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Key points (Limit 140 character including spaces): 19 

l By the 2050s, carbon neutrality reduces population exposure to climate extremes by 20 

87–98% compared to current global warming rates. 21 

l Africa and Asia are projected to experience the most dramatic reductions in population 22 

exposure to climate extremes by achieving the carbon neutrality. 23 

l In North America, Europe, and Oceania, climate extreme change plays a more 24 

important role in population exposure to climate extremes. 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 
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Abstract 37 

Climate extremes, such as hot temperature and heavy precipitation events, have 38 

devastating effects on human societies. As the planet gets warmer, they have become more 39 

intense and more frequent. To avoid irreversible damages from climate extremes, many 40 

countries have committed to achieving net-zero anthropogenic carbon emissions, or carbon 41 

neutrality, by the 2050s. Here, we quantify the impact of carbon neutrality on population 42 

exposure to climate extremes using multi-model projections from the Coupled Model 43 

Intercomparison Project Phase 6 (CMIP6) Shared Socioeconomic Pathway (SSP)1-1.9 and 44 

SSP3-7.0 scenarios. It is found that the increasing population exposure to hot-temperature and 45 

heavy-precipitation extremes under SSP3-7.0 scenario can be substantially reduced by 87–98% 46 

in the late 21st century by achieving the carbon neutrality based on SSP1-1.9 scenario. The 47 

benefits of carbon neutrality are particularly pronounced in Africa and Asia. The potential 48 

benefits of carbon neutrality are also significant in North America, Europe, and Oceania, where 49 

a reduction in climate extremes is more than twice as important as population decline in 50 

reducing population exposure to climate extremes. These results provide important scientific 51 

support for ongoing efforts to achieve net-zero carbon emissions by the 2050s to reduce 52 

potential climate risk and its inequity across continents. 53 

 54 

  55 
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Plain Language Summary 56 

To avoid irreversible damages from climate extremes in a warming climate, net-zero 57 

anthropogenic carbon emissions, or carbon neutrality, has been proposed. However, how much 58 

damages from climate extremes can be mitigated by achieving the carbon neutrality has not 59 

been quantitatively assessed. Here, we show that achieving carbon neutrality could lead to a 60 

significant and widespread reduction in population exposure to hot-temperature and heavy-61 

precipitation extremes by 87–98% in the late 21st century. The benefits of carbon neutrality are 62 

particularly large in Africa and Asia. Even in North America, Europe, and Oceania, where the 63 

developed countries are concentrated, population exposure to climate extremes is projected to 64 

decrease significantly, primarily due to reduced climate extremes with a minor contribution of 65 

population decline. This finding underscores the critical importance of ongoing efforts to 66 

achieve net-zero carbon emissions by the 2050s to reduce potential climate risk and its inequity 67 

across continents. 68 

 69 

 70 

 71 

 72 

 73 

 74 
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1. Introduction 75 

As the threat of global warming became a reality, the Paris Agreement was proposed 76 

in 2015 to “hold the increase in the global average temperature to well below 2°C against 77 

preindustrial levels and pursue efforts to limit the temperature increase to 1.5°C” (UNFCCC, 78 

2015). Its potential benefits have often been highlighted through the analyses of climate model 79 

simulations (e.g., Park et al., 2018; King et al., 2021; Nashwan & Shahid, 2022). Such studies 80 

have reported that 0.5°C less warming compared to 2°C warming can lead to a significant 81 

reduction in the areas damaged by climate change. However, these studies are mainly based on 82 

relatively low-emission scenarios compared to high-emission scenarios (e.g., O’Neill et al., 83 

2016; Oin et al., 2021) rather than carbon-neutrality scenarios which take into account 84 

socioeconomic and environmental changes, technological development and innovation, and 85 

policy coordination to achieve net-zero emissions by the 2050s (Gidden et al., 2018).  86 

While the Paris Agreement focuses on mean surface air temperature (UNFCCC, 2015), 87 

more attention should be paid to climate extremes. Climate extremes, such as hot-temperature 88 

and heavy-precipitation events, are rapidly increasing with global warming, exerting 89 

destructive impacts on human societies (e.g., Kharin et al., 2013; Li et al., 2021; Xie et al., 90 

2022). By reducing CO2 emissions, the frequency and intensity of climate extremes are 91 

projected to decrease significantly (e.g., Jo et al., 2022; Kim et al., 2022; Nashwan & Shahid, 92 

2022). However, it has not yet been quantified how much the population exposure to climate 93 

extremes can be reduced by achieving carbon neutrality, although it can provide critical context 94 

for establishing effective climate mitigation policies.  95 
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Here, we investigate the impact of carbon neutrality on population exposure to hot-96 

temperature and heavy-precipitation events by examining multi-model projections from the 97 

Coupled Model Intercomparison Project Phase 6 (CMIP6, Eyring et al., 2016). In particular, 98 

we compare the Shared Socioeconomic Pathway (SSP)1-1.9 scenario, which describes a 99 

transition to a carbon-neutral society around the 2050s and net carbon absorption thereafter, 100 

with the SSP3-7.0 scenario, which is based on regional rivalry over carbon emissions policy 101 

(Fig. 1; O’Neill et al., 2016; Oin et al., 2021), and quantitatively assess the projected reduction 102 

in global and regional population exposure to hot-temperature and heavy-precipitation 103 

extremes. The relative importance of changes in population and extreme events in reducing 104 

population exposure to climate extremes is also examined.  105 

  106 

2. Data and Methods 107 

2.1. Datasets 108 

To calculate climate extremes, daily maximum temperature and precipitation for 109 

historical simulations (1985–2014) and future projections (2015–2100) under two different 110 

SSP scenarios from eight CMIP6 models (Eyring et al., 2016) are used (Table 1). Specifically, 111 

the SSP3-7.0 and SSP1-1.9 scenarios, which are the high and very low greenhouse gas emission 112 

scenarios, respectively (O’Neill et al., 2016; Oin et al. 2021), are compared. The former 113 

assumes the current rate of global warming to be maintained until 2100 (i.e., regional rivalry 114 

scenario), while the latter assumes net-zero carbon emissions by the 2050s (i.e., carbon 115 

neutrality scenario) (Figure 1). All variables of interest are computed at each land grid point 116 
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and then intercompared across six continents, i.e., North America, South America, Europe, 117 

Africa, Asia, and Oceania (Figure S1; Iturbide et al., 2020).  118 

 119 

2.2. Climate extremes based on GEV analysis 120 

This study uses the annual maximum of daily maximum temperature (TXx) and annual 121 

maximum daily precipitation (RX1day) as indices of hot temperature and heavy precipitation 122 

extremes, respectively, following the Expert Team on Climate Change Detection and Indices 123 

(ETCCDI; Zhang et al. 2011). To estimate the rare events occurring once in 10, 30, or 50 years, 124 

we first fit TXx and RX1day at every grid point of each model’s native resolution to the 125 

generalized extreme value (GEV, Kharin et al., 2013) distribution during the historical (1985–126 

2014) and future (2071–2100) periods. The GEV estimation for 30-year time window is based 127 

on the assumption that temperature or precipitation extremes remain approximately stationary 128 

within 30-year period (Kim et al., 2020; Li et al., 2021).  129 

The cumulative density function (CDF) of the GEV distribution for variable x is 130 

defined as follows: 131 

(; , , ) =   − −    for  = 0                   − 1 +     for  ≠ 0 and   > −1  (1) 132 

where μ, σ, and ξ represent the location, scale, and shape parameters, respectively. The GEV 133 

parameters are estimated using the L-moments method (Hosking, 1990), which has been used 134 

for the small sample size (Hosking, 1990; Kim et al., 2020). The quantile function of GEV (X) 135 
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is derived by inverting a CDF for a given probability p as below. 136 

 =  −  ln[− ln()] for    = 0                                  −  ln1 − (− ln()) for  ≠ 0.           (2) 137 

The 10-, 30-, and 50-year return values for the historical and future periods are calculated when 138 

p=0.90, 0.967, and 0.98 (as the exceedance of the annual extreme with probability = 10%, 3.3%, 139 

and 2%), respectively. In this study, we mainly focus on the return values of 30-year, which is 140 

the most realistic but large enough period that can be obtained from the current reanalysis 141 

dataset (see supporting information). After the GEV estimation, climate extreme indices are 142 

interpolated to a common 1°×1° grid using a bilinear remapping, and then multi-model 143 

ensemble statistics are computed. This procedure allows to minimize the discrepancy arising 144 

from different data resolutions (Kim et al., 2020; Li et al., 2021). Further details on the model 145 

evaluation and projection for the historical and future climate extremes can be found in the 146 

supporting information. 147 

 148 

2.3. Population exposure 149 

Population exposure is one of the key indicators of the impact of climate extremes on 150 

human societies (e.g., Jones et al., 2018; Chen & Sun, 2021). It is closely intertwined with 151 

climate risk, as the impacts of climate change are felt most acutely by vulnerable populations 152 

(e.g., Jones et al., 2018; Chen & Sun, 2021). Population exposure represents the accumulative 153 

number of people exposed to climate extremes (unit: person-days), and is computed by 154 

multiplying the population count of an area by the number of climate extremes that occur there. 155 
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In this study, the 10-, 30-, and 50-year return values of TXx and RX1day, estimated from the 156 

historical period of 1985–2014 (Figures S2b and 2e), are used as the threshold values to identify 157 

the hot-temperature and heavy-precipitation extremes. The number of climate extreme events 158 

at each native model grid is counted as the number of extreme days exceeding the threshold 159 

values in each year for the period of 1985–2100. After interpolating the result into a common 160 

1°×1° grid, the historical population exposure is defined as the integrated product of the number 161 

of climate extremes from 1985 to 2014 and the historical population count in 2010 (Figure S3a; 162 

Jones & O’Neill, 2016). For the future population exposure, the future population counts in 163 

2020, 2030, …, 2090, and 2100 under SSP1 and SSP3 scenarios (Figures S3b–3h; Jones & 164 

O’Neill, 2016) are used to match the SSP1-1.9 and SSP3-7.0 scenarios. For example, the 165 

population counts in 2020 and 2030 are used to calculate the population exposure for the period 166 

of 2020–2029 and 2030–2039, respectively. 167 

 168 

2.4. Reduction rate of population exposure and its contributing factor 169 

To quantify the benefit of carbon neutrality, the reduction rate (%, Jones et al., 2018; 170 

Zhang et al., 2018; Lei et al., 2022) of population exposure to climate extremes by achieving 171 

the carbon neutrality is calculated as follows: 172 

370 119

370

Reduction rate (%) 100SSP SSP
SSP

D -D
= ´

D
  (3) 173 

where △ stands for the difference of the aggregated population exposure between the future 174 

(2071–2100) and historical (1985–2014) periods. Here, the changes in population exposure can 175 
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be attributed to the three factors, i.e., climate extreme, population, and climate extreme-176 

population interaction factors (e.g., Jones et al., 2018; Lei et al., 2022; Zhang et al., 2022) as 177 

below: 178 

370 370 370 370 370hist histSSP P C C P C PD = ´D + ´D + D ´D    179 

      119 119 119 119 119hist histSSP P C C P C PD = ´D + ´D + D ´D      (4) 180 

where P and C are the population and the number of extreme days, respectively. The terms ∆P 181 

and ∆C are the changes in the population and number of extreme days in the future period with 182 

respect to the historical period, respectively. Subscripts of C and P denote the historical climate 183 

or SSP scenario. Therefore, the three terms on the right side of Eqn. (4) represent the roles of 184 

climate extreme (CLM), population (POP), and their interaction (INT) changes, respectively. 185 

By combining Eqns. (3–4), the reduction rate can be decomposed as follows:  186 

370 119 370 119 370 119

370 370 370

Reduction rate (%) 100 100 100CLM CLM POP POP INT INT
SSP SSP SSP
- - -

= ´ + ´ + ´
D D D   (5) 187 

The first term represents the contribution of climate extreme changes to the total reduction rate 188 

(%) of population exposure to climate extremes. Similarly, the second and third terms represent 189 

the contribution of population and climate extreme-population interaction changes, 190 

respectively, to the total reduction rate (%). 191 

 192 

3. Results 193 

3.1. Global population exposure to climate extremes 194 

Figure 2 presents the time series of global population exposure to hot-temperature and 195 
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heavy-precipitation extremes for the period of 2015–2100 under the SSP1-1.9 and SSP3-7.0 196 

scenarios compared to the historical period of 1985–2014. If global warming keeps continuing 197 

without a transition to the carbon-neutral society in the 2050s, the population exposures to hot-198 

temperature and heavy-precipitation extremes that exceed the historical 30-year return values 199 

