal resolution211

of TC IBTrACS data (see Section 2.2). Pangu-Weather has the ability to produce accurate212

simulations that span multiple consecutive days, a time frame that is adequate to simulate213

the entire life span of the most TCs. Pangu-Weather is open-source, and the pre-trained214

models can be downloaded at https://github.com/198808xc/Pangu-Weather.215

Pangu-Weather has several distinct advantages, making it highly suitable for this study.216

First, Pangu-Weather is among the state-of-the-art ML-GWM systems with the highest217

performance in weather forecasting. Second, Pangu-Weather has a high horizontal resolution218

of 0.25° × 0.25°. Although the thermodynamic processes of the TCs cannot be fully resolved219

at this spatial resolution, it is sufficient to detect the low pressure center, which enables220

effective storm eye tracking. Third, Pangu-Weather is computationally efficient (more than221

10,000 times faster than operational dynamical models), making it capable of simulating222

large numbers of synthetic storms. In our experiments, we run Pangu-Weather with 8 RTX223

A6000 GPUs, which adequately support all our computational tasks.224

2.2 Tropical Cyclone Data225

TC observations are extracted from IBTrACS data (version v04r00) (Knapp et al.,226

2018, 2010), which includes the location (latitude and longitude) of each storm every 6227

hours, along with its maximum sustained wind speeds measured at a height of 10 meters228
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above the sea surface. We use historical TC data in the North Atlantic Basin between 1979229

and 2022 to generate TC seeds, correct biases in intensities simulated from Pangu-Weather,230

and evaluate TC-GEN performance. We use extended TC data dating back to 1900 to231

analyze landfall frequency, which provides a more precise assessment of sampling errors232

with a larger number of TC tracks.233

2.3 Atmospheric Reanalysis Data234

Pangu-Weather requires global atmospheric and surface variables at the current time235

step to forecast the next step. To be consistent with the input setup for the Pangu-Weather236

model, we use ERA5 reanalysis with a resolution of 0.25° × 0.25°, the highest available237

spatial resolution, and a temporal resolution of both 6-hour and monthly reanalysis data238

to initiate Pangu-Weather. Using 6-hour reanalysis data for Pangu-Weather initialization239

is intuitive, as it ensures alignment with the model setup and prevents domain gaps. How-240

ever, generating synthetic TCs with 6-hourly reanalysis data presents two challenges. First,241

introducing a synthetic TC to the 6-hourly reanalysis data may result in multiple storms242

developing on the same map. This does not reflect reality, as the simultaneous occurrence243

of multiple storms is relatively rare (Chowdhury et al., 2022). Second, generating synthetic244

TCs by initiating Pangu-Weather with 6-hourly data requires downloading extensive his-245

torical ERA5 reanalysis data, resulting in substantial data storage requirements. On the246

contrary, starting Pangu-Weather with monthly data significantly reduces the data storage247

burden and mitigates the problem of simultaneous occurrence. In this study, we use both248

6-hourly and monthly reanalysis data for Pangu-Weather initialization, and under both sce-249

narios we use the pre-trained model with a lead time of 6 hours to simulate storms. We250

denote these two scenarios as ’TC-GEN hourly’ and ’TC-GEN monthly’ in the following251

text and results.252

In addition to ERA5 reanalysis, we test TC-GEN performance when initiating Pangu-253

Weather with the NCEP GFS from Global Forecast Grids Historical Archive at 0.25°×0.25°254

resolution (for Environmental Prediction/National Weather Service/NOAA/US Depart-255

ment of Commerce, 2015). We opt for this reanalysis dataset because it provides all 69256

variables required by Pangu-Weather, and it is available at a resolution of 0.25°×0.25° with257

global coverage.258

2.4 Existing downscaling approaches259

We contextualize TC-GEN by comparing it with two existing synthetic downscaling260

approaches. The first is the statistical-deterministic model developed by Emanuel et al.261

(2008) (K. Emanuel et al., 2008), which applies a random seeding method to initiate the262

storm, a beta and advection model based on local winds to propagate the storm, and a263

deterministic Coupled Hurricane Intensity Prediction System (CHIPS; (K. Emanuel et al.,264

2004)) model to estimate the intensity of the storm based on the local thermodynamic state265

of the atmosphere and ocean. The model has been extensively applied to assess TC hazards266

(K. Emanuel, 2017; Marsooli et al., 2019), economic losses (Mendelsohn et al., 2012; Meiler267

et al., 2022), and changes in TC climatology under future projected climate conditions268

(K. Emanuel et al., 2008; Jing et al., 2021). Here, we compare our ML-based TC-GEN269

results with a total of 4,100 synthetic TCs from 1980-2020 that intensify and reach TC270

strength (lifetime maximum intensity exceeds 34 kt).271

We also compare our TC-GEN results with the ”PepC”, a statistical synthetic down-272

scaling approach of Jing and Lin (2020) (Jing & Lin, 2019). PepC has three components, a273

genesis model, a track model, and an intensity model. The genesis component determines274

annual frequency, as well as the time and location of weak vortices. The genesis model is de-275

veloped using Poisson regression based on four large-scale environmental variables: absolute276

vorticity, wind shear, relative humidity, and maximum potential intensity (K. A. Emanuel,277

1988), which are contained in a genesis index (Tippett et al., 2011). After initialization,278
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an analog-wind track model is used to propagate the storm based on analog factors (from279

historical track patterns) and local in situ winds. The intensity of the storm is simulated as280

a Markov process using an environment-dependent hurricane intensity model (Jing & Lin,281

2019). In (Jing & Lin, 2020), the authors generated more than 55,000 TCs from 100 inde-282

pendent realizations of the genesis of TCs during the period 1979-2014. To compare with283

our ML-based TC-GEN results, we randomly select 10 independent 36-year realizations,284

including a total of 3,690 TCs that intensify and reach TC strength.285

3 TC-GEN: data-driven synthetic TC downscaling approach286

TC-GEN, our data-driven synthetic TC downscaling approach based on high-resolution287

ML-GWM, includes the following main steps:288

1. Obtain the annual frequency as well as the date and locations of synthetic TCs from289

an environment-based TC genesis model;290

2. Generate synthetic TC seeds using data-driven approach;291

3. Integrate synthetic TC seeds into the background environment represented by global292

reanalysis data;293

4. Run Pangu-Weather to simulate the complete TC life cycle, detecting and tracking294

the TC from simulation outputs;295

5. Adjust TC intensity (maximum sustained winds) by an intensity bias correction296

model;297

6. Retrieve the size of synthetic TCs (outer extent where the wind decreases to a specific298

threshold) from the simulated TCs.299

The idea is shown in Figure 1 and we explain each step in detail in the following sections.300

Figure 1. TC-GEN. We propose an AI-empowered approach for synthetic TC downscaling

where TC seed is created through a data-driven approach and then incorporated into a reanalysis

environment map. Both the TC and its surrounding environment are then simulated in an inter-

active manner. The idea is illustrated in the figure, which presents five snapshots of total wind at

different stages of the storm’s life cycle.

3.1 Annual counts, date and locations of TC Seeds301

The first step of TC-GEN is to determine the annual frequency and the date and302

location of the synthetic TCs. We use an environment-based hierarchical Poisson genesis303

model to determine the number of synthetic storms that occur each year, as well as when304

and where they originate over the ocean basin. This model is the genesis component of PepC305

(Jing & Lin, 2020), which has been shown to generate TC formations that align closely with306

observations, including interannual variations. This genesis model simulates the formation307
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of TCs for each month. When initializing Pangu-Weather with 6-hour reanalysis data, we308

randomly assign the precise date and time for each storm within the month of its genesis.309

3.2 Structured TC seeds generation via data-driven approach310

Previous studies using either statistical-deterministic or purely statistical TC downscal-311

ing approaches provide only the timing and position of TC seeds. There is no assumption312

about the structures or spatial features of the synthetic TCs at genesis. To create synthetic313

TC seeds with fine-grained spatial features, we employ a two-step process. First, we use314

principal component analysis (PCA) to learn a linear representation of atmospheric and sur-315

face variables from historical TCs at their genesis. PCA helps identify the most significant316

patterns in the data. Next, we create synthetic TC seeds based on this representation by317

sampling various sets of linear blending weights, according to the variance in the historical318

data.319

Principal Component Analysis (PCA) is a widely recognized method used for dimension320

reduction in the fields of data science and machine learning. Given high-dimensional data321

represented by a matrix X with dimensions M ×N , where M is the number of observations322

and N is the dimension of features, the main objective of PCA is to identify a set of323

orthogonal axes (principal components) along which the variance of the data is maximized.324

By projecting the original data onto these principal components, PCA effectively reduces the325

complexity of the data, while retaining the essential information contained in the dataset.326

In a low-rank system, a small number of principal components are sufficient to explain327

the majority of the variance present in the data. Consequently, in such systems, it is328

feasible to generate synthetic data with only a few key principal components. PCA has329

been successfully applied in many earth science applications (Nandi et al., 2016; Bretherton330

et al., 1992), and we refer the reader to the survey (Abdi & Williams, 2010) for more details.331

We use 690 historical TCs in the period 1979 - 2022 to create a linear representation332

of TC seeds using PCA. A TC seed is defined as a circular region with a radius equivalent333

to 64 grid cells at genesis (approximately 1600 kilometers), centered on the storm’s eye.334

This circular region is large enough to encompass the outermost extent of most TCs at335

genesis. We collect TC seeds for each of the 69 atmospheric and surface variables from336

the ERA5 reanalysis for all M = 690 storms, which form a matrix with dimensions of337

128 × 128 × 69 × 690, representing historical TC seeds. Next, we perform PCA to reduce338

the dimensions of the data. The cumulative sum of the largest 20 eigenvalues is shown in339

Figure 2. We show that historical TC seeds form a low-rank system, with the top 10, 15,340

20 principal components sufficient to explain more than 94.1%, 96.2%, and 97.2% of the341

variance in the data. Moreover, the top 50, 100 and 500 principal components explain more342

than 99% of the variance, with the top 500 principal components explaining more than343

99.9%. Using 50, 100 and 500 principal components, we show that the reconstructed wind344

fields (including total wind, as well as the u and v components) effectively preserve most of345

the detailed spatial features present in historical TC wind fields, as in Figure 2. To ensure346

quality, we use 500 principal components that represent the majority of the variations in347

actual environmental fields.348

We create synthetic TC seeds by randomly sampling the low-dimensional space based349

on the top 500 principal components. The weight of each principal component is determined350

by randomly sampling from a Gaussian distribution centered around zero, with a variance351

equal to its corresponding eigenvalue (i.e. the variance explained). This allows synthetic TC352

seeds to have the same distribution as observational TC seeds. In Figure 3 we show three353

synthetic TCs at their genesis. We show four important variables (mean sea level pressure,354

temperature, and surface u- and v- winds) to demonstrate the effectiveness of this approach355

in simulating realistic TC seeds at genesis with diverse characteristics in terms of intensity,356

radius, and asymmetry.357
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Figure 2. Principal Component Analysis on TC genesis. We run PCA on TC historical

data to learn a low dimensional representation for TC seeds at genesis. Subplot (a) shows the

cumulative sum of the eigenvalues sorted in descending order, where each point represents the

proportion of total variance explained by considering the corresponding number of top principal

components. Subplot (b) shows the reconstruction of TC seeds at genesis for two distinct historical

storms, using 50, 100, 500 principal components respetively. Both TC seeds are almost completely

reconstructed using 500 principal components.

