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Abstract

Accurate wildfire forecasting can inform regional management and mitigation strategies in advance of fire occurrence. Existing

systems typically use fire danger indices to predict landscape flammability, based on meteorological forecasts alone, often using

little or no direct information on land surface or vegetation state. Here, we use a vegetation characteristic model, weather

forecasts and a data-driven machine learning approach to construct a global daily ˜9 km resolution Probability of Fire (PoF)

model operating at multiple lead times. The PoF model outperforms existing indices, providing accurate forecasts of fire

activity up to 10 days in advance, and in some cases up to 30 days. The model can also be used to investigate historical shifts

in regional fire patterns. Furthermore, the underlying data driven approach allows PoF to be used for fire attribution, isolating

key variables for specific fire events or for looking at the relationships between variables and fire occurrence.
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Key Points: 6 

 A data-driven model informed by satellite observations and an Earth System Model 7 

provides accurate fire forecasts upto 10 days in advance. 8 

 The probability of fire forecast is implemented operationally in a numerical weather 9 

prediction model to provide real-time forecasts. 10 

 Fire attribution is demonstrated and can be used for specific fire events or historical 11 

analysis.  12 
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Abstract 13 

Accurate wildfire forecasting can inform regional management and mitigation strategies in advance of fire 14 

occurrence. Existing systems typically use fire danger indices to predict landscape flammability, based on 15 

meteorological forecasts alone, often using little or no direct information on land surface or vegetation state. Here, 16 

we use a vegetation characteristic model, weather forecasts and a data-driven machine learning approach to 17 

construct a global daily ~9 km resolution Probability of Fire (PoF) model operating at multiple lead times. The PoF 18 

model outperforms existing indices, providing accurate forecasts of fire activity up to 10 days in advance, and in 19 

some cases up to 30 days. The model can also be used to investigate historical shifts in regional fire patterns. 20 

Furthermore, the underlying data driven approach allows PoF to be used for fire attribution, isolating key variables 21 

for specific fire events or for looking at the relationships between variables and fire occurrence. 22 

Plain Language Summary 23 

Wildfires have widespread effects on local ecosystems, communities, air quality, and global atmospheric conditions. 24 

Accurate wildfire forecasts can be used by local communities and agencies to manage and respond to wildfires 25 

effectively. As such, it is essential these predictions are not only accurate but are accessible in real-time and provide 26 

sufficient advanced notice to ensure successful actions can be taken. To achieve this we have developed a 27 

forecasting system that combines satellite observations, weather forecasting and vegetation characteristics using 28 

machine learning. Tested on historical data and operated in real-time, our model provides a global daily wildfire 29 

forecast with a 9 km resolution, predicting the likelihood of fires up to 30 days in advance. The model outperforms 30 

existing fire danger forecasts when evaluated against satellite observations of active fires. It can also identify key 31 

drivers which result in the occurrence of fire. Finally, it not only offers real-time forecasts but can be used to help 32 

investigate past fire events, understand their causes, and predict wildfire activity over longer climate timescales. 33 

1 Introduction 34 

Wildfires play a crucial role in the Earth system influencing ecosystems, communities, air quality and the carbon 35 

cycle (Moritz et al., 2014). Catastrophic wildfire effects include agricultural and infrastructure damage, destruction 36 

of wild habitats and loss of both animal and human life. Wildfire management and prevention strategies can help 37 

mitigate some of these effects, but these depend on accurate forecasts of fire occurrence. 38 

 39 

The stochastic nature of wildfire ignitions makes forecasting specific events extremely challenging.  Beyond 40 

ignitions, the two remaining prerequisites for fire activity, fuel and moisture, are intricately linked to the land 41 

surface state. Therefore, it is feasible that a probabilistic fire forecast can be achieved with a reasonable degree of 42 

accuracy by considering the land surface state. Historically fire danger forecasts have been derived by linking 43 

weather variables with fire activity to produce an index, the most widely used is the Fire Weather Index (FWI, Van 44 