(Figures S2b and S2e) are anticipated to increase up to 192 billion and 1.87 billion person-days, 200 

respectively, at the end of the century (red lines in Figures 2a and 2b). Given the fact that 201 

population exposures in the historical period are 0.21 billion and 0.17 billion person-days, 202 

respectively, they are approximately 914 and 11 times larger than the historical values. The 203 

increasing trends are particularly noticeable after the 2050s. The inter-model spread does not 204 

cross the zero line after the year 2043 for hot-temperature extremes and the year 2067 for 205 

heavy-precipitation extremes. This indicates that increasing population exposures to climate 206 

extremes under the high-emission scenario are distinct in the late 21st century compared to the 207 

historical period. The same trends are also found when population is fixed to the historical level 208 

(orange lines in Figures 2a and 2b). However, they are only half of that with time-varying 209 

population (compare red and orange lines). This suggests that population changes and climate-210 

population interaction changes are also important in determining population exposure to 211 

climate extremes in the high-emission scenario. 212 

The transition to the carbon-neutral society in the 2050s results in a minimal shift in 213 

population exposure to climate extremes, accompanied by reduced model spread which 214 

indicates the robust multi-model projections (blue lines and shading in Figures 2c and 2d). The 215 

population exposure in the carbon neutrality scenario is less than one-tenth of that in the high-216 
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emission scenario (compare Figures 2a,b and 2c,d; note the different scale of the y-axis between 217 

the two scenarios). The population exposures to hot-temperature and heavy-precipitation 218 

extremes slightly increase by approximately 4.65 billion and 0.19 billion person-days 219 

(approximately 22 and 1.12 times larger than the historical values), respectively, until the 220 

middle of the 21st century, then decrease afterward. However, these changes have a large 221 

uncertainty, with a model spread often crossing the zero line, revealing that future population 222 

exposures to climate extremes are indistinguishable from historical ones if the carbon neutrality 223 

is successfully achieved.  224 

The reduced population exposures to hot-temperature and heavy-precipitation 225 

extremes by achieving the carbon neutrality are 187 billion and 1.68 billion person-days in the 226 

year 2100, respectively (Figures 2e and 2f). These correspond 90 and 98% reductions for 227 

heavy-precipitation and hot-temperature extremes, respectively, from the high-emission 228 

scenario (purple lines in Figures 2e and 2f). Inter-model spread does not cross the zero line in 229 

the late 21st century for both climate extremes. This result highlights the importance of carbon 230 

neutrality in mitigating climate change risks. 231 

 232 

3.2. Regional population exposure to climate extremes 233 

The increasing population exposure to climate extremes under the high-emission 234 

scenario is more pronounced in densely populated areas. Some land regions, where population 235 

is dense (Figure S3a), are expected to have an increasing population exposure to hot-236 

temperature extremes by ten million person-days or more in 2071–2100 (Figure 3a). The people 237 
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in those regions are anticipated to experience more intense hot-temperature events, over 4 °C 238 

hotter than the historical events (upper panel of Figure S4a). In particular, people living in 239 

South America, Africa, Arabian Peninsula, and South Asia would be more frequently exposed 240 

to heat-related extremes, more than 20 days per year, compared to those living in other regions 241 

(bottom row of Figure S4a). For heavy-precipitation extremes, a large population exposure, 242 

greater than one million person-days, is projected to occur only in African and Asia monsoon 243 

regions (Figure 3b). It is expected that African and Asian people would experience more intense 244 

(over 40 mm/day) and frequent (over 0.5–1.0 days per year) heavy-precipitation extremes 245 

under the high-emission scenario (Figure S5a). 246 

 While the global population exposure to climate extremes may increase only 247 

marginally under the carbon-neutral scenario, the regional changes remain noteworthy. The 248 

large population exposure to hot-temperature extremes, greater than one million person-days, 249 

is still found in the late 21st century in African and Asian monsoon regions as well as 250 

Mediterranean and western Europe (Figure 3c). It contrasts to the population exposure to 251 

heavy-precipitation extremes which is less than one-tenth million person-days in most regions 252 

(Figure 3d). This result suggests that even if carbon neutrality is achieved, some regions could 253 

be exposed to higher heat-related climate risks than the historical level. However, carbon 254 

neutrality can still significantly reduce the number of people, exceeding ten million in each 255 

region, who may potentially be exposed to climate extremes under the high-emission scenario 256 

(Figures 3e and 3f). 257 

To quantify the regional changes in the late 21st century, the area-aggregated total 258 
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population exposures to hot-temperature and heavy-precipitation extremes are calculated in 259 

Figures 4a and 4b. Globally, an increasing population exposure to hot-temperature extremes is 260 

projected to continue under the high-emission scenario, by approximately 106 billion person-261 

days (the first bar in Figure 4a). This value is approximately 461 times higher than the historical 262 

value of 0.23 billion person-days. If carbon neutrality is achieved, only 2.50 billion person-263 

days are expected to increase, with the population exposure to hot-temperature extremes being 264 

substantially reduced. Although much smaller than hot-temperature extremes, the globally-265 

aggregated population exposure to heavy-precipitation extremes is also expected to increase 266 

up to 1.43 billion person-days in the high-emission scenario (approximately 7 times higher than 267 

0.20 billion person-days in the historical period; see the leftmost bar in Figure 4b). If carbon 268 

neutrality is achieved, only 0.17 billion person-days are expected to increase, with the 269 

population exposure to heavy-precipitation extremes again being substantially reduced. 270 

Such reductions are largest in African and Asian continents (AF and AS in Figures 4a 271 

and 4b). If the current “regional rivalry” for the carbon emissions policy is maintained, African 272 

and Asian continents would have the highest or second-highest population exposures to both 273 

hot-temperature and heavy-precipitation extremes in the late 21st century (Figures 4a and 4b). 274 

Their sum accounts for 79% of global population exposure to hot-temperature extremes and 275 

88% of global population exposure to heavy-precipitation extremes. Here, it is important to 276 

note that African continent would become the region most suffering from increasing climate 277 

extremes despite its relatively low carbon emissions (Mann, 2023). It exemplifies an inequality 278 

of climate risk.  279 
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 280 

3.3. Benefits of carbon neutrality and its contributing factors 281 

The impact of carbon neutrality is further examined by calculating the reduction rate 282 

of population exposure to climate extremes (Eq. 3; Figures 4c and 4d). The global reduction 283 

rates for hot-temperature and heavy-precipitation extremes in the late 21st century reach up to 284 

98% and 87%, respectively (first gray bars in Figures 4c and 4d). The reduction rate for hot-285 

temperature extremes is similar across all continents, ranging from 93 to 99% (Figure 4c). 286 

However, the reduction rate for heavy-precipitation extremes varies considerably from one 287 

continent to another, ranging from 20 to 91%, with the largest reduction in Africa, Asia, and 288 

South America (Figure 4d; see also Figure S7). This result suggests that the carbon neutrality 289 

can reduce the inequality of climate risk across continents. 290 

The relative contributions of climate extreme, population, and their interaction changes 291 

on the reduction rate (Eq. 5) are further evaluated in Figures 4c and 4d. The climate extreme 292 

change itself explains about half of the global reduction rate (first red bars in Figures 4c and 293 

4d). The contribution of population change is negligible (first yellow bars), while that of 294 

interaction change is comparable to climate extreme change (first blue bars). The latter is due 295 

to the enormous changes in Africa which is associated with significant future increases in both 296 

population and the number of extreme days across all regions of Africa (Figures S3f and S12; 297 

see also bottom panel of Figures S4 and S5). It suggests a synergistic effect between climate 298 

extreme and population changes in the African continent. Asia is also expected to experience 299 

significant increase in population and the number of extreme days (Figure S3g; see also bottom 300 
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panel of Figures S4 and S5). However, unlike Africa, interaction change contributes less than 301 

climate extreme change (AS blue bars in Figures 4c and 4d). Given that climate extreme change 302 

is positive across all regions of Asia (bottom panels of Figures S4 and S5), it results from the 303 

opposing population trends from one country to another, i.e., an increasing trend in India but a 304 

decreasing trend in China (Figure S12). Although South America also shows comparable 305 

contributions of climate extreme and interaction changes (SA in Figures 4c and 4d), their 306 

absolute values are much smaller than those in Africa and Asia (SA in Figures 4a and 4b).  307 

In North America, Europe, and Oceania, the contribution of climate extreme change 308 

surpasses that of the interaction change by more than twofold (compare red and blue color bars 309 

of NA, EU, and OC in Figures 4c and 4d), because of rather slow and small population growth 310 

under the high-emission scenario (Figures S3c, S3e, and S3h; see also Figure S13). In particular, 311 

for heavy precipitation extremes, the climate extreme changes dominate the reduction rates in 312 

these continents with even negative contributions of the population and interaction changes 313 

(Figure 4d). It indicates that climate extreme change plays a predominant role in reducing the 314 

population exposure to climate extremes in these continents. This result also suggests that the 315 

potential benefits of carbon neutrality can be significant even in developed countries by 316 

reducing the occurrence of climate extremes.  317 

 318 

3.4. Sensitivity to return intervals of climate extremes  319 

More intense climate extremes, that substantially deviate from their climatologies, can 320 

result in more significant social damages, particularly when they are beyond the tolerable 321 
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ranges of ecological systems and human infrastructures. In this regard, the sensitivity of the 322 

reduction rate shown in Figures 4c and 4d to the return intervals of climate extremes is tested. 323 

The 10-, 30-, and 50-year return events are particularly considered (Figure 5). Note that all 324 

analyses in previous sections are conducted with 30-year return events and repeated here as 325 

references. The reduction rate increases for longer return events for hot-temperature extremes 326 

(Figure 5a), indicating an increasing benefit of carbon neutrality for more intense hot-327 

temperature extremes. A small inter-model spread for longer return events further indicates that 328 

this benefit is robust across all continents (Figure 5a).  329 

In contrast, the reduction rate for heavy-precipitation extremes does not systematically 330 

increase for longer return events (black lines in Figure 5b). The inter-model spread is also large, 331 

indicating that the risk of heavy-precipitation extremes has a relatively high uncertainty 332 

compared to hot-temperature extremes, presumably due to their localized and complex nature. 333 

In particular, North America, Europe, and Oceania show a relatively larger inter-model spread 334 

because of different climate sensitivity of individual models to the forcing. In these continents, 335 

climate extreme change is much more important than the other two factors, with increasing 336 

return intervals (Figure S8). Other continents, such as South America, Africa, and Asia, where 337 

the population exposure to heavy-precipitation extremes is high, show a relatively small inter-338 

model spread, suggesting a relatively higher model consistency. 339 

 340 

4. Discussion and conclusions 341 

The present study evaluates the impact of carbon neutrality on population exposure to 342 
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climate extremes in the late 21st century. If the current “regional rivalry” over the carbon 343 

emissions policy is maintained in this century, population exposures to hot-temperature and 344 

heavy-precipitation extremes, exceeding their historical 30-year return values, are projected to 345 

increase by 461 and 7 times, respectively, over the historical values. Such drastic increases can 346 

be significantly reduced by 87–98% by achieving the carbon neutrality. This result supports 347 

the critical importance of ongoing efforts to achieve net-zero carbon emissions by the 2050s to 348 

reduce potential climate risks and their inequity across continents. 349 

The reduction in population exposure to climate extremes through carbon neutrality is 350 

greatest in Africa and Asia. However, as most countries in these continents are currently 351 

developing (Figure S6), conflicts between carbon neutrality and economic development may 352 

arise. Such conflicts may increase the uncertainty in future projection of population exposure 353 

to climate extremes (e.g., Liu et al., 2017; Chen & Suh, 2021; Lei et al., 2022). Another point 354 

of note is the contrasting population trends projected for Asian countries, i.e., an increasing 355 

trend in India but a decreasing trend in China (Figure S12). This calls for further investigation 356 

into the potential benefits of carbon neutrality for individual countries (e.g., Das et al., 2022; 357 

