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Abstract

The Artemis exploration zone is a geologically-complex region likely hosting some of the oldest and as-yet-unstudied materials

on the Moon. We review six potential Artemis landing sites (001, 004, 007, 011, 102, and 105) within candidate Artemis

III landing regions ‘Connecting Ridge,’ ‘Peak Near Shackleton,’ ‘Leibnitz Beta Plateau,’ ‘de Gerlache Rim,’ and ‘de Gerlache

Rim 2.’ Kaguya Spectral Profiler mineral data were used to determine average lithological composition at each landing site.

Potentially accessible geologic materials, their ages and significance, and appropriate application of radiometric chronometers

are discussed in reference to return samples from each potential landing site. Chronologic analyses of return samples from the

Artemis exploration zone will enable the anchoring of the lunar impact flux curve, determine the absolute timing of pivotal

events in lunar geologic history, and reveal geological diversity of the differentiated lunar body.
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• Artemis return samples from will be unique from Apollo samples and have the possibility 15 
of determining absolute ages of significant events in lunar history. 16 
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Abstract 18 

The Artemis exploration zone is a geologically-complex region likely hosting some  of the oldest 19 
and as-yet-unstudied materials on the Moon. We review six potential Artemis landing sites (001, 20 
004, 007, 011, 102, and 105) within candidate Artemis III landing regions ‘Connecting Ridge,’ 21 
‘Peak Near Shackleton,’ ‘Leibnitz Beta Plateau,’ ‘de Gerlache Rim,’ and ‘de Gerlache Rim 2.’ 22 
Kaguya Spectral Profiler mineral data were used to determine average lithological composition at 23 
each landing site. Potentially accessible geologic materials, their ages and significance, and 24 
appropriate application of radiometric chronometers are discussed in reference to return samples 25 
from each potential landing site. Chronologic analyses of return samples from the Artemis 26 
exploration zone will enable the anchoring of the lunar impact flux curve, determine the absolute 27 
timing of pivotal events in lunar geologic history, and reveal geological diversity of the 28 
differentiated lunar body. 29 

 30 

Plain Language Summary 31 

Artemis astronauts will bring new samples from the Moon back to Earth. We discuss the 32 
geology of some landing sites the astronauts might visit, what types of rocks they may encounter, 33 
and how to examine them using geochronology. The application of geochronology to Moon rocks 34 
is essential to know the absolute timing of major events in lunar and early Solar system history. 35 

1 Introduction 36 

The Artemis exploration zone (AEZ) includes terrain dominated by photogeologically-mapped 37 
and stratigraphically-determined Nectarian and pre-Nectarian age surfaces.  These surfaces have 38 
materials that can help answer important questions regarding impact chronology, history of major 39 
lunar events such as formation and differentiation, and an opportunity to sample deeply excavated 40 
materials. To answer these questions, detailed petrologic analyses coupled with chronologic 41 
analyses of specimens collected from the AEZ are required.   42 

