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Abstract

We use neural networks and large climate model ensembles to explore predictability of internal variability in sea surface

temperature anomalies on interannual (1-3 year) and decadal (1-5 and 3-7 year) timescales. We find that neural networks can

skillfully predict SST anomalies at these lead times, especially in the North Atlantic, North Pacific, Tropical Pacific, Tropical

Atlantic and Southern Ocean. The spatial patterns of SST predictability vary across the nine climate models studied. The

neural networks identify “windows of opportunity” where future SST anomalies can be predicted with more certainty. Neural

networks trained on climate models also make skillful SST predictions in historical observations, although the skill varies

depending on which climate model the network was trained. Our results highlight that neural networks can identify predictable

internal variability within existing climate datasets and show important differences in how well patterns of SST predictability

in climate models translate to the real world.
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Key Points 16 

• Neural networks can learn predictable signals of internal sea surface temperature variability 17 

at 1-3, 1-5, and 3-7 year lead times  18 

• Neural networks trained on climate model output can skillfully predict sea surface 19 

temperature variability in historical observations  20 

• Neural network skill in predicting observed sea surface temperature variability depends on 21 

the climate model used for training 22 
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Abstract  24 

We use neural networks and large climate model ensembles to explore predictability of 25 

internal variability in sea surface temperature anomalies on interannual (1-3 year) and decadal 26 

(1-5 and 3-7 year) timescales. We find that neural networks can skillfully predict SST anomalies 27 

at these lead times, especially in the North Atlantic, North Pacific, Tropical Pacific, Tropical 28 

Atlantic and Southern Ocean. The spatial patterns of SST predictability vary across the nine 29 

climate models studied. The neural networks identify “windows of opportunity” where future 30 

SST anomalies can be predicted with more certainty. Neural networks trained on climate models 31 

also make skillful SST predictions in historical observations, although the skill varies depending 32 

on which climate model the network was trained. Our results highlight that neural networks can 33 

identify predictable internal variability within existing climate datasets and show important 34 

differences in how well patterns of SST predictability in climate models translate to the real 35 

world.   36 

Plain Language Summary 37 

 We train neural networks (a machine learning model) to predict sea surface temperature 38 

between 3 and 7 years in the future. The neural networks are trained using data from existing 39 

climate model simulations. The regions where neural networks make the most accurate 40 

predictions depend on which climate model is used for training. The neural networks also make 41 

accurate predictions using historical observations, which means some of the patterns learned 42 

from the climate models also apply to the real climate system. However, there are unique 43 

differences between prediction accuracy in climate models and observations, which suggests 44 

directions for future research.  45 

1 Introduction 46 

Skillful predictions of regional climate variability on multiyear to decadal timescales 47 

would provide valuable information for near-term societal decision making and adaptation 48 

(Findell et al., 2023; Kushnir et al., 2019). While this goal remains a significant challenge, a 49 

number of studies have shown potential for predicting patterns of internal climate variability, 50 

particularly those related to large-scale ocean variability. For example, some patterns of ocean 51 

variability thought to have predictable components on three- to-ten year timeframes include the 52 

El-Nino Southern Oscillation (ENSO), Atlantic Multidecadal Variability (AMV), and the Pacific 53 

Decadal Oscillation (PDO)(Cassou et al., 2018; Meehl et al., 2009; Van Oldenborgh et al., 54 

2012). These oceanic patterns can also lead to predictability of important processes over land, 55 

including rainfall over the Sahel (Martin & Thorncroft, 2014), North American precipitation 56 

(Enfield et al., 2001), Atlantic Hurricane frequency (Smith et al., 2010), late winter precipitation 57 

over Western Europe (Simpson et al., 2019), and North American and European summer 58 

temperatures (Sutton & Hodson, 2005).  59 

Many recent insights into multiyear climate prediction come from initialized decadal 60 

hindcast experiments, where model simulations are initialized to match historical observations as 61 

closely as possible, and then run for up to a decade (e.g. Delgado-Torres et al., 2022; Meehl et 62 

al., 2021; Yeager et al., 2018). The hindcast simulation can then be verified against what actually 63 

occurrs in the observations. Higher prediction skill is achieved when more ensemble members 64 

are included in a hindcast experiment, with often at least 10, and sometimes as many as 40, 65 
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ensemble members used (Meehl et al., 2021). The computational expense associated with these 66 

experiments thus poses a considerable challenge for decadal prediction. Initialized simulations 67 

are also subject to model drift, which occurs when a simulation that has been initialized to match 68 

observations drifts towards it’s own model climatology. How exactly initialized forecasts should 69 

be corrected to account for this drift presents an additional challenge for decadal prediction 70 

(Meehl et al., 2022; Risbey et al., 2021).  71 

More recently, data-driven or machine learning (ML) based approaches have been used 72 

to explore multiyear climate predictability (e.g. Gordon et al., 2021; Qin et al., 2022; Toms et al., 73 

2021). In these studies, a statistical or ML model is trained to predict a climate variable or 74 

pattern of interest using existing climate datasets. Because of the need for large amounts of 75 

training data, many (although not all) prior studies have focused on multiyear predictability 76 

within large climate model simulations. For example, Toms et al. (2021) and Gordon et al. 77 

(2021) both use 1,200 years or more from the pre-industrial control run of the Community Earth 78 

System Model Version 2 (CESM2) to analyze predictability of land surface temperatures and the 79 

PDO, respectively.  80 

A clear benefit of ML-based approaches is the potential to learn about predictability of 81 

the climate system from existing coupled atmosphere-ocean general circulation model (GCM) 82 

simulations, reducing the need for additional initialized simulations. However, as with any 83 

approach that relies on GCM simulations, the trained ML models are subject to any biases 84 

present in the underlying simulations. A few studies have explored whether ML models trained 85 

on GCMs can make accurate predictions in observations. For example, Labe and Barnes (2022) 86 

show that a neural network trained on CESM2 can predict observed global warming slowdowns. 87 

Ham et al. (2019) show skillful predictions of observed ENSO variability with up to 17 month 88 

lead times using a neural network trained on simulations from different GCMs. These studies 89 

show potential for using ML models to predict observed climate variability, but whether or not 90 

multiyear predictability in climate models reflects predictability of the real climate system more 91 

broadly is still an open question.   92 

Here, we analyze the predictability of sea surface temperature (SST) using neural 93 

networks and historical simulations from the Coupled Model Intercomparison Project Phase 6 94 

(CMIP6) archive (Eyring et al., 2016). We focus specifically on predicting internal variability of 95 

SSTs at interannual (1-3 year) and decadal (1-5 and 3-7 year) timescales, and apply our analysis 96 

globally. In order to have sufficient training data, we analyze GCMs that have at least 30 97 

historical simulations. After evaluating SST predictability within each GCM, we analyze 98 

whether the information learned by the neural networks can lead to accurate SST predictions 99 

when tested on historical observations. Our goal is (i) to provide an overview and comparison of 100 

patterns of SST predictability across different GCMs in the CMIP6 archive and (ii) to identify 101 

regions where the SST predictability learned from GCMs provides the most skillful predictions 102 

of the real ocean.  103 

2 Materials and Methods 104 

2.1 CMIP6 data 105 

We analyze monthly SST data from nine GCMs that have at least 30 historical 106 

simulations in the CMIP6 archive: ACCESS-ESM1-5 (Ziehn et al., 2020), CanESM5 (Swart et 107 

al., 2019), CNRM-CM6-1 (Voldoire et al., 2019), GISS-E2-1-G (Kelley et al., 2020), IPSL-108 
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CM6A-LR (Boucher et al., 2020), MIROC-ES2L (Hajima et al., 2020), MIROC6 (Tatebe et al., 109 