Xie et al., 2022). In North America, Europe, and Oceania, reducing climate extremes by 358 

achieving carbon neutrality plays a more important role than population decline in reducing 359 

population exposure to climate extremes. This indicates that the potential benefits of carbon 360 

neutrality can be substantial even in developed countries. It becomes more apparent when 361 

considering more intense hot-temperature extremes, for which the reduction rates are much 362 

larger with a better agreement between the models (i.e., smaller inter-model spread).  363 
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The findings of the present study do not hold only for extremely rare events. Other 364 

extreme indices of temperature and precipitation (Zhang et al. 2011) consistently show the net 365 

benefits of carbon neutrality (Figures S9–S11). Among others, the number of consecutive dry 366 

days, representing drought, in South America and Africa is projected to decrease considerably 367 

from the high-emission to carbon-neutrality scenarios (Figures S10o and S10p). This result is 368 

consistent with Park et al. (2018), who reported that limiting global warming to 1.5°C 369 

constrains the emergence of aridification.  370 

The year of net-zero carbon emissions in the SSP1-1.9 scenario is decades earlier than 371 

in other mitigation scenarios (e.g., SSP1-2.6), resulting in weaker warming in the late 21st 372 

century (Meinshausen et al., 2020). By conducting the sensitivity experiments for a net-zero 373 

carbon emission year by 2050 and 2060, Lei et al. (2022) reported that more active carbon 374 

neutrality policy could further reduce the population exposure to heat extremes. The present 375 

study supports the need for more active net-zero carbon emissions policy by the 2050s. 376 

It should be recalled that this study is based on concentration-driven simulations from 377 

the CMIP6 project (Quilcaille et al., 2023). The concentration-driven simulations often 378 

exaggerate future climate changes compared to the emission-driven simulations (Nicholls et 379 

al., 2021; Quilcaille et al., 2023). In this regard, the emissions-driven simulations may be more 380 

useful for investigating the merits of the Paris Agreement's goals (Terhaar et al., 2022).  381 

While this study has addressed the impact of carbon neutrality on climate extremes 382 

and population exposure, it is still important to explore the importance of vulnerability which 383 

serves as a critical determinant in assessing the extent to which communities and ecosystems 384 



20 

 

 

 

fare in a warming climate (Cardona et al., 2012; Jones et al., 2018). Because vulnerability 385 

depends on regional location, social and economic development, and the nature of climate 386 

extremes (e.g., Cardona et al., 2012; Jones et al., 2018), assessing the impact of carbon 387 

neutrality on vulnerability may be useful in developing and implementing equitable and 388 

sustainable climate risk mitigation strategies. 389 
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Table 1. CMIP6 models used in this study. 549 

No. Model Ensemble 
information Institution 

Horizontal 
Resolution 

(Lon x 
Lat) 

1 CanESM5 r1i1p1f1 
Canadian Earth System Model version 5,  
Canadian Centre for Climate Modelling 
and Analysis (Canada) 

128 x 64 

2 CNRM-
ESM2-1 r1i1p1f2 National Center for Meteorological 

Research (France) 256 x 128 

3 EC-Earth3 r4i1p1f1 
ICHEC, The Irish Centre for High-End 
Computing, National University of Ireland 
(Ireland) 

512 x 256 

4 GFDL-
ESM4 r1i1p1f1 

NOAA/Geophysical Fluid Dynamics 
Laboratory, Earth System Model version 4 
(USA) 

288 x 180 

5 MIROC-
ES2L r1i1p1f2 

Atmosphere and Ocean Research Institute 
(The University of Tokyo), National 
Institute for Environmental Studies, and 
Japan Agency for Marine-Earth Science 
and Technology (Japan) 

128 x 64 

6 MPI-ESM-
LR r1i1p1f1 Max Planck Institute for Meteorology 

(Germany) 192 x 96 

7 MRI-ESM2-
0 r1i1p1f1 Meteorological Research Institute (Japan) 320 x 160 

8 UKESM1-0-
LL r1i1p1f2 Met Office Hadley Centre (UK) 192 x 144 

 550 

 551 

 552 
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 553 

Figure 1. Time series of global CO2 emissions in SSP1-1.9 and SSP3-7.0 scenarios. The 554 

vertical gray shading indicates the 2050s when net-zero emissions are achieved in the SSP1-555 

1.9 scenario. 556 
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 557 

Figure 2. Temporal evolution of global population exposure to climate extremes. Time series 558 

of global population exposure (unit: person-days) to 30-year return events of (a) hot-559 

temperature (TXx) and (b) heavy-precipitation (RX1day) for the period of 2015–2100. Blue 560 
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and red lines indicate the CMIP6 multi-model ensemble median with population change under 561 

SSP1-1.9 and SSP3-7.0 scenarios against the historical period of 1985–2014. Green and orange 562 

lines are the same as blue and red ones but with a fixed population to the historical period. 563 

Purple and sky-blue lines in the bottom row are the differences between SSP1-1.9 and SSP3-564 

7.0 scenarios with time-varying and time-fixed populations, respectively. Shadings indicates 565 

the inter-model spread defined by the full range (min-max) for each scenario. The vertical gray 566 

shading denotes the 2050s when net-zero CO2 emissions occur in Fig. 1. Note that the range 567 

of the y-axis in SSP1-1.9 scenario is only one-tenth of that in SSP3-7.0 scenario. 568 

 569 

 570 

 571 

 572 
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 573 

Figure 3. Projected changes of 30-year mean population exposure to climate extremes in the 574 

late 21st century (2071–2100) compared to the historical period of 1985–2014. Changes of the 575 

population exposure (unit: person-days) to 30-year return events of hot-temperature extreme 576 
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(TXx) under (a) SSP3-7.0 and (c) SSP1-1.9 scenarios and (e) their differences. Only grids 577 

where more than three-quarters of the models show the same sign to the multi-model ensemble 578 

median are presented. (b, d, f) Same as (a, c, e), but for heavy-precipitation extreme (RX1day). 579 
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 594 

Figure 4. Changes of 30-year mean regionally-aggregated population exposures to climate 595 

extremes in the late 21st century (2071–2100) compared to the historical (1985–2014) values, 596 

and their reduction rate from SSP3-7.0 to SSP1-1.9 scenarios. (a) Area-aggregated population 597 

exposure to 30-year return events of TXx over the globe (GL), North America (NA), South 598 

America (SA), Europe (EU), Africa (AF), Asia (AS), and Oceania (OC). Red and blue outlined 599 

bars indicate the SSP3-7.0 and SSP1-1.9 scenarios, respectively. (c) The reduction rate (%) of 600 

population exposure to TXx from SSP3-7.0 scenario to SSP1-1.9 scenarios (gray), and the 601 

relative contributions of climate (red), population (yellow), and climate-population interaction 602 

(blue) changes. (b, d) Same as (a, c) but for RX1day. Note that the range of the y-axis is 603 

different in (a) and (b). 604 
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605 

Figure 5. Regionally-aggregated reduction rate of population exposures to climate extremes 606 

for varying return periods. Area-averaged reduction rate (%) of population exposure to (a) TXx 607 

and (b) RX1day is shown for 10-year (green), 30-year (blue), and 50-year (red) return events. 608 

The periods of 1985–2014 and 2071–2100 are used as in Figs. 3c and d. Closed circles denote 609 

the CMIP6 multi-model ensemble median results, whereas other marks indicate individual 610 

models.  611 
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 640 

Text S1. Model evaluation. 641 

The fifth generation of the European Centre for Medium-Range Weather Forecast 642 

global reanalysis (ERA5, Hersbach et al. 2020) for the historical period of 1985–2014 is used 643 

as reference to evaluate the Coupled Model Intercomparison Phase 6 (CMIP6) models. The 644 

ERA5 data has higher spatial (30 km) and time resolution (hourly) than the other reanalysis 645 

data (i.e., ERA40, Uppala et al. 2005; ERA-Interim, Dee et al., 2011; NCEP/NCAR Reanalysis 646 

1, Kalnay et al., 1996; NCEP-DOE Reanalysis 2, Kanamitsu et al., 2002), potentially making 647 

it more suitable to estimate and evaluate the climate extremes. Therefore, this dataset has been 648 

widely utilized as a reference data for temperature and precipitation extremes (e.g., Kim et al., 649 

2020; Li et al., 2021; Oh & Sushama, 2021). The daily temperature and precipitation data at 650 

approximately 30 km resolution into common into 1°×1° grid and then calculated climate 651 

extreme indices, TXx and RX1day (Zhang et al. 2011), and Generalized Extreme Value (GEV) 652 

estimation to reduce the difference in spatial scales from CMIP6 models (1–2°). 653 

This study uses the multi-model ensemble median (MEM), which is a more valid 654 

representative measure than the multi-model mean, because extremely large or small values 655 

can distort the mean. The model performance is basically evaluated based on the bias, root-656 

mean-square error (RMSE), and correlation for spatial patterns of the estimated extreme values 657 

for the historical period of 1985–2014. The equations of the bias, RMSE and correlation are as 658 
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follow: 659 

 = 1 ( − )
  660 

  = 1 ( − )
  661 

 = ∑ ( − )( − )∑ ( − ) ∑ ( − )  662 

where n is the number of the total grids at land areas. The Mi and Ri denote the model and 663 

reanalysis at i th grid, respectively. The   nd  present the mean values over the land areas 664 

in the model and reanalysis, respectively. To compare the performance of MEM with that of 665 

each model, the combined metric of the RMSE and Taylor skill score (TSS, Taylor, 2001) is 666 

also used. The equation of TSS is like below: 667 

 = (1 +  )4( + 1 )  668 

where SDR is the ratio of the spatial standard deviations of the model against to that of the 669 

reanalysis data. This score quantifies the similarity in the distribution and amplitude of the 670 

spatial pattern between the model and the reanalysis. The relative RMSE and TSS for each 671 

model and MEM are calculated by using their median values.  672 

 673 

Text S2. Performance of CMIP6 MEM for historical period.  674 

Compared with the ERA5 data, the CMIP6 MEM reproduces the spatial distribution 675 
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of the 30-year return value of TXx and RX1day reasonably well for the historical period of 676 

1985–2014, with the spatial correlations of 0.95 and 0.84, respectively (Figures S2a–S2f). The 677 

30-year return value of TXx is slightly overestimated by 0.1 to 3.0 °C in most land areas except 678 

for the high-latitude regions of the Northern Hemisphere, resulting in the global land average 679 

bias of 0.28 °C (Figure S2c). For the 30-year return value of RX1day, the CMIP6 MEM well 680 

captures typical large-scale features such as the intense precipitation extreme in the 681 

intertropical convergence zone (ITCZ) and African and Asian monsoon regions. However, the 682 

models underestimate the extreme precipitation by 20 to 100 mm/day depending precipitation 683 

zone, resulting in a global land average bias of -11.41 mm/day (Figure S2f).  684 

Compared to a single model, the MEM shows a better performance in both the 30-year 685 

return values of TXx and RX1day (Figure S2g and S2h). This result is consistent with previous 686 

studies showing that the multi-model ensemble shows superior performance in reproducing 687 

mean and extreme climates than a single model (e.g., Oh & Suh, 2017; Kim et al., 2020; Li et 688 

al., 2021). Similar results are found for other return events, i.e., 10- and 50-year return value 689 

(not shown). It provides justification for the use of the CMIP6 MEM for future projection of 690 

the rare extreme events with varying return years. 691 

 692 

Text S3. Response of climate extremes in the late 21st century to carbon neutrality. 693 

If the current global warming is continued (i.e., SSP3-7.0 scenario), hot-temperature 694 

and heavy-precipitation extremes are expected to be strengthened in the late 21st century. The 695 

hot-temperature extreme is projected to experience a more intense warming event of above 696 
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4 °C over all land regions except Greenland (the first row of Figure S4a). Such extreme is 697 

expected to occur more than total 1000 days in South America, Africa, Arabia peninsula, and 698 

South Asia regions during the future period of 2071–2100 (the second row of Figure S4a). The 699 

heavy-precipitation extreme also reveals more intense and frequent events (Figure S5a) 700 

particularly in the African and Asian monsoon region where a dense population exists (Figure 701 

S3a). 702 

Even if the transition to a carbon-neutral society is successful (i.e., SSP1-1.9 scenario), 703 

the intensity in both hot-temperature and heavy-precipitation extremes are still expected to 704 

increase with a range of 0.5–2°C and 0–20 mm/day, respectively. On a global average, the 705 

number of days in hot-temperature (heavy-precipitation) extreme increases up to total 100 days 706 

(5 days) compared to the historical period (Figures S4b and S5b). Although more intense and 707 

frequent climate extremes are also evident in the carbon neutrality scenario, the reduction rates, 708 

which estimate the benefit of carbon neutrality compared to the high emission scenario, are 709 

substantially large (Figures S4c and S5c; see Methods in main paper). Globally, a 71% decrease 710 

is found in the intensity of hot-temperature extreme (the first row of Figure S4c), while a more 711 

significant decrease (97%) is found in its frequency (the second row of Figure S4c). Similar 712 

reduction rates are revealed in the heavy-precipitation extreme, i.e., 75 and 76% decreases in 713 

its intensity and frequency, respectively (Figure S5c).  714 

The difference between the scenarios with and without the net-zero carbon emission 715 

shows a large regional dependency, especially for the frequency (Figures S4c and S5c). For 716 

example, the frequency of the hot-temperature extreme exhibits large differences in the South 717 
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America, African, and Asian continents, while that of heavy-precipitation extreme shows a 718 

large difference in the African, North America, and Asian continents. Interestingly, the 719 

reduction rates of the intensity and frequency of the hot-temperature extremes are 68–81% and 720 