 43 
Examination of impact-cratered surfaces can determine fluxes in impact events in lunar history 44 

(Neukum et al., 1975; Boyce et al., 1977; Kring, 2008; Mazrouei et al., 2019; Lagain et al., 2022; 45 
Fairweather et al., 2022). Establishing the ages of specific impact craters and basins is important 46 
because these ages can anchor a crater chronology of the lunar surface (Arvidson et al., 1979; 47 
Neukum, 1984; Neukum et al., 2001; Che et al., 2021; Yue et al., 2022) and better define the 48 
bombardment history of the inner solar system (Kring et al., 2005; Kring, 2006, 2007, 2008, 2009). 49 
The returned lunar samples by the Apollo program were subjected to radioisotope dating, but many 50 
of the sampling sites might be part of the perturbated megaregolith formed by ejecta of large impact 51 
basins  (Howard et al., 1974; Moore et al., 1974; Head et al., 1993; Haskin, 1998; Haskin et al., 52 
1998; Petro and Pieters, 2008) and many studied specimens cannot be reliably attributed to a 53 
specific impact event (Korotev et al., 2002).  The Imbrium basin is dated at roughly ~3.5 Ga 54 
(Deutsch and Stöffler, 1987; Spudis et al., 1988; Merle et al., 2014; Zhang et al., 2015), but ages 55 
of other significant lunar basins, such as the Orientale Basin, have yet to be firmly established 56 
(Stöffler et al., 2006; Meyer et al., 2016; Wu et al., 2019). The mapped ages of features in Figure 57 
1 are in flux based on crater-counting ages determined from orbit (Tye et al., 2015; Deutsch et al., 58 
2020).  While Spudis et al. (2008) mapped Shackleton crater with a 3.6 Ga age, Zuber et al. (2012), 59 
Tye et al. (2015), and Kring et al. (2021) reported Imbrian ages of ~3.69 Ga, 3.51 +0.05/-0.08 Ga, 60 
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and 3.43 +0.04/-0.05 Ga, respectively.  Moreover, while Spudis et al. (2008) mapped Shoemaker 61 
and Faustini craters with Nectarian ages, Tye et al. (2015) report pre-Nectarian ages, similar to 62 
those at Haworth. The variable age estimates illustrate the need for sample return and radiometric 63 
analyses in Earth-based laboratories. The age of the South Pole-Aitkin (SPA) basin, thought to be 64 
the oldest and largest basin on the Moon and, thus, a key anchor point in defining the lunar 65 
chronology, is still not precisely known (Wilhelms et al., 1987; Hiesinger et al., 2012). The South 66 
Pole-Aitken Terrane has not yet been directly sampled but it is the focus for the crewed Artemis 67 
missions (Jolliff et al., 2000) (Figure 1).  68 

 69 
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 Sampling impact-generated pre-Nectarian- and Nectarian-age materials in the Artemis 70 
exploration zone also provides a way to test the crater counting calibration curve and refine the 71 
impact flux during the first billion years of Earth-Moon history; i.e., testing the lunar cataclysm 72 

hypothesis, which is the highest priority science objective as defined by the National Research 73 
Council (NRC) (2007).  In addition, the region may contain debris from the SPA basin. Recovering 74 
debris with an SPA impact-reset age will provide an opportunity to address the second highest 75 
priority science objective (NRC, 2007): to provide an anchor to the basin-forming epoch on the 76 
Moon. Currently, ages for SPA range from 4.39 Ga to 4.25 Ga (Hiesinger et al., 2012; Morbidelli 77 
et al., 2012).  Collectively, those data will refine the crater calibration curve, which can then be 78 
applied to surfaces around the entire Moon and other planetary surfaces in the Solar system. The 79 

Figure 1. Shaded relief geological map of the lunar south polar region with the locations of 
several potential Artemis landing sites (001, 004, 007, 011, 102, and 105).  Base map by 
Allender et al. (2019) in the LPI Lunar South Pole Atlas using geology of Spudis et al. (2008) 
and Lunar Orbiter Laser Altimeter data.  The mapped ages of features are in flux based on 
crater-counting ages determined from orbit.  For example, while Spudis et al. (2008) mapped 
Shackleton crater with a 3.6 Ga age, Zuber et al. (2012), Tye et al. (2015), and Kring et al. 
(2021) reported Imbrian ages of ~3.69 Ga, 3.51 +0.05/-0.08 Ga, and 3.43 +0.04/-0.05 Ga, 
respectively.  Moreover, while Spudis et al. (2008) mapped Shoemaker and Faustini craters 
with Nectarian ages, Tye et al. (2015) report pre-Nectarian ages, similar those that of Haworth.  
Those disparate ages illustrate the need for sample return and radiometric analyses in Earth-
based laboratories. Cab- Cabeus; Haw- Haworth; Shoe- Shoemaker; Fau- Faustini; deG- de 
Gerlache; Sha- Shackleton; Sl- Slater; H- Henson; Sv- Sverdrup. 
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pre-Nectarian and Nectarian impact events in the Artemis exploration zone excavated and 80 
produced breccias composed, in part, of unusually old highland terrain crust. Samples of that 81 
material could provide additional opportunities to constrain the timing of the giant Moon-forming 82 
impact, lunar differentiation, crustal formation, and subsequent magmatism, which are tied to 83 
several other important scientific objectives (NRC, 2007; Artemis III Science Definition Team 84 
Report).   85 