2019), MPI-ESM1-2-LR (Mauritsen et al., 2019), and NorCPM1 (Bethke et al., 2021). The 110 

historical simulations span 1850-2014, giving a total of 4,950 model-years for each GCM.  111 

Before neural network training, we preprocess the data for each GCM. First, we regrid all 112 

climate model output to a common 5x5 latitude-longitude grid. We analyze latitudes between 113 

65S to 65N. We calculate 12-month, 36-month and 60-month average SSTs at each grid point. 114 

From each time series (12-month, 36-month and 60-month averages), we subtract the ensemble-115 

mean for each year at each grid point. By removing the ensemble mean response to external 116 

forcing, we focus our analysis on learning predictable components of internal climate variability. 117 

Once the ensemble mean is removed, we calculate the mean and standard deviation of SSTs at 118 

each grid point and use these to calculate standardized SST anomalies at each grid point at each 119 

timestep. Lastly, we calculate tercile limits at each grid point that are used to classify each SST 120 

anomaly as negative (bottom third), neutral (middle third), and positive (top third). The tercile 121 

limits are calculated separately for each simulation because some simulations are consistently 122 

cooler or warmer than the ensemble mean over the historical simulation period. Calculating the 123 

terciles separately creates a balanced number of negative, neutral, and positive anomalies within 124 

each simulation.  125 

2.2 Neural network architecture and training 126 

We train convolutional neural networks (CNNs) to predict SST anomalies using the 127 

GCM output (Figure 1). The CNN takes four global maps of prior SSTs as input. These maps 128 

correspond to SSTs averaged over 0-1 years, 1-2 years, 2-3 years, and 3-8 years prior. While 129 

variables such as ocean heat content may also be useful predictors, we only use sea surface 130 

temperature so that we can test the CNN using globally available sea surface temperature 131 

observations (see Section 2.4).  For each set of input maps, the CNN predicts the SST anomaly at 132 

a given location (one grid cell) at a given time in the future. Each prediction is the relative 133 

likelihood of three categories: positive SST anomaly (the top tercile of historical anomalies), 134 

neutral anomaly (middle tercile), or negative anomaly (bottom tercile).    135 

Figure 1. Overview of CNN architecture 
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 We make SST predictions for three future time periods: years 1-3 (i.e. 36 month SST 136 

anomalies starting from the prediction date), years 1-5 (i.e. 60 month SST anomalies starting 137 

from the prediction date), and years 3-7 (i.e. 60 month SST anomalies starting 2 years after the 138 

prediction date). We train separate CNNs for each ocean grid cell, lead time, and GCM (over 139 

30,000 CNNs in total). 140 

We split the 30 historical simulations from each GCM into a training set of 22 141 

simulations, a validation set of three simulations, and a test set of five simulations (Supporting 142 

Information, Table S1). We use hyperparameter tuning to select the CNN architecture shown in 143 

Fig. 1. Details of the hyperparameter tuning and CNN training are included in the Supporting 144 

Information.  145 

2.3 Neural network accuracy and windows of opportunity 146 

After training, we evaluate CNN performance on the testing data (five simulations per 147 

GCM). First, we calculate prediction accuracy across all testing data. We also examine whether 148 

the CNNs identify “windows of opportunity”, or states of internal variability that are more 149 

predictable than others. We use the method from Mayer and Barnes (2021) and Gordon et al. 150 

(2023) to calculate accuracy for subsets of predictions with the highest “confidence”, i.e. the 151 

samples where the CNN predicts a higher relative likelihood of one class versus the others. 152 

Higher prediction accuracy among more confident predictions indicates that the CNN has 153 

successfully identified windows of opportunity where predictions are more likely to be skillful. 154 

We calculate accuracy for the 40% and 20% most confident predictions within each testing 155 

simulation, and then average across the five testing simulations for each GCM.  156 

We compare the neural network accuracy to a persistence model, which assumes that the 157 

future SST anomaly remains unchanged. For example, the SST anomaly prediction for year 1-5 158 

is the same as the SST anomaly for the most recent 5 year period. Because there is no confidence 159 

associated with these predictions, we only calculate overall accuracy (not windows of 160 

opportunity).  161 

2.4 Evaluating neural network performance on historical observations 162 

We use the NOAA Extended Reconstructed SST Version 5 (ERSSTv5) dataset (Huang et 163 

al., 2017) to evaluate how well the trained CNNs can predict historical internal SST variability. 164 

The ERSSTv5 dataset includes global coverage at 2x2 resolution from 1854 to present. We 165 

analyze monthly SST averages from January 1854 through October 2022. We perform similar 166 

preprocessing steps as for the GCM simulations. We regrid to the same 5x5 grid and calculate 167 

12-, 36-, and 60-month moving averages. Then, instead of subtracting the GCM ensemble mean, 168 

we subtract the third-order polynomial trend from each grid cell to remove any long-term 169 

forcing. We then calculate grid-cell means, standard deviations, and tercile thresholds.  170 

In analyzing CNN predictions on the ERSSTv5 data, we focus specifically on windows 171 

of opportunity by looking at the accuracy of the top 20% most confident predictions. We also 172 

calculate the accuracy of persistence predictions within the ERSSTv5 data as a baseline 173 

comparison.  174 
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3 Results and Discussion 175 

The CNN accuracy results are shown for one model, IPSL-CM6-LR, in Figure 2, with the 176 

remaining models shown in Fig. S2-S9 (Supporting Information). Because we have removed the 177 

forced response from the GCM simulations, these maps show the accuracy of predicting internal 178 

SST variability.  179 

 Figure 2. Accuracy of 1-5 year SST predictions using the CNNs trained and tested on IPSL-180 

CM6A-LR simulations. a) accuracy calculated across all predictions in the test set. b) accuracy 181 

calculated for the 40% most confident predictions in the test set (see Methods). c) same as b) but 182 

for the 20% most confident predictions. Black boxes indicate regions shown in Fig 4. Other 183 

GCMs are shown in Supporting Information, Figs S2-S9. 184 

Overall, we find that the prediction accuracy is higher for years 1-3, decreases for years 185 

1-5, and is lowest for years 3-7. This pattern of higher prediction accuracy at shorter lead times is 186 

true across all nine GCMs. When accuracy is calculated across all test samples (e.g. left column 187 

of Fig. 2), the CNNs perform slightly better than the persistence model benchmark (Supporting 188 

Information, Fig. S10-11). However, we find that the CNNs can make much more skillful 189 

predictions during windows of opportunity, shown in the middle and right columns of Fig. 2. In 190 

some regions, prediction accuracy can approach 80% or higher for these more confident 191 
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predictions (e.g. Fig. 2c, f). We find that the CNNs are able to identify windows of opportunity 192 

with higher prediction accuracy in all of the GCMs analyzed.  193 

Regions where future SSTs are predicted most skillfully include the North Pacific, 194 

Tropical Pacific, North Atlantic, Tropical Atlantic and the Southern Ocean (defined here to refer 195 

to ocean regions between 45-65S). While many of these regions are similar across the different 196 

GCMs, there are also clear inter-model differences. For example, CNNs trained and tested on 197 

CNRM-CM6-1 detect especially strong predictability in the North Atlantic (Fig S3). This is likely 198 

due to the stronger persistence of SSTs in North Atlantic in this GCM (Supporting Information, 199 