94–98%, respectively, which implies a higher benefit of carbon neutrality in the frequency than 721 

in the intensity for all the continents (Figures S4c). On the other hand, the intensity and 722 

frequency of the heavy-precipitation extremes are reduced by 66–85% and 69–87% in net-zero 723 

carbon emission scenario, respectively. This result suggests that there are larger differences in 724 

reduction rate across continents, but smaller differences between frequency and intensity 725 

compared to hot-temperature extreme (Figure S5c). In summary, a transition to a carbon-726 

neutral society around 2050 can lead to a more than twofold of reduction in both the intensity 727 

and frequency of hot-temperature and heavy-precipitation extremes for all the continents.  728 
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 776 

Figure S1. Sub-regional domain in the global land adopted from Iturbide et al. (2020). The 777 

shaded colors indicate different continents: North America (purple series), South America 778 

(green), Europe (orange), Africa (red), Asia (blue), and Oceania (pink). 779 

 780 

 781 
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 782 

Figure S2. Estimates of 30-year return values of hot-temperature (TXx) and heavy-783 

precipitation (RX1day) extremes of (a, d) ERA5 reference data and (b, e) CMIP6 multi-model 784 

ensemble median for the present period of 1985–2014, and (c, f) their differences. The area-785 

averaged value (Ave.), bias (B), root-mean-square error (R), and correlation (C) between the 786 

CMIP6 multi-model ensemble median and ERA5 are indicated in sub-plot. Only land areas are 787 

considered. (g, h) The relative performance of the CMIP6 models for 30-year return values of 788 

TXx and RX1day, based on the root-mean-square error (RMSE) and Taylor skill score (TSS). 789 

The symbol closer to the upper right corner indicates better performance. 790 
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 791 

Figure S3. Spatial distribution of (a) population count (unit: number of persons) in 2010 792 

estimated by NASA Socioeconomic Data and Application Center, and (b–h) time series of the 793 

population change in the globe (GL), North America (NA), South America (SA), Europe (EU), 794 

Africa (AF), Asia (AS), and Oceania (OC) under SSP1 and SSP3 scenarios at ten-year intervals 795 

for the period of 2010–2100. Note that the y-axis range for GL is different from that of each 796 

continent. 797 
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 798 

Figure S4. Projected changes of (a, b) spatial distribution in 30-year return value of TXx in the 799 

late 21st century (2071–2100) compared to the historical period of 1985–2014. (c) Changes in 800 

regionally-averaged or aggregated 30-year return value and its exceeding occurrence days for 801 

the North America (NA), South America (SA), Europe (EU), Africa (AF), Asia (AS), and 802 

Oceania (OC) are also presented. The CMIP6 multi-model ensemble median under the SSP1-803 

1.9 and SSP3-7.0 scenarios are used. Only grids where more than three-quarters of the models 804 

used show the same sign are presented. Note that the relative reduction rate (%) in the SSP1-805 

1.9 scenario compared to the SSP3-7.0 scenario is shown in blue above each bar. 806 
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 811 

Figure S5. Same as Figure S4 but for 30-year return value of RX1day. 812 
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 822 

Figure S6. Gross Domestic Product (GDP, unit: US dollar) in 2015 estimated by Kummu et al. 823 

(2020). 824 
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 826 
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827 

Figure S7. Comparison of relative reduction rate (%) of population exposure to extremely 828 

high-temperature and heavy-precipitation events, that exceed the historical 30-year return 829 

value of TXx and RX1day, in 41 sub-regions against that of the global region (glb). The 830 

reduction rate (%) is calculated by comparing the population exposure changes under the SSP1-831 

1.9 scenario against the SSP3-7.0 scenario. Shaded colors indicate different continents: North 832 

America (purple series), South America (green), Europe (orange), Africa (red), Asia (blue), and 833 

Oceania (pink).  834 
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835 

Figure S8. Reduction rate (%) of regionally aggregated population exposure for the 10- and 836 

50-year return events (RV10 and RV50) of hot-temperature and heavy-precipitation in SSP1-837 

1.9 relative to SSP3-7.0 scenarios and the relative contribution of climate, population, and 838 

climate-population interaction in the reduction rate. 839 

 840 

 841 

 842 

 843 

 844 
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 846 

Figure S9. Changes in spatial distribution of temperature-related eight extreme indices in the 847 

late 21st century (2071–2100) under the SSP1-1.9 and SSP3-7.0 scenarios compared to the 848 

historical period of 1985–2014. The extreme indices are the annual maxima and minima of 849 

daily maximum temperature (TXx and TXn, respectively) and minimum temperature (TNx and 850 

TNn, respectively), summer days (SU), tropical nights (TR), frost days (FD), and ice days (ID). 851 

 852 

 853 
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 854 

Figure S10. Same as Figure S8 but for precipitation-related eight extreme indices. The extreme 855 

indices are the annual maxima of daily precipitation (RX1day) and 5-days-acumulated 856 

precipitation (RX5day), total wet-day precipitation (PRCPTOT), number of wet day where the 857 

precipitation > 1 mm (R1mm), > 10 mm (R10mm), and > 20 mm (R20mm), consecutive wet 858 

days (CWD), and consecutive dry days (CDD).  859 

 860 

 861 
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 862 

Figure S11. Reduction rate (%) of the root-mean square difference (RMSD) for event 863 

frequency in the SSP1-1.9 scenario relative to the SSP3-7.0 scenario in the late 21st century 864 

(2071–2100) for 16 extreme indices as shown in Figs. S7 and S8, compared to the historical 865 

period of 1985–2014. The CMIP6 multi-model ensemble median is used. A greater negative 866 

value implies that the SSP1-1.9 scenario is closer to the current climate state compared to the 867 

SSP3-7.0 scenario, highlighting a higher carbon-neutral effect. The pink dot denotes that the 868 

difference between the two scenarios is statistically significant at the 95% confidence level. 869 



55 

 

 

 

 870 

Figure S12. Projected changes of spatial distribution in population counts in year 2010 871 

compared to year 2010. 872 
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 884 

Figure S13. Time series of the population change in Oceania under SSP1 and SSP3 scenarios 885 

at ten-year intervals for the period of 2010–2100. 886 
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Key points (Limit 140 character including spaces): 19 

l By the 2050s, carbon neutrality reduces population exposure to climate extremes by 20 

87–98% compared to current global warming rates. 21 

l Africa and Asia are projected to experience the most dramatic reductions in population 22 

exposure to climate extremes by achieving the carbon neutrality. 23 

l In North America, Europe, and Oceania, climate extreme change plays a more 24 

important role in population exposure to climate extremes. 25 

 26 
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Abstract 37 

Climate extremes, such as hot temperature and heavy precipitation events, have 38 

devastating effects on human societies. As the planet gets warmer, they have become more 39 

intense and more frequent. To avoid irreversible damages from climate extremes, many 40 

countries have committed to achieving net-zero anthropogenic carbon emissions, or carbon 41 

neutrality, by the 2050s. Here, we quantify the impact of carbon neutrality on population 42 

exposure to climate extremes using multi-model projections from the Coupled Model 43 

Intercomparison Project Phase 6 (CMIP6) Shared Socioeconomic Pathway (SSP)1-1.9 and 44 

SSP3-7.0 scenarios. It is found that the increasing population exposure to hot-temperature and 45 

heavy-precipitation extremes under SSP3-7.0 scenario can be substantially reduced by 87–98% 46 

in the late 21st century by achieving the carbon neutrality based on SSP1-1.9 scenario. The 47 

benefits of carbon neutrality are particularly pronounced in Africa and Asia. The potential 48 

benefits of carbon neutrality are also significant in North America, Europe, and Oceania, where 49 

a reduction in climate extremes is more than twice as important as population decline in 50 

reducing population exposure to climate extremes. These results provide important scientific 51 

support for ongoing efforts to achieve net-zero carbon emissions by the 2050s to reduce 52 

potential climate risk and its inequity across continents. 53 

 54 

  55 
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Plain Language Summary 56 

To avoid irreversible damages from climate extremes in a warming climate, net-zero 57 

anthropogenic carbon emissions, or carbon neutrality, has been proposed. However, how much 58 

damages from climate extremes can be mitigated by achieving the carbon neutrality has not 59 

been quantitatively assessed. Here, we show that achieving carbon neutrality could lead to a 60 

significant and widespread reduction in population exposure to hot-temperature and heavy-61 

precipitation extremes by 87–98% in the late 21st century. The benefits of carbon neutrality are 62 

particularly large in Africa and Asia. Even in North America, Europe, and Oceania, where the 63 

developed countries are concentrated, population exposure to climate extremes is projected to 64 

decrease significantly, primarily due to reduced climate extremes with a minor contribution of 65 

population decline. This finding underscores the critical importance of ongoing efforts to 66 

achieve net-zero carbon emissions by the 2050s to reduce potential climate risk and its inequity 67 

across continents. 68 

 69 

 70 

 71 

 72 

 73 

 74 
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1. Introduction 75 

As the threat of global warming became a reality, the Paris Agreement was proposed 76 

in 2015 to “hold the increase in the global average temperature to well below 2°C against 77 

preindustrial levels and pursue efforts to limit the temperature increase to 1.5°C” (UNFCCC, 78 

2015). Its potential benefits have often been highlighted through the analyses of climate model 79 

simulations (e.g., Park et al., 2018; King et al., 2021; Nashwan & Shahid, 2022). Such studies 80 

have reported that 0.5°C less warming compared to 2°C warming can lead to a significant 81 

reduction in the areas damaged by climate change. However, these studies are mainly based on 82 

relatively low-emission scenarios compared to high-emission scenarios (e.g., O’Neill et al., 83 

2016; Oin et al., 2021) rather than carbon-neutrality scenarios which take into account 84 

socioeconomic and environmental changes, technological development and innovation, and 85 

policy coordination to achieve net-zero emissions by the 2050s (Gidden et al., 2018).  86 

While the Paris Agreement focuses on mean surface air temperature (UNFCCC, 2015), 87 

more attention should be paid to climate extremes. Climate extremes, such as hot-temperature 88 

and heavy-precipitation events, are rapidly increasing with global warming, exerting 89 

destructive impacts on human societies (e.g., Kharin et al., 2013; Li et al., 2021; Xie et al., 90 

2022). By reducing CO2 emissions, the frequency and intensity of climate extremes are 91 

projected to decrease significantly (e.g., Jo et al., 2022; Kim et al., 2022; Nashwan & Shahid, 92 

2022). However, it has not yet been quantified how much the population exposure to climate 93 

extremes can be reduced by achieving carbon neutrality, although it can provide critical context 94 

for establishing effective climate mitigation policies.  95 



6 

 

 

 

Here, we investigate the impact of carbon neutrality on population exposure to hot-96 

temperature and heavy-precipitation events by examining multi-model projections from the 97 

Coupled Model Intercomparison Project Phase 6 (CMIP6, Eyring et al., 2016). In particular, 98 

we compare the Shared Socioeconomic Pathway (SSP)1-1.9 scenario, which describes a 99 

transition to a carbon-neutral society around the 2050s and net carbon absorption thereafter, 100 

with the SSP3-7.0 scenario, which is based on regional rivalry over carbon emissions policy 101 

(Fig. 1; O’Neill et al., 2016; Oin et al., 2021), and quantitatively assess the projected reduction 102 

in global and regional population exposure to hot-temperature and heavy-precipitation 103 

extremes. The relative importance of changes in population and extreme events in reducing 104 

population exposure to climate extremes is also examined.  105 

  106 

2. Data and Methods 107 

2.1. Datasets 108 

To calculate climate extremes, daily maximum temperature and precipitation for 109 

historical simulations (1985–2014) and future projections (2015–2100) under two different 110 

SSP scenarios from eight CMIP6 models (Eyring et al., 2016) are used (Table 1). Specifically, 111 

the SSP3-7.0 and SSP1-1.9 scenarios, which are the high and very low greenhouse gas emission 112 

scenarios, respectively (O’Neill et al., 2016; Oin et al. 2021), are compared. The former 113 

assumes the current rate of global warming to be maintained until 2100 (i.e., regional rivalry 114 

scenario), while the latter assumes net-zero carbon emissions by the 2050s (i.e., carbon 115 

neutrality scenario) (Figure 1). All variables of interest are computed at each land grid point 116 
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and then intercompared across six continents, i.e., North America, South America, Europe, 117 