3.3 Integrating synthetic TC seeds into background environment with weighted358

Poisson blending359

After generating a synthetic TC seed, we integrate it into the surrounding environment360

at a specific date and location identified by the PepC genesis component (see Sec 3.1). This361

step is critical for Pangu-Weather to simulate the environment along with the synthetic362

TC seeds. To achieve seamless integration of TC seeds with the background environment,363

we employ Poisson blending, a widely used approach to smoothly insert one image into364

another, without introducing artifacts at the boundary of the inserted image (Pérez et365

al., 2003). The fundamental concept of Poisson blending is to copy the gradients between366

spatially neighboring pixels rather than to directly copy the absolute color values. This367

approach ensures a smooth transition between different regions of the images, effectively368

eliminating visible seams and enhancing the coherence of the blended result.369

Poisson blending can be mathematically expressed as follows: Let f∗ be a known func-
tion defined on a closed subset of S ⊂ R2 (for example, color defined on pixel grids), and
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Figure 3. Synthetic TC Seeds. This figure shows three synthetic TC seeds at genesis using

the data-driven approach with 500 principal components. Each column shows one case, where mean

sea level pressure, temperature, surface u- and v-winds are visualized.

g be another known function defined on a closed subset Ω ⊂ S with boundary ∂Ω. The
objective of poisson blending is to find an unknown function f on Ω, such that

min
f

∫∫
Ω

|∇f −∇g|2, withf |∂Ω = f∗|∂Ω (1)

, where ∇. = [ ∂.∂x ,
∂.
∂y ]. This optimization aims to achieve a blended result where, within the370

source region, it closely resembles the gradience of g, while at the boundary it should be371

similar to f∗. For more details and numerical solutions, we refer the reader to (Pérez et al.,372

2003).373

As an analogy to our problem, f∗ and g represent the global environment map (that374

is, target matrix) and synthetic TC seeds (that is, source matrix), respectively. In this375

context, Poisson blending aims to combine these two matrices, ensuring that the gradients376

of the blended results within the source region closely resemble the synthetic TC seeds, while377

at the boundary, they should be similar to the background environment. In practice, we find378

that naive Poisson blending still results in noticeable artifacts. Therefore, we adopt a linear379
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blending technique that incorporates both the source and target gradients, with a weight380

determined by the distance to the boundary. The optimization is modified to accommodate381

this approach:382

∇ = (1− λ)∇f∗ + λ∇g, λ =

{
5d

R
, d <

R

5
1, else

(2)

where d is the distance of each pixel to the boundary and R represents the radius of the383

blended region. This optimization guarantees a smooth integration of TC seeds into the384

global environment map, with natural transitions at the boundaries and the structure of385

TC well maintained.386

We use this Poisson blending approach to seamlessly integrate the 69 atmospheric and387

surface variables of synthetic TC seeds within a radius of 64 grid cells (approximately 1600388

km) into the corresponding ERA5 reanalysis data. In Figure 4, we show the Poisson blend389

process using mean sea level pressure as an example, which clearly reveals the eye of the390

storm. Similarly, we show three cases as examples of weak, moderate, and strong storms,391

illustrating the effectiveness of Poisson blending across a range of storm characteristics.392

Figure 4. TC seed integration using Poisson blending This figure shows the advantage

of Poisson blending over naive stitching when integrating synthetic TC seeds into the environment.

Mean sea level pressure is used as an example due to its ability to clearly reveal the eye of the

storm. Naively stitching results in a sharp and unrealistic boundary. In contrast, the Poisson

blending approach effectively integrates TC seeds into the environment, preserving both structures

and achieving a smooth blend.

3.4 Simulation and tracking393

After seamlessly integrating the generated TC seeds into the background environment394

map, we proceed to run Pangu-Weather, simulating the entire life cycle of each storm over395

a 15-day period, with 6-hour intervals between each step. To track the location of storm396

center from Pangu-Weather outputs, we formulate a Gaussian kernel over mean sea level397

pressure and vorticity at 10 meters, to identify the local maximum vorticity or minimum398
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pressure associated with the characteristic bell-shaped symmetric structure typical of a399

storm. Then we determine the center of the storm by averaging the locations of these two400

local extrema. Empirically, we set σ = 2 for the Gaussian kernel and σ1 = 2, σ2 = 8 for401

the Laplacian kernel, for the best performance. In most cases, the positions of maximum402

vorticity closely align with those of minimum sea level pressure. However, when a TC’s403

symmetric structure is not well maintained, this approach aids in stabilizing the outcomes404

and provides robust tracking. It should be noted that Pangu-Weather includes an algorithm405

for tracking TCs, which is based on relative vorticity, geopotential thickness, and 10-m wind406

speed. Our tracking method delivers comparable results, while requiring fewer data inputs.407

This advantage makes our approach generalizable to other weather forecasting systems that408

may lack specific variables (for example, ForecastNet does not output vorticity; see (Pathak409

et al., 2022)).410

3.5 Bias correction of TC maximum wind speed411

The Pangu-Weather model is trained using ERA5 reanalysis data. Since the fine-
grained structure of a storm cannot be fully resolved in the ERA5 reanalysis data, the
physical processes of simulated storms are also not correctly resolved. This leads to an
underestimation of the maximum wind speeds of the TC. To address this problem, we
develop a separate machine learning model to correct this bias based on the characteristics
of the storm and the environment within the inner region of the storm. Due to the recurrent
nature of this problem, where the wind speed at time t is highly correlated with the wind
speed at previous time steps, we formulate the problem using a recurrent neural network
based on long-short-term memory (LSTM). The structure of our network is shown in Figure
5 subplot b, where the bias correction stage is formulated as:

Itrue(t) = ea(t)Iraw(t) + b(t) (3)

a(t), b(t) = F(E(x(1)),E(x(2)), · · · ,E(x(t))|θ) (4)

In Eq. 3, we use the term ”raw” to indicate the intensity directly simulated from TC-412

GEN, which is expected to have the same statistics as those in the ERA5 reanalysis data.413

The term ”true” is used to denote the real intensity, which has statistics similar to IBTrACs.414

Thus, Iraw and Itrue represent the maximum wind speed before and after bias correction.415

E(x(t)) represents the environmental predictors extracted from the area surrounding the416

TC center, which is located at x(t) at time t. F represents a machine learning model with417

learnable weights θ.418

We use five environmental variables (mean sea level pressure, u- and v- component of419

10m wind speed, relative humidity at 850 hpa and temperature at 850 hpa) that have been420

identified as the most important predictors of the intensity of TC (Jing & Lin, 2019). At421

each time step, the five variables within a circular region, covering a radius equivalent to422

49 grid cells and centered at the TC, are combined with a positional embedding (Lam et423

al., 2022) to create a raw input. We then convert the raw input to a feature vector using424

a feature encoder comprised of 4 ResBlocks, and feed these feature vectors into an LSTM,425

predicting a(t), b(t) at each time step.426

In practice, we note that a model trained with ERA5 as input may not perform427

equally well during the test phase when the inputs are derived from Pangu-Weather predic-428

tions. This discrepancy arises because of the well-known domain gap issue in deep learning429

(Tremblay et al., 2018; Wei et al., 2018; Nam et al., 2021). Essentially, nuanced differences430

between training and testing data on the input side (Pangu-Weather simulation vs. ERA5431

in our case) can lead to a catastrophic drop in model performance.432

To bridge the domain gap, we pre-train the feature encoder so that the extracted feature433

is informative to reconstruct the raw ERA5 environment, yet indistinguishable in terms of434

its source, i.e. whether it comes from ERA5 or Pangu-Weather. Such properties are achieved435

by training the feature encoder through an auto-encoder architecture, as shown in the Figure436
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5 subplot a. Specifically, compressed feature vectors go through a feature encoder, followed437

by a feature decoder to reconstruct the original features using an L1 loss. Additionally,438

we introduce an adversarial loss that performs a binary classification task, attempting to439

discern the source of the feature (ERA5 or Pangu-Weather). The feature encoder is trained440

to deceive the discriminator to the extent that it cannot identify the source of the feature.441

As a result, the extracted features become domain-agnostic after this stage and the domain442

gap is mitigated.443

Overall, we start by training the auto-encoder architecture using a combination of444

environment maps sampled from both the ERA5 and Pangu-Weather output (Figure 5445

subplot a). Once the autoencoder converges, we discard the decoder, freeze the encoder446

weights for feature extraction, and only update the LSTM weights (Figure 5 subplot b).447

To train the LSTM, we divide the historical data of the TCs from 1979 to 2021, randomly448

selecting 80% of the TCs for training and reserving the remaining 20% for testing. We use449

the real maximum wind speed data from IBTrACS as ground truth. The LSTM is trained450

with an AdamW optimizer (Loshchilov & Hutter, 2017), with a Huber loss and a learning451

rate of 0.0001 over 10 iterations.452

Figure 5. Structure of the intensity bias correction model The model consists of two

stages, (a) a pre-trained stage to bridge domain gap between ERA5 and Pangu-Weather output so

that all features become domain-agnostic; and (b) a bias correction stage that adjust the maximum

wind speed using a Long Short-Term Memory (LSTM) model.

The performance of the LSTM-based bias correction model is illustrated in Figure 6,453

which shows four cases that represent various characteristics of the storm. These include454

typical growth and decay, rapid intensification, and storms that weaken after hitting an455

island but subsequently strengthen after moving over the ocean.456

3.6 Extracting the radius of outer size from each storm457

The destructive potential of a TC is related to both its maximum sustained wind speed458

and the radial extent of the near-surface wind, the latter typically measured by the outer459
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Figure 6. Examples of bias correction in TC maximum wind speeds Four synthetic

TCs are shown including (a, c) two TCs illustrating a storm’s typical growth and decay, (b) TC

underwent rapid intensification, and (d) TC hit small islands followed by subsequent growth. The

bias correction model effectively simulates the realistic evolution of intensity while capturing the

correlation of TC intensity with the previous time step, thus maintaining strong continuity.

size of the TC (Powell & Reinhold, 2007; Irish et al., 2008). Therefore, it is important460

to assess how well TC-GEN can replicate the realistic horizontal wind structures of TCs.461

Furthermore, since TC seeds are artificially integrated into the surrounding environment,462

successfully reproducing the historical distribution of the outer size of TCs can, to some463

extent, prove that integration based on weighted Poisson blending is feasible.464

Previous studies have shown that reanalysis datasets, including the ERA5 reanalysis465

used in this study, are capable of effectively capturing the TC outer size, which is defined466

by radii where convection is minimal and the atmosphere maintains a radiative–subsidence467

balance (Schenkel et al., 2017). In earlier studies, multiple thresholds for azimuthal mean468

tangential winds have been used, such as 2 m/s, 6 m/s, 8 m/s, 9 m/s, and 12 m/s (Bian et469

al., 2021). Here, we use three size metrics based on the radii where the wind diminishes to470

2 m/s (r2), 6 m/s (r6), and 12 m/s (r12), to establish a range of size metrics that include471

both the smallest and the largest metrics.472

We identify the outer size of the TC following the procedures outlined in (Schenkel et473

al., 2017). The procedure involves the following five main steps: 1) remove the background474

flow from the surface wind field, which is empirically defined as the storm translation vector475

rotated 20 deg cyclonically and diminished by a factor of 0.55, as described in the method476

by (Lin et al., 2012); 2) establish a TC-centered polar coordinate system, where the cyclone477

center serves as the origin, and the grid spacing in the radial direction is set at 0.5 times478

the archived reanalysis grid spacing; 3) compute the tangential wind at the grid points of479

the reanalysis data for each annular region of the polar coordinate system; 4) remove all480

radial points if the data asymmetry parameter exceeds 0.5, following (Chavas & Vigh, 2014);481

5) calculate the gridded radial profile of azimuthal-mean 10-m tangential wind using cubic482

Hermite polynomial interpolation, based on which we then identify the radii of at which the483
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10-meter azimuthal-mean tangential wind speeds decrease to a certain threshold (12 m/s, 6484

m/s, and 2 m/s).485

4 TC-GEN Evaluation486

We evaluate the performance of TC-GEN by comparing simulated TCs with historical487

observations for the following TC characteristics: track density, landfall frequency along488

the US-Mexico coastline, lifetime maximum intensity (LMI), landfall intensity, and outer489

size under three size metrics. For each TC, we generate a synthetic TC seed and blend490

it into the corresponding hourly or monthly environment map, with the location and time491

provided by the PepC genesis model. We then run Pangu-Weather to simulate each storm492

and apply the bias correction model to adjust the maximum intensity for each step. The493

track is terminated if the raw maximum intensity is below 8 m/s, the adjusted intensity494

is below 15 kt, the central vorticity is below 5e−5s−1, or if the storm has been over the495

land for five consecutive steps, which is equivalent to 30 hours. To form a fair comparison,496

we remove storms with a lifetime maximum intensity less than 25 kt for all datasets. As497

TCs would undergo an extratropical transition at high latitudes, we restrict our analysis498

to samples where the storm center is south of 50N. The remaining storms are used for the499

TC-GEN evaluation.500

4.1 Track Density501

Figure 7 compares the simulated tracks that are initiated with both hourly and monthly502

data, with observed tracks and simulated tracks using KE08 and PepC. The colors represent503

the spatial track density normalized to the maximum of the basin. We show that both sets of504

simulated tracks replicate the typical recurving pattern seen in the observed tracks relatively505

well, which is comparable to KE08 and PepC. Compared to observations, TC-GEN simulated506

tracks exhibit a negative bias in the main development region, mainly stemming from the507

negative bias in the genesis component of PepC within this region. We test this hypothesis508

with a sensitivity test by resampling the genesis according to the spatial distribution of509

historical genesis locations. After sampling, we find that the simulated tracks effectively510

capture the hotspots in the main development region, the southeast US coast, and the Gulf511

of Mexico, although there is a slight positive bias in the Gulf of Mexico with hourly data512

and in the West Caribbean Sea with monthly data (Figure S1).513

We further evaluate the performance of TC-GEN by comparing the 6-hourly north-514

south and east-west displacements of simulated and observed tracks, which serves as a515

means to assess TC-GEN’s performance in simulating individual tracks. The results are516

shown in Figure 8. All simulated data sets are largely consistent with the observations.517