Fig. S10). The CNNs trained on CanESM5 or NorCPM1 have much higher accuracy in 200 

predicting SST anomalies in the Southern Ocean compared to other regions. As a third example, 201 

the CNNs trained on GISS-E2-1-G, MIROC-ES2L and MIROC6 all show strong 1-3 year SST 202 

predictability across the tropics, including parts of the Indian Ocean.  203 

Within each ocean basin, the spatial pattern of predictability varies depending on the 204 

GCM. For example, within the North Atlantic, many of the GCMs have the highest predictability 205 

in the subpolar North Atlantic (e.g. ACCESS-ESM1, NorCPM1). For some GCMs, though, the 206 

region of high predictability extends to include a band of high predictability in the subtropical 207 

North Atlantic (e.g. CNRM-CM6-1, IPSL-CM6A-LR). Different GCMs also have different spatial 208 

patterns of predictability in the North Pacific. Many GCMs show highest predictability in the 209 

subpolar (and especially the western subpolar) North Pacific region. Some models, such as 210 

MIROC-ES2L and MIROC6, show higher predictability in the central North Pacific. In the 211 

Southern Ocean, the most predictable region depends on both the GCM and the lead time. Many 212 

of the GCMs show high predictability across most of the Southern Ocean for year 1-3 213 

predictions. For year 3-7 predictions, the region of high predictability generally narrows to 214 

regions of the South Pacific and South Atlantic, especially just west and east of South America 215 

(between around 160W to 0W).  216 

After training CNNs on each GCM, we look at how well the CNNs perform when tested 217 

on ERSSTv5 observations. These results are shown in Figure 3 for the year 1-5 lead time. Year 218 

1-3 and year 3-7 results are shown in Supporting Information, Fig. S12-13. We find that the 219 

CNNs are able to make skillful predictions using the ERSSTv5 observations, and that the CNN 220 

predictions outperform the historical persistence model (Supporting Information, Fig. S14).  221 

The regions with the most accurate predictions in ERSSTv5 are generally the same 222 

regions that were most predictable in the GCMs, namely the North Pacific, Tropical Pacific, 223 

North Atlantic, Tropical Atlantic, and Southern Ocean. However, there are also differences in the 224 

spatial pattern of predictability between ERSSTv5 and the GCMs. As an example, in the North 225 

Pacific, the regions of highest predictability in ERSSTv5 appear similar to the PDO horseshoe 226 

pattern in the central/eastern North Pacific (e.g. Fig. 3a-e, i). In contrast, when the CNNs are 227 

evaluated on the original GCM test simulations (Fig. 2 and Supporting Information, Fig. 2-9),  228 

most of the GCMs lack the PDO horseshoe pattern and show the highest predictability in the 229 

western subpolar North Pacific. There are also some small regions of predictability in the 230 

ERSSTv5 observations that did not appear at all in the GCMs, such as along the coast of Chile.  231 

As in the GCM test data, the CNN skill at predicting the ERSSTv5 observations 232 

generally decreases at the 3-7 year lead time (Fig. S13). One exception is in the North Pacific for 233 

CNNs that were trained on ACCESS-ESM1-5, CNRM-CM6-1, or IPSL-CM6A-LR. We find that 234 

these CNNs still make relatively skillful predictions in the North Pacific at 3-7 year lead times  235 
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Figure 3. Accuracy of 1-5 year SST predictions for windows of opportunity (i.e. 20% most 236 

confident predictions) within the ERSSTv5 data. Panels show results for CNNs trained on 237 

different GCMs. Other lead times are shown in Supporting Information, Fig. S12-13.  238 

 239 

when evaluated on the ERSSTv5 observations. In fact, the CNNs trained on ACCESS-ESM1-5 240 

and IPSL-CM6A-LR predict the ERSSTv5 observations in the North Pacific better than they 241 

predict their respective GCM testing data at the 3-7 year lead time (Fig. 4f).  242 

Figure 4 summarizes the CNN performance on the GCM testing data versus the 243 

ERSSTv5 observations at the global scale (Fig. 4a-c) and for the six regions with the most 244 

skillful predictions: North Pacific, Tropical Pacific, Southern Ocean, North Atlantic, Tropical 245 

Atlantic, and West Indian Ocean. There are a few interesting patterns that emerge. We find that 246 

higher predictability in a GCM does not necessarily lead to higher predictability in the ERSSTv5 247 

observations. For example, in the North Pacific for years 1-3 and in the Tropical Pacific for years 248 

1-3 and 1-5, the GCMs that correspond to the highest prediction accuracy have lower accuracy 249 

when the CNNs are tested on ERSSTv5 (shown by negative correlations in Fig. 4). However, in 250 

other locations, such as the Tropical Atlantic for years 1-5 and years 3-7, higher predictability in 251 

the GCM does correspond to higher predictability in ERSSTv5. For the most part, prediction 252 
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 253 

Figure 4. Comparison of 

windows of opportunity 

(20% most confident) 

prediction accuracy in GCM 

simulations (x-axis) vs. the 

ERSSTv5 data (y-axis). 

Values for each region are 

calculated as the area-

weighted average accuracy 

within the region boundaries 

shown in Fig. 2c,f,i and Fig. 

3. Horizontal lines show 

spread in accuracy across 

the 5 GCM test simulations, 

with the points showing the 

mean accuracy. Correlation 

between accuracy in the 

GCMs vs. ERSSTv5 is 

shown in the bottom right of 

each panel.  
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accuracy is higher in the original GCM test data than in the ERSSTv5 observations (shown by 254 

most points falling below the one-to-one lines). However, in addition to the example given above 255 

for the North Pacific, some CNNs can make more skillful predictions in the Tropical Pacific and 256 

Tropical Atlantic in ERSSTv5 observations than in the original GCM test data (Fig. 4h, i, p-r).  257 

 The spread in prediction accuracy across the five ensemble members in each GCM test 258 

set is shown by horizontal bars in Fig. 4. In general, the differences in predictability between 259 

different GCMs are larger than the differences in predictability between individual simulations. 260 

However, we do find that there can be substantial spread in prediction accuracy depending on 261 

both the region and the GCM. The West Indian Ocean and Tropical Atlantic have the highest 262 

spread in predictability across different simulations (although not in all GCMs). Overall, this 263 

indicates that a ~150 year record (the length of our training and testing simulations) may not be 264 

sufficient to characterize multiyear predictability at a given location, which should be taken into 265 

account when comparing predictability across individual simulations or in the historical record.  266 

Overall, many of these results are consistent with prior studies on multidecadal climate 267 

prediction. One difference is that we measure prediction skill with classification accuracy and 268 

using the window of opportunity framework rather than metrics like the anomaly correlation 269 

coefficients. Further, many prior studies on multiyear prediction, including those that use 270 

initialized hindcast experiments, evaluate skill in predicting the combined forced response and 271 

internal variability. Still, the regions that we find have the most predictability across the GCMs 272 

and ERSSTv5 observations include many regions that have been identified in prior work, such as 273 

the North Atlantic (Borchert et al., 2021; Yeager et al., 2018; Yeager & Robson, 2017), Southern 274 

Ocean (Zhang et al., 2023), and North Pacific (Choi & Son, 2022; Gordon et al., 2021; Qin et al., 275 

2022).  276 

Our results also emphasize the importance of considering prediction uncertainty or 277 

confidence using the window of opportunity framework. We find many windows of opportunity 278 

for multiyear SST predictability, including for most regions, across all GCMs studied, and at all 279 

three lead times studied. These findings are aligned with other recent work demonstrating the 280 

occurrence of windows of opportunity within the climate system across multiple timescales 281 