 86 
The impact cratering process is critical for excavating materials from depth and allows access 87 

to materials that may otherwise be deeply buried.  Exhumed lithologies also provide information 88 
on the local stratigraphy (Pieters et al., 1994; Kring, 2009; Kenkmann and Artemieva, 2021), for 89 
example, at Shackleton crater (Gawronska et al., 2020). Because SPA is the largest and oldest 90 
impact basin on the Moon (Wilhelms et al., 1987), it may contain rare upper mantle materials at 91 
the surface in select locations (Moriarty et al., 2021). Thus, a cross-section of lunar crust up to 10’s 92 
of kilometers deep may be developed if the return sample collection strategy includes samples 93 
collected from varied crater features (e.g., modification zones, central uplifts, etc.) and impact 94 
breccias (Kring, 2009).  Impact crater ejecta may also allow for the determination of the average 95 
composition of impacted crust from the sampling of homogenized subsurface lithologies in the 96 
form of impact melt materials (Kring, 2009). The environmental consequences (e.g., dust lofting, 97 
ejecta blanketing, flood basalts, rockfall; mountain-forming, etc.) of these impacts may also be 98 
inferred through orbital, field, and sample observation of impact craters (Mukhametshin et al., 99 
2018; Michaut and Pinel, 2018; Xie et al., 2020; Bickel et al., 2020). The delivery and abundance 100 
of elements through impacts may also be determined and used to piece together a history of the 101 
chemical evolution of the lunar interior and crust (Bottke et al., 2010; Barnes et al., 2016; Joy et 102 
al., 2016, 2020; Zhu et al., 2019). Finally, investigations and sampling of heavily impact-cratered 103 
terrain may also provide access to impact melt samples from other craters (Kring et al., 2005; 104 
Kring, 2007, 2009).   105 

 106 
This study reviews six potential Artemis landing sites (001, 004, 007, 011, 102, and 105) within 107 

candidate Artemis III landing regions ‘Connecting Ridge,’ ‘Peak Near Shackleton,’ ‘Leibnitz Beta 108 
Plateau,’ ‘de Gerlache Rim,’ and ‘de Gerlache Rim 2’ (NASA, 2020b, 2022). The numbered 109 
potential landing sites correspond to the illumination sites identified in previous work (Bussey et 110 
al., 2010; Mazarico et al., 2011; Speyerer and Robinson, 2013). Kaguya Spectral Profiler mineral 111 
count data were used to determine average lithological composition at each landing site. Potential 112 
accessible geologic materials, their ages and significance, and appropriate application of 113 
radiometric chronometers are discussed in reference to return samples from each potential landing 114 
site. Chronologic analyses of return samples from the Artemis exploration zone will enable the 115 
anchoring of the lunar impact flux curve, determine the absolute timing of pivotal events in lunar 116 
geologic history, and reveal geological diversity of the differentiated lunar body. 117 