Wagner, 1974). The FWI provides only an approximate estimation of the state of fuel moisture based on the impact 45 

of meteorological conditions on a fixed fuel bed typical of the Boreal forests. It neglects to account for the moisture 46 

state of living vegetation, the type of vegetation or the abundance of fuel available to burn in the event of a fire. As a 47 

result, the FWI overestimates fire danger in fuel and sometimes high moisture domains (Di Giuseppe, 2023). 48 

Furthermore, interpretation of FWI values is domain specific as it does not directly translate into the probability of 49 

fire. 50 

 51 

Previously, process-based models have attempted to describe fire danger based on the land surface, and to a degree 52 

the atmospheric state (e.g. Thonicke et al., 2010). The complexity in the relationship between vegetation and fire 53 

occurrence make probabilistic wildfire occurrence difficult to describe using process-based modelling. Recently, the 54 

use of data driven methods has emerged as an option to overcome the complexity of describing the underlying 55 

processes (e.g. Zhang et al., 2021; Kondylatos et al., 2022, Zhu et al., 2022). A comparison between the two 56 

methods by Leuenberger et al. (2018) showed several advantages to using the data-driven approach. Data-driven 57 

methods are effective when required input observations are available; however, this is not an option when generating 58 

future forecasts. Here, we propose a global probabilistic fire forecast which derives key input variables using state-59 

of-the-art numerical weather prediction (NWP) and land surface modelling and then uses a data-driven approach to 60 

estimate the likelihood of fire occurrence on a given day for multiple forecast lead times. 61 
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2 Materials and Methods 62 

We propose a modelling framework to provide a forecast Probability of Fire (PoF) on a given day within a 9 km by 63 

9 km grid cell using data-driven statistical methods informed by observations and an Earth system model. As input, 64 

we used analysis output from the Integrated Forecast System (IFS), which is the operational NWP system used by 65 

the European Centre for Medium-Range Weather Forecasts (ECMWF). The IFS is initialised every 6-hours and 66 

provides both NWP and land surface output at hourly out to seasonal forecast ranges. As time varying NWP input, 67 

we used daily mean precipitation, 10m wind speed, 2m dew point temperature and 2m temperature taken from the 68 

re-analysis product (ERA-5 Land, Muñoz-Sabater et al., 2021), which assimilates observations to improve accuracy 69 

of modelled variables. Fuel characteristics used as input were computed following McNorton and Di Giuseppe 70 

(2023) using additional land surface variables including vegetation cover, vegetation type, soil moisture at 4 71 

different levels, surface pressure and skin temperature. These characteristics include both dead and live fuel load and 72 

moisture, which were further divided into wood and foliage components. Furthermore, as input we used time-73 

varying Leaf Area Index (LAI) for both low and high vegetation, based on satellite observations, as described by 74 

Boussetta and Balsamo (2021). The remaining input variables were taken from static land cover maps for urban 75 

fraction (McNorton et al., 2023), orography and vegetation type (Boussetta et al., 2021). This resulted in a total of 76 

17 input features, 4 directly from NWP, 7 from fuel characteristics, 2 LAI estimates and 4 land static surface maps. 77 

 78 

Using the inputs described, we trained two tree-based data-driven models, Random Forest (RF, Breiman, 2001) and 79 

Extreme Gradient Boosting (XGBoost, Chen & Guestrin, 2016), and interpret the output of the classification models 80 

as estimates of the likilhood of fire occurrence. A probabilistic forecast approach was chosen given a binary 81 

classification would almost always return a no fire event as the probability values would fall below 50%. Both RF 82 

and XGBoost methods are supervised algorithms which involve training an ensemble of decision trees to resolve the 83 

classifier problem. The RF approach randomly subsamples the data to train individual trees which are then clustered 84 

to form the final decision tree model. XGBoost improves the performance of decision trees by sequentially adding 85 

models to correct errors made by previous ones and uses regularisation techniques to prevent overfitting. The 86 

optimisation of XGBoost makes it computationally efficient when compared to RF. In the classifier approach we 87 

define a positive hit as an active fire detection within the 9km x 9km grid cell on a given day. 88 