(Gordon & Barnes, 2022; Mayer & Barnes, 2021).   282 

One recurring question within multidecadal prediction is the occurrence of the signal-to-283 

noise paradox, in which a climate model ensemble predicts observed variability better than it 284 

predicts individual ensemble members (Eade et al., 2014; Scaife & Smith, 2018). Here, we also 285 

find examples where the patterns learned from GCMs lead to more predictable behaviour in the 286 

observations compared to the climate models. While we do not attribute our results to the signal-287 

to-noise paradox, it highlights additional differences in predictability between climate models 288 

and observations that could be studied in future work. 289 

4 Conclusions 290 

We show that machine learning, specifically convolutional neural networks, can learn 291 

patterns of global, multiyear SST predictability from existing, unitialized climate model 292 

simulations. Because our approach does not require new GCM simulations, we can efficiently 293 

analyze and compare predictability across many different GCMs. We find that the regions with 294 

the highest predictability on interannual and decadal lead times include the North Pacific, North 295 

Atlantic, Tropical Pacific, Tropical Atlantic and the Southern Ocean. However, when comparing 296 
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predictability across nine GCMs, we find notable differences in the spatial patterns and 297 

magnitude of SST prediction skill. The patterns learned by the CNNs also lead to skillful 298 

predictions when tested on historical SST observations, but the amount of prediction skill in each 299 

region varies based on the GCM used for training. We also find different spatial patterns of SST 300 

predictability in the ERSSTv5 observations compared to the GCMs, although the most 301 

predictable regions are generally similar.  302 

These results could lead to multiple future research directions. It is beyond the scope of 303 

the current study to explore why differences in SST predictability exist across GCMs and the 304 

observations. However, recent related work has shown that “explainable ML” methods can be 305 

used to understand why CNNs make certain predictions (Davenport & Diffenbaugh, 2021; 306 

Gordon et al., 2021; Labe & Barnes, 2021; Toms et al., 2020). These same methods could be 307 

applied to the CNNs used here to understand the sources of SST predictability and how they 308 

differ across GCMs and observations, providing insight into both the mechanisms involved in 309 

multiyear variability and into GCM biases in how these mechanisms are represented. Further, 310 

while the focus of this study was to explore differences in predictability across GCMs, future 311 

efforts could focus on training CNNs to produce the best predictions in the observed climate. 312 

This might be accomplished by selecting certain GCMs to use as training data for different 313 

regions, or using a combination of GCM and observational data for training through approaches 314 

like transfer learning (e.g. Ham et al., 2019). Overall, this research supports a growing body of 315 

literature that shows ML is a valuable tool for advancing the field of skillful multiyear climate 316 

prediction.  317 
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Data Availability 323 

We use historical simulations from the CMIP6 archive available through the Earth 324 

System Grid (https://esgf-node.llnl.gov/projects/cmip6/). We use historical sea surface 325 

temperature data from the ERSSTv5 dataset available from the National Oceanic and 326 

Atmospheric Administration (https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html).  327 
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Code Availability 329 

The analysis code used to train the convolutional neural networks and generate figures in 330 

the paper will be made available on github and archived using Zenodo (DOI will be created and 331 

provided here before publication).  332 
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Abstract  24 

We use neural networks and large climate model ensembles to explore predictability of 25 

internal variability in sea surface temperature anomalies on interannual (1-3 year) and decadal 26 

(1-5 and 3-7 year) timescales. We find that neural networks can skillfully predict SST anomalies 27 

at these lead times, especially in the North Atlantic, North Pacific, Tropical Pacific, Tropical 28 

Atlantic and Southern Ocean. The spatial patterns of SST predictability vary across the nine 29 

climate models studied. The neural networks identify “windows of opportunity” where future 30 

SST anomalies can be predicted with more certainty. Neural networks trained on climate models 31 

also make skillful SST predictions in historical observations, although the skill varies depending 32 

on which climate model the network was trained. Our results highlight that neural networks can 33 

identify predictable internal variability within existing climate datasets and show important 34 

differences in how well patterns of SST predictability in climate models translate to the real 35 

world.   36 

Plain Language Summary 37 

 We train neural networks (a machine learning model) to predict sea surface temperature 38 

between 3 and 7 years in the future. The neural networks are trained using data from existing 39 

climate model simulations. The regions where neural networks make the most accurate 40 

predictions depend on which climate model is used for training. The neural networks also make 41 

accurate predictions using historical observations, which means some of the patterns learned 42 

from the climate models also apply to the real climate system. However, there are unique 43 

differences between prediction accuracy in climate models and observations, which suggests 44 

directions for future research.  45 

1 Introduction 46 

Skillful predictions of regional climate variability on multiyear to decadal timescales 47 

would provide valuable information for near-term societal decision making and adaptation 48 

(Findell et al., 2023; Kushnir et al., 2019). While this goal remains a significant challenge, a 49 

number of studies have shown potential for predicting patterns of internal climate variability, 50 

particularly those related to large-scale ocean variability. For example, some patterns of ocean 51 

variability thought to have predictable components on three- to-ten year timeframes include the 52 

El-Nino Southern Oscillation (ENSO), Atlantic Multidecadal Variability (AMV), and the Pacific 53 

Decadal Oscillation (PDO)(Cassou et al., 2018; Meehl et al., 2009; Van Oldenborgh et al., 54 

2012). These oceanic patterns can also lead to predictability of important processes over land, 55 

including rainfall over the Sahel (Martin & Thorncroft, 2014), North American precipitation 56 

(Enfield et al., 2001), Atlantic Hurricane frequency (Smith et al., 2010), late winter precipitation 57 

over Western Europe (Simpson et al., 2019), and North American and European summer 58 

temperatures (Sutton & Hodson, 2005).  59 

Many recent insights into multiyear climate prediction come from initialized decadal 60 

hindcast experiments, where model simulations are initialized to match historical observations as 61 

closely as possible, and then run for up to a decade (e.g. Delgado-Torres et al., 2022; Meehl et 62 

al., 2021; Yeager et al., 2018). The hindcast simulation can then be verified against what actually 63 

occurrs in the observations. Higher prediction skill is achieved when more ensemble members 64 

are included in a hindcast experiment, with often at least 10, and sometimes as many as 40, 65 
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ensemble members used (Meehl et al., 2021). The computational expense associated with these 66 

experiments thus poses a considerable challenge for decadal prediction. Initialized simulations 67 

are also subject to model drift, which occurs when a simulation that has been initialized to match 68 

observations drifts towards it’s own model climatology. How exactly initialized forecasts should 69 

be corrected to account for this drift presents an additional challenge for decadal prediction 70 

(Meehl et al., 2022; Risbey et al., 2021).  71 

More recently, data-driven or machine learning (ML) based approaches have been used 72 

to explore multiyear climate predictability (e.g. Gordon et al., 2021; Qin et al., 2022; Toms et al., 73 

2021). In these studies, a statistical or ML model is trained to predict a climate variable or 74 

pattern of interest using existing climate datasets. Because of the need for large amounts of 75 

training data, many (although not all) prior studies have focused on multiyear predictability 76 

within large climate model simulations. For example, Toms et al. (2021) and Gordon et al. 77 

(2021) both use 1,200 years or more from the pre-industrial control run of the Community Earth 78 