1.1 Input Data 118 

Kayuga Spectral Profiler (SP) is a visible to near infrared spectrometer with a ~500 m spatial  119 
footprint acquiring data via three spectral bands (one visible, two near infrared) between 500 and 120 
2600 nm (Haruyama et al., 2008).  However, topography in the polar regions causes different 121 
surfaces to receive widely uneven solar illumination, from no direct incident sunlight in 122 
topographic depressions (such as permanently shaded regions) to abundant sunlight on steep Sun-123 
facing slopes, which makes spectral interpretation challenging.  Lemelin et al. (2022) converted 124 
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the SP radiance data (level 2B1) measured in each SP orbit into bidirectional reflectance using the 125 
photometric function of Yokota et al. (2011), which allowed the conversion of radiance data into 126 
reflectance data at a standard viewing geometry of 30° incidence angle and 0° emission angle. 127 
However, as the photometric function of Yokota et al. (2011) assumes a flat sphere, reflectance 128 
measurements higher or lower than expected occur on sloped surfaces. The Lunar Orbiter Laser 129 
Altimeter (LOLA) onboard LRO acquires reflectance data at 1064 nm and is unaffected by slope 130 
effects as it sends its own illumination. Lemelin et al. (2022) thus scaled the gridded SP reflectance 131 
data to the gridded and calibrated LOLA data at their common wavelength of 1064 nm. They could 132 
then calculate FeO abundances using reflectance data at 750 and 950 nm, and use Hapke radiative 133 
model (e.g., Hapke, 1981, 2001) to estimate the abundance of olivine, low-calcium pyroxene 134 
(LCP), high-calcium pyroxene (HCP), and plagioclase on continuum removed spectra, using FeO  135 
 136 

 137 
as a constraint. We used these gridded mineral maps and the gridded abundance of FeO to study 138 
the probable geology of the Artemis region. 139 

1.2 Potential Landing Sites 140 

The Artemis III mission will not be supported with a rover, so crew will be limited to walking 141 
extravehicular activities (EVAs) within 2 km distance of the Human Landing System (HLS) 142 
(Coan, 2020; Kring et al., 2023).  An unpressurized Lunar Terrain Vehicle (LTV) will be deployed 143 

Figure 2. Summary of age units at each potential landing site in accordance with Figure 1. 
Upper and lower age limits of each time period are from Stöffler et al. (2006).  Although not 
visible at the scale mapped in Figure 1, all sites will contain small Copernican-age craters. 
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for later missions (NASA, 2021, 2023) and should provide an exploration range up to 10 km radial 144 
distance from a lander.  For the purposes of our study, we utilize that 10 km radial distance around 145 
potential Artemis landing sites to evaluate the types of samples available for collection and return 146 
to Earth.  147 

1.2.1 Site 001 (‘Connecting Ridge’ region) 148 

Potential Artemis landing site 001 (NASA, 2020a) (Site “SP-1” at (-89.45, 222.69) in Mazarico 149 
et al. (2011); “Point B” at (89.44°S, 141.8°W) in Bussey et al. (2010)) is within the Artemis III 150 
candidate landing region called “Connecting Ridge” and located on a massif ridge connecting 151 
Shackleton and Henson craters (Figure 1a). This ridge itself is roughly pre-Nectarian in age 152 
(Stöffler et al., 2006) but is cross-cut by Shackleton crater and secondary crater ejecta believed to 153 
be of significantly younger Imbrian age (3.51 to 3.69 ± 0.4 Ga) (Spudis et al., 2008; Zuber et al., 154 
2012). The ridge will be covered with Shackleton ejecta, potentially including fragments of the 155 
original highland crust, components from the lunar magma ocean and later intrusive rocks, 156 
cryptomare from SPA, plus impact melts from Shackleton, SPA, and other pre-Nectarian impacts 157 
(Kring, 2019; Halim et al., 2021; Kring et al., 2022). Anticipated dominant lithologies are 158 
anorthosite below the Shackleton crater rim down to ~900 m, regolith, and breccia (Gawronska et 159 
al., 2020). Lowest FeO values within the Artemis exploration region determined by Kaguya SP 160 
(~5 to 7 wt. %) are found in the 89° to 90°S region near Shackleton crater (applies to Site 004 as 161 
well) (Lemelin et al., 2022). 162 