  89 

For training, we used daily data from the MODIS Collection 6 and 6.1 Active Fire Dataset between 2010 and 2014 90 

(Giglio et al., 2020). The dataset uses retrievals in the mid-infrared and a contextual algorithm (Giglio et al., 2016). 91 

The dataset likely misses many fire events as it only provides a snapshot at the overpass time, missing fires 92 

occurring before and after the overpass window. Furthermore, spurious detections are also likely for non-wildfire 93 

events e.g. gas flaring. Where possible, these detections were removed using a spurious signal mask. To align with 94 

input data, we gridded the active fire data to the same resolution (~9 km, daily), resulting in 2.9x1010 data points 95 

(5136 longitude, 2560 latitude, 2191 days) which was too large for training either model given the computing 96 

resources available. To reduce the training data size whilst maintaining a representation of spatial and temporal 97 

variability in the trained model we first removed all non-land points from the dataset. Of the remaining points we 98 

randomly sampled 5% of the data for training, resulting in 3x108 data points for training. The RF training had 99 

increased memory demands, for this only 2% of the data was sampled. The resulting models predict the probability 100 

that at least one MODIS active fire detection would be made within a ~9 km grid cell for a given day, which we 101 

assume to be a proxy for the probability of fire occurrence. 102 

 103 

The trained model was then used at multiple forecast lead times using operational NWP forecasts from the IFS. 104 

These were simulated from hourly output averaged daily to provide 1 to 30 day forecasts. The regional and global 105 

skill of each forecast lead time was evaluated against a monthly climatology of the XGBoost model output. 106 

Remaining input features can either be taken from observations or model predictions, here we used a combination of 107 

both. For example, operationally LAI is taken from a climatology as forecast LAI is not available in real-time; 108 

however, for historical evaluation we used observation-based LAI from the CONFESS Project (Boussetta and 109 

Balsamo 2021). With further model development more variables will be derived in the model forecast with the aim 110 

of improving forecast skill. 111 

3 Results 112 

The XGBoost and RF trained models were evaluated globally using daily MODIS active fire observations for a 113 

period independent from the training, 2015-2019. The resulting models were also compared with a monthly 114 
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climatology derived using the XGBoost method for the entire 2015-2019 period to evaluate their relative forecast 115 

performance. Given the binary classifier approach resulted in few positive results, as the PoF on a given day for a 116 

given grid cell was rarely greater than 50 %, typical evaluation metrics, such as the confusion matrix, were not 117 

possible. Instead, we focused on the probabilistic skill of the model. 118 

3.1 Probability of Fire (PoF) Evaluation 119 

A receiver operating characteristic (ROC) curve was used to show the performance of the models by comparing the 120 

probabilistic false positive rate with the true positive rate for land points at ~9 km resolution at daily resolution 121 

between 2015 and 2019 (Figure 1). The large number of values which occupy extremely low probability space, for 122 

example in desert regions, were removed by only including probabilities greater than 0.1 %. The area under the 123 

ROC curve (AUC) provides a metric for assessing the skill of the model in distinguishing between a positive fire 124 

event or no fire event, with a score of 1 illustrating a perfect model. Results show, when considering all vegetation 125 

types, the XGBoost method produces the highest AUC score, 0.818, higher than the RF method, 0.746, and the 126 

monthly climatology based on XGBoost, 0.810. By removing probabilities less than 0.1% these scores are 127 

artificially decreased. For specific vegetation types XGBoost model skill is high, for example short grass (AUC: 128 

0.829) and broadleaf savannah (AUC: 0.820); however, it is noticeably lower for needleleaf forests (AUC: 0.719). 129 

The RF (AUC: 0.644) only slightly outperforms a random forecast (AUC: 0.5) over needleleaf forests, indicating 130 

low model skill. 131 

 132 

A reliability curve, which is a measure of how well the predicted probability reflects the true probability of fire 133 

occurrence, was generated by binning predicted fire activity into one percentile bins from 0 % up to 20 % (Figure 1). 134 