System Model Version 2 (CESM2) to analyze predictability of land surface temperatures and the 79 

PDO, respectively.  80 

A clear benefit of ML-based approaches is the potential to learn about predictability of 81 

the climate system from existing coupled atmosphere-ocean general circulation model (GCM) 82 

simulations, reducing the need for additional initialized simulations. However, as with any 83 

approach that relies on GCM simulations, the trained ML models are subject to any biases 84 

present in the underlying simulations. A few studies have explored whether ML models trained 85 

on GCMs can make accurate predictions in observations. For example, Labe and Barnes (2022) 86 

show that a neural network trained on CESM2 can predict observed global warming slowdowns. 87 

Ham et al. (2019) show skillful predictions of observed ENSO variability with up to 17 month 88 

lead times using a neural network trained on simulations from different GCMs. These studies 89 

show potential for using ML models to predict observed climate variability, but whether or not 90 

multiyear predictability in climate models reflects predictability of the real climate system more 91 

broadly is still an open question.   92 

Here, we analyze the predictability of sea surface temperature (SST) using neural 93 

networks and historical simulations from the Coupled Model Intercomparison Project Phase 6 94 

(CMIP6) archive (Eyring et al., 2016). We focus specifically on predicting internal variability of 95 

SSTs at interannual (1-3 year) and decadal (1-5 and 3-7 year) timescales, and apply our analysis 96 

globally. In order to have sufficient training data, we analyze GCMs that have at least 30 97 

historical simulations. After evaluating SST predictability within each GCM, we analyze 98 

whether the information learned by the neural networks can lead to accurate SST predictions 99 

when tested on historical observations. Our goal is (i) to provide an overview and comparison of 100 

patterns of SST predictability across different GCMs in the CMIP6 archive and (ii) to identify 101 

regions where the SST predictability learned from GCMs provides the most skillful predictions 102 

of the real ocean.  103 

2 Materials and Methods 104 

2.1 CMIP6 data 105 

We analyze monthly SST data from nine GCMs that have at least 30 historical 106 

simulations in the CMIP6 archive: ACCESS-ESM1-5 (Ziehn et al., 2020), CanESM5 (Swart et 107 

al., 2019), CNRM-CM6-1 (Voldoire et al., 2019), GISS-E2-1-G (Kelley et al., 2020), IPSL-108 
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CM6A-LR (Boucher et al., 2020), MIROC-ES2L (Hajima et al., 2020), MIROC6 (Tatebe et al., 109 

2019), MPI-ESM1-2-LR (Mauritsen et al., 2019), and NorCPM1 (Bethke et al., 2021). The 110 

historical simulations span 1850-2014, giving a total of 4,950 model-years for each GCM.  111 

Before neural network training, we preprocess the data for each GCM. First, we regrid all 112 

climate model output to a common 5x5 latitude-longitude grid. We analyze latitudes between 113 

65S to 65N. We calculate 12-month, 36-month and 60-month average SSTs at each grid point. 114 

From each time series (12-month, 36-month and 60-month averages), we subtract the ensemble-115 

mean for each year at each grid point. By removing the ensemble mean response to external 116 

forcing, we focus our analysis on learning predictable components of internal climate variability. 117 

Once the ensemble mean is removed, we calculate the mean and standard deviation of SSTs at 118 

each grid point and use these to calculate standardized SST anomalies at each grid point at each 119 

timestep. Lastly, we calculate tercile limits at each grid point that are used to classify each SST 120 

anomaly as negative (bottom third), neutral (middle third), and positive (top third). The tercile 121 

limits are calculated separately for each simulation because some simulations are consistently 122 

cooler or warmer than the ensemble mean over the historical simulation period. Calculating the 123 

terciles separately creates a balanced number of negative, neutral, and positive anomalies within 124 

each simulation.  125 

2.2 Neural network architecture and training 126 

We train convolutional neural networks (CNNs) to predict SST anomalies using the 127 

GCM output (Figure 1). The CNN takes four global maps of prior SSTs as input. These maps 128 

correspond to SSTs averaged over 0-1 years, 1-2 years, 2-3 years, and 3-8 years prior. While 129 

variables such as ocean heat content may also be useful predictors, we only use sea surface 130 

temperature so that we can test the CNN using globally available sea surface temperature 131 

observations (see Section 2.4).  For each set of input maps, the CNN predicts the SST anomaly at 132 

a given location (one grid cell) at a given time in the future. Each prediction is the relative 133 

likelihood of three categories: positive SST anomaly (the top tercile of historical anomalies), 134 

neutral anomaly (middle tercile), or negative anomaly (bottom tercile).    135 

Figure 1. Overview of CNN architecture 
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 We make SST predictions for three future time periods: years 1-3 (i.e. 36 month SST 136 

anomalies starting from the prediction date), years 1-5 (i.e. 60 month SST anomalies starting 137 

from the prediction date), and years 3-7 (i.e. 60 month SST anomalies starting 2 years after the 138 

prediction date). We train separate CNNs for each ocean grid cell, lead time, and GCM (over 139 

30,000 CNNs in total). 140 

We split the 30 historical simulations from each GCM into a training set of 22 141 

simulations, a validation set of three simulations, and a test set of five simulations (Supporting 142 

Information, Table S1). We use hyperparameter tuning to select the CNN architecture shown in 143 

Fig. 1. Details of the hyperparameter tuning and CNN training are included in the Supporting 144 

Information.  145 

2.3 Neural network accuracy and windows of opportunity 146 

After training, we evaluate CNN performance on the testing data (five simulations per 147 

GCM). First, we calculate prediction accuracy across all testing data. We also examine whether 148 

the CNNs identify “windows of opportunity”, or states of internal variability that are more 149 

predictable than others. We use the method from Mayer and Barnes (2021) and Gordon et al. 150 

(2023) to calculate accuracy for subsets of predictions with the highest “confidence”, i.e. the 151 

samples where the CNN predicts a higher relative likelihood of one class versus the others. 152 

Higher prediction accuracy among more confident predictions indicates that the CNN has 153 

successfully identified windows of opportunity where predictions are more likely to be skillful. 154 

We calculate accuracy for the 40% and 20% most confident predictions within each testing 155 

simulation, and then average across the five testing simulations for each GCM.  156 

We compare the neural network accuracy to a persistence model, which assumes that the 157 

future SST anomaly remains unchanged. For example, the SST anomaly prediction for year 1-5 158 

is the same as the SST anomaly for the most recent 5 year period. Because there is no confidence 159 

associated with these predictions, we only calculate overall accuracy (not windows of 160 

opportunity).  161 

2.4 Evaluating neural network performance on historical observations 162 

We use the NOAA Extended Reconstructed SST Version 5 (ERSSTv5) dataset (Huang et 163 

al., 2017) to evaluate how well the trained CNNs can predict historical internal SST variability. 164 

The ERSSTv5 dataset includes global coverage at 2x2 resolution from 1854 to present. We 165 

analyze monthly SST averages from January 1854 through October 2022. We perform similar 166 

preprocessing steps as for the GCM simulations. We regrid to the same 5x5 grid and calculate 167 

12-, 36-, and 60-month moving averages. Then, instead of subtracting the GCM ensemble mean, 168 

we subtract the third-order polynomial trend from each grid cell to remove any long-term 169 

forcing. We then calculate grid-cell means, standard deviations, and tercile thresholds.  170 

In analyzing CNN predictions on the ERSSTv5 data, we focus specifically on windows 171 

of opportunity by looking at the accuracy of the top 20% most confident predictions. We also 172 

calculate the accuracy of persistence predictions within the ERSSTv5 data as a baseline 173 

comparison.  174 
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3 Results and Discussion 175 