1.2.2 Site 004 (along margin of ‘Connecting Ridge’ region) 163 

Potential Artemis landing site 004 (NASA, 2020a) ( Site “SP-4” at (-89.78, 204.27) in 164 
Mazarico et al. (2011); “Point A” at (89.68°S, 166.0°W) in Bussey et al. (2010)) is along the 165 
margin of Artemis III candidate landing region called “Connecting Ridge” on a portion of 166 
Shackleton crater (ridge is pre-Nectarian age, 4.52 to 3.92 Ga, (Stöffler et al., 2006); crater is 167 
Imbrian age; 3.6 ± 0.4 Ga (Spudis et al., 2008; Zuber et al., 2012; Tye et al., 2015; Halim et al., 168 
2021)) rim and is nearly coincident with the geographic south pole of the Moon (Figure 1). 169 
Imbrium secondary crater materials and pre-Nectarian ejecta from Henson crater are accessible 170 
within a 10 km radial distance (Figure 2). This site contains multiple rock exposures (Gawronska 171 
et al., 2020). Anticipated lithologies include pure anorthosite exposures (Yamamoto et al., 2012; 172 
Lemelin et al., 2017). Sites 001 and 004 provide a unique opportunity to sample rays from Tycho 173 
crater that reach directly between the two sites (Lemelin et al., 2022). Both sites provide an 174 
opportunity to sample pre-Nectarian crater, Imbrian crater, and Imbrian secondary crater materials. 175 

1.2.3 Site 007 (‘Peak near Shackleton’ region) 176 

Potential Artemis landing site 007 (NASA, 2020a) (Site “SP-7” at (-88.81, 123.64) in Mazarico 177 
et al. (2011); “Point D” at (88.79°S, 124.5°E) in Bussey et al. (2010)) is within the Artemis III 178 
candidate landing region “Peak near Shackleton” located on a massif ridge between Shackleton 179 
and Slater craters (Figure 1a). Within a 10 km radial distance, Site 007 would enable the sampling 180 
of materials from the pre-Nectarian massif, Nectarian crater, and Imbrian crater (Figure 2). This 181 
site may provide the possibility to observe layered strata from Shackleton and compare ejecta and 182 
stratigraphy with Slater crater. Layered terrain is 10 to 50 m thick in Shackleton (Halim et al., 183 
2021). The lateral extent of these layers is difficult to observe due to poor illumination conditions, 184 
but they may be ejecta produced from older impacts (i.e., Haworth, Shoemaker, Faustini). 185 
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Interestingly, numerical modeling efforts have determined the top bed in this stratigraphic 186 
sequence may contain over ~150 m of Shackleton ejecta (Halim et al., 2021). Kumari et al. (2022) 187 
identified 3,204 resolvable boulders (ranging from 0.7 to 14 m diameter) within a 10 km radius of 188 
site 007.  189 

1.2.4 Site 011 (‘de Gerlache Rim 1’ and ‘de Gerlache Rim 2’ regions) 190 

Potential Artemis landing site 011 (NASA, 2020a) (Site “SP-11” at (-88.67, 291.90) in 191 
Mazarico et al. (2011); “Point C” at (88.71°S, 68.7°W) in Bussey et al. (2010)) is within the 192 
Artemis III candidate landing region “de Gerlache Rim”. De Gerlache Rim 1 is approximately 193 
centered on the crater rim, while de Gerlache Rim 2 is mostly north of the crater rim (Figure 1). 194 
Based on absolute crater counting models, de Gerlache is believed to be Nectarian in age (Tye et 195 
al., 2015; Deutsch et al., 2020) and, just beyond de Gerlache Rim 1, its rim is cross-cut by an 196 
Eratosthenian-age Marvin crater. The de Gerlache impact appears to be younger than the pre-197 
Nectarian ‘Connecting Ridge’ massif (Spudis et al., 2008) and, thus, may have covered the massif 198 
with ejecta prior to the Shackleton impact. Pre-Nectarian terra, Nectarian crater, and Imbrian 199 
secondary crater materials are present within a 10 km radial distance from Site 011 (Figure 2). 200 
This site may allow for volatile sampling within secondary craters and comparison to Apollo 201 
permanently shadowed region (PSR) crater samples (Li and Milliken, 2017; Kereszturi et al., 202 
2022). The de Gerlache ejecta within the region may provide samples of anorthositic crustal 203 
lithologies and SPA ejecta. Within a 10 km radial distance around site 011, over 3,774 boulders 204 
from 0.7 to 26 m in diameter have been identified (Kumari et al., 2022). 205 