Africa, Asia, and Oceania (Figure S1; Iturbide et al., 2020).  118 

 119 

2.2. Climate extremes based on GEV analysis 120 

This study uses the annual maximum of daily maximum temperature (TXx) and annual 121 

maximum daily precipitation (RX1day) as indices of hot temperature and heavy precipitation 122 

extremes, respectively, following the Expert Team on Climate Change Detection and Indices 123 

(ETCCDI; Zhang et al. 2011). To estimate the rare events occurring once in 10, 30, or 50 years, 124 

we first fit TXx and RX1day at every grid point of each model’s native resolution to the 125 

generalized extreme value (GEV, Kharin et al., 2013) distribution during the historical (1985–126 

2014) and future (2071–2100) periods. The GEV estimation for 30-year time window is based 127 

on the assumption that temperature or precipitation extremes remain approximately stationary 128 

within 30-year period (Kim et al., 2020; Li et al., 2021).  129 

The cumulative density function (CDF) of the GEV distribution for variable x is 130 

defined as follows: 131 

(; , , ) =   − −    for  = 0                   − 1 +     for  ≠ 0 and   > −1  (1) 132 

where μ, σ, and ξ represent the location, scale, and shape parameters, respectively. The GEV 133 

parameters are estimated using the L-moments method (Hosking, 1990), which has been used 134 

for the small sample size (Hosking, 1990; Kim et al., 2020). The quantile function of GEV (X) 135 
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is derived by inverting a CDF for a given probability p as below. 136 

 =  −  ln[− ln()] for    = 0                                  −  ln1 − (− ln()) for  ≠ 0.           (2) 137 

The 10-, 30-, and 50-year return values for the historical and future periods are calculated when 138 

p=0.90, 0.967, and 0.98 (as the exceedance of the annual extreme with probability = 10%, 3.3%, 139 

and 2%), respectively. In this study, we mainly focus on the return values of 30-year, which is 140 

the most realistic but large enough period that can be obtained from the current reanalysis 141 

dataset (see supporting information). After the GEV estimation, climate extreme indices are 142 

interpolated to a common 1°×1° grid using a bilinear remapping, and then multi-model 143 

ensemble statistics are computed. This procedure allows to minimize the discrepancy arising 144 

from different data resolutions (Kim et al., 2020; Li et al., 2021). Further details on the model 145 

evaluation and projection for the historical and future climate extremes can be found in the 146 

supporting information. 147 

 148 

2.3. Population exposure 149 

Population exposure is one of the key indicators of the impact of climate extremes on 150 

human societies (e.g., Jones et al., 2018; Chen & Sun, 2021). It is closely intertwined with 151 

climate risk, as the impacts of climate change are felt most acutely by vulnerable populations 152 

(e.g., Jones et al., 2018; Chen & Sun, 2021). Population exposure represents the accumulative 153 

number of people exposed to climate extremes (unit: person-days), and is computed by 154 

multiplying the population count of an area by the number of climate extremes that occur there. 155 
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In this study, the 10-, 30-, and 50-year return values of TXx and RX1day, estimated from the 156 

historical period of 1985–2014 (Figures S2b and 2e), are used as the threshold values to identify 157 

the hot-temperature and heavy-precipitation extremes. The number of climate extreme events 158 

at each native model grid is counted as the number of extreme days exceeding the threshold 159 

values in each year for the period of 1985–2100. After interpolating the result into a common 160 

1°×1° grid, the historical population exposure is defined as the integrated product of the number 161 

of climate extremes from 1985 to 2014 and the historical population count in 2010 (Figure S3a; 162 

Jones & O’Neill, 2016). For the future population exposure, the future population counts in 163 

2020, 2030, …, 2090, and 2100 under SSP1 and SSP3 scenarios (Figures S3b–3h; Jones & 164 

O’Neill, 2016) are used to match the SSP1-1.9 and SSP3-7.0 scenarios. For example, the 165 

population counts in 2020 and 2030 are used to calculate the population exposure for the period 166 

of 2020–2029 and 2030–2039, respectively. 167 

 168 

2.4. Reduction rate of population exposure and its contributing factor 169 

To quantify the benefit of carbon neutrality, the reduction rate (%, Jones et al., 2018; 170 

Zhang et al., 2018; Lei et al., 2022) of population exposure to climate extremes by achieving 171 

the carbon neutrality is calculated as follows: 172 

370 119

370

Reduction rate (%) 100SSP SSP
SSP

D -D
= ´

D
  (3) 173 

where △ stands for the difference of the aggregated population exposure between the future 174 

(2071–2100) and historical (1985–2014) periods. Here, the changes in population exposure can 175 
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be attributed to the three factors, i.e., climate extreme, population, and climate extreme-176 

population interaction factors (e.g., Jones et al., 2018; Lei et al., 2022; Zhang et al., 2022) as 177 

below: 178 

370 370 370 370 370hist histSSP P C C P C PD = ´D + ´D + D ´D    179 

      119 119 119 119 119hist histSSP P C C P C PD = ´D + ´D + D ´D      (4) 180 

where P and C are the population and the number of extreme days, respectively. The terms ∆P 181 

and ∆C are the changes in the population and number of extreme days in the future period with 182 

respect to the historical period, respectively. Subscripts of C and P denote the historical climate 183 

or SSP scenario. Therefore, the three terms on the right side of Eqn. (4) represent the roles of 184 

climate extreme (CLM), population (POP), and their interaction (INT) changes, respectively. 185 

By combining Eqns. (3–4), the reduction rate can be decomposed as follows:  186 

370 119 370 119 370 119

370 370 370

Reduction rate (%) 100 100 100CLM CLM POP POP INT INT
SSP SSP SSP
- - -

= ´ + ´ + ´
D D D   (5) 187 

The first term represents the contribution of climate extreme changes to the total reduction rate 188 

(%) of population exposure to climate extremes. Similarly, the second and third terms represent 189 

the contribution of population and climate extreme-population interaction changes, 190 

respectively, to the total reduction rate (%). 191 

 192 

3. Results 193 

3.1. Global population exposure to climate extremes 194 

Figure 2 presents the time series of global population exposure to hot-temperature and 195 
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heavy-precipitation extremes for the period of 2015–2100 under the SSP1-1.9 and SSP3-7.0 196 

scenarios compared to the historical period of 1985–2014. If global warming keeps continuing 197 

without a transition to the carbon-neutral society in the 2050s, the population exposures to hot-198 

temperature and heavy-precipitation extremes that exceed the historical 30-year return values 199 

(Figures S2b and S2e) are anticipated to increase up to 192 billion and 1.87 billion person-days, 200 

respectively, at the end of the century (red lines in Figures 2a and 2b). Given the fact that 201 

population exposures in the historical period are 0.21 billion and 0.17 billion person-days, 202 

respectively, they are approximately 914 and 11 times larger than the historical values. The 203 

increasing trends are particularly noticeable after the 2050s. The inter-model spread does not 204 

cross the zero line after the year 2043 for hot-temperature extremes and the year 2067 for 205 

heavy-precipitation extremes. This indicates that increasing population exposures to climate 206 

extremes under the high-emission scenario are distinct in the late 21st century compared to the 207 

historical period. The same trends are also found when population is fixed to the historical level 208 

(orange lines in Figures 2a and 2b). However, they are only half of that with time-varying 209 

population (compare red and orange lines). This suggests that population changes and climate-210 

population interaction changes are also important in determining population exposure to 211 

climate extremes in the high-emission scenario. 212 

The transition to the carbon-neutral society in the 2050s results in a minimal shift in 213 

population exposure to climate extremes, accompanied by reduced model spread which 214 

indicates the robust multi-model projections (blue lines and shading in Figures 2c and 2d). The 215 

population exposure in the carbon neutrality scenario is less than one-tenth of that in the high-216 
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emission scenario (compare Figures 2a,b and 2c,d; note the different scale of the y-axis between 217 

the two scenarios). The population exposures to hot-temperature and heavy-precipitation 218 

extremes slightly increase by approximately 4.65 billion and 0.19 billion person-days 219 

(approximately 22 and 1.12 times larger than the historical values), respectively, until the 220 

middle of the 21st century, then decrease afterward. However, these changes have a large 221 

uncertainty, with a model spread often crossing the zero line, revealing that future population 222 

exposures to climate extremes are indistinguishable from historical ones if the carbon neutrality 223 

is successfully achieved.  224 

The reduced population exposures to hot-temperature and heavy-precipitation 225 

extremes by achieving the carbon neutrality are 187 billion and 1.68 billion person-days in the 226 

year 2100, respectively (Figures 2e and 2f). These correspond 90 and 98% reductions for 227 

heavy-precipitation and hot-temperature extremes, respectively, from the high-emission 228 

scenario (purple lines in Figures 2e and 2f). Inter-model spread does not cross the zero line in 229 

the late 21st century for both climate extremes. This result highlights the importance of carbon 230 

neutrality in mitigating climate change risks. 231 

 232 

3.2. Regional population exposure to climate extremes 233 

The increasing population exposure to climate extremes under the high-emission 234 

scenario is more pronounced in densely populated areas. Some land regions, where population 235 

is dense (Figure S3a), are expected to have an increasing population exposure to hot-236 

temperature extremes by ten million person-days or more in 2071–2100 (Figure 3a). The people 237 
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in those regions are anticipated to experience more intense hot-temperature events, over 4 °C 238 

hotter than the historical events (upper panel of Figure S4a). In particular, people living in 239 

South America, Africa, Arabian Peninsula, and South Asia would be more frequently exposed 240 

to heat-related extremes, more than 20 days per year, compared to those living in other regions 241 

(bottom row of Figure S4a). For heavy-precipitation extremes, a large population exposure, 242 

greater than one million person-days, is projected to occur only in African and Asia monsoon 243 

regions (Figure 3b). It is expected that African and Asian people would experience more intense 244 

(over 40 mm/day) and frequent (over 0.5–1.0 days per year) heavy-precipitation extremes 245 

under the high-emission scenario (Figure S5a). 246 

 While the global population exposure to climate extremes may increase only 247 

marginally under the carbon-neutral scenario, the regional changes remain noteworthy. The 248 

large population exposure to hot-temperature extremes, greater than one million person-days, 249 

is still found in the late 21st century in African and Asian monsoon regions as well as 250 

Mediterranean and western Europe (Figure 3c). It contrasts to the population exposure to 251 

heavy-precipitation extremes which is less than one-tenth million person-days in most regions 252 

(Figure 3d). This result suggests that even if carbon neutrality is achieved, some regions could 253 

be exposed to higher heat-related climate risks than the historical level. However, carbon 254 

neutrality can still significantly reduce the number of people, exceeding ten million in each 255 

region, who may potentially be exposed to climate extremes under the high-emission scenario 256 

(Figures 3e and 3f). 257 

To quantify the regional changes in the late 21st century, the area-aggregated total 258 
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population exposures to hot-temperature and heavy-precipitation extremes are calculated in 259 

Figures 4a and 4b. Globally, an increasing population exposure to hot-temperature extremes is 260 

projected to continue under the high-emission scenario, by approximately 106 billion person-261 

days (the first bar in Figure 4a). This value is approximately 461 times higher than the historical 262 

value of 0.23 billion person-days. If carbon neutrality is achieved, only 2.50 billion person-263 

days are expected to increase, with the population exposure to hot-temperature extremes being 264 

substantially reduced. Although much smaller than hot-temperature extremes, the globally-265 

aggregated population exposure to heavy-precipitation extremes is also expected to increase 266 

up to 1.43 billion person-days in the high-emission scenario (approximately 7 times higher than 267 

0.20 billion person-days in the historical period; see the leftmost bar in Figure 4b). If carbon 268 

neutrality is achieved, only 0.17 billion person-days are expected to increase, with the 269 

population exposure to heavy-precipitation extremes again being substantially reduced. 270 

Such reductions are largest in African and Asian continents (AF and AS in Figures 4a 271 

and 4b). If the current “regional rivalry” for the carbon emissions policy is maintained, African 272 

and Asian continents would have the highest or second-highest population exposures to both 273 

hot-temperature and heavy-precipitation extremes in the late 21st century (Figures 4a and 4b). 274 

Their sum accounts for 79% of global population exposure to hot-temperature extremes and 275 

88% of global population exposure to heavy-precipitation extremes. Here, it is important to 276 

note that African continent would become the region most suffering from increasing climate 277 

extremes despite its relatively low carbon emissions (Mann, 2023). It exemplifies an inequality 278 

of climate risk.  279 
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 280 

3.3. Benefits of carbon neutrality and its contributing factors 281 

The impact of carbon neutrality is further examined by calculating the reduction rate 282 

of population exposure to climate extremes (Eq. 3; Figures 4c and 4d). The global reduction 283 

rates for hot-temperature and heavy-precipitation extremes in the late 21st century reach up to 284 