For simulated tracks initiated with hourly data, there is a slight positive bias for positive518

meridional displacement, a slight negative bias for negative meridional displacement; and519

correspondingly, a negative bias for positive zonal displacements and a positive bias for520

negative zonal displacements, which could come from fewer recurvations in simulated storm521

tracks that originate in the main development region. Additionally, positive biases in merid-522

ional displacements may also arise from the deviations in eastward moving tracks at high523

latitude (near Europe), where they should have been terminated because of their low wind524

intensity. These patterns are also seen in simulated tracks that are initiated with monthly525

reanalysis data. In general, both datasets exhibit comparable performance to existing down-526

scaling methods, with simulated tracks initiated using hourly data showing slightly better527

performance than those initiated with monthly data.528

4.2 Landfall Frequency529

We examine the annual regional landfall frequency at coastal locations along the North530

Atlantic coastline. To help indicate locations, a total of 186 mileposts (MPs) are defined531
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Figure 7. Track density Track density is calculated as the accumulated number of TC passes

into each 0.75×0.75 grid box normalized by the maximum grid value of the basin, smoothed with a

Gaussian low-pass filter. Tracks over land are removed in each subplot. Simualted tracks initiated

with (b) hourly data and (d) monthly data are compared with (a) observations, (c) KE08 and (e)

PepC. All simulated tracks replicate the typical recurving pattern seen relatively well.

following Vickery et al. (2000) (Vickery et al., 2000), as shown in Figure 9, to cover the532

coastline with 100-km spacing along the Mexican coastline and 50-km spacing along the US533

coastline. Landfall is defined as simulated or observed storms that approach within 50 km534

of each coastal milepost. The results presented in Figure 9b are based on simulated tracks535

initiated using both hourly and monthly data. Furthermore, results from KE08- and PepC-536

simulated tracks are included for comparison. As a reference, the historical annual landfall537

rate between 1900 and 2022 is shown with shading that indicates the associated sampling538

error at each milepost. The sampling error for the annual rate of each gate is determined539

by calculating the total number and standard error of storms that cross each gate over the540

entire record and then dividing both the mean and the error bars by the number of years.541

Due to the different annual total frequencies in the simulated and observed track542

datasets, which can significantly influence landfall frequency, we adjust the annual rate543

to a uniform 13 storms per year in all datasets to form a fair comparison. Our results544

indicate that the simulated tracks, from daily and monthly data, can reproduce the overall545

pattern in the observations, showing a performance comparable to that of KE08 and PepC.546

The annual landfall rates simulated by TC-GEN exhibit correlations with observations of547

0.79 and 0.82 for the tracks initiated with hourly and monthly data, respectively, which are548
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Figure 8. 6 hour zonal and meridional displacement Comparison of probability density

functions of 6 hour (a) meridional and (b) zonal displacements between simulated tracks and ob-

servations. Simulated tracks initiated with hourly data and monthly data are both presented and

compared with KE08 and PepC.

comparable to 0.83 and 0.79 for PepC and KE08, respectively. Both TC-GEN simulated549

data sets capture the landfall frequency at MP 100-125, which is overlooked by existing550

methods, while they underestimate the landfall frequency below MP 25, possibly due to551

fewer genesis in the main development region.552

4.3 Lifetime Maximum Intensity and Landfall Intensity553

We analyze the simulated TC intensity using two metrics, the lifetime maximum in-554

tensity and landfall intensity. The LMI distribution serves as a representation of the TC555

intensity climatology. A successful simulation should be able to reproduce the bimodal556

distribution with a shoulder feature around 120 kt, which is associated with storms that557

undergo rapid intensification (C.-Y. Lee et al., 2016). We show in Figure 10 that after bias558

correction, both sets of TC-GEN are capable of reproducing a realistic distribution of the559

observed LMI. TC-GEN tracks initiated with hourly data better simulate the tail of the LMI560

distribution for LMI greater than 75 kt; however, there is a negative bias in LMI for storms561

with LMI less than 75 kt, which are mostly moderate storms that do not undergo rapid562
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Figure 9. Landfall frequency Subplot a shows locations of mileposts along Mexico (every

100 km) and U.S. (every 50 km) coastline. Subplot b shows the comparison of annual landfall

rate at each of 186 mileposts between simulated tracks and observation, with shading indicating

the associated sampling error. Results from KE08 simualted tracks and PepC simulated tracks are

shown for comparison.

intensification. TC-GEN tracks initiated with monthly data overestimate the proportion of563

storms with an LMI greater than 75 kt. The biases might originate from the intensity bias564

correction model. In order to have a reasonable fraction of storms undergo rapid intensi-565

fication, the bias correction model prioritizes strong storms, which could lead to a higher566

proportion of storms becoming more intense than they should be. Similar patterns are also567

seen in the distribution of the landfall intensity. Both data sets initiated with hourly and568

monthly data exhibit a positive bias in landfall intensity greater than 75 knots. This bias is569

also likely to be attributed to the intensity correction model, which tends to overestimate570

the intensity of the storm when the storm has already weakened.571
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Figure 10. Lifetime maximum intensity and landfall intensity Subplot a compares LMI

distribution between simulated storms and observations. Subplot b compares the distribution of

landfall intensity, defined as the maximum wind speed within 50 km of each coastal milepost, from

both simulated and observed tracks. Results of KE08 and PepC are shown here for comparison.

4.4 Outer Size572

Although the TC structure cannot be fully resolved in the reanalysis data set, previous573

work has shown that the reanalysis data can be used to extract the outer size of storms, and574

ERA5 shows an improved representation of the outer size compared to previous versions575

of ERA (Bian et al., 2021). Here, we examine how the outer size of the TCs compares576

between TC-GEN simulated tracks and historical storms, where outer sizes of historical TCs577

are derived from the corresponding ERA5 reanalysis data. As the statistical downscaling578

approach does not provide this output, we do not have data from PepC for this analysis. The579

results are shown in Figure 11. The medians (standard deviations) of r2, r6, and r12 from580

TC-GEN simulated tracks are 574.5 (230.2), 451.0 (172.5) and 270.8 (74.1) km, respectively,581

compared to 584.9 (259.8), 468.1 (233.4) and 277.5 (129.6) km, respectively, from historical582

data. For all three size metrics, TC-GEN accurately reproduces the median of outer size,583

with a discrepancy of approximately 10 km, which is even lower than the uncertainties584

in outer size arising from different reanalysis datasets (Bian et al., 2021). However, the585
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standard deviations for all three size metrics in TC-GEN-simulated TCs are smaller than586

those observed in historical storms, particularly for r12, which represents the largest metric587

that defines the outer size of storms. This smaller variation may arise from the bias in the588

horizontal wind structures of TCs at genesis, which requires further investigation.589

Figure 11. TC outer size Subplot a shows the concept of TC outer size defined as the radii at

which the 10-m azimuthal-mean wind speed equals 2, 6, and 12 m/s. The contours of the 10-meter

azimuthal-mean wind are shown with color lines. Subplot b shows the boxplots of outer size at

three radii metrics, from TC-GEN simulated tracks and those in ERA reanalysis. The median of

each metric is represented as a horizontal bold line, and the upper and lower boundaries of each

box indicate the 75th and 25th percentiles.

5 Discussion590

5.1 Sensitivity to reanalysis data591

In this study, we show the results of TC-GEN initiated with 6-hourly and monthly592

ERA5 reanalysis data. We illustrate that TC-GEN can generate realistic synthetic TCs with593

both datasets, despite their different temporal resolutions. Given the significant advantage594

in reducing data download and storage burdens, we propose that using monthly data to595

initiate TC-GEN is acceptable when scaling up the data generation process to achieve global596

coverage or long-period simulations.597

Furthermore, we evaluate the suitability of applying TC-GEN to reanalysis data sets598

other than ERA5 reanalysis. Using NCEP GFS (see 2.3, we find that the results are unsat-599

isfactory (as illustrated in Figure S2), which is likely attributed to the well-known domain600

gap problem in deep learning. In a deep learning model, typically the first several layers601

of the neural network are responsible for extracting features from raw data. These layers602

are trained to identify relevant features that help in downstream tasks, such as recogniz-603
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ing distinctive patterns, reducing noise, and achieving specific invariances. However, these604

layers can become highly specialized for the specific training data set and fail to generalize605

effectively to different data sets. We believe that this is the reason why TC-GEN does606

not perform well in NCEP GFS, as its core model Pangu-Weather is trained exclusively607

on ERA5 reanalysis data. Based on this discussion, an interesting future direction involves608

devising a generalized ML-based weather forecasting system that performs reasonably well609

on various reanalysis datasets. This could be accomplished, for example, by training the610

model on multiple reanalysis datasets together.611

5.2 Extrapolation and applicability for future climate612

To generate storms under future climate conditions, traditional statistical downscaling613

approaches assume that the observed relationships between the TC and the environment,614

established under historical climate conditions, will continue to hold in a warming climate.615

While there is no need to re-train the statistical models based on future climate, the process616

of extrapolation introduces a certain degree of uncertainty, particularly when unforeseen617

factors may impact the relationship. TC-GEN has unique strengths and limitations in ad-618

dressing extrapolation. As ML-GWM operates in a manner that mimics the characteristics619

of numerical models; once a future ML-GWM becomes accessible, it enables TC-GEN to620

directly simulate storms under future climate conditions when initiated with future climate621

projections. However, as previously discussed and a significant limitation, the optimal per-622

formance of TC-GEN depends on being paired with the specific set of environment maps623

on which it was trained. Therefore, it is necessary to pre-train an ML-GWM using environ-624

mental data obtained from climate projections, before applying TC-GEN to climate change625

studies.626

5.3 Range of TC seeds627

Poisson blending involves integrating synthetic TC seeds into the surrounding environ-628

ment, where it is crucial to carefully choose a specific range to define the extent of TC seeds.629

The TC seed range should be limited to avoid including unrelated meteorological systems,630

which can negatively affect the performance of the PCA model. However, if the range is631

excessively limited, it may not fully capture the entire spatial structure of the TC during its632

genesis. In such cases, the outermost extent of the range may not have fully diminished to633

the intensity of the surrounding background wind. As the Poisson blending algorithm tends634

to assimilate the gradient of TC seeds while aligning the boundaries with the ambient wind635

field, this could result in an underestimation of the wind speed within the inner region of636

the storm. In practice, we examine several sets of radii ranging from 25 grid cells (approxi-637

mately 200 km) to 89 grid cells (approximately 1200 km). Our sensitivity tests reveal that638

the results are relatively robust when the radius falls within the range of 49 to 75. For the639

primary analysis in this study, we use a radius of 64 grid cells as the optimal parameter for640

blending.641

5.4 Intensity bias correction642

The spatial structure of the TCs could not be fully resolved on the 0.25° × 0.25°643

horizontal grid, and we apply the intensity bias correction model to adjust the simulated644

raw intensity to the real intensity. The bias correction model has the ability to reproduce a645

realistic LMI distribution and captures the correlation of the TC intensity with the previous646

time step, thereby maintaining strong continuity. In the development of this model, we also647

test models that are not based on recurrent neural networks, where the maximum intensity648

of the storm is adjusted solely based on the TC and environmental predictors in the current649

and previous steps. However, the performance of these models is not optimal, indicating650

that recurrent networks are necessary. One limitation of the current bias correction model651

is that it tends to overestimate TC maximum intensity when the storm is decaying, which652
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partially explains the positive bias in the landfall intensity distribution. This bias is likely653

a result of the model being trained to prioritize replication of the shoulder feature in LMI,654

which is associated with strong storms that undergo rapid intensification (this may also655

stem from a limitation in the Dvorak technique, which is used to estimate the TC intensity656

from satellite imagery). Consequently, the model tends to generate more storms that grow657

at a higher rate while decaying at a slower rate. Future work should focus on improving658

the bias correction model to effectively handle storms that undergo rapid intensification and659

those that do not, with the aim of achieving optimal performance in terms of both lifetime660

maximum intensity and landfall intensity.661

5.5 Asymmetric TC wind field662

Horizontal asymmetric TC wind fieds are important for disaster management and re-663

gional risk assessment. In addition to the maximum wind speed, accurate estimation of664

the TC wind field is essential to identify at-risk populations and assess potential climate-665

related threats. One notable advantage of TC-GEN is its ability to directly output spatial666

asymmetric characteristics of the TC surface wind field. Although raw simulated winds667

are often underestimated as TC structures cannot be fully resolved at a resolution of 0.25°668

× 0.25°, there are still several ways to adjust the intensity of the wind and effectively use669

the simulated asymmetries. For example, with the adjusted maximum wind intensity and670

the extracted outer size of the TC, a parametric wind model can be applied, such as the671

model developed in Chavas et al. (2015) (Chavas et al., 2015), to generate the complete672

asymmetric wind profile of the TC. Future work should also assess the ability of TC-GEN673

to simulate asymmetric winds at landfall. This assessment may involve comparing the syn-674

thetic landfalling TCs with observational data, such as winds obtained from Automated675