1.2.5 Site 102 (‘Leibnitz Beta Plateau’ region) 206 

Potential Artemis landing site 102 (NASA, 2020a) (Site “SP-20” at (-85.43, 31.73) in Mazarico 207 
et al. (2011)) is within the Artemis III candidate landing region called “Leibnitz Beta Plateau” 208 
located atop informally-named Mons Leibnitz Beta, which is now called Mons Mouton (Figure 1). 209 
The Leibnitz Mountains lie on the topographically-high ring outlining the SPA basin (Garrick-210 
Bethell and Zuber, 2009). This plateau is bounded by a nearly vertical cliff facing south-poleward. 211 
The cliff may provide a unique opportunity to access a roughly 8-km-thick cross-section of lunar 212 
crust. Massifs like Mons Mouton may also provide an opportunity to identify additional lithologies 213 
produced by early lunar magmatic processes. This site may allow for sampling from adjacent pre-214 
Nectarian and Nectarian aged impacts Haworth (4.18 ± 0.02 Ga), Shoemaker (4.15 ± 0.02 Ga), 215 
and Faustini (4.10 ± 0.03 Ga) craters (Figure 2; Tye et al., 2015). NASA’s VIPER rover is set to 216 
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land and traverse near this site to search for and sample volatiles up to approximately 1 meter deep 217 
within the regolith (Shirley and Balaban, 2022). 218 

1.2.6 Site 105 219 

Potential Artemis landing site 105 (NASA, 2020a) ((-87.18, 62.84) in Patterson et al. (2022) 220 
is located between pre-Nectarian aged Shoemaker (4.15 ± 0.02 Ga) and Faustini (4.10 ± 0.03 Ga) 221 
craters (Tye et al., 2015) (Figures 1, 2). Site 105 is downslope from Site 102. This region contains 222 
many large blocks and boulders (1.5 to 9 m diameter) (Patterson et al., 2022) and the floors of 223 
Shoemaker and Faustini likely house icy volatile deposits (Tye et al., 2015; Patterson et al., 2022; 224 
Brown et al., 2022), and the ridge bisecting Faustini and Shoemaker crater rims has ejecta deposits 225 
likely to be up to Nectarian in age (Tai Udovicic et al., 2022). This site contains the lowest FeO 226 
values (~5-7 wt. %) of all of the 84° to 90° S region (Figure 1a; Lemelin et al., 2022). 227 

2 Isotope Chronology 228 

The timing of major events, including the timing of lunar differentiation, duration of igneous 229 
activity, and impact history, can be constrained with isotope chronology of lunar materials (e.g., 230 
Nyquist and Shih, 1992).  Foundational chronologic analyses of Apollo 11 samples are 231 
summarized in the Proceedings of the Apollo 11 Lunar Science Conference (1970) and “The Moon 232 
Issue” of the journal Science (Abelson, 1970, and articles in the issue) and laid the groundwork 233 
for all future studies of lunar return samples. The commonly applied isotope systems are 234 
summarized in Table 1 and described below.  Each radiometric system is best suited to a particular 235 
subset of geologic events and temperatures. For example, some approaches are best suited to date 236 
high-temperature igneous crystallization, whereas other systems best reflect cooling below 300 to 237 
500 ºC.  Furthermore, the radiometric systems may require specific minerals and/or chemical 238 
compositions.  Thus, some chronologic approaches may be more suitable to different lunar 239 
lithologies than others, simply by the nature of the texture and/or mineralogy of the sample. The 240 

Isotope System 

Analytical Technique 
Bulk 
sample 
or glass 

Mineral/ 
bulk rock 
isochron 

Single 
mineral 

In-situ  
(Laser ablation/ 
secondary ion) 