98% and 87%, respectively (first gray bars in Figures 4c and 4d). The reduction rate for hot-285 

temperature extremes is similar across all continents, ranging from 93 to 99% (Figure 4c). 286 

However, the reduction rate for heavy-precipitation extremes varies considerably from one 287 

continent to another, ranging from 20 to 91%, with the largest reduction in Africa, Asia, and 288 

South America (Figure 4d; see also Figure S7). This result suggests that the carbon neutrality 289 

can reduce the inequality of climate risk across continents. 290 

The relative contributions of climate extreme, population, and their interaction changes 291 

on the reduction rate (Eq. 5) are further evaluated in Figures 4c and 4d. The climate extreme 292 

change itself explains about half of the global reduction rate (first red bars in Figures 4c and 293 

4d). The contribution of population change is negligible (first yellow bars), while that of 294 

interaction change is comparable to climate extreme change (first blue bars). The latter is due 295 

to the enormous changes in Africa which is associated with significant future increases in both 296 

population and the number of extreme days across all regions of Africa (Figures S3f and S12; 297 

see also bottom panel of Figures S4 and S5). It suggests a synergistic effect between climate 298 

extreme and population changes in the African continent. Asia is also expected to experience 299 

significant increase in population and the number of extreme days (Figure S3g; see also bottom 300 
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panel of Figures S4 and S5). However, unlike Africa, interaction change contributes less than 301 

climate extreme change (AS blue bars in Figures 4c and 4d). Given that climate extreme change 302 

is positive across all regions of Asia (bottom panels of Figures S4 and S5), it results from the 303 

opposing population trends from one country to another, i.e., an increasing trend in India but a 304 

decreasing trend in China (Figure S12). Although South America also shows comparable 305 

contributions of climate extreme and interaction changes (SA in Figures 4c and 4d), their 306 

absolute values are much smaller than those in Africa and Asia (SA in Figures 4a and 4b).  307 

In North America, Europe, and Oceania, the contribution of climate extreme change 308 

surpasses that of the interaction change by more than twofold (compare red and blue color bars 309 

of NA, EU, and OC in Figures 4c and 4d), because of rather slow and small population growth 310 

under the high-emission scenario (Figures S3c, S3e, and S3h; see also Figure S13). In particular, 311 

for heavy precipitation extremes, the climate extreme changes dominate the reduction rates in 312 

these continents with even negative contributions of the population and interaction changes 313 

(Figure 4d). It indicates that climate extreme change plays a predominant role in reducing the 314 

population exposure to climate extremes in these continents. This result also suggests that the 315 

potential benefits of carbon neutrality can be significant even in developed countries by 316 

reducing the occurrence of climate extremes.  317 

 318 

3.4. Sensitivity to return intervals of climate extremes  319 

More intense climate extremes, that substantially deviate from their climatologies, can 320 

result in more significant social damages, particularly when they are beyond the tolerable 321 
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ranges of ecological systems and human infrastructures. In this regard, the sensitivity of the 322 

reduction rate shown in Figures 4c and 4d to the return intervals of climate extremes is tested. 323 

The 10-, 30-, and 50-year return events are particularly considered (Figure 5). Note that all 324 

analyses in previous sections are conducted with 30-year return events and repeated here as 325 

references. The reduction rate increases for longer return events for hot-temperature extremes 326 

(Figure 5a), indicating an increasing benefit of carbon neutrality for more intense hot-327 

temperature extremes. A small inter-model spread for longer return events further indicates that 328 

this benefit is robust across all continents (Figure 5a).  329 

In contrast, the reduction rate for heavy-precipitation extremes does not systematically 330 

increase for longer return events (black lines in Figure 5b). The inter-model spread is also large, 331 

indicating that the risk of heavy-precipitation extremes has a relatively high uncertainty 332 

compared to hot-temperature extremes, presumably due to their localized and complex nature. 333 

In particular, North America, Europe, and Oceania show a relatively larger inter-model spread 334 

because of different climate sensitivity of individual models to the forcing. In these continents, 335 

climate extreme change is much more important than the other two factors, with increasing 336 

return intervals (Figure S8). Other continents, such as South America, Africa, and Asia, where 337 

the population exposure to heavy-precipitation extremes is high, show a relatively small inter-338 

model spread, suggesting a relatively higher model consistency. 339 

 340 

4. Discussion and conclusions 341 

The present study evaluates the impact of carbon neutrality on population exposure to 342 
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climate extremes in the late 21st century. If the current “regional rivalry” over the carbon 343 

emissions policy is maintained in this century, population exposures to hot-temperature and 344 

heavy-precipitation extremes, exceeding their historical 30-year return values, are projected to 345 

increase by 461 and 7 times, respectively, over the historical values. Such drastic increases can 346 

be significantly reduced by 87–98% by achieving the carbon neutrality. This result supports 347 

the critical importance of ongoing efforts to achieve net-zero carbon emissions by the 2050s to 348 

reduce potential climate risks and their inequity across continents. 349 

The reduction in population exposure to climate extremes through carbon neutrality is 350 

greatest in Africa and Asia. However, as most countries in these continents are currently 351 

developing (Figure S6), conflicts between carbon neutrality and economic development may 352 

arise. Such conflicts may increase the uncertainty in future projection of population exposure 353 

to climate extremes (e.g., Liu et al., 2017; Chen & Suh, 2021; Lei et al., 2022). Another point 354 

of note is the contrasting population trends projected for Asian countries, i.e., an increasing 355 

trend in India but a decreasing trend in China (Figure S12). This calls for further investigation 356 

into the potential benefits of carbon neutrality for individual countries (e.g., Das et al., 2022; 357 

Xie et al., 2022). In North America, Europe, and Oceania, reducing climate extremes by 358 

achieving carbon neutrality plays a more important role than population decline in reducing 359 

population exposure to climate extremes. This indicates that the potential benefits of carbon 360 

neutrality can be substantial even in developed countries. It becomes more apparent when 361 

considering more intense hot-temperature extremes, for which the reduction rates are much 362 

larger with a better agreement between the models (i.e., smaller inter-model spread).  363 
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The findings of the present study do not hold only for extremely rare events. Other 364 

extreme indices of temperature and precipitation (Zhang et al. 2011) consistently show the net 365 

benefits of carbon neutrality (Figures S9–S11). Among others, the number of consecutive dry 366 

days, representing drought, in South America and Africa is projected to decrease considerably 367 

from the high-emission to carbon-neutrality scenarios (Figures S10o and S10p). This result is 368 

consistent with Park et al. (2018), who reported that limiting global warming to 1.5°C 369 

constrains the emergence of aridification.  370 

The year of net-zero carbon emissions in the SSP1-1.9 scenario is decades earlier than 371 

in other mitigation scenarios (e.g., SSP1-2.6), resulting in weaker warming in the late 21st 372 

century (Meinshausen et al., 2020). By conducting the sensitivity experiments for a net-zero 373 

carbon emission year by 2050 and 2060, Lei et al. (2022) reported that more active carbon 374 

neutrality policy could further reduce the population exposure to heat extremes. The present 375 

study supports the need for more active net-zero carbon emissions policy by the 2050s. 376 

It should be recalled that this study is based on concentration-driven simulations from 377 

the CMIP6 project (Quilcaille et al., 2023). The concentration-driven simulations often 378 

exaggerate future climate changes compared to the emission-driven simulations (Nicholls et 379 

al., 2021; Quilcaille et al., 2023). In this regard, the emissions-driven simulations may be more 380 

useful for investigating the merits of the Paris Agreement's goals (Terhaar et al., 2022).  381 

While this study has addressed the impact of carbon neutrality on climate extremes 382 

and population exposure, it is still important to explore the importance of vulnerability which 383 

serves as a critical determinant in assessing the extent to which communities and ecosystems 384 
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fare in a warming climate (Cardona et al., 2012; Jones et al., 2018). Because vulnerability 385 

depends on regional location, social and economic development, and the nature of climate 386 

extremes (e.g., Cardona et al., 2012; Jones et al., 2018), assessing the impact of carbon 387 

neutrality on vulnerability may be useful in developing and implementing equitable and 388 

sustainable climate risk mitigation strategies. 389 
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Table 1. CMIP6 models used in this study. 549 

No. Model Ensemble 
information Institution 

Horizontal 
Resolution 

(Lon x 
Lat) 

1 CanESM5 r1i1p1f1 
Canadian Earth System Model version 5,  
Canadian Centre for Climate Modelling 
and Analysis (Canada) 

128 x 64 

2 CNRM-
ESM2-1 r1i1p1f2 National Center for Meteorological 

Research (France) 256 x 128 

3 EC-Earth3 r4i1p1f1 
ICHEC, The Irish Centre for High-End 
Computing, National University of Ireland 
(Ireland) 

512 x 256 

4 GFDL-
ESM4 r1i1p1f1 

NOAA/Geophysical Fluid Dynamics 
Laboratory, Earth System Model version 4 
(USA) 

288 x 180 

5 MIROC-
ES2L r1i1p1f2 

Atmosphere and Ocean Research Institute 
(The University of Tokyo), National 
Institute for Environmental Studies, and 
Japan Agency for Marine-Earth Science 
and Technology (Japan) 

128 x 64 

6 MPI-ESM-
LR r1i1p1f1 Max Planck Institute for Meteorology 

(Germany) 192 x 96 

7 MRI-ESM2-
0 r1i1p1f1 Meteorological Research Institute (Japan) 320 x 160 

8 UKESM1-0-
LL r1i1p1f2 Met Office Hadley Centre (UK) 192 x 144 

 550 

 551 

 552 
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 553 

Figure 1. Time series of global CO2 emissions in SSP1-1.9 and SSP3-7.0 scenarios. The 554 

vertical gray shading indicates the 2050s when net-zero emissions are achieved in the SSP1-555 

1.9 scenario. 556 
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 557 

Figure 2. Temporal evolution of global population exposure to climate extremes. Time series 558 

of global population exposure (unit: person-days) to 30-year return events of (a) hot-559 

temperature (TXx) and (b) heavy-precipitation (RX1day) for the period of 2015–2100. Blue 560 
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and red lines indicate the CMIP6 multi-model ensemble median with population change under 561 

SSP1-1.9 and SSP3-7.0 scenarios against the historical period of 1985–2014. Green and orange 562 

lines are the same as blue and red ones but with a fixed population to the historical period. 563 

Purple and sky-blue lines in the bottom row are the differences between SSP1-1.9 and SSP3-564 

7.0 scenarios with time-varying and time-fixed populations, respectively. Shadings indicates 565 

the inter-model spread defined by the full range (min-max) for each scenario. The vertical gray 566 

shading denotes the 2050s when net-zero CO2 emissions occur in Fig. 1. Note that the range 567 

of the y-axis in SSP1-1.9 scenario is only one-tenth of that in SSP3-7.0 scenario. 568 

 569 

 570 

 571 
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 573 

Figure 3. Projected changes of 30-year mean population exposure to climate extremes in the 574 

late 21st century (2071–2100) compared to the historical period of 1985–2014. Changes of the 575 

population exposure (unit: person-days) to 30-year return events of hot-temperature extreme 576 
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(TXx) under (a) SSP3-7.0 and (c) SSP1-1.9 scenarios and (e) their differences. Only grids 577 

where more than three-quarters of the models show the same sign to the multi-model ensemble 578 

median are presented. (b, d, f) Same as (a, c, e), but for heavy-precipitation extreme (RX1day). 579 
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 594 

Figure 4. Changes of 30-year mean regionally-aggregated population exposures to climate 595 

extremes in the late 21st century (2071–2100) compared to the historical (1985–2014) values, 596 

and their reduction rate from SSP3-7.0 to SSP1-1.9 scenarios. (a) Area-aggregated population 597 

exposure to 30-year return events of TXx over the globe (GL), North America (NA), South 598 

America (SA), Europe (EU), Africa (AF), Asia (AS), and Oceania (OC). Red and blue outlined 599 

bars indicate the SSP3-7.0 and SSP1-1.9 scenarios, respectively. (c) The reduction rate (%) of 600 

population exposure to TXx from SSP3-7.0 scenario to SSP1-1.9 scenarios (gray), and the 601 

relative contributions of climate (red), population (yellow), and climate-population interaction 602 

(blue) changes. (b, d) Same as (a, c) but for RX1day. Note that the range of the y-axis is 603 

different in (a) and (b). 604 
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605 

Figure 5. Regionally-aggregated reduction rate of population exposures to climate extremes 606 

for varying return periods. Area-averaged reduction rate (%) of population exposure to (a) TXx 607 

and (b) RX1day is shown for 10-year (green), 30-year (blue), and 50-year (red) return events. 608 