The CNN accuracy results are shown for one model, IPSL-CM6-LR, in Figure 2, with the 176 

remaining models shown in Fig. S2-S9 (Supporting Information). Because we have removed the 177 

forced response from the GCM simulations, these maps show the accuracy of predicting internal 178 

SST variability.  179 

 Figure 2. Accuracy of 1-5 year SST predictions using the CNNs trained and tested on IPSL-180 

CM6A-LR simulations. a) accuracy calculated across all predictions in the test set. b) accuracy 181 

calculated for the 40% most confident predictions in the test set (see Methods). c) same as b) but 182 

for the 20% most confident predictions. Black boxes indicate regions shown in Fig 4. Other 183 

GCMs are shown in Supporting Information, Figs S2-S9. 184 

Overall, we find that the prediction accuracy is higher for years 1-3, decreases for years 185 

1-5, and is lowest for years 3-7. This pattern of higher prediction accuracy at shorter lead times is 186 

true across all nine GCMs. When accuracy is calculated across all test samples (e.g. left column 187 

of Fig. 2), the CNNs perform slightly better than the persistence model benchmark (Supporting 188 

Information, Fig. S10-11). However, we find that the CNNs can make much more skillful 189 

predictions during windows of opportunity, shown in the middle and right columns of Fig. 2. In 190 

some regions, prediction accuracy can approach 80% or higher for these more confident 191 
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predictions (e.g. Fig. 2c, f). We find that the CNNs are able to identify windows of opportunity 192 

with higher prediction accuracy in all of the GCMs analyzed.  193 

Regions where future SSTs are predicted most skillfully include the North Pacific, 194 

Tropical Pacific, North Atlantic, Tropical Atlantic and the Southern Ocean (defined here to refer 195 

to ocean regions between 45-65S). While many of these regions are similar across the different 196 

GCMs, there are also clear inter-model differences. For example, CNNs trained and tested on 197 

CNRM-CM6-1 detect especially strong predictability in the North Atlantic (Fig S3). This is likely 198 

due to the stronger persistence of SSTs in North Atlantic in this GCM (Supporting Information, 199 

Fig. S10). The CNNs trained on CanESM5 or NorCPM1 have much higher accuracy in 200 

predicting SST anomalies in the Southern Ocean compared to other regions. As a third example, 201 

the CNNs trained on GISS-E2-1-G, MIROC-ES2L and MIROC6 all show strong 1-3 year SST 202 

predictability across the tropics, including parts of the Indian Ocean.  203 

Within each ocean basin, the spatial pattern of predictability varies depending on the 204 

GCM. For example, within the North Atlantic, many of the GCMs have the highest predictability 205 

in the subpolar North Atlantic (e.g. ACCESS-ESM1, NorCPM1). For some GCMs, though, the 206 

region of high predictability extends to include a band of high predictability in the subtropical 207 

North Atlantic (e.g. CNRM-CM6-1, IPSL-CM6A-LR). Different GCMs also have different spatial 208 

patterns of predictability in the North Pacific. Many GCMs show highest predictability in the 209 

subpolar (and especially the western subpolar) North Pacific region. Some models, such as 210 

MIROC-ES2L and MIROC6, show higher predictability in the central North Pacific. In the 211 

Southern Ocean, the most predictable region depends on both the GCM and the lead time. Many 212 

of the GCMs show high predictability across most of the Southern Ocean for year 1-3 213 

predictions. For year 3-7 predictions, the region of high predictability generally narrows to 214 

regions of the South Pacific and South Atlantic, especially just west and east of South America 215 

(between around 160W to 0W).  216 

After training CNNs on each GCM, we look at how well the CNNs perform when tested 217 

on ERSSTv5 observations. These results are shown in Figure 3 for the year 1-5 lead time. Year 218 

1-3 and year 3-7 results are shown in Supporting Information, Fig. S12-13. We find that the 219 

CNNs are able to make skillful predictions using the ERSSTv5 observations, and that the CNN 220 

predictions outperform the historical persistence model (Supporting Information, Fig. S14).  221 

The regions with the most accurate predictions in ERSSTv5 are generally the same 222 

regions that were most predictable in the GCMs, namely the North Pacific, Tropical Pacific, 223 

North Atlantic, Tropical Atlantic, and Southern Ocean. However, there are also differences in the 224 

spatial pattern of predictability between ERSSTv5 and the GCMs. As an example, in the North 225 

Pacific, the regions of highest predictability in ERSSTv5 appear similar to the PDO horseshoe 226 

pattern in the central/eastern North Pacific (e.g. Fig. 3a-e, i). In contrast, when the CNNs are 227 

evaluated on the original GCM test simulations (Fig. 2 and Supporting Information, Fig. 2-9),  228 

most of the GCMs lack the PDO horseshoe pattern and show the highest predictability in the 229 

western subpolar North Pacific. There are also some small regions of predictability in the 230 

ERSSTv5 observations that did not appear at all in the GCMs, such as along the coast of Chile.  231 

As in the GCM test data, the CNN skill at predicting the ERSSTv5 observations 232 

generally decreases at the 3-7 year lead time (Fig. S13). One exception is in the North Pacific for 233 

CNNs that were trained on ACCESS-ESM1-5, CNRM-CM6-1, or IPSL-CM6A-LR. We find that 234 

these CNNs still make relatively skillful predictions in the North Pacific at 3-7 year lead times  235 
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Figure 3. Accuracy of 1-5 year SST predictions for windows of opportunity (i.e. 20% most 236 

confident predictions) within the ERSSTv5 data. Panels show results for CNNs trained on 237 

different GCMs. Other lead times are shown in Supporting Information, Fig. S12-13.  238 

 239 

when evaluated on the ERSSTv5 observations. In fact, the CNNs trained on ACCESS-ESM1-5 240 

and IPSL-CM6A-LR predict the ERSSTv5 observations in the North Pacific better than they 241 

predict their respective GCM testing data at the 3-7 year lead time (Fig. 4f).  242 

Figure 4 summarizes the CNN performance on the GCM testing data versus the 243 

ERSSTv5 observations at the global scale (Fig. 4a-c) and for the six regions with the most 244 

skillful predictions: North Pacific, Tropical Pacific, Southern Ocean, North Atlantic, Tropical 245 

Atlantic, and West Indian Ocean. There are a few interesting patterns that emerge. We find that 246 

higher predictability in a GCM does not necessarily lead to higher predictability in the ERSSTv5 247 

observations. For example, in the North Pacific for years 1-3 and in the Tropical Pacific for years 248 

1-3 and 1-5, the GCMs that correspond to the highest prediction accuracy have lower accuracy 249 

when the CNNs are tested on ERSSTv5 (shown by negative correlations in Fig. 4). However, in 250 

other locations, such as the Tropical Atlantic for years 1-5 and years 3-7, higher predictability in 251 

the GCM does correspond to higher predictability in ERSSTv5. For the most part, prediction 252 
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 253 

Figure 4. Comparison of 

windows of opportunity 

(20% most confident) 

prediction accuracy in GCM 

simulations (x-axis) vs. the 

ERSSTv5 data (y-axis). 

Values for each region are 

calculated as the area-

weighted average accuracy 

within the region boundaries 

shown in Fig. 2c,f,i and Fig. 