Wet 
chemistry 

40K  40Ar 
(40Ar - 39Ar) X  X X  
87Rb  87Sr  X  X X 
147Sm  143Nd  X    
146*Sm  142Nd  X    
176Lu  176Hf  X X X X 
187Re  187Os  X    
232Th  208Pb  X X X X 
235U  207Pb  X X X X 
238U  206Pb  X X X X 

Table 1. Commonly applied radiogenic isotope systems and the methods by which they may be 
analyzed. 
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ages of secondary processes, such as impact metamorphism, may also be determined, depending 241 
on the material and degree of metamorphism/melting.   242 

2.1 U-Th-Pb 243 

The 238U-206Pb, 235U-207Pb, and 232Th-208Pb isotope systems are some of the most versatile 244 
isotope systems that can be applied to a wide variety of lunar lithologies.  These systems were 245 
developed prior to the Apollo 11 mission and were applied to the first returned specimens (e.g., 246 
Silver, 1970; Tatsumoto and Rosholt, 1970).  Because 238U-206Pb and 235U-207Pb reflect two isotope 247 
systems in the U-Pb system, ages can be determined using multiple approaches including standard 248 
U-Pb isochrons, inverse Pb-Pb isochrons, and U-Pb concordia diagrams (e.g., Wetherill and Tera-249 
Wasserburg diagrams).  The 238U, 235U, and 232Th half-lives are 4.468, 0.704, and 14.01 Ga, 250 
respectively (Steiger and Jäger, 1977).  Despite recent studies that refine the decay constants (e.g., 251 
Amelin and Zaitsev, 2002; Schoene et al., 2006), the IUGS-IUPAC recommends the decay 252 
constants of Jaffey et al. (1971) for 238U and 235U (Villa et al., 2022). Uranium and Th-rich and 253 
high U/Pb and/or Th/Pb ratio trace phases such as zircon, baddeleyite, zirconolite, tranquillityite, 254 
apatite, merrillite, and monazite are documented in many lunar lithologies and have the potential 255 
for precise chronology (e.g., Lovering et al., 1974; Rasmussen et al., 2008; Barboni et al., 2017; 256 
Shaulis et al., 2017).  Even in materials without these trace phases, many lunar rocks and/or their 257 
sources have relatively high 238U/204Pb ratios (denoted as µ) of about 360 to over 2600 for lunar 258 
basaltic rocks (e.g., Snape et al., 2018) whereas the µ-value of the terrestrial mantle is about 8 259 
(e.g., Ballhaus et al., 2013).   260 

 261 
Since most lunar rocks have experienced secondary processes such as thermal and/or impact 262 

metamorphism, some mineral hosts are more resilient to disturbances of the U-Th-Pb systems than 263 
others.  For example, zircon has the potential to preserve the U-Th-Pb systematics of crystallization 264 
from a melt and will retain those characteristics even through metamorphic events that would 265 
disturb U-Th-Pb in other materials (Cherniak and Watson, 2001).  Zircon is considered one of the 266 
most robust time capsules nature has to offer. Uranium and Pb in baddeleyite also has the potential 267 
to record igneous events despite the host rock being subjected to high-grade metamorphic 268 
conditions (Niihara et al., 2009). Microstructural analyses of trace phases such as baddeleyite can 269 
reveal relict polymorphs that provide additional context for age data (White et al., 2020).  Other U 270 
and/or Th-rich mineral hosts such as apatite, however, are less resistant to disturbances than zircon 271 
for any given temperature-time (T-t) history (Chew et al., 2021) and can record the timing of 272 
metamorphic events (Nemchin et al., 2009).   273 