The periods of 1985–2014 and 2071–2100 are used as in Figs. 3c and d. Closed circles denote 609 

the CMIP6 multi-model ensemble median results, whereas other marks indicate individual 610 

models.  611 
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 640 

Text S1. Model evaluation. 641 

The fifth generation of the European Centre for Medium-Range Weather Forecast 642 

global reanalysis (ERA5, Hersbach et al. 2020) for the historical period of 1985–2014 is used 643 

as reference to evaluate the Coupled Model Intercomparison Phase 6 (CMIP6) models. The 644 

ERA5 data has higher spatial (30 km) and time resolution (hourly) than the other reanalysis 645 

data (i.e., ERA40, Uppala et al. 2005; ERA-Interim, Dee et al., 2011; NCEP/NCAR Reanalysis 646 

1, Kalnay et al., 1996; NCEP-DOE Reanalysis 2, Kanamitsu et al., 2002), potentially making 647 

it more suitable to estimate and evaluate the climate extremes. Therefore, this dataset has been 648 

widely utilized as a reference data for temperature and precipitation extremes (e.g., Kim et al., 649 

2020; Li et al., 2021; Oh & Sushama, 2021). The daily temperature and precipitation data at 650 

approximately 30 km resolution into common into 1°×1° grid and then calculated climate 651 

extreme indices, TXx and RX1day (Zhang et al. 2011), and Generalized Extreme Value (GEV) 652 

estimation to reduce the difference in spatial scales from CMIP6 models (1–2°). 653 

This study uses the multi-model ensemble median (MEM), which is a more valid 654 

representative measure than the multi-model mean, because extremely large or small values 655 

can distort the mean. The model performance is basically evaluated based on the bias, root-656 

mean-square error (RMSE), and correlation for spatial patterns of the estimated extreme values 657 

for the historical period of 1985–2014. The equations of the bias, RMSE and correlation are as 658 
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follow: 659 

 = 1 ( − )
  660 

  = 1 ( − )
  661 

 = ∑ ( − )( − )∑ ( − ) ∑ ( − )  662 

where n is the number of the total grids at land areas. The Mi and Ri denote the model and 663 

reanalysis at i th grid, respectively. The   nd  present the mean values over the land areas 664 

in the model and reanalysis, respectively. To compare the performance of MEM with that of 665 

each model, the combined metric of the RMSE and Taylor skill score (TSS, Taylor, 2001) is 666 

also used. The equation of TSS is like below: 667 

 = (1 +  )4( + 1 )  668 

where SDR is the ratio of the spatial standard deviations of the model against to that of the 669 

reanalysis data. This score quantifies the similarity in the distribution and amplitude of the 670 

spatial pattern between the model and the reanalysis. The relative RMSE and TSS for each 671 

model and MEM are calculated by using their median values.  672 

 673 

Text S2. Performance of CMIP6 MEM for historical period.  674 

Compared with the ERA5 data, the CMIP6 MEM reproduces the spatial distribution 675 
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of the 30-year return value of TXx and RX1day reasonably well for the historical period of 676 

1985–2014, with the spatial correlations of 0.95 and 0.84, respectively (Figures S2a–S2f). The 677 

30-year return value of TXx is slightly overestimated by 0.1 to 3.0 °C in most land areas except 678 

for the high-latitude regions of the Northern Hemisphere, resulting in the global land average 679 

bias of 0.28 °C (Figure S2c). For the 30-year return value of RX1day, the CMIP6 MEM well 680 

captures typical large-scale features such as the intense precipitation extreme in the 681 

intertropical convergence zone (ITCZ) and African and Asian monsoon regions. However, the 682 

models underestimate the extreme precipitation by 20 to 100 mm/day depending precipitation 683 

zone, resulting in a global land average bias of -11.41 mm/day (Figure S2f).  684 

Compared to a single model, the MEM shows a better performance in both the 30-year 685 

return values of TXx and RX1day (Figure S2g and S2h). This result is consistent with previous 686 

studies showing that the multi-model ensemble shows superior performance in reproducing 687 

mean and extreme climates than a single model (e.g., Oh & Suh, 2017; Kim et al., 2020; Li et 688 

al., 2021). Similar results are found for other return events, i.e., 10- and 50-year return value 689 

(not shown). It provides justification for the use of the CMIP6 MEM for future projection of 690 

the rare extreme events with varying return years. 691 

 692 

Text S3. Response of climate extremes in the late 21st century to carbon neutrality. 693 

If the current global warming is continued (i.e., SSP3-7.0 scenario), hot-temperature 694 

and heavy-precipitation extremes are expected to be strengthened in the late 21st century. The 695 

hot-temperature extreme is projected to experience a more intense warming event of above 696 
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4 °C over all land regions except Greenland (the first row of Figure S4a). Such extreme is 697 

expected to occur more than total 1000 days in South America, Africa, Arabia peninsula, and 698 

South Asia regions during the future period of 2071–2100 (the second row of Figure S4a). The 699 

heavy-precipitation extreme also reveals more intense and frequent events (Figure S5a) 700 

particularly in the African and Asian monsoon region where a dense population exists (Figure 701 

S3a). 702 

Even if the transition to a carbon-neutral society is successful (i.e., SSP1-1.9 scenario), 703 

the intensity in both hot-temperature and heavy-precipitation extremes are still expected to 704 

increase with a range of 0.5–2°C and 0–20 mm/day, respectively. On a global average, the 705 

number of days in hot-temperature (heavy-precipitation) extreme increases up to total 100 days 706 

(5 days) compared to the historical period (Figures S4b and S5b). Although more intense and 707 

frequent climate extremes are also evident in the carbon neutrality scenario, the reduction rates, 708 

which estimate the benefit of carbon neutrality compared to the high emission scenario, are 709 

substantially large (Figures S4c and S5c; see Methods in main paper). Globally, a 71% decrease 710 

is found in the intensity of hot-temperature extreme (the first row of Figure S4c), while a more 711 

significant decrease (97%) is found in its frequency (the second row of Figure S4c). Similar 712 

reduction rates are revealed in the heavy-precipitation extreme, i.e., 75 and 76% decreases in 713 

its intensity and frequency, respectively (Figure S5c).  714 

The difference between the scenarios with and without the net-zero carbon emission 715 

shows a large regional dependency, especially for the frequency (Figures S4c and S5c). For 716 

example, the frequency of the hot-temperature extreme exhibits large differences in the South 717 
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America, African, and Asian continents, while that of heavy-precipitation extreme shows a 718 

large difference in the African, North America, and Asian continents. Interestingly, the 719 

reduction rates of the intensity and frequency of the hot-temperature extremes are 68–81% and 720 

94–98%, respectively, which implies a higher benefit of carbon neutrality in the frequency than 721 

in the intensity for all the continents (Figures S4c). On the other hand, the intensity and 722 

frequency of the heavy-precipitation extremes are reduced by 66–85% and 69–87% in net-zero 723 

carbon emission scenario, respectively. This result suggests that there are larger differences in 724 

reduction rate across continents, but smaller differences between frequency and intensity 725 

compared to hot-temperature extreme (Figure S5c). In summary, a transition to a carbon-726 

neutral society around 2050 can lead to a more than twofold of reduction in both the intensity 727 

and frequency of hot-temperature and heavy-precipitation extremes for all the continents.  728 
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 776 

Figure S1. Sub-regional domain in the global land adopted from Iturbide et al. (2020). The 777 

shaded colors indicate different continents: North America (purple series), South America 778 

(green), Europe (orange), Africa (red), Asia (blue), and Oceania (pink). 779 

 780 

 781 
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 782 

Figure S2. Estimates of 30-year return values of hot-temperature (TXx) and heavy-783 

precipitation (RX1day) extremes of (a, d) ERA5 reference data and (b, e) CMIP6 multi-model 784 

ensemble median for the present period of 1985–2014, and (c, f) their differences. The area-785 

averaged value (Ave.), bias (B), root-mean-square error (R), and correlation (C) between the 786 

CMIP6 multi-model ensemble median and ERA5 are indicated in sub-plot. Only land areas are 787 

considered. (g, h) The relative performance of the CMIP6 models for 30-year return values of 788 

TXx and RX1day, based on the root-mean-square error (RMSE) and Taylor skill score (TSS). 789 

The symbol closer to the upper right corner indicates better performance. 790 
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 791 

Figure S3. Spatial distribution of (a) population count (unit: number of persons) in 2010 792 

estimated by NASA Socioeconomic Data and Application Center, and (b–h) time series of the 793 

population change in the globe (GL), North America (NA), South America (SA), Europe (EU), 794 

Africa (AF), Asia (AS), and Oceania (OC) under SSP1 and SSP3 scenarios at ten-year intervals 795 

for the period of 2010–2100. Note that the y-axis range for GL is different from that of each 796 

continent. 797 
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 798 

Figure S4. Projected changes of (a, b) spatial distribution in 30-year return value of TXx in the 799 

late 21st century (2071–2100) compared to the historical period of 1985–2014. (c) Changes in 800 

regionally-averaged or aggregated 30-year return value and its exceeding occurrence days for 801 

the North America (NA), South America (SA), Europe (EU), Africa (AF), Asia (AS), and 802 

Oceania (OC) are also presented. The CMIP6 multi-model ensemble median under the SSP1-803 

1.9 and SSP3-7.0 scenarios are used. Only grids where more than three-quarters of the models 804 

used show the same sign are presented. Note that the relative reduction rate (%) in the SSP1-805 

1.9 scenario compared to the SSP3-7.0 scenario is shown in blue above each bar. 806 

 807 

 808 

 809 
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 811 

Figure S5. Same as Figure S4 but for 30-year return value of RX1day. 812 
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 822 

Figure S6. Gross Domestic Product (GDP, unit: US dollar) in 2015 estimated by Kummu et al. 823 

(2020). 824 

 825 

 826 
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827 

Figure S7. Comparison of relative reduction rate (%) of population exposure to extremely 828 

high-temperature and heavy-precipitation events, that exceed the historical 30-year return 829 

value of TXx and RX1day, in 41 sub-regions against that of the global region (glb). The 830 

reduction rate (%) is calculated by comparing the population exposure changes under the SSP1-831 

1.9 scenario against the SSP3-7.0 scenario. Shaded colors indicate different continents: North 832 

America (purple series), South America (green), Europe (orange), Africa (red), Asia (blue), and 833 

Oceania (pink).  834 
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835 

Figure S8. Reduction rate (%) of regionally aggregated population exposure for the 10- and 836 

50-year return events (RV10 and RV50) of hot-temperature and heavy-precipitation in SSP1-837 

1.9 relative to SSP3-7.0 scenarios and the relative contribution of climate, population, and 838 

climate-population interaction in the reduction rate. 839 

 840 

 841 

 842 

 843 

 844 

 845 
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 846 

Figure S9. Changes in spatial distribution of temperature-related eight extreme indices in the 847 

late 21st century (2071–2100) under the SSP1-1.9 and SSP3-7.0 scenarios compared to the 848 

historical period of 1985–2014. The extreme indices are the annual maxima and minima of 849 

daily maximum temperature (TXx and TXn, respectively) and minimum temperature (TNx and 850 

TNn, respectively), summer days (SU), tropical nights (TR), frost days (FD), and ice days (ID). 851 

 852 

 853 
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 854 

Figure S10. Same as Figure S8 but for precipitation-related eight extreme indices. The extreme 855 

indices are the annual maxima of daily precipitation (RX1day) and 5-days-acumulated 856 

precipitation (RX5day), total wet-day precipitation (PRCPTOT), number of wet day where the 857 

precipitation > 1 mm (R1mm), > 10 mm (R10mm), and > 20 mm (R20mm), consecutive wet 858 

days (CWD), and consecutive dry days (CDD).  859 

 860 

 861 
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 862 

Figure S11. Reduction rate (%) of the root-mean square difference (RMSD) for event 863 

frequency in the SSP1-1.9 scenario relative to the SSP3-7.0 scenario in the late 21st century 864 

(2071–2100) for 16 extreme indices as shown in Figs. S7 and S8, compared to the historical 865 

period of 1985–2014. The CMIP6 multi-model ensemble median is used. A greater negative 866 

value implies that the SSP1-1.9 scenario is closer to the current climate state compared to the 867 

SSP3-7.0 scenario, highlighting a higher carbon-neutral effect. The pink dot denotes that the 868 

difference between the two scenarios is statistically significant at the 95% confidence level. 869 
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 870 

Figure S12. Projected changes of spatial distribution in population counts in year 2010 871 

compared to year 2010. 872 
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 884 