3. Horizontal lines show 

spread in accuracy across 

the 5 GCM test simulations, 

with the points showing the 

mean accuracy. Correlation 

between accuracy in the 

GCMs vs. ERSSTv5 is 

shown in the bottom right of 

each panel.  
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accuracy is higher in the original GCM test data than in the ERSSTv5 observations (shown by 254 

most points falling below the one-to-one lines). However, in addition to the example given above 255 

for the North Pacific, some CNNs can make more skillful predictions in the Tropical Pacific and 256 

Tropical Atlantic in ERSSTv5 observations than in the original GCM test data (Fig. 4h, i, p-r).  257 

 The spread in prediction accuracy across the five ensemble members in each GCM test 258 

set is shown by horizontal bars in Fig. 4. In general, the differences in predictability between 259 

different GCMs are larger than the differences in predictability between individual simulations. 260 

However, we do find that there can be substantial spread in prediction accuracy depending on 261 

both the region and the GCM. The West Indian Ocean and Tropical Atlantic have the highest 262 

spread in predictability across different simulations (although not in all GCMs). Overall, this 263 

indicates that a ~150 year record (the length of our training and testing simulations) may not be 264 

sufficient to characterize multiyear predictability at a given location, which should be taken into 265 

account when comparing predictability across individual simulations or in the historical record.  266 

Overall, many of these results are consistent with prior studies on multidecadal climate 267 

prediction. One difference is that we measure prediction skill with classification accuracy and 268 

using the window of opportunity framework rather than metrics like the anomaly correlation 269 

coefficients. Further, many prior studies on multiyear prediction, including those that use 270 

initialized hindcast experiments, evaluate skill in predicting the combined forced response and 271 

internal variability. Still, the regions that we find have the most predictability across the GCMs 272 

and ERSSTv5 observations include many regions that have been identified in prior work, such as 273 

the North Atlantic (Borchert et al., 2021; Yeager et al., 2018; Yeager & Robson, 2017), Southern 274 

Ocean (Zhang et al., 2023), and North Pacific (Choi & Son, 2022; Gordon et al., 2021; Qin et al., 275 

2022).  276 

Our results also emphasize the importance of considering prediction uncertainty or 277 

confidence using the window of opportunity framework. We find many windows of opportunity 278 

for multiyear SST predictability, including for most regions, across all GCMs studied, and at all 279 

three lead times studied. These findings are aligned with other recent work demonstrating the 280 

occurrence of windows of opportunity within the climate system across multiple timescales 281 

(Gordon & Barnes, 2022; Mayer & Barnes, 2021).   282 

One recurring question within multidecadal prediction is the occurrence of the signal-to-283 

noise paradox, in which a climate model ensemble predicts observed variability better than it 284 

predicts individual ensemble members (Eade et al., 2014; Scaife & Smith, 2018). Here, we also 285 

find examples where the patterns learned from GCMs lead to more predictable behaviour in the 286 

observations compared to the climate models. While we do not attribute our results to the signal-287 

to-noise paradox, it highlights additional differences in predictability between climate models 288 

and observations that could be studied in future work. 289 

4 Conclusions 290 

We show that machine learning, specifically convolutional neural networks, can learn 291 

patterns of global, multiyear SST predictability from existing, unitialized climate model 292 

simulations. Because our approach does not require new GCM simulations, we can efficiently 293 

analyze and compare predictability across many different GCMs. We find that the regions with 294 

the highest predictability on interannual and decadal lead times include the North Pacific, North 295 

Atlantic, Tropical Pacific, Tropical Atlantic and the Southern Ocean. However, when comparing 296 
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predictability across nine GCMs, we find notable differences in the spatial patterns and 297 

magnitude of SST prediction skill. The patterns learned by the CNNs also lead to skillful 298 

predictions when tested on historical SST observations, but the amount of prediction skill in each 299 

region varies based on the GCM used for training. We also find different spatial patterns of SST 300 

predictability in the ERSSTv5 observations compared to the GCMs, although the most 301 

predictable regions are generally similar.  302 

These results could lead to multiple future research directions. It is beyond the scope of 303 

the current study to explore why differences in SST predictability exist across GCMs and the 304 

observations. However, recent related work has shown that “explainable ML” methods can be 305 

used to understand why CNNs make certain predictions (Davenport & Diffenbaugh, 2021; 306 

Gordon et al., 2021; Labe & Barnes, 2021; Toms et al., 2020). These same methods could be 307 

applied to the CNNs used here to understand the sources of SST predictability and how they 308 

differ across GCMs and observations, providing insight into both the mechanisms involved in 309 

multiyear variability and into GCM biases in how these mechanisms are represented. Further, 310 

while the focus of this study was to explore differences in predictability across GCMs, future 311 

efforts could focus on training CNNs to produce the best predictions in the observed climate. 312 

This might be accomplished by selecting certain GCMs to use as training data for different 313 

regions, or using a combination of GCM and observational data for training through approaches 314 

like transfer learning (e.g. Ham et al., 2019). Overall, this research supports a growing body of 315 

literature that shows ML is a valuable tool for advancing the field of skillful multiyear climate 316 

prediction.  317 
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Hyperparameter tuning:  

We tune the CNN hyperparameters using one GCM (MPI-ESM1-2-LR) and five locations across 

the globe (Fig S1a). The goal is to find a set of hyperparameters that performs well across all 

locations, and to then use the same architecture for all CNNs. We select hyperparameters 

sequentially using the following steps. In step 1, we tune the learning rate; in step 2, we tune the 

number of dense layers and neurons; in step 3, we tune the number of convolutional layers and 

filters; and in step 4, we tune the dropout rate and activity regularization parameter. At each 

step, we use keras tuner to train CNNs with different hyperparameter configurations. We then 

select a combination of hyperparameters that performs well on the validation set across all five 

locations before moving to the next step of tuning. In general, we find similarities in the best 

parameter combinations for each location, which supports our approach of using the same CNN 

architecture for all grid cells. However, it is possible that higher accuracy could be achieved in 

certain regions by tuning the architecture for that specific location, and therefore our results 

may slightly underestimate predictability. The results of the hyperparameter tuning are shown in 

Fig. S1. We found similar results when using different initial starting hyperparameters (results 

not shown).   

 

CNN training:  

We use a categorical cross-entropy loss function with the Adam optimizer, a batch size of 32, 

and define an epoch as 100 steps. The initial learning rate is 0.0003, and we use a learning rate 

scheduler to decrease the learning rate by a factor of e-0.05 each epoch after the first 10 epochs. 

We use a dropout rate of 0.2 on the dense layer. We use early stopping to end training once the 

validation loss increases for at least 5 epochs. We train each CNN with three different random 

initializations, and we select the trained model that has lowest validation loss for later analyses.  