The frequency of predictions above 20 % become too small to be considered as a reliable metric, although any value 135 

above this can be considered to represent extreme fire danger. Model data was evaluated against observed fire 136 

frequency based on all points within the target bin, where an ideal model would follow a 1-to-1 line. Across all 137 

vegetation types the highest model skill is found when using XGBoost with RF providing reasonable skill at low fire 138 

probabilities but underestimating fire occurrence as PoF increases. Therefore, the RF model is unsuitable for more 139 

extreme fire events where fire danger is considered high. XGBoosts produced reliable forecast probabilities for all 140 

vegetation types when compared with both RF and the XGBoost climatology, although for broadleaf savannah, 141 

crops and short grass the model overpredicts PoF when values exceed 10%, which rarely occurs. For needleleaf 142 

forests the XGBoost model offers reliable prediction when PoF is <5 %, after which the model overpredicts PoF; 143 

however, the frequency of occurrence for predictions about 5 % is very low. For broadleaf forests the model 144 

accurately predicts PoF continuously up to the 20 % threshold considered. The relative improved performance when 145 

compared with the XGBoost climatology shows modelling time specific PoF results in a more reliable forecast. 146 

 147 

For qualitive purposes we present normalised histograms of modelled PoF when fires are and are not detected, these 148 

show the distribution of observed active fires are skewed toward higher probabilities (Figure 1). When considering 149 

points with PoF larger than 0.1 %, we find 35 % of all fires occur at probabilities between 0.1% and 1%; which is 150 

unsurprising considering these make up over 80 % of all points. 151 

 152 
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 153 
Figure 1. Receiver operating characteristic curves for a daily XGBoost model (blue), the XGBoost model climatology (orange) 154 
and a daily Random Forest model (green) of active fires using ERA-5 Land input evaluated against MODIS observations for all 155 
land points globally between 2015 and 2019 for multiple vegetation types (left column). The same data represented using 156 
reliability curves (middle column). Normalised histograms of the modelled probability of fire divided between observed non-fire 157 
and fire detections for all vegetation types (right column). 158 
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 159 

3.2 PoF Forecast Skill 160 

The predictive capability of the PoF model for operational forecasting is dependent on the accuracy of input 161 

forecasts. To evaluate model skill, we used input from day- 1, 3, 10 and 30 forecast times and compared the results 162 

with observed active fire from MODIS for the target day between 2015 and 2019. The model setup was as 163 

previously described, however operational NWP forecasts provided input to the model, which differ from the ERA-5 164 

Land data used to train the model (Muñoz-Sabater et al., 2021). Whilst both input datasets were used at the same 165 

spatiotemporal resolution (daily average and ~9 km) there are two main differences. ERA-5 Land assimilates more 166 

observations, providing a more realistic representation of the land and atmosphere state relative to the operational 167 

forecast. However, ERA-5 (Hersbach et al., 2020) atmospheric data is used as boundary conditions for ERA-5 Land, 168 

which is at a coarser resolution (~25 km) than operational forecast data (~9 km). A further consideration is whilst 169 

operational high-resolution simulations provided input for 1-, 3- and 10-day forecasts, the production of the 30-day 170 

forecast used the operational extended-range forecast simulated at ~36 km resolution, which likely limits model 171 

skill. 172 

 173 

Given model performance previously assessed, we only evaluated the XGBoost model, details of which are given by 174 

Supporting Information S1. The ROC curve and reliability curve for multiple forecast lead times show similar model 175 

skill between day 1 and day 10 (Figure 2). 30-day forecasts failed to outperform the climatology of the 30-day 176 

XGBoost forecast. The decrease in model skill was most evident when forecasting relatively rare high PoF values 177 

(>0.05), the frequency of which are reduced in the climatology because of averaging multi-year values. This 178 

compensates for the typical over-prediction of high probability events by the model at all lead times. The reduced 179 

resolution and declining NWP skill at longer lead times further explains this reduction in PoF skill for 30-day 180 

forecasts. These results show that whilst model skill may be present in the 30-day forecast it is difficult to quantify. 181 