Figure S13. Time series of the population change in Oceania under SSP1 and SSP3 scenarios 885 

at ten-year intervals for the period of 2010–2100. 886 
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 888 

 889 
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 24 

Text S1. Model evaluation. 25 

The fifth generation of the European Centre for Medium-Range Weather Forecast 26 

global reanalysis (ERA5, Hersbach et al. 2020) for the historical period of 1985–2014 is used 27 

as reference to evaluate the Coupled Model Intercomparison Phase 6 (CMIP6) models. The 28 

ERA5 data has higher spatial (30 km) and time resolution (hourly) than the other reanalysis 29 

data (i.e., ERA40, Uppala et al. 2005; ERA-Interim, Dee et al., 2011; NCEP/NCAR Reanalysis 30 

1, Kalnay et al., 1996; NCEP-DOE Reanalysis 2, Kanamitsu et al., 2002), potentially making 31 

it more suitable to estimate and evaluate the climate extremes. Therefore, this dataset has been 32 

widely utilized as a reference data for temperature and precipitation extremes (e.g., Kim et al., 33 

2020; Li et al., 2021; Oh & Sushama, 2021). The daily temperature and precipitation data at 34 

approximately 30 km resolution into common into 1°×1° grid and then calculated climate 35 

extreme indices, TXx and RX1day (Zhang et al. 2011), and Generalized Extreme Value (GEV) 36 

estimation to reduce the difference in spatial scales from CMIP6 models (1–2°). 37 

This study uses the multi-model ensemble median (MEM), which is a more valid 38 

representative measure than the multi-model mean, because extremely large or small values 39 

can distort the mean. The model performance is basically evaluated based on the bias, root-40 

mean-square error (RMSE), and correlation for spatial patterns of the estimated extreme values 41 

for the historical period of 1985–2014. The equations of the bias, RMSE and correlation are as 42 

follow: 43 
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 46 

where n is the number of the total grids at land areas. The Mi and Ri denote the model and 47 

reanalysis at i th grid, respectively. The 𝑀ഥ  nd 𝑅ത present the mean values over the land areas 48 

in the model and reanalysis, respectively. To compare the performance of MEM with that of 49 

each model, the combined metric of the RMSE and Taylor skill score (TSS, Taylor, 2001) is 50 

also used. The equation of TSS is like below: 51 

𝑇𝑆𝑆 =
(1 + 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛)ସ

4(𝑆𝐷𝑅 +
1

𝑆𝐷𝑅
)ଶ

 52 

where SDR is the ratio of the spatial standard deviations of the model against to that of the 53 

reanalysis data. This score quantifies the similarity in the distribution and amplitude of the 54 

spatial pattern between the model and the reanalysis. The relative RMSE and TSS for each 55 

model and MEM are calculated by using their median values.  56 

 57 

Text S2. Performance of CMIP6 MEM for historical period.  58 

Compared with the ERA5 data, the CMIP6 MEM reproduces the spatial distribution 59 

of the 30-year return value of TXx and RX1day reasonably well for the historical period of 60 

1985–2014, with the spatial correlations of 0.95 and 0.84, respectively (Figures S2a–S2f). The 61 

30-year return value of TXx is slightly overestimated by 0.1 to 3.0 °C in most land areas except 62 
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for the high-latitude regions of the Northern Hemisphere, resulting in the global land average 63 

bias of 0.28 °C (Figure S2c). For the 30-year return value of RX1day, the CMIP6 MEM well 64 

captures typical large-scale features such as the intense precipitation extreme in the 65 

intertropical convergence zone (ITCZ) and African and Asian monsoon regions. However, the 66 

models underestimate the extreme precipitation by 20 to 100 mm/day depending precipitation 67 

zone, resulting in a global land average bias of -11.41 mm/day (Figure S2f).  68 

Compared to a single model, the MEM shows a better performance in both the 30-year 69 

return values of TXx and RX1day (Figure S2g and S2h). This result is consistent with previous 70 

studies showing that the multi-model ensemble shows superior performance in reproducing 71 

mean and extreme climates than a single model (e.g., Oh & Suh, 2017; Kim et al., 2020; Li et 72 

al., 2021). Similar results are found for other return events, i.e., 10- and 50-year return value 73 

(not shown). It provides justification for the use of the CMIP6 MEM for future projection of 74 

the rare extreme events with varying return years. 75 

 76 

Text S3. Response of climate extremes in the late 21st century to carbon neutrality. 77 

If the current global warming is continued (i.e., SSP3-7.0 scenario), hot-temperature 78 

and heavy-precipitation extremes are expected to be strengthened in the late 21st century. The 79 

hot-temperature extreme is projected to experience a more intense warming event of above 80 

4 °C over all land regions except Greenland (the first row of Figure S4a). Such extreme is 81 

expected to occur more than total 1000 days in South America, Africa, Arabia peninsula, and 82 

South Asia regions during the future period of 2071–2100 (the second row of Figure S4a). The 83 

heavy-precipitation extreme also reveals more intense and frequent events (Figure S5a) 84 

particularly in the African and Asian monsoon region where a dense population exists (Figure 85 
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S3a). 86 

Even if the transition to a carbon-neutral society is successful (i.e., SSP1-1.9 scenario), 87 

the intensity in both hot-temperature and heavy-precipitation extremes are still expected to 88 

increase with a range of 0.5–2°C and 0–20 mm/day, respectively. On a global average, the 89 

number of days in hot-temperature (heavy-precipitation) extreme increases up to total 100 days 90 

(5 days) compared to the historical period (Figures S4b and S5b). Although more intense and 91 

frequent climate extremes are also evident in the carbon neutrality scenario, the reduction rates, 92 

which estimate the benefit of carbon neutrality compared to the high emission scenario, are 93 

substantially large (Figures S4c and S5c; see Methods in main paper). Globally, a 71% decrease 94 

is found in the intensity of hot-temperature extreme (the first row of Figure S4c), while a more 95 

significant decrease (97%) is found in its frequency (the second row of Figure S4c). Similar 96 

reduction rates are revealed in the heavy-precipitation extreme, i.e., 75 and 76% decreases in 97 

its intensity and frequency, respectively (Figure S5c).  98 

The difference between the scenarios with and without the net-zero carbon emission 99 

shows a large regional dependency, especially for the frequency (Figures S4c and S5c). For 100 

example, the frequency of the hot-temperature extreme exhibits large differences in the South 101 

America, African, and Asian continents, while that of heavy-precipitation extreme shows a 102 

large difference in the African, North America, and Asian continents. Interestingly, the 103 

reduction rates of the intensity and frequency of the hot-temperature extremes are 68–81% and 104 

94–98%, respectively, which implies a higher benefit of carbon neutrality in the frequency than 105 

in the intensity for all the continents (Figures S4c). On the other hand, the intensity and 106 

frequency of the heavy-precipitation extremes are reduced by 66–85% and 69–87% in net-zero 107 

carbon emission scenario, respectively. This result suggests that there are larger differences in 108 
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reduction rate across continents, but smaller differences between frequency and intensity 109 

compared to hot-temperature extreme (Figure S5c). In summary, a transition to a carbon-110 

neutral society around 2050 can lead to a more than twofold of reduction in both the intensity 111 

and frequency of hot-temperature and heavy-precipitation extremes for all the continents.  112 

 113 
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 158 

 159 

Figure S1. Sub-regional domain in the global land adopted from Iturbide et al. (2020). The 160 

shaded colors indicate different continents: North America (purple series), South America 161 

(green), Europe (orange), Africa (red), Asia (blue), and Oceania (pink). 162 

 163 

 164 
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 165 

Figure S2. Estimates of 30-year return values of hot-temperature (TXx) and heavy-166 

precipitation (RX1day) extremes of (a, d) ERA5 reference data and (b, e) CMIP6 multi-model 167 

ensemble median for the present period of 1985–2014, and (c, f) their differences. The area-168 

averaged value (Ave.), bias (B), root-mean-square error (R), and correlation (C) between the 169 

CMIP6 multi-model ensemble median and ERA5 are indicated in sub-plot. Only land areas are 170 

considered. (g, h) The relative performance of the CMIP6 models for 30-year return values of 171 

TXx and RX1day, based on the root-mean-square error (RMSE) and Taylor skill score (TSS). 172 

The symbol closer to the upper right corner indicates better performance. 173 
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 174 

Figure S3. Spatial distribution of (a) population count (unit: number of persons) in 2010 175 

estimated by NASA Socioeconomic Data and Application Center, and (b–h) time series of the 176 

population change in the globe (GL), North America (NA), South America (SA), Europe (EU), 177 

Africa (AF), Asia (AS), and Oceania (OC) under SSP1 and SSP3 scenarios at ten-year intervals 178 

for the period of 2010–2100. Note that the y-axis range for GL is different from that of each 179 

continent. 180 

 181 

 182 
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 183 

Figure S4. Projected changes of (a, b) spatial distribution in 30-year return value of TXx in the 184 

late 21st century (2071–2100) compared to the historical period of 1985–2014. (c) Changes in 185 

regionally-averaged or aggregated 30-year return value and its exceeding occurrence days for 186 

the North America (NA), South America (SA), Europe (EU), Africa (AF), Asia (AS), and 187 

Oceania (OC) are also presented. The CMIP6 multi-model ensemble median under the SSP1-188 

1.9 and SSP3-7.0 scenarios are used. Only grids where more than three-quarters of the models 189 

used show the same sign are presented. Note that the relative reduction rate (%) in the SSP1-190 

1.9 scenario compared to the SSP3-7.0 scenario is shown in blue above each bar. 191 

 192 

 193 

 194 
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 197 

Figure S5. Same as Figure S4 but for 30-year return value of RX1day. 198 

 199 
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 209 

Figure S6. Gross Domestic Product (GDP, unit: US dollar) in 2015 estimated by Kummu et al. 210 

(2020). 211 

 212 

 213 



14 

 

214 

Figure S7. Comparison of relative reduction rate (%) of population exposure to extremely 215 

high-temperature and heavy-precipitation events, that exceed the historical 30-year return 216 

value of TXx and RX1day, in 41 sub-regions against that of the global region (glb). The 217 

reduction rate (%) is calculated by comparing the population exposure changes under the SSP1-218 

1.9 scenario against the SSP3-7.0 scenario. Shaded colors indicate different continents: North 219 

America (purple series), South America (green), Europe (orange), Africa (red), Asia (blue), and 220 

Oceania (pink).  221 

 222 
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223 

Figure S8. Reduction rate (%) of regionally aggregated population exposure for the 10- and 224 

50-year return events (RV10 and RV50) of hot-temperature and heavy-precipitation in SSP1-225 

1.9 relative to SSP3-7.0 scenarios and the relative contribution of climate, population, and 226 

climate-population interaction in the reduction rate. 227 

 228 
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 235 

Figure S9. Changes in spatial distribution of temperature-related eight extreme indices in the 236 

late 21st century (2071–2100) under the SSP1-1.9 and SSP3-7.0 scenarios compared to the 237 

historical period of 1985–2014. The extreme indices are the annual maxima and minima of 238 

daily maximum temperature (TXx and TXn, respectively) and minimum temperature (TNx and 239 

TNn, respectively), summer days (SU), tropical nights (TR), frost days (FD), and ice days (ID). 240 

 241 

 242 



17 

 

 243 

Figure S10. Same as Figure S8 but for precipitation-related eight extreme indices. The extreme 244 

indices are the annual maxima of daily precipitation (RX1day) and 5-days-acumulated 245 

precipitation (RX5day), total wet-day precipitation (PRCPTOT), number of wet day where the 246 

precipitation > 1 mm (R1mm), > 10 mm (R10mm), and > 20 mm (R20mm), consecutive wet 247 

days (CWD), and consecutive dry days (CDD).  248 

 249 

 250 
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 253 

Figure S11. Reduction rate (%) of the root-mean square difference (RMSD) for event 254 

frequency in the SSP1-1.9 scenario relative to the SSP3-7.0 scenario in the late 21st century 255 

(2071–2100) for 16 extreme indices as shown in Figs. S7 and S8, compared to the historical 256 

period of 1985–2014. The CMIP6 multi-model ensemble median is used. A greater negative 257 

value implies that the SSP1-1.9 scenario is closer to the current climate state compared to the 258 

SSP3-7.0 scenario, highlighting a higher carbon-neutral effect. The pink dot denotes that the 259 

difference between the two scenarios is statistically significant at the 95% confidence level. 260 
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 263 

Figure S12. Projected changes of spatial distribution in population counts in year 2010 264 

compared to year 2010. 265 
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 278 

Figure S13. Time series of the population change in Oceania under SSP1 and SSP3 scenarios 279 

at ten-year intervals for the period of 2010–2100. 280 
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