Surface/Weather Observing Systems, or with output from dynamical simulations.676

6 Conclusions677

This study introduces a novel machine learning-based approach to the synthetic down-678

scaling of tropical cyclones. This approach, which we refer to as ”TC-GEN”, leverages the679

recent advances in machine learning-based global weather models. The machine learning-680

based high-resolution global weather model (ML-GWM) takes environmental maps of key681

atmospheric and surface variables from reanalysis data as input and predicts the values682

of these variables for the next time step, with the flexibility to choose from various lead683

times. Using a pre-trained model representing a cutting-edge ML-GWM (Pangu-Weather),684

we show that TC-GEN is capable of simulating synthetic storms that allow for the two-way685

interactions between the storm and its environment. It maintains computational efficiency686

that is similar to existing statistical-deterministic and statistical downscaling approaches;687

however, its distinctive advantage lies in the ability to simulate the spatial asymmetries of688

surface wind. TC-GEN consists of four key steps: the generation of a synthetic TC seed for689

each storm through a data-driven process, the merging of the TC seed with the background690

environment using Poisson blending, the simulation of the full life cycle of the storm with691

ML-GWM, and the correction maximum wind speed biases using a long-short-term memory692

model. By comparing TC-GEN-simulated storms with observed storms and those simulated693

from existing statistical-deterministic and statistical downscaling approaches, we show that694

TC-GEN is capable of simulating storms that reproduce a range of important TC charac-695

teristics, including metrics for track, intensity, and storm size. For future work, our plan696

involves expanding this approach to include other TC basins and exploring its applicability697

on a global scale. Additionally, considering the absence of rain rate in the simulation output698

from Pangu-Weather, one potential work would be to examine the performance of TC-GEN699

when working with other ML-GWMs that are capable of simulating this important variable.700

The recently introduced ML-GWM has significant potential for improvement with on-701

going advances in machine learning and artificial intelligence, aiming for higher resolution,702
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improved accuracy, and even lower computational costs. Therefore, we expect that the703

performance of TC-GEN will see further improvements as ML-GWM undergoes continuous704

development. Moreover, using TC-GEN as an example of how recent advances in machine705

learning and data science can contribute to tropical cyclone risk assessment, we believe706

that machine learning-based global weather models will play a crucial role in future climate707

studies.708

Open Research Section709

Pangu-Weather trained models can be downloaded from the public GitHub repository at710

https://github.com/198808xc/Pangu-Weather (https://doi.org/10.5281/zenodo.7678849). Trop-711

ical cyclone observations are obtained from the International Best Track Archive for Climate712

Stewardship (IBTrACS) project at https://www.ncei.noaa.gov/products/international-best-713

track-archive. Historical ERA5 reanalysis data (both monthly and 6-hourly) are obtained714

from the ECMWF climate data store. Historical NCEP reanalysis data is downloaded at715

https://rda.ucar.edu/datasets/ds084.1/.716
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ers (2020). The era5 global reanalysis. Quarterly Journal of the Royal Meteorological761

Society , 146 (730), 1999–2049.762

Huang, M., Wang, Q., Jing, R., Lou, W., Hong, Y., & Wang, L. (2022). Tropical cyclone763

full track simulation in the western north pacific based on random forests. Journal of764

Wind Engineering and Industrial Aerodynamics, 228 , 105119.765

Huang, M., Wang, Q., Li, Q., Jing, R., Lin, N., & Wang, L. (2021). Typhoon wind hazard766

estimation by full-track simulation with various wind intensity models. Journal of767

Wind Engineering and Industrial Aerodynamics, 218 , 104792.768

Huang, M., Wang, Q., Liu, M., Lin, N., Wang, Y., Jing, R., . . . Lou, W. (2022). Increasing769

typhoon impact and economic losses due to anthropogenic warming in southeast china.770

Scientific reports, 12 (1), 14048.771

Irish, J. L., Resio, D. T., & Ratcliff, J. J. (2008). The influence of storm size on hurricane772

surge. Journal of Physical Oceanography , 38 (9), 2003–2013.773

James, M., & Mason, L. (2005). Synthetic tropical cyclone database. Journal of waterway,774

port, coastal, and ocean engineering , 131 (4), 181–192.775

Jing, R., & Lin, N. (2019). Tropical cyclone intensity evolution modeled as a dependent776

hidden markov process. Journal of Climate, 32 (22), 7837–7855.777

Jing, R., & Lin, N. (2020). An environment-dependent probabilistic tropical cyclone model.778

Journal of Advances in Modeling Earth Systems, 12 (3), e2019MS001975.779

Jing, R., Lin, N., Emanuel, K., Vecchi, G., & Knutson, T. R. (2021). A comparison780

of tropical cyclone projections in a high-resolution global climate model and from781

downscaling by statistical and statistical-deterministic methods. Journal of Climate,782

34 (23), 9349–9364.783

Kareem, A., Hu, L., Guo, Y., & Kwon, D.-K. (2019). Generalized wind loading chain: Time-784

frequency modeling framework for nonstationary wind effects on structures. Journal785

of Structural Engineering , 145 (10), 04019092.786

Knapp, K. R., Diamond, H. J., Kossin, J. P., Kruk, M. C., & Schreck, C. J. (2018). Interna-787

tional best track archive for climate stewardship (ibtracs) project, version 4.v04r00.788

doi: doi:10.25921/82ty-9e16789

Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., & Neumann, C. J. (2010).790

The international best track archive for climate stewardship (ibtracs) unifying tropical791

cyclone data. Bulletin of the American Meteorological Society , 91 (3), 363–376.792

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., . . .793

others (2022). Graphcast: Learning skillful medium-range global weather forecasting.794

arXiv preprint arXiv:2212.12794 .795

Lee, C.-Y., Camargo, S. J., Sobel, A. H., & Tippett, M. K. (2020). Statistical–dynamical796

downscaling projections of tropical cyclone activity in a warming climate: Two di-797

verging genesis scenarios. Journal of Climate, 33 (11), 4815–4834.798

Lee, C.-Y., Tippett, M. K., Sobel, A. H., & Camargo, S. J. (2016). Rapid intensification799

and the bimodal distribution of tropical cyclone intensity. Nature communications,800

7 (1), 10625.801

Lee, C.-Y., Tippett, M. K., Sobel, A. H., & Camargo, S. J. (2018). An environmentally802

forced tropical cyclone hazard model. Journal of Advances in Modeling Earth Systems,803

10 (1), 223–241.804

Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., . . . others (2023).805

Climate change 2023: synthesis report. contribution of working groups i, ii and iii to806

–24–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

the sixth assessment report of the intergovernmental panel on climate change.807

Lin, N., & Chavas, D. (2012). On hurricane parametric wind and applications in storm808

surge modeling. Journal of Geophysical Research: Atmospheres, 117 (D9).809

Lin, N., Emanuel, K., Oppenheimer, M., & Vanmarcke, E. (2012). Physically based assess-810

ment of hurricane surge threat under climate change. Nature Climate Change, 2 (6),811

462–467.812

Loshchilov, I., & Hutter, F. (2017). Decoupled weight decay regularization. arXiv preprint813

arXiv:1711.05101 .814

Marsooli, R., Lin, N., Emanuel, K., & Feng, K. (2019). Climate change exacerbates hurricane815

flood hazards along us atlantic and gulf coasts in spatially varying patterns. Nature816

communications, 10 (1), 3785.817

Meiler, S., Vogt, T., Bloemendaal, N., Ciullo, A., Lee, C.-Y., Camargo, S. J., . . . Bresch,818

D. N. (2022). Intercomparison of regional loss estimates from global synthetic tropical819

cyclone models. Nature Communications, 13 (1), 6156.820

Mendelsohn, R., Emanuel, K., Chonabayashi, S., & Bakkensen, L. (2012). The impact821

of climate change on global tropical cyclone damage. Nature climate change, 2 (3),822

205–209.823

Nam, H., Lee, H., Park, J., Yoon, W., & Yoo, D. (2021). Reducing domain gap by reducing824

style bias. In Proceedings of the ieee/cvf conference on computer vision and pattern825

recognition (pp. 8690–8699).826

Nandi, A., Mandal, A., Wilson, M., & Smith, D. (2016). Flood hazard mapping in jamaica827

using principal component analysis and logistic regression. Environmental Earth Sci-828

ences, 75 , 1–16.829

Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., . . .830

Anandkumar, A. (2022). Fourcastnet: A global data-driven high-resolution weather831

model using adaptive fourier neural operators. arXiv preprint arXiv:2202.11214 .832
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Abstract24

Synthetic downscaling of tropical cyclones (TCs) is critically important to estimate the25

long-term hazard of rare high-impact storm events. Existing downscaling approaches rely26

on statistical or statistical-deterministic models that are capable of generating large samples27

of synthetic storms with characteristics similar to observed storms. However, these models28

do not capture the complex two-way interactions between a storm and its environment. In29

addition, these approaches either necessitate a separate TC size model to simulate storm30

size or involve post-processing to introduce asymmetries in the simulated surface wind. In31

this study, we present an innovative data-driven approach for TC synthetic downscaling.32

Using a machine learning-based high-resolution global weather model (ML-GWM), our ap-33

proach is able to simulate the full life cycle of a storm with asymmetric surface wind that34

accounts for the two-way interactions between the storm and its environment. This ap-35

proach consists of multiple components: a data-driven model for generating synthetic TC36

seeds, a blending method that seamlessly integrate storm seeds into the surrounding while37

maintain the seed structure, and a recurrent neural network-based model for correcting the38

biases in maximum wind speed. Compared to observations and synthetic storms simulated39

using existing statistical-deterministic and statistical downscaling approaches, our method40

shows the ability to effectively capture many aspects of TC statistics, including track den-41

sity, landfall frequency, landfall intensity, and outermost wind extent. Taking advantage of42

the computational efficiency of ML-GWM, our approach shows substantial potential for TC43

regional hazard and risk assessment.44

Plain Language Summary45

Tropical cyclones (TCs) cause significant destruction each year. It is crucial to accu-46

rately assess the risks they present, but this is challenging due to a scarcity of historical47

data. A commonly used approach involves creating a large number of synthetic TCs that48

share key characteristics with real storms, enabling an effective regional risk assessment.49

However, traditional synthetic TC generation approaches do not capture the complex inter-50

actions between storms and their larger-scale environment. Furthermore, these approaches51

do not adequately represent the asymmetric structure of TCs, despite the crucial role that52

they play in modeling storm-related hazards such as rainfall and surges. Recently, advances53

in machine learning-based global weather forecasting (ML-GWM) have provided highly ac-54

curate and efficient high-resolution global weather forecasts that surpass the capabilities of55

conventional numerical weather forecasting. In this study, we introduce a novel synthetic TC56

generation approach, which we call the synthetic TC-GENerative Model (or ”TC-GEN”),57

leveraging the state-of-the-art ML-GWM. We show that TC-GEN can generate a large num-58

ber of synthetic storms that allow the interaction between the storm and its environment.59

We evaluate the performance of TC-GEN in various aspects, including several landfall char-60

acteristics, which are of the most importance for local TC risk analysis. Our study also61

serves as a compelling example of the transformative impact of machine learning and data62

science in revolutionizing climate studies during the era of artificial intelligence.63

1 Introduction64

Tropical cyclones (TCs) are among the most destructive natural disasters, causing65

substantial damage and losses in multiple ocean basins annually. In a warming climate, it is66

projected that TCs are likely to become more intense, with an expected increase in both the67

peak maximum wind speed and the proportion of strong TCs in the future (Pörtner et al.,68

2022; H. Lee et al., 2023). Accurate assessment of TC tracks and intensities is fundamental to69

reducing the impacts of landfalling storms. However, with around 90 storms occurring every70

year and an average of only 20 making landfall, this task is challenging due to the shortage of71

historical data required for regional risk assessment. To overcome data deficiency, a widely72

used approach is to generate synthetic TCs that are capable of responding to various climate73
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conditions (K. Emanuel et al., 2008; C.-Y. Lee et al., 2018; Jing & Lin, 2020). Using large74

samples of synthetic storms, including extreme events with extended return periods, enables75

a comprehensive risk assessment for specific regions in both current and future climates.76

Previous studies on synthetic TC generation have primarily employed two main ap-77

proaches: (1) statistical re-sampling, and (2) physical-based downscaling methods. Statisti-78

cal re-sampling models simulate TC genesis, tracks, and intensities (maximum wind speed79

or minimum central pressure) based purely on historical observational datasets, without80

considering environmental conditions. Examples of such models include those developed by81

(Vickery et al., 2000; James & Mason, 2005; Bloemendaal et al., 2020). These models typ-82

ically require a limited number of input variables, have low computational costs, and thus83

are easily applicable on a global scale. However, these models are not based on physical84

principles and cannot be accurately applied to a non-stationary climate due to changes in85

the background environment. On the other hand, physically-based downscaling methods86

relate TC characteristics to the large-scale background environmental conditions, making87

them environment-dependent. These methods can be statistical-deterministic (e.g., models88

developed by (K. Emanuel et al., 2006)) or purely statistical (e.g., models developed by89