 182 

Improved forecast skill could be attained by training lead-time specific models which would overcome model bias 183 

which emerges at longer forecast times. If such models were implemented, it would be recommended they were 184 

retrained with each new model cycle to ensure consistency between training and operational input. Currently, we 185 

have trained the model using the most realistic input variables available, ERA-5 Land (Muñoz-Sabater et al., 2021), 186 

hence biases from the operational forecast may limit model skill. These biases are expected to reduce as the model 187 

forecast continues to improve toward closer alignment with ERA-5 Land. 188 

 189 

To evaluate regional skill at different lead times we compared the observed total fire count from MODIS 190 

observations gridded to 9km resolution between 2015 and 2019 with our model forecasts for eight fire prone regions 191 

defined by Giorgi and Franciso (2000). The summed probabilities over all ~9 km grid cells within a domain were 192 

considered representative of the predicted total fire count (Figure 2). Regions with well defined fire seasons 193 

(Western North America, Amazon, Western and Eastern Africa and the Mediterranean) were well represented at all 194 

forecast lead times, although the maximum amplitude of fire counts for the Western North America fire season was 195 

typically overestimated, particularly for the 30-day forecasts. A similar overestimation in modelled fire activity was 196 

observed in Australia, although the timing of peak fire activity was typically in good agreement with observations. 197 

The interannual variability in regions with seasonal fire were also well represented, e.g. Western Africa. 198 

 199 
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 200 
Figure 2. Receiver operating characteristic curves for daily PoF model at multiple lead times and monthly mean PoF model 201 
climatologies using input from the IFS evaluated against MODIS active fire observations for all ~9 km land points globally 202 
between 2015 and 2019 (top left). The same data represented using reliability curves (top right). Timeseries of 5-day average 203 
active fire counts at ~9km resolution from MODIS active fire observations compared with PoF model at multiple lead times. Also 204 
displayed is the R-value and RMSE for each forecast lead time (bottom three rows).   205 
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 206 

The model capability to accurately represent spatial variability in fire activity at various lead times was limited by 207 

NWP skill. To illustrate this, we show the predictive skill of PoF during the peak of the 2019/2020 bushfire season 208 

in Australia, one of the largest in recorded history (Deb et al., 2020). As a case study we selected the 31st of 209 

December when most of the active fires were in New South Wales in the southeast of the country (Figure 3). The 210 

examples shown were made using the operational version of the model, which bins PoF values into 5 fire danger 211 

categories, low (<0.5 %), medium (0.5-1.0 %), high (1-2 %), very high (2-4 %) and extreme (> 4 %). Results 212 

highlight the spatial accuracy provided by forecasts out to 10-days and show some regional agreement between 30-213 

day forecasts and fire activity. The lack of representation of vegetation in the FWI was evident by the high values 214 

produced in the sparsely vegetated central Australian regions. The FWI shown was not subject to forecast errors as it 215 

was derived at the analysis timestep, providing a now-forecast without any lead time. Despite this, it still 216 

underperformed relative to the PoF model at all forecast times, illustrating the improved predictive skill of the 217 

model. 218 

 219 

 220 
Figure 3. Active fire detection map over Australia from MODIS gridded to 9km resolution for 31st December 2019 (top left). The 221 
Fire Weather Index (FWI) using analysis forcing for the same date (top right). Probability of Fire (PoF) model forecast using 1-222 
day (middle left), 3-day (middle right), 10-day (bottom left) and 30-day (bottom right) lead times from the Integrated Forecasting 223 
System (IFS) for the same date. 224 

 225 
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3.3 Fire Attribution 226 

Several of the 17 input features of the PoF model were partially correlated; however, given they were features which 227 

were not fully corelated, were readily available and over-fitting is unlikely given the high volume of training data, 228 

we opted to keep all variables to maximise model performance. However, given there was partial correlation, 229 

traditional feature selection methods make attribution difficult to interpret, instead we interpreted the results by 230 

looking at both Shapley values (SHAP) and the interaction of those values (Lundberg & Lee, 2017). The SHAP 231 

value denotes the importance of any given feature in a model, with a positive SHAP value indicating a positive 232 

impact on the model prediction and a negative SHAP value a negative impact on the model prediction. 233 