.   
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Figure S1. Hyperparameter tuning results. Selected parameters are shown by the red dashed 

line in b), red markers in c) and d), and the black stars in e).  
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Figure S2. Same as Figure 2, but for ACCESS-ESM1-5.  
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Figure S3. Same as Figure 2, but for CanESM5. 
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Figure S4. Same as Figure 2, but for CNRM-CM6-1. 
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Figure S5. Same as Figure 2, but for GISS-E2-1-G. 
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Figure S6. Same as Figure 2, but for MIROC-ES2L. 
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Figure S7. Same as Figure 2, but for MIROC6. 
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Figure S8. Same as Figure 2, but for MPI-ESM1-2-LR. 
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Figure S9. Same as Figure 2, but for NorCPM1. 
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Figure S10. Accuracy of the persistence predictions for the three different lead times for 

ACCESS-ESM1-5, CanESM5, CNRM-CM6-1, GISS-E2-1-G, and IPSL-CM6A-LR. 
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Figure S11. Same as Figure S10, but for MIROC-ES2L, MIROC6, MPI-ESM1-2-LR, NorCPM1.  
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Figure S12. Same as Figure 3, but for year 1-3 predictions.  
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Figure S13. Same as Figure 3, but for year 3-7 predictions.  
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Figure S14. Accuracy of persistence predictions within ERSSTv5 observations for the three 

different lead times.   
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Table S1. Included CMIP6 models and simulations 

Model Training (22 simulations) Validation (3 

simulations) 

Testing (5 

simulations) 

ACCESS-ESM1-5 r4i1p1f1, r5i1p1f1, r6i1p1f1, r7i1p1f1, 
r8i1p1f1, r9i1p1f1, r10i1p1f1, r11i1p1f1, r12i1p1f1, 
r13i1p1f1, r15i1p1f1, r16i1p1f1, r17i1p1f1, 
r19i1p1f1, r20i1p1f1, r22i1p1f1, 
r23i1p1f1, r24i1p1f1, r25i1p1f1, r26i1p1f1, 
r27i1p1f1, r30i1p1f1 

r14i1p1f1, 
r21i1p1f1, 
r3i1p1f1 
 

r18i1p1f1, 
r1i1p1f1, 
r28i1p1f1, 
r29i1p1f1, 
r2i1p1f1 

CanESM5 r10i1p2f1, r11i1p2f1, r12i1p2f1, r13i1p2f1, 
r15i1p2f1, r16i1p2f1, r17i1p2f1, r19i1p2f1, 
r20i1p2f1, r22i1p2f1, r23i1p2f1, r24i1p2f1, 
r25i1p2f1, r26i1p2f1, r27i1p2f1, r30i1p2f1, r4i1p2f1, 
r5i1p2f1, r6i1p2f1, r7i1p2f1, r8i1p2f1, r9i1p2f1 

r14i1p2f1, 
r21i1p2f1, 
r3i1p2f1 
 

r18i1p2f1, 
r1i1p2f1, 
r28i1p2f1, 
r29i1p2f1, 
r2i1p2f1 

CNRM-CM6-1 r10i1p1f2, r11i1p1f2, r12i1p1f2, r13i1p1f2, 
r15i1p1f2,r16i1p1f2, r17i1p1f2, r19i1p1f2, r20i1p1f2, 
r22i1p1f2, r23i1p1f2, r24i1p1f2, r25i1p1f2, 
r26i1p1f2, r27i1p1f2, r30i1p1f2, r4i1p1f2, r5i1p1f2, 
r6i1p1f2, r7i1p1f2, r8i1p1f2, r9i1p1f2 

r14i1p1f2, 
r21i1p1f2, 
r3i1p1f2 
 

r18i1p1f2, 
r1i1p1f2, 
r28i1p1f2, 
r29i1p1f2, 
r2i1p1f2 

GISS-E2-1-G r101i1p1f1, r102i1p1f1, r10i1p1f1, r10i1p3f1, 
r1i1p1f2,r1i1p3f1, r1i1p5f1, r2i1p1f2, r2i1p3f1, 
r3i1p3f1, r3i1p5f1, r4i1p1f1, r4i1p5f1, r5i1p1f1, 
r5i1p1f2, r5i1p3f1, r6i1p1f1, r6i1p3f1, r7i1p1f1, 
r8i1p1f1, r8i1p3f1, r9i1p1f1 

r2i1p5f1, 
r3i1p1f1, 
r4i1p3f1 
 

r1i1p1f1, 
r2i1p1f1, 
r3i1p1f2, 
r4i1p1f2, 
r9i1p3f1 

IPSL-CM6A-LR r10i1p1f1, r11i1p1f1, r12i1p1f1, r13i1p1f1, 
r15i1p1f1, r16i1p1f1, r17i1p1f1, r19i1p1f1, 
r20i1p1f1, r22i1p1f1, r23i1p1f1, r24i1p1f1, 
r25i1p1f1, r26i1p1f1, r27i1p1f1, r30i1p1f1, r4i1p1f1, 
r5i1p1f1, r6i1p1f1, r7i1p1f1, r8i1p1f1, r9i1p1f1 

r14i1p1f1, 
r21i1p1f1, 
r3i1p1f1 
 

r18i1p1f1, 
r1i1p1f1, 
r28i1p1f1, 
r29i1p1f1, 
r2i1p1f1 

MIROC-ES2L r10i1p1f2, r11i1p1f2, r12i1p1f2, r13i1p1f2, 
r15i1p1f2, r16i1p1f2, r17i1p1f2, r19i1p1f2, 
r20i1p1f2, r22i1p1f2, r23i1p1f2, r24i1p1f2, 
r25i1p1f2, r26i1p1f2, r27i1p1f2, r30i1p1f2, r4i1p1f2, 
r5i1p1f2, r6i1p1f2, r7i1p1f2, r8i1p1f2, r9i1p1f2 

r14i1p1f2, 
r21i1p1f2, 
r3i1p1f2 
 

r18i1p1f2, 
r1i1p1f2, 
r28i1p1f2, 
r29i1p1f2, 
r2i1p1f2 

MIROC6 r10i1p1f1, r11i1p1f1, r12i1p1f1, r13i1p1f1, 
r15i1p1f1, r16i1p1f1, r17i1p1f1, r19i1p1f1, 
r20i1p1f1, r22i1p1f1, r23i1p1f1, r24i1p1f1, 
r25i1p1f1, r26i1p1f1, r27i1p1f1, r30i1p1f1, r4i1p1f1, 
r5i1p1f1, r6i1p1f1, r7i1p1f1, r8i1p1f1, r9i1p1f1 

r14i1p1f1, 
r21i1p1f1, 
r3i1p1f1 
 

r18i1p1f1, 
r1i1p1f1, 
r28i1p1f1, 
r29i1p1f1, 
r2i1p1f1 

MPI-ESM1-2-LR r10i1p1f1, r11i1p1f1, r12i1p1f1, r13i1p1f1, 
r15i1p1f1,r16i1p1f1, r17i1p1f1, r19i1p1f1, r20i1p1f1, 
r22i1p1f1, r23i1p1f1, r24i1p1f1, r25i1p1f1, 
r26i1p1f1, r27i1p1f1, r30i1p1f1, r4i1p1f1, r5i1p1f1, 
r6i1p1f1, r7i1p1f1, r8i1p1f1, r9i1p1f1 

r14i1p1f1, 
r21i1p1f1, 
r3i1p1f1 
 

r18i1p1f1, 
r1i1p1f1, 
r28i1p1f1, 
r29i1p1f1, 
r2i1p1f1 

NorCPM1 r10i1p1f1, r11i1p1f1, r12i1p1f1, r13i1p1f1, 
r15i1p1f1, r16i1p1f1, r17i1p1f1, r19i1p1f1, 
r20i1p1f1, r22i1p1f1, r23i1p1f1, r24i1p1f1, 
r25i1p1f1, r26i1p1f1, r27i1p1f1, r30i1p1f1, r4i1p1f1, 
r5i1p1f1, r6i1p1f1, r7i1p1f1, r8i1p1f1, r9i1p1f1 

r14i1p1f1, 
r21i1p1f1, 
r3i1p1f1 
 

r18i1p1f1, 
r1i1p1f1, 
r28i1p1f1, 
r29i1p1f1, 
r2i1p1f1 
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