(C.-Y. Lee et al., 2018; Jing & Lin, 2020)). Such environment-dependent approaches are90

capable of simulating the TC climatology in future climate scenarios and, therefore, are suit-91

able for climate change studies (K. Emanuel et al., 2008; C.-Y. Lee et al., 2020; Jing et al.,92

2021). Since the first synthetic TC downscaling approach in this family of models appeared93

in 2006, significant advances have been made in each of the three components (Huang et94

al., 2021; Huang, Wang, Jing, et al., 2022), and these approaches have been widely used95

for applications such as TC-induced surge risk assessment(Lin et al., 2012), regional loss96

assessment (Meiler et al., 2022; Huang, Wang, Liu, et al., 2022), and TC-induced wind load97

analysis (Kareem et al., 2019).98

Both statistical and statistical-deterministic synthetic downscaling methods simulate99

the complete lifecycle of TCs using environmental parameters derived from the background100

environment. However, they cannot simultaneously simulate the two-way interactions be-101

tween the storm and its surrounding environment; therefore, the environment cannot re-102

spond correspondingly to the development of the storm. Furthermore, traditional ap-103

proaches do not comprehensively simulate the characteristics of TCs (i.e. genesis, track,104

intensity, and size) as a cohesive system. For example, although the TC intensity is deter-105

mined based on environmental predictors along the track, the storm track is predominantly106

driven by background winds, which is independent of the intensity component. Given the107

clear and strong correlation between these components, it is prudent to consider the poten-108

tial correlations between these components (Ruan & Wu, 2022). Moreover, the asymmetries109

in the TC surface wind field are not directly captured. Some approaches do not output the110

TC size and require a separate size component to determine the outer radius of the storm111

by random sampling from historical data (Jing & Lin, 2020). Other methods provide the112

radius of maximum wind (K. Emanuel et al., 2008); however, they require an additional113

parametric wind model to generate the full surface wind field, followed by post-processing114

to incorporate asymmetries related to storm translation speed and wind shear (Lin et al.,115

2012; Lin & Chavas, 2012).116

The ideal synthetic downscaling method would simultaneously simulate all character-117

istics of the TC as an integrated system, including the interactions between storms and the118

surrounding environment, to generate detailed wind fields with greater accuracy but similar119

computational efficiency to that of traditional statistical and statistical-deterministic down-120

scaling methods. Recent progress in machine learning-based high-resolution global weather121

modeling (ML-GWM) (Pathak et al., 2022; Bi et al., 2022; Lam et al., 2022) has made122

this possible. ML-GWM systems are based on three-dimensional neural networks that are123

trained on high-quality reanalysis datasets, such as the ERA5 reanalysis (Hersbach et al.,124

2020), to predict weather around the globe. A significant advantage of ML-GWMs is their125

substantially lower computational costs compared to traditional numerical weather fore-126
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casting, while still operating at high spatial resolutions. Representing the cutting edge of127

ML-GWM, Pangu-Weather (Bi et al., 2022) has outperformed the operational Integrated128

Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts129

in medium-range forecasting, with speeds more than 10,000 times faster. The high spa-130

tial resolution of 0.25 degrees also enables Pangu-Weather to precisely track TCs based on131

simulation results.132

In this study, we leverage ML-GWM to create a novel ML-based approach for synthetic133

TCs downscaling, which we call the synthetic TC-GENerative Model (or ”TC-GEN”). This134

involves generating a synthetic TC seed for each storm through a data-driven process, merg-135

ing it with the background environment, and simulating both the storm and its surround-136

ings simultaneously with Pangu-Weather. To achieve this, we first determine the annual137

frequency, date, and location of synthetic TCs using an existing environment-based TC138

genesis model. Next, we perform a Principal Component Analysis on all historical TCs at139

genesis, identifying the principal components that effectively capture most of the variances140

in TC genesis. Using these principal components, we generate synthetic TC seeds with141

weights derived from historical data. We then integrate these TC seeds into the surround-142

ing environment using Poisson blending, a technique widely used in image processing to143

seamlessly merge two images, ensuring that the TC seeds are naturally embedded within144

the larger environmental context while still maintaining important wind structures. Finally,145

we run Pangu-Weather using their pre-trained model, which enables the joint simulation146

of both the storm and its surrounding environment, and bias-correct simulated intensity to147

real intensity. This integrated approach allows us to gather key characteristics of the TC,148

such as the track and the maximum wind speed. It also provides spatial details such as149

the full wind field, allowing for a direct derivation of the outermost extent of the storm.150

It is worth noting that several key steps of this ML-based method are data driven, relying151

heavily on historical data that lack substantial input from physics. Furthermore, while the152

spatial resolution of 0.25 ° is a high resolution for global climate models, it is still too coarse153

to accurately resolve the inner core and the structure of a storm. Therefore, we should use154

the simulated three-dimensional structure including the horizontal surface wind field with155

care, as it is likely to be unrealistic.156

Despite these limitations, our ML-based method offers a unique set of collective ad-157

vantages compared to previous TC downscaling approaches: 1) Holistic simulation: unlike158

previous studies where the genesis, track, and intensity of the storm are simulated sep-159

arately, this approach can simulate these three storm components together as a cohesive160

system; 2) Integrated simulation: similar to numerical modeling, this approach can sim-161

ulate both the storm and its environment simultaneously, thus allowing for the two-way162

interactions between the storm and the environment; 3) Intrinsic asymmetry: while the TC163

core and intensity may not be fully resolved, this approach has the capability to provide164

crucial asymmetric characteristics in the TC surface wind field. This, in turn, allows for the165

inference of the asymmetric outermost wind extent of a storm, which is essential for studying166

tropical cyclone-induced hazards such as surges and heavy rainfall; 4) Efficiency: utilizing167

pre-trained Pangu-Weather, this approach inherits the efficiency of statistical downscaling168

methods that require little computational resources, enabling large samples of synthetic TCs169

to be generated in days, a time frame comparable to the work of (Bloemendaal et al., 2020);170

5) Scalability: this approach can be easily applied to other ocean basins and other high-171

resolution climate datasets, including future climate projections such as those in CMIP6. A172

successful extension of this approach is achieved when the climate dataset used for training173

processes high resolution for detecting storm eyes, provides a reasonable representation of174

the storm’s outer size, and involves the development of a corresponding pre-trained machine175

learning model as the core simulator.176

To evaluate TC-GEN, we generate a large sample of synthetic TCs and compare those177

simulated storms with historical observations. We also place TC-GEN in context with178

an existing statistical-deterministic downscaling approach, represented by Emaneul et al.179
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(2008) (KE08, (K. Emanuel et al., 2008)) and a statistical downscaling method, represented180

by the Princeton environment-dependent probabilistic model (PepC, (Jing & Lin, 2020)).181

We choose these two existing approaches as they are both environment dependent and182

have distinct model components. The metrics we use for comparison include the density of183

the tracks over the ocean, the maximum lifetime intensity, the landfall frequency, and the184

landfall intensity distributions. Given that KE08 and PepC lack the ability to simulate the185

outer size of TC, we only compare the distribution of TC outer size simulated by TC-GEN186

with that of the historical TCs identified using renalaysis data. In all of these metrics,187

we demonstrate a strong alignment between simulated storms and observational data. We188

further assess the adaptability of TC-GEN to different reanalysis datasets through two189

analyses: one with the ERA5 reanalysis, on which Pangu-Weather is trained, but using190

different temporal resolutions for model initialization, and the other using an alternative191

reanalysis dataset from the National Centers for Environmental Prediction (NCEP). We192

show that the effectiveness of TC-GEN depends on the consistency between the training193

reanalysis dataset used to train the ML-GMW and the data used for model initialization.194

Based on these analyses, we summarize the strength and limitations of TC-GEN and propose195

potential improvements for future work.196

2 Pre-trained Models and Data197

2.1 Neural network-based global weather model198

In this study, we use Pangu-Weather as the core ML-GWM to generate synthetic TCs.199

Pangu-weather is an artificial intelligence-based model for medium-range global weather200

forecasting, which has been shown to outperform the operational integrated forecasting201

system of the European Center for Medium-Range Weather Forecasts (ECMWF) (Bi et al.,202

2022).203

Pangu-Weather is trained on atmospheric reanalysis data from the ERA5 reanalysis204

data (Hersbach et al., 2020), using 69 atmospheric and surface variables as input and fore-205

casting these variables for the subsequent time step. The 69 variables include 65 upper-air206

variables (geopotential height, specific humidity, temperature, u and v component of wind at207

13 pressure levels) plus four surface weather variables (2m temperature, u- and v- component208

of 10m wind speed, and mean sea level pressure). Pangu-Weather offers four pre-trained209

models that are capable of forecasting global weather data 1, 3, 6, and 24 hours ahead. We210

use the model with a lead time of 6 hours since it is consistent with the temporal resolution211

of TC IBTrACS data (see Section 2.2). Pangu-Weather has the ability to produce accurate212

simulations that span multiple consecutive days, a time frame that is adequate to simulate213

the entire life span of the most TCs. Pangu-Weather is open-source, and the pre-trained214

models can be downloaded at https://github.com/198808xc/Pangu-Weather.215

Pangu-Weather has several distinct advantages, making it highly suitable for this study.216

First, Pangu-Weather is among the state-of-the-art ML-GWM systems with the highest217

performance in weather forecasting. Second, Pangu-Weather has a high horizontal resolution218

of 0.25° × 0.25°. Although the thermodynamic processes of the TCs cannot be fully resolved219

at this spatial resolution, it is sufficient to detect the low pressure center, which enables220

effective storm eye tracking. Third, Pangu-Weather is computationally efficient (more than221

10,000 times faster than operational dynamical models), making it capable of simulating222

large numbers of synthetic storms. In our experiments, we run Pangu-Weather with 8 RTX223

A6000 GPUs, which adequately support all our computational tasks.224

2.2 Tropical Cyclone Data225

TC observations are extracted from IBTrACS data (version v04r00) (Knapp et al.,226

2018, 2010), which includes the location (latitude and longitude) of each storm every 6227

hours, along with its maximum sustained wind speeds measured at a height of 10 meters228
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above the sea surface. We use historical TC data in the North Atlantic Basin between 1979229

and 2022 to generate TC seeds, correct biases in intensities simulated from Pangu-Weather,230

and evaluate TC-GEN performance. We use extended TC data dating back to 1900 to231

analyze landfall frequency, which provides a more precise assessment of sampling errors232

with a larger number of TC tracks.233

2.3 Atmospheric Reanalysis Data234

Pangu-Weather requires global atmospheric and surface variables at the current time235

step to forecast the next step. To be consistent with the input setup for the Pangu-Weather236

model, we use ERA5 reanalysis with a resolution of 0.25° × 0.25°, the highest available237

spatial resolution, and a temporal resolution of both 6-hour and monthly reanalysis data238

to initiate Pangu-Weather. Using 6-hour reanalysis data for Pangu-Weather initialization239

is intuitive, as it ensures alignment with the model setup and prevents domain gaps. How-240

ever, generating synthetic TCs with 6-hourly reanalysis data presents two challenges. First,241

introducing a synthetic TC to the 6-hourly reanalysis data may result in multiple storms242

developing on the same map. This does not reflect reality, as the simultaneous occurrence243

of multiple storms is relatively rare (Chowdhury et al., 2022). Second, generating synthetic244

TCs by initiating Pangu-Weather with 6-hourly data requires downloading extensive his-245

torical ERA5 reanalysis data, resulting in substantial data storage requirements. On the246

contrary, starting Pangu-Weather with monthly data significantly reduces the data storage247

burden and mitigates the problem of simultaneous occurrence. In this study, we use both248

6-hourly and monthly reanalysis data for Pangu-Weather initialization, and under both sce-249

narios we use the pre-trained model with a lead time of 6 hours to simulate storms. We250

denote these two scenarios as ’TC-GEN hourly’ and ’TC-GEN monthly’ in the following251

text and results.252

In addition to ERA5 reanalysis, we test TC-GEN performance when initiating Pangu-253

Weather with the NCEP GFS from Global Forecast Grids Historical Archive at 0.25°×0.25°254

resolution (for Environmental Prediction/National Weather Service/NOAA/US Depart-255

ment of Commerce, 2015). We opt for this reanalysis dataset because it provides all 69256

variables required by Pangu-Weather, and it is available at a resolution of 0.25°×0.25° with257

global coverage.258

2.4 Existing downscaling approaches259

We contextualize TC-GEN by comparing it with two existing synthetic downscaling260

approaches. The first is the statistical-deterministic model developed by Emanuel et al.261

(2008) (K. Emanuel et al., 2008), which applies a random seeding method to initiate the262

storm, a beta and advection model based on local winds to propagate the storm, and a263

deterministic Coupled Hurricane Intensity Prediction System (CHIPS; (K. Emanuel et al.,264