 234 

At a global scale we find 2m dewpoint temperature to be the most important feature. This is, in part, a result of it 235 

being strongly correlated with only one other variable, 2m temperature (Figure 4). In contrast the individual 236 

importance of variables relating to fuel load and moisture was relatively low as they include multiple well correlated 237 

variables. When those variables are combined their importance becomes evident. 238 

 239 

Several interesting features emerged from the SHAP calculations, for example increased 2m dewpoint temperature 240 

displayed increased SHAP values. However, increased 2m temperature resulted in decreased SHAP values in 241 

response to the uncorrelated component in the relationship between 2m temperature and dewpoint temperature. 242 

Therefore, for a given 2m dewpoint temperature, an increasing 2m temperature typically acts to reduce the PoF 243 

(Figure 4). If 2m depoint temperature were removed as an input variable, increased 2m temperature would result in 244 

an increased SHAP value. For other variables non-linear relationships were identified, for example, SHAP values 245 

for precipitation followed an exponential decay function, which is expected as beyond a certain precipitation rate the 246 

flammability of the fuel remains unchanged. As fuel load increased the SHAP values increased, however, the 247 

contribution of fuel load to PoF was dependent on the abundance of other fuel types, as expected. For high fuel 248 

loads the contribution of each variable generally became smaller as the remaining 3 fuel load variables compensated 249 

to increase PoF in these fuel rich regimes, whilst the combined SHAP value contribution from all 4 fuel load 250 

variables remained relatively unchanged. The relationship between fuel loads and their respective SHAP values was 251 

also partially dependent on moisture content. 252 

 253 

SHAP values for fuel moisture content, a commonly used variable for fire danger forecasting (Yebra et al., 2013), 254 

typically showed a step change decrease above a certain threshold. Similar thresholds are reported in the literature 255 

for both DFMC and LFMC. Argañaraz et al. (2018), supported by the subsequent study of Rao et al. (2023), found 256 

LFMC thresholds for wildfire ignition of 55 % to 106 %. Whilst Masinda et al. (2020) and Wotton (2009) found 257 

DFMC ignition thresholds of 10-40 % and 17 %, respectively, with variability for both DFMC and LFMC 258 

thresholds being controlled by vegetation type. Here, DFMC was separated between fine and coarse fuels with 259 

average ignition thresholds, based on SHAP values, of 42 % and 70 %, respectively, when averaged across all 260 

vegetation types. The resulting DFMC threshold was therefore dependent on the allocation of dead fuel between fine 261 

and coarse fuel. This represents the point above which the SHAP values related to DFMC noticeably decrease but as 262 

previously mentioned the result of the correlation between variables mean this does not necessarily represent a 263 

realistic ignition threshold. We found average LFMC ignition thresholds were difficult to distinguish because they 264 

are vegetation dependent but also vary as a function of phenology. For example, during the growth season, LFMC is 265 

usually high whilst vegetation is active; however, these high LFMC values occur during active fire seasons. 266 

 267 

The attribution for fire activity performed here, in part, neglects other controlling influences on fire activity, e.g. 268 

ignition and suppression. However, this evaluation tool could still be used at climate time scales to identify regime 269 

shifts in the driving variables of fire activity (e.g. Kelley et al., 2019). Furthermore, spatial patterns and plant 270 

specific attribution can provide insight into regional fire activity; however, that is beyond the scope of this study and 271 

will be investigated further in a follow-up study. 272 

 273 
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 274 
Figure 4. Ordered Shapley values (SHAP) for 17 features used to inform the XGBoost fire model, where colour indicates feature 275 
value and dots represent individual predictions (top). Dependency plots displaying the change in feature value with respect to the 276 
SHAP value, where the colour indicates a second feature value given by the colourbar and dots represent individual predictions 277 
globally for all times (bottom). 278 
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5 Conclusions 279 