2004)) model to estimate the intensity of the storm based on the local thermodynamic state265

of the atmosphere and ocean. The model has been extensively applied to assess TC hazards266

(K. Emanuel, 2017; Marsooli et al., 2019), economic losses (Mendelsohn et al., 2012; Meiler267

et al., 2022), and changes in TC climatology under future projected climate conditions268

(K. Emanuel et al., 2008; Jing et al., 2021). Here, we compare our ML-based TC-GEN269

results with a total of 4,100 synthetic TCs from 1980-2020 that intensify and reach TC270

strength (lifetime maximum intensity exceeds 34 kt).271

We also compare our TC-GEN results with the ”PepC”, a statistical synthetic down-272

scaling approach of Jing and Lin (2020) (Jing & Lin, 2019). PepC has three components, a273

genesis model, a track model, and an intensity model. The genesis component determines274

annual frequency, as well as the time and location of weak vortices. The genesis model is de-275

veloped using Poisson regression based on four large-scale environmental variables: absolute276

vorticity, wind shear, relative humidity, and maximum potential intensity (K. A. Emanuel,277

1988), which are contained in a genesis index (Tippett et al., 2011). After initialization,278
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an analog-wind track model is used to propagate the storm based on analog factors (from279

historical track patterns) and local in situ winds. The intensity of the storm is simulated as280

a Markov process using an environment-dependent hurricane intensity model (Jing & Lin,281

2019). In (Jing & Lin, 2020), the authors generated more than 55,000 TCs from 100 inde-282

pendent realizations of the genesis of TCs during the period 1979-2014. To compare with283

our ML-based TC-GEN results, we randomly select 10 independent 36-year realizations,284

including a total of 3,690 TCs that intensify and reach TC strength.285

3 TC-GEN: data-driven synthetic TC downscaling approach286

TC-GEN, our data-driven synthetic TC downscaling approach based on high-resolution287

ML-GWM, includes the following main steps:288

1. Obtain the annual frequency as well as the date and locations of synthetic TCs from289

an environment-based TC genesis model;290

2. Generate synthetic TC seeds using data-driven approach;291

3. Integrate synthetic TC seeds into the background environment represented by global292

reanalysis data;293

4. Run Pangu-Weather to simulate the complete TC life cycle, detecting and tracking294

the TC from simulation outputs;295

5. Adjust TC intensity (maximum sustained winds) by an intensity bias correction296

model;297

6. Retrieve the size of synthetic TCs (outer extent where the wind decreases to a specific298

threshold) from the simulated TCs.299

The idea is shown in Figure 1 and we explain each step in detail in the following sections.300

Figure 1. TC-GEN. We propose an AI-empowered approach for synthetic TC downscaling

where TC seed is created through a data-driven approach and then incorporated into a reanalysis

environment map. Both the TC and its surrounding environment are then simulated in an inter-

active manner. The idea is illustrated in the figure, which presents five snapshots of total wind at

different stages of the storm’s life cycle.

3.1 Annual counts, date and locations of TC Seeds301

The first step of TC-GEN is to determine the annual frequency and the date and302

location of the synthetic TCs. We use an environment-based hierarchical Poisson genesis303

model to determine the number of synthetic storms that occur each year, as well as when304

and where they originate over the ocean basin. This model is the genesis component of PepC305

(Jing & Lin, 2020), which has been shown to generate TC formations that align closely with306

observations, including interannual variations. This genesis model simulates the formation307
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of TCs for each month. When initializing Pangu-Weather with 6-hour reanalysis data, we308

randomly assign the precise date and time for each storm within the month of its genesis.309

3.2 Structured TC seeds generation via data-driven approach310

Previous studies using either statistical-deterministic or purely statistical TC downscal-311

ing approaches provide only the timing and position of TC seeds. There is no assumption312

about the structures or spatial features of the synthetic TCs at genesis. To create synthetic313

TC seeds with fine-grained spatial features, we employ a two-step process. First, we use314

principal component analysis (PCA) to learn a linear representation of atmospheric and sur-315

face variables from historical TCs at their genesis. PCA helps identify the most significant316

patterns in the data. Next, we create synthetic TC seeds based on this representation by317

sampling various sets of linear blending weights, according to the variance in the historical318

data.319

Principal Component Analysis (PCA) is a widely recognized method used for dimension320

reduction in the fields of data science and machine learning. Given high-dimensional data321

represented by a matrix X with dimensions M ×N , where M is the number of observations322

and N is the dimension of features, the main objective of PCA is to identify a set of323

orthogonal axes (principal components) along which the variance of the data is maximized.324

By projecting the original data onto these principal components, PCA effectively reduces the325

complexity of the data, while retaining the essential information contained in the dataset.326

In a low-rank system, a small number of principal components are sufficient to explain327

the majority of the variance present in the data. Consequently, in such systems, it is328

feasible to generate synthetic data with only a few key principal components. PCA has329

been successfully applied in many earth science applications (Nandi et al., 2016; Bretherton330

et al., 1992), and we refer the reader to the survey (Abdi & Williams, 2010) for more details.331

We use 690 historical TCs in the period 1979 - 2022 to create a linear representation332

of TC seeds using PCA. A TC seed is defined as a circular region with a radius equivalent333

to 64 grid cells at genesis (approximately 1600 kilometers), centered on the storm’s eye.334

This circular region is large enough to encompass the outermost extent of most TCs at335

genesis. We collect TC seeds for each of the 69 atmospheric and surface variables from336

the ERA5 reanalysis for all M = 690 storms, which form a matrix with dimensions of337

128 × 128 × 69 × 690, representing historical TC seeds. Next, we perform PCA to reduce338

the dimensions of the data. The cumulative sum of the largest 20 eigenvalues is shown in339

Figure 2. We show that historical TC seeds form a low-rank system, with the top 10, 15,340

20 principal components sufficient to explain more than 94.1%, 96.2%, and 97.2% of the341

variance in the data. Moreover, the top 50, 100 and 500 principal components explain more342

than 99% of the variance, with the top 500 principal components explaining more than343

99.9%. Using 50, 100 and 500 principal components, we show that the reconstructed wind344

fields (including total wind, as well as the u and v components) effectively preserve most of345

the detailed spatial features present in historical TC wind fields, as in Figure 2. To ensure346

quality, we use 500 principal components that represent the majority of the variations in347

actual environmental fields.348

We create synthetic TC seeds by randomly sampling the low-dimensional space based349

on the top 500 principal components. The weight of each principal component is determined350

by randomly sampling from a Gaussian distribution centered around zero, with a variance351

equal to its corresponding eigenvalue (i.e. the variance explained). This allows synthetic TC352

seeds to have the same distribution as observational TC seeds. In Figure 3 we show three353

synthetic TCs at their genesis. We show four important variables (mean sea level pressure,354

temperature, and surface u- and v- winds) to demonstrate the effectiveness of this approach355

in simulating realistic TC seeds at genesis with diverse characteristics in terms of intensity,356

radius, and asymmetry.357
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Figure 2. Principal Component Analysis on TC genesis. We run PCA on TC historical

data to learn a low dimensional representation for TC seeds at genesis. Subplot (a) shows the

cumulative sum of the eigenvalues sorted in descending order, where each point represents the

proportion of total variance explained by considering the corresponding number of top principal

components. Subplot (b) shows the reconstruction of TC seeds at genesis for two distinct historical

storms, using 50, 100, 500 principal components respetively. Both TC seeds are almost completely

reconstructed using 500 principal components.

3.3 Integrating synthetic TC seeds into background environment with weighted358

Poisson blending359

After generating a synthetic TC seed, we integrate it into the surrounding environment360

at a specific date and location identified by the PepC genesis component (see Sec 3.1). This361

step is critical for Pangu-Weather to simulate the environment along with the synthetic362

TC seeds. To achieve seamless integration of TC seeds with the background environment,363

we employ Poisson blending, a widely used approach to smoothly insert one image into364

another, without introducing artifacts at the boundary of the inserted image (Pérez et365

al., 2003). The fundamental concept of Poisson blending is to copy the gradients between366

spatially neighboring pixels rather than to directly copy the absolute color values. This367

approach ensures a smooth transition between different regions of the images, effectively368

eliminating visible seams and enhancing the coherence of the blended result.369

Poisson blending can be mathematically expressed as follows: Let f∗ be a known func-
tion defined on a closed subset of S ⊂ R2 (for example, color defined on pixel grids), and

–9–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 3. Synthetic TC Seeds. This figure shows three synthetic TC seeds at genesis using

the data-driven approach with 500 principal components. Each column shows one case, where mean

sea level pressure, temperature, surface u- and v-winds are visualized.

g be another known function defined on a closed subset Ω ⊂ S with boundary ∂Ω. The
objective of poisson blending is to find an unknown function f on Ω, such that

min
f

∫∫
Ω

|∇f −∇g|2, withf |∂Ω = f∗|∂Ω (1)

, where ∇. = [ ∂.∂x ,
∂.
∂y ]. This optimization aims to achieve a blended result where, within the370

source region, it closely resembles the gradience of g, while at the boundary it should be371

similar to f∗. For more details and numerical solutions, we refer the reader to (Pérez et al.,372

2003).373

As an analogy to our problem, f∗ and g represent the global environment map (that374

is, target matrix) and synthetic TC seeds (that is, source matrix), respectively. In this375

context, Poisson blending aims to combine these two matrices, ensuring that the gradients376

of the blended results within the source region closely resemble the synthetic TC seeds, while377

at the boundary, they should be similar to the background environment. In practice, we find378

that naive Poisson blending still results in noticeable artifacts. Therefore, we adopt a linear379
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blending technique that incorporates both the source and target gradients, with a weight380

determined by the distance to the boundary. The optimization is modified to accommodate381

this approach:382

∇ = (1− λ)∇f∗ + λ∇g, λ =

{
5d

R
, d <

R

5
1, else

(2)

where d is the distance of each pixel to the boundary and R represents the radius of the383

blended region. This optimization guarantees a smooth integration of TC seeds into the384

global environment map, with natural transitions at the boundaries and the structure of385

TC well maintained.386

We use this Poisson blending approach to seamlessly integrate the 69 atmospheric and387

surface variables of synthetic TC seeds within a radius of 64 grid cells (approximately 1600388

km) into the corresponding ERA5 reanalysis data. In Figure 4, we show the Poisson blend389

process using mean sea level pressure as an example, which clearly reveals the eye of the390

storm. Similarly, we show three cases as examples of weak, moderate, and strong storms,391

illustrating the effectiveness of Poisson blending across a range of storm characteristics.392

Figure 4. TC seed integration using Poisson blending This figure shows the advantage

of Poisson blending over naive stitching when integrating synthetic TC seeds into the environment.

Mean sea level pressure is used as an example due to its ability to clearly reveal the eye of the

storm. Naively stitching results in a sharp and unrealistic boundary. In contrast, the Poisson

blending approach effectively integrates TC seeds into the environment, preserving both structures

and achieving a smooth blend.