The stochastic nature of wildfire activity limits predictability of specific events; however probabilistic forecasting 280 

has previously been used to provide a representation of fire danger (e.g. Di Giuseppe, 2023). Here, we move beyond 281 

conventional fire danger indices to produce a probability of fire, PoF, forecast at various lead times using a data-282 

driven model informed by a combination of NWP variables, land surface modelling and observations. The intention 283 

is to provide a global high-resolution daily forecast which can be utilised for wildfire planning and management 284 

strategies. As the model was trained using observed fire activity it encompasses, to an extent, processes which are 285 

difficult to represent in physical-based models, for example the human-drivers for fire activity. The model was 286 

trained globally at ~9 km resolution to provide a daily grid cell specific PoF, an easily interpretable metric. The 287 

model can be simulated at any NWP lead-time and model skill is demonstrated up to 10 days in advance. Model 288 

skill beyond this may be limited by the degraded resolution of extended-range forecasts, it is recommended that 289 

high-resolution forecasts (~9 km) be used for all forecast lead-times when available. Alternatively, lead-time 290 

specific models could be trained to account for forecast biases. Although not explored in this study, the modelling 291 

framework could easily be adapted to provide a forecast probabilistic spread using input data from the operational 292 

NWP ensemble (Leutbecher and Palmer, 2008). 293 

 294 

Two versions of the data-driven model were trained, using Random Forest and XGBoost. XGBoost provided better 295 

skill, although lower memory requirements meant it was trained on a large sample of data. Furthermore, software 296 

packages for attribution are readily available with XGBoost. The skill in predicted fire activity in certain vegetation 297 

types, e.g. Needleleaf Forest, was relatively low, although some skill was still found. The model provided a high 298 

forecast skill for other vegetation types, e.g. Broadleaf Savannah. The model skill at predicting actual fire activity is 299 

limited by the accuracy of the observing systems available (Wooster et al., 2021). 300 

 301 

As more variables become available for forecast input in the future, e.g. prognostic LAI, model skill is expected to 302 

further improve, as currently input variables limit the skill at longer lead times. Furthermore, the addition of input 303 

variables that control ignition, whether human or lightning activity, are expected to further improve model skill. 304 

Currently, variables directly correlated with fire activity have been used as input to the model; however, it is feasible 305 

that by performing regional or grid point specific training will result in improved model performance by indirectly 306 

representing processes not included in our input. The model, as described here, is used operationally at ECMWF. It 307 

provides a real-time 10-day fire probability forecast and is available through the ECCharts web platform hosted at 308 

https://eccharts.ecmwf.int. 309 

 310 

The attribution of input variables to the PoF can be made using evaluation tools, such as SHAP (Lundberg and Lee, 311 

2017). Here we use these to identify relationships between specific variables and fire danger. Whilst these are 312 

sometimes simple linear fits, they are often more complex involving either threshold values or non-linear 313 

relationships. These attribution tools could be used to identify causes of extreme fire events and to evaluate controls 314 

on specific fire regimes both in the real-time and at climate timescales. 315 
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available at: http://cemsfire.copernicus-climate.eu/FUEL_DATA/ECMWF-Fuel-Characteristics_V1/Fuel-325 

Load/<YYY>/FUEL_MAP_<YYYY>_<MM>.nc, live fuel moisture is available at : http://cemsfire.copernicus-326 

climate.eu/FUEL_DATA/ECMWF-Fuel-Characteristics_V1/Fuel-327 

Moisture/Live/<YYY>/LFMC_MAP_<YYYY>_<MM>.nc and dead fuel moisture is available at : 328 
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Moisture/Dead/<YYY>/DFMC_MAP_<YYYY>_<MM>.nc. Operational model output is available to registered 330 

users through the web platform, ECCharts (https://eccharts.ecmwf.int) and will soon be made openly available at 331 

https://charts.ecmwf.int/. 332 
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