3.4 Simulation and tracking393

After seamlessly integrating the generated TC seeds into the background environment394

map, we proceed to run Pangu-Weather, simulating the entire life cycle of each storm over395

a 15-day period, with 6-hour intervals between each step. To track the location of storm396

center from Pangu-Weather outputs, we formulate a Gaussian kernel over mean sea level397

pressure and vorticity at 10 meters, to identify the local maximum vorticity or minimum398
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pressure associated with the characteristic bell-shaped symmetric structure typical of a399

storm. Then we determine the center of the storm by averaging the locations of these two400

local extrema. Empirically, we set σ = 2 for the Gaussian kernel and σ1 = 2, σ2 = 8 for401

the Laplacian kernel, for the best performance. In most cases, the positions of maximum402

vorticity closely align with those of minimum sea level pressure. However, when a TC’s403

symmetric structure is not well maintained, this approach aids in stabilizing the outcomes404

and provides robust tracking. It should be noted that Pangu-Weather includes an algorithm405

for tracking TCs, which is based on relative vorticity, geopotential thickness, and 10-m wind406

speed. Our tracking method delivers comparable results, while requiring fewer data inputs.407

This advantage makes our approach generalizable to other weather forecasting systems that408

may lack specific variables (for example, ForecastNet does not output vorticity; see (Pathak409

et al., 2022)).410

3.5 Bias correction of TC maximum wind speed411

The Pangu-Weather model is trained using ERA5 reanalysis data. Since the fine-
grained structure of a storm cannot be fully resolved in the ERA5 reanalysis data, the
physical processes of simulated storms are also not correctly resolved. This leads to an
underestimation of the maximum wind speeds of the TC. To address this problem, we
develop a separate machine learning model to correct this bias based on the characteristics
of the storm and the environment within the inner region of the storm. Due to the recurrent
nature of this problem, where the wind speed at time t is highly correlated with the wind
speed at previous time steps, we formulate the problem using a recurrent neural network
based on long-short-term memory (LSTM). The structure of our network is shown in Figure
5 subplot b, where the bias correction stage is formulated as:

Itrue(t) = ea(t)Iraw(t) + b(t) (3)

a(t), b(t) = F(E(x(1)),E(x(2)), · · · ,E(x(t))|θ) (4)

In Eq. 3, we use the term ”raw” to indicate the intensity directly simulated from TC-412

GEN, which is expected to have the same statistics as those in the ERA5 reanalysis data.413

The term ”true” is used to denote the real intensity, which has statistics similar to IBTrACs.414

Thus, Iraw and Itrue represent the maximum wind speed before and after bias correction.415

E(x(t)) represents the environmental predictors extracted from the area surrounding the416

TC center, which is located at x(t) at time t. F represents a machine learning model with417

learnable weights θ.418

We use five environmental variables (mean sea level pressure, u- and v- component of419

10m wind speed, relative humidity at 850 hpa and temperature at 850 hpa) that have been420

identified as the most important predictors of the intensity of TC (Jing & Lin, 2019). At421

each time step, the five variables within a circular region, covering a radius equivalent to422

49 grid cells and centered at the TC, are combined with a positional embedding (Lam et423

al., 2022) to create a raw input. We then convert the raw input to a feature vector using424

a feature encoder comprised of 4 ResBlocks, and feed these feature vectors into an LSTM,425

predicting a(t), b(t) at each time step.426

In practice, we note that a model trained with ERA5 as input may not perform427

equally well during the test phase when the inputs are derived from Pangu-Weather predic-428

tions. This discrepancy arises because of the well-known domain gap issue in deep learning429

(Tremblay et al., 2018; Wei et al., 2018; Nam et al., 2021). Essentially, nuanced differences430

between training and testing data on the input side (Pangu-Weather simulation vs. ERA5431

in our case) can lead to a catastrophic drop in model performance.432

To bridge the domain gap, we pre-train the feature encoder so that the extracted feature433

is informative to reconstruct the raw ERA5 environment, yet indistinguishable in terms of434

its source, i.e. whether it comes from ERA5 or Pangu-Weather. Such properties are achieved435

by training the feature encoder through an auto-encoder architecture, as shown in the Figure436
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5 subplot a. Specifically, compressed feature vectors go through a feature encoder, followed437

by a feature decoder to reconstruct the original features using an L1 loss. Additionally,438

we introduce an adversarial loss that performs a binary classification task, attempting to439

discern the source of the feature (ERA5 or Pangu-Weather). The feature encoder is trained440

to deceive the discriminator to the extent that it cannot identify the source of the feature.441

As a result, the extracted features become domain-agnostic after this stage and the domain442

gap is mitigated.443

Overall, we start by training the auto-encoder architecture using a combination of444

environment maps sampled from both the ERA5 and Pangu-Weather output (Figure 5445

subplot a). Once the autoencoder converges, we discard the decoder, freeze the encoder446

weights for feature extraction, and only update the LSTM weights (Figure 5 subplot b).447

To train the LSTM, we divide the historical data of the TCs from 1979 to 2021, randomly448

selecting 80% of the TCs for training and reserving the remaining 20% for testing. We use449

the real maximum wind speed data from IBTrACS as ground truth. The LSTM is trained450

with an AdamW optimizer (Loshchilov & Hutter, 2017), with a Huber loss and a learning451

rate of 0.0001 over 10 iterations.452

Figure 5. Structure of the intensity bias correction model The model consists of two

stages, (a) a pre-trained stage to bridge domain gap between ERA5 and Pangu-Weather output so

that all features become domain-agnostic; and (b) a bias correction stage that adjust the maximum

wind speed using a Long Short-Term Memory (LSTM) model.

The performance of the LSTM-based bias correction model is illustrated in Figure 6,453

which shows four cases that represent various characteristics of the storm. These include454

typical growth and decay, rapid intensification, and storms that weaken after hitting an455

island but subsequently strengthen after moving over the ocean.456

3.6 Extracting the radius of outer size from each storm457

The destructive potential of a TC is related to both its maximum sustained wind speed458

and the radial extent of the near-surface wind, the latter typically measured by the outer459
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Figure 6. Examples of bias correction in TC maximum wind speeds Four synthetic

TCs are shown including (a, c) two TCs illustrating a storm’s typical growth and decay, (b) TC

underwent rapid intensification, and (d) TC hit small islands followed by subsequent growth. The

bias correction model effectively simulates the realistic evolution of intensity while capturing the

correlation of TC intensity with the previous time step, thus maintaining strong continuity.

size of the TC (Powell & Reinhold, 2007; Irish et al., 2008). Therefore, it is important460

to assess how well TC-GEN can replicate the realistic horizontal wind structures of TCs.461

Furthermore, since TC seeds are artificially integrated into the surrounding environment,462

successfully reproducing the historical distribution of the outer size of TCs can, to some463

extent, prove that integration based on weighted Poisson blending is feasible.464

Previous studies have shown that reanalysis datasets, including the ERA5 reanalysis465

used in this study, are capable of effectively capturing the TC outer size, which is defined466

by radii where convection is minimal and the atmosphere maintains a radiative–subsidence467

balance (Schenkel et al., 2017). In earlier studies, multiple thresholds for azimuthal mean468

tangential winds have been used, such as 2 m/s, 6 m/s, 8 m/s, 9 m/s, and 12 m/s (Bian et469

al., 2021). Here, we use three size metrics based on the radii where the wind diminishes to470

2 m/s (r2), 6 m/s (r6), and 12 m/s (r12), to establish a range of size metrics that include471

both the smallest and the largest metrics.472

We identify the outer size of the TC following the procedures outlined in (Schenkel et473

al., 2017). The procedure involves the following five main steps: 1) remove the background474

flow from the surface wind field, which is empirically defined as the storm translation vector475

rotated 20 deg cyclonically and diminished by a factor of 0.55, as described in the method476

by (Lin et al., 2012); 2) establish a TC-centered polar coordinate system, where the cyclone477

center serves as the origin, and the grid spacing in the radial direction is set at 0.5 times478

the archived reanalysis grid spacing; 3) compute the tangential wind at the grid points of479

the reanalysis data for each annular region of the polar coordinate system; 4) remove all480

radial points if the data asymmetry parameter exceeds 0.5, following (Chavas & Vigh, 2014);481

5) calculate the gridded radial profile of azimuthal-mean 10-m tangential wind using cubic482

Hermite polynomial interpolation, based on which we then identify the radii of at which the483
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10-meter azimuthal-mean tangential wind speeds decrease to a certain threshold (12 m/s, 6484

m/s, and 2 m/s).485

4 TC-GEN Evaluation486

We evaluate the performance of TC-GEN by comparing simulated TCs with historical487

observations for the following TC characteristics: track density, landfall frequency along488

the US-Mexico coastline, lifetime maximum intensity (LMI), landfall intensity, and outer489

size under three size metrics. For each TC, we generate a synthetic TC seed and blend490

it into the corresponding hourly or monthly environment map, with the location and time491

provided by the PepC genesis model. We then run Pangu-Weather to simulate each storm492

and apply the bias correction model to adjust the maximum intensity for each step. The493

track is terminated if the raw maximum intensity is below 8 m/s, the adjusted intensity494

is below 15 kt, the central vorticity is below 5e−5s−1, or if the storm has been over the495

land for five consecutive steps, which is equivalent to 30 hours. To form a fair comparison,496

we remove storms with a lifetime maximum intensity less than 25 kt for all datasets. As497

TCs would undergo an extratropical transition at high latitudes, we restrict our analysis498

to samples where the storm center is south of 50N. The remaining storms are used for the499

TC-GEN evaluation.500

4.1 Track Density501

Figure 7 compares the simulated tracks that are initiated with both hourly and monthly502

data, with observed tracks and simulated tracks using KE08 and PepC. The colors represent503

the spatial track density normalized to the maximum of the basin. We show that both sets of504

simulated tracks replicate the typical recurving pattern seen in the observed tracks relatively505

well, which is comparable to KE08 and PepC. Compared to observations, TC-GEN simulated506

tracks exhibit a negative bias in the main development region, mainly stemming from the507

negative bias in the genesis component of PepC within this region. We test this hypothesis508

with a sensitivity test by resampling the genesis according to the spatial distribution of509

historical genesis locations. After sampling, we find that the simulated tracks effectively510

capture the hotspots in the main development region, the southeast US coast, and the Gulf511

of Mexico, although there is a slight positive bias in the Gulf of Mexico with hourly data512

and in the West Caribbean Sea with monthly data (Figure S1).513

We further evaluate the performance of TC-GEN by comparing the 6-hourly north-514

south and east-west displacements of simulated and observed tracks, which serves as a515

means to assess TC-GEN’s performance in simulating individual tracks. The results are516

shown in Figure 8. All simulated data sets are largely consistent with the observations.517

For simulated tracks initiated with hourly data, there is a slight positive bias for positive518

meridional displacement, a slight negative bias for negative meridional displacement; and519

correspondingly, a negative bias for positive zonal displacements and a positive bias for520

negative zonal displacements, which could come from fewer recurvations in simulated storm521

tracks that originate in the main development region. Additionally, positive biases in merid-522

ional displacements may also arise from the deviations in eastward moving tracks at high523

latitude (near Europe), where they should have been terminated because of their low wind524

intensity. These patterns are also seen in simulated tracks that are initiated with monthly525

reanalysis data. In general, both datasets exhibit comparable performance to existing down-526

scaling methods, with simulated tracks initiated using hourly data showing slightly better527

performance than those initiated with monthly data.528

4.2 Landfall Frequency529

We examine the annual regional landfall frequency at coastal locations along the North530

Atlantic coastline. To help indicate locations, a total of 186 mileposts (MPs) are defined531
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Figure 7. Track density Track density is calculated as the accumulated number of TC passes

into each 0.75×0.75 grid box normalized by the maximum grid value of the basin, smoothed with a

Gaussian low-pass filter. Tracks over land are removed in each subplot. Simualted tracks initiated

with (b) hourly data and (d) monthly data are compared with (a) observations, (c) KE08 and (e)

PepC. All simulated tracks replicate the typical recurving pattern seen relatively well.

following Vickery et al. (2000) (Vickery et al., 2000), as shown in Figure 9, to cover the532

coastline with 100-km spacing along the Mexican coastline and 50-km spacing along the US533

coastline. Landfall is defined as simulated or observed storms that approach within 50 km534

of each coastal milepost. The results presented in Figure 9b are based on simulated tracks535

initiated using both hourly and monthly data. Furthermore, results from KE08- and PepC-536

simulated tracks are included for comparison. As a reference, the historical annual landfall537

rate between 1900 and 2022 is shown with shading that indicates the associated sampling538

error at each milepost. The sampling error for the annual rate of each gate is determined539

by calculating the total number and standard error of storms that cross each gate over the540

entire record and then dividing both the mean and the error bars by the number of years.541

Due to the different annual total frequencies in the simulated and observed track542

datasets, which can significantly influence landfall frequency, we adjust the annual rate543

to a uniform 13 storms per year in all datasets to form a fair comparison. Our results544

indicate that the simulated tracks, from daily and monthly data, can reproduce the overall545

pattern in the observations, showing a performance comparable to that of KE08 and PepC.546

The annual landfall rates simulated by TC-GEN exhibit correlations with observations of547

0.79 and 0.82 for the tracks initiated with hourly and monthly data, respectively, which are548
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Figure 8. 6 hour zonal and meridional displacement Comparison of probability density

functions of 6 hour (a) meridional and (b) zonal displacements between simulated tracks and ob-

servations. Simulated tracks initiated with hourly data and monthly data are both presented and

compared with KE08 and PepC.

comparable to 0.83 and 0.79 for PepC and KE08, respectively. Both TC-GEN simulated549

data sets capture the landfall frequency at MP 100-125, which is overlooked by existing550

methods, while they underestimate the landfall frequency below MP 25, possibly due to551

fewer genesis in the main development region.552

4.3 Lifetime Maximum Intensity and Landfall Intensity553

We analyze the simulated TC intensity using two metrics, the lifetime maximum in-554

tensity and landfall intensity. The LMI distribution serves as a representation of the TC555

intensity climatology. A successful simulation should be able to reproduce the bimodal556

distribution with a shoulder feature around 120 kt, which is associated with storms that557

undergo rapid intensification (C.-Y. Lee et al., 2016). We show in Figure 10 that after bias558

correction, both sets of TC-GEN are capable of reproducing a realistic distribution of the559

observed LMI. TC-GEN tracks initiated with hourly data better simulate the tail of the LMI560

distribution for LMI greater than 75 kt; however, there is a negative bias in LMI for storms561

with LMI less than 75 kt, which are mostly moderate storms that do not undergo rapid562
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Figure 9. Landfall frequency Subplot a shows locations of mileposts along Mexico (every

100 km) and U.S. (every 50 km) coastline. Subplot b shows the comparison of annual landfall

rate at each of 186 mileposts between simulated tracks and observation, with shading indicating

the associated sampling error. Results from KE08 simualted tracks and PepC simulated tracks are

shown for comparison.

intensification. TC-GEN tracks initiated with monthly data overestimate the proportion of563

storms with an LMI greater than 75 kt. The biases might originate from the intensity bias564

correction model. In order to have a reasonable fraction of storms undergo rapid intensi-565

fication, the bias correction model prioritizes strong storms, which could lead to a higher566

proportion of storms becoming more intense than they should be. Similar patterns are also567

seen in the distribution of the landfall intensity. Both data sets initiated with hourly and568

monthly data exhibit a positive bias in landfall intensity greater than 75 knots. This bias is569

also likely to be attributed to the intensity correction model, which tends to overestimate570

the intensity of the storm when the storm has already weakened.571
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Figure 10. Lifetime maximum intensity and landfall intensity Subplot a compares LMI

distribution between simulated storms and observations. Subplot b compares the distribution of

landfall intensity, defined as the maximum wind speed within 50 km of each coastal milepost, from

both simulated and observed tracks. Results of KE08 and PepC are shown here for comparison.

4.4 Outer Size572

Although the TC structure cannot be fully resolved in the reanalysis data set, previous573

work has shown that the reanalysis data can be used to extract the outer size of storms, and574

ERA5 shows an improved representation of the outer size compared to previous versions575

of ERA (Bian et al., 2021). Here, we examine how the outer size of the TCs compares576

between TC-GEN simulated tracks and historical storms, where outer sizes of historical TCs577

are derived from the corresponding ERA5 reanalysis data. As the statistical downscaling578

approach does not provide this output, we do not have data from PepC for this analysis. The579

results are shown in Figure 11. The medians (standard deviations) of r2, r6, and r12 from580

TC-GEN simulated tracks are 574.5 (230.2), 451.0 (172.5) and 270.8 (74.1) km, respectively,581

compared to 584.9 (259.8), 468.1 (233.4) and 277.5 (129.6) km, respectively, from historical582

data. For all three size metrics, TC-GEN accurately reproduces the median of outer size,583

with a discrepancy of approximately 10 km, which is even lower than the uncertainties584

in outer size arising from different reanalysis datasets (Bian et al., 2021). However, the585
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standard deviations for all three size metrics in TC-GEN-simulated TCs are smaller than586

those observed in historical storms, particularly for r12, which represents the largest metric587

that defines the outer size of storms. This smaller variation may arise from the bias in the588

horizontal wind structures of TCs at genesis, which requires further investigation.589

Figure 11. TC outer size Subplot a shows the concept of TC outer size defined as the radii at

which the 10-m azimuthal-mean wind speed equals 2, 6, and 12 m/s. The contours of the 10-meter

azimuthal-mean wind are shown with color lines. Subplot b shows the boxplots of outer size at

three radii metrics, from TC-GEN simulated tracks and those in ERA reanalysis. The median of

each metric is represented as a horizontal bold line, and the upper and lower boundaries of each

box indicate the 75th and 25th percentiles.

5 Discussion590

5.1 Sensitivity to reanalysis data591

In this study, we show the results of TC-GEN initiated with 6-hourly and monthly592

ERA5 reanalysis data. We illustrate that TC-GEN can generate realistic synthetic TCs with593

both datasets, despite their different temporal resolutions. Given the significant advantage594

in reducing data download and storage burdens, we propose that using monthly data to595

initiate TC-GEN is acceptable when scaling up the data generation process to achieve global596

coverage or long-period simulations.597

Furthermore, we evaluate the suitability of applying TC-GEN to reanalysis data sets598

other than ERA5 reanalysis. Using NCEP GFS (see 2.3, we find that the results are unsat-599

isfactory (as illustrated in Figure S2), which is likely attributed to the well-known domain600

gap problem in deep learning. In a deep learning model, typically the first several layers601

of the neural network are responsible for extracting features from raw data. These layers602

are trained to identify relevant features that help in downstream tasks, such as recogniz-603
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ing distinctive patterns, reducing noise, and achieving specific invariances. However, these604

layers can become highly specialized for the specific training data set and fail to generalize605

effectively to different data sets. We believe that this is the reason why TC-GEN does606

not perform well in NCEP GFS, as its core model Pangu-Weather is trained exclusively607

on ERA5 reanalysis data. Based on this discussion, an interesting future direction involves608

devising a generalized ML-based weather forecasting system that performs reasonably well609

on various reanalysis datasets. This could be accomplished, for example, by training the610

model on multiple reanalysis datasets together.611

5.2 Extrapolation and applicability for future climate612

To generate storms under future climate conditions, traditional statistical downscaling613

approaches assume that the observed relationships between the TC and the environment,614

established under historical climate conditions, will continue to hold in a warming climate.615

While there is no need to re-train the statistical models based on future climate, the process616

of extrapolation introduces a certain degree of uncertainty, particularly when unforeseen617

factors may impact the relationship. TC-GEN has unique strengths and limitations in ad-618

dressing extrapolation. As ML-GWM operates in a manner that mimics the characteristics619

of numerical models; once a future ML-GWM becomes accessible, it enables TC-GEN to620

directly simulate storms under future climate conditions when initiated with future climate621

projections. However, as previously discussed and a significant limitation, the optimal per-622

formance of TC-GEN depends on being paired with the specific set of environment maps623

on which it was trained. Therefore, it is necessary to pre-train an ML-GWM using environ-624

mental data obtained from climate projections, before applying TC-GEN to climate change625

studies.626

5.3 Range of TC seeds627

Poisson blending involves integrating synthetic TC seeds into the surrounding environ-628

ment, where it is crucial to carefully choose a specific range to define the extent of TC seeds.629

The TC seed range should be limited to avoid including unrelated meteorological systems,630

which can negatively affect the performance of the PCA model. However, if the range is631

excessively limited, it may not fully capture the entire spatial structure of the TC during its632

genesis. In such cases, the outermost extent of the range may not have fully diminished to633

the intensity of the surrounding background wind. As the Poisson blending algorithm tends634

to assimilate the gradient of TC seeds while aligning the boundaries with the ambient wind635

field, this could result in an underestimation of the wind speed within the inner region of636

the storm. In practice, we examine several sets of radii ranging from 25 grid cells (approxi-637

mately 200 km) to 89 grid cells (approximately 1200 km). Our sensitivity tests reveal that638

the results are relatively robust when the radius falls within the range of 49 to 75. For the639

primary analysis in this study, we use a radius of 64 grid cells as the optimal parameter for640

blending.641

5.4 Intensity bias correction642

The spatial structure of the TCs could not be fully resolved on the 0.25° × 0.25°643

horizontal grid, and we apply the intensity bias correction model to adjust the simulated644

raw intensity to the real intensity. The bias correction model has the ability to reproduce a645

realistic LMI distribution and captures the correlation of the TC intensity with the previous646

time step, thereby maintaining strong continuity. In the development of this model, we also647

test models that are not based on recurrent neural networks, where the maximum intensity648

of the storm is adjusted solely based on the TC and environmental predictors in the current649

and previous steps. However, the performance of these models is not optimal, indicating650

that recurrent networks are necessary. One limitation of the current bias correction model651

is that it tends to overestimate TC maximum intensity when the storm is decaying, which652
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partially explains the positive bias in the landfall intensity distribution. This bias is likely653

a result of the model being trained to prioritize replication of the shoulder feature in LMI,654

which is associated with strong storms that undergo rapid intensification (this may also655

stem from a limitation in the Dvorak technique, which is used to estimate the TC intensity656

from satellite imagery). Consequently, the model tends to generate more storms that grow657

at a higher rate while decaying at a slower rate. Future work should focus on improving658

the bias correction model to effectively handle storms that undergo rapid intensification and659

those that do not, with the aim of achieving optimal performance in terms of both lifetime660

maximum intensity and landfall intensity.661

5.5 Asymmetric TC wind field662

Horizontal asymmetric TC wind fieds are important for disaster management and re-663

gional risk assessment. In addition to the maximum wind speed, accurate estimation of664

the TC wind field is essential to identify at-risk populations and assess potential climate-665

related threats. One notable advantage of TC-GEN is its ability to directly output spatial666

asymmetric characteristics of the TC surface wind field. Although raw simulated winds667

are often underestimated as TC structures cannot be fully resolved at a resolution of 0.25°668

× 0.25°, there are still several ways to adjust the intensity of the wind and effectively use669

the simulated asymmetries. For example, with the adjusted maximum wind intensity and670

the extracted outer size of the TC, a parametric wind model can be applied, such as the671

model developed in Chavas et al. (2015) (Chavas et al., 2015), to generate the complete672

asymmetric wind profile of the TC. Future work should also assess the ability of TC-GEN673

to simulate asymmetric winds at landfall. This assessment may involve comparing the syn-674

thetic landfalling TCs with observational data, such as winds obtained from Automated675

Surface/Weather Observing Systems, or with output from dynamical simulations.676

6 Conclusions677

This study introduces a novel machine learning-based approach to the synthetic down-678

scaling of tropical cyclones. This approach, which we refer to as ”TC-GEN”, leverages the679

recent advances in machine learning-based global weather models. The machine learning-680

based high-resolution global weather model (ML-GWM) takes environmental maps of key681

atmospheric and surface variables from reanalysis data as input and predicts the values682

of these variables for the next time step, with the flexibility to choose from various lead683

times. Using a pre-trained model representing a cutting-edge ML-GWM (Pangu-Weather),684

we show that TC-GEN is capable of simulating synthetic storms that allow for the two-way685

interactions between the storm and its environment. It maintains computational efficiency686

that is similar to existing statistical-deterministic and statistical downscaling approaches;687

however, its distinctive advantage lies in the ability to simulate the spatial asymmetries of688

surface wind. TC-GEN consists of four key steps: the generation of a synthetic TC seed for689

each storm through a data-driven process, the merging of the TC seed with the background690

environment using Poisson blending, the simulation of the full life cycle of the storm with691

ML-GWM, and the correction maximum wind speed biases using a long-short-term memory692

model. By comparing TC-GEN-simulated storms with observed storms and those simulated693

from existing statistical-deterministic and statistical downscaling approaches, we show that694

TC-GEN is capable of simulating storms that reproduce a range of important TC charac-695

teristics, including metrics for track, intensity, and storm size. For future work, our plan696

involves expanding this approach to include other TC basins and exploring its applicability697

on a global scale. Additionally, considering the absence of rain rate in the simulation output698

from Pangu-Weather, one potential work would be to examine the performance of TC-GEN699

when working with other ML-GWMs that are capable of simulating this important variable.700

The recently introduced ML-GWM has significant potential for improvement with on-701

going advances in machine learning and artificial intelligence, aiming for higher resolution,702
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improved accuracy, and even lower computational costs. Therefore, we expect that the703

performance of TC-GEN will see further improvements as ML-GWM undergoes continuous704

development. Moreover, using TC-GEN as an example of how recent advances in machine705

learning and data science can contribute to tropical cyclone risk assessment, we believe706

that machine learning-based global weather models will play a crucial role in future climate707

studies.708

Open Research Section709

Pangu-Weather trained models can be downloaded from the public GitHub repository at710

https://github.com/198808xc/Pangu-Weather (https://doi.org/10.5281/zenodo.7678849). Trop-711

ical cyclone observations are obtained from the International Best Track Archive for Climate712

Stewardship (IBTrACS) project at https://www.ncei.noaa.gov/products/international-best-713

track-archive. Historical ERA5 reanalysis data (both monthly and 6-hourly) are obtained714

from the ECMWF climate data store. Historical NCEP reanalysis data is downloaded at715

https://rda.ucar.edu/datasets/ds084.1/.716
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Figure S1. Sensitivity test of track density Similar to Figure 7, track density is computed

as the accumulated number of tropical cyclone passes into each 0.75 × 0.75 grid box, normalized

by the maximum grid value of the basin, and smoothed using a Gaussian low-pass filter. The

four panels show track density from (a) observations, (b) TC-GEN initiated with hourly data,

(c) storms simulated by PepC, and (d) TC-GEN initiated with monthly data. In comparison

with Figure 7, we resample the genesis locations based on the spatial distribution of historical

genesis to ensure a fair comparison between TC-GEN simulated storms and observations. We

demonstrate that, following the resampling, the simulated tracks effectively capture the hotspots

in the main development region, the southeast US coast, and the Gulf of Mexico.
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Figure S2. Robustness with alternative reanalysis data We assess the suitability of

TC-GEN by initiating it with an alternative reanalysis dataset, the NCEP GFS. Through the

simulation of two historical tropical cyclones (a) 2021240N13313 and (b) 2021256N21265, repre-

senting storms originating in the Gulf of Mexico and the main development region, respectively,

we observe unsatisfactory performance. This is likely due to the well-known domain gap problem

in deep learning.
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