 274 
Analytical approaches for U-Th-Pb analyses include in-situ (minimally destructive) or wet 275 

chemical (fully destructive).  In-situ analyses usually involve either a laser or secondary ion source 276 
that samples the material of interest at spatial resolutions between 5 and 100 µm.  The advantages 277 
of in-situ approaches are that analyses often have petrological context through microstructural 278 
and/or mineral textural data.  Age data can be collected from very small specimens (Che et al., 279 
2021) and clasts (Snape et al., 2018).  One disadvantage of in-situ analyses is that the measurement 280 
precision is often significantly less than that of wet chemical approaches such as isotope-dilution 281 
thermal ionization mass spectrometry (ID TIMS; see Schoene (2014) for a full treatment of the 282 
methods).  In lithologies that do not typically contain U and Th-rich trace phases, measurement of 283 
the 207Pb/206Pb and 204Pb/206Pb ratios of other phases such as pyroxene can yield precise ages.  For 284 
example, Borg et al. (2011) measured an age of 4359.2 ± 2.4 Ma for sequentially-dissolved 285 
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pyroxene in ferroan anorthosite 60025. Overall, with modern analytical techniques, the ages of 286 
most lunar lithologies can be precisely determined with the U-Th-Pb systems. 287 

2.2 Rb-Sr 288 

The Rb-Sr isotope system has been applied to Apollo lunar materials since they were collected 289 
(Gopalan et al., 1970; Hurley and Pinson, Jr., 1970; Papanastassiou et al., 1970) and has the 290 
potential for precise chronology (Rankenburg et al., 2007) and chemical/isotopic tracing (Borg et 291 
al., 2022).  The IUGS-IUPAC-recommended decay constant for 87Rb is (1.3972 ± 0.0045) × 10-292 
11a-1 (Villa et al., 2015).  Great care must be taken in comparing data because many studies used 293 
and/or still use the value of 1.42 × 10-11a-1 reported in Steiger and Jäger (1977) and other studies 294 
may adopt the new decay constants.  In any case, most published age data can be recalculated to 295 
the same or updated decay constant. 296 

 297 
Strontium isotopic and 87Rb/86Sr ratios of rock, glass, and/or mineral materials are typically 298 

measured with wet chemical approaches (destructive analyses) where the materials are digested 299 
and Rb and Sr are chemically purified and analyzed (Charlier et al., 2006). Common lunar rock-300 
forming minerals such as pyroxene, plagioclase, K-feldspar, and olivine have highly variable 301 
Rb/Sr ratios making them amenable for dating using the isochron approach.  Very recent 302 
advancements in mass spectrometry have enabled in-situ analysis of 87Sr/86Sr and 87Rb/86Sr by 303 
laser ablation plasma-source mass spectrometry (Dauphas et al., 2022) opening a vast new area for 304 
investigation with a minimally-destructive, high-spatial resolution (~100 µm) technique.  305 

 306 
In addition to chronology, the Rb-Sr system can be used as an isotope tracer.  For example, 307 

Borg et al. (2022) model the Rb-Sr isotope systematics of the Earth, Moon, and Theia (the proto-308 
Earth impactor) to constrain the timing of volatile addition and the timing of the Moon-forming 309 
event.  The Rb-Sr isotope system can also be used to trace potential mixing relationships and the 310 
sources of lunar igneous rocks (Hui et al., 2013), and potentially define model age constraints in 311 
materials that cannot otherwise be dated (McLeod et al., 2016). 312 

2.3 Sm-Nd 313 

Similar to U-Pb, Sm-Nd consists of two isotope systems (146Sm-142Nd and 147Sm-143Nd) in one 314 
element system, except 146Sm is now extinct. The Sm-Nd system has been applied to most lunar 315 
lithologies for chronology and tracers of magma sources (Nyquist et al., 1995; Brandon et al., 316 
2009; Carlson et al., 2014; Borg et al., 2015; Johnston et al., 2022). The IUGS-IUPAC 317 
recommended half-lives of 146Sm and 147Sm are 0.068 – 0.103 and 106.25 ± 0.38 Ga, respectively 318 
(Villa et al., 2020).  Given the uncertainty of the 146Sm decay rate, recent papers (McLeod et al., 319 
2014) use both half-life values of 0.068 and 0.103 Ga in their model calculations. 320 

 321 
High-precision analyses of Sm-Nd requires wet chemical approaches and relatively large 322 

samples with minimum mass requirements of 0.05 to 1 g, depending on Sm and Nd concentrations, 323 
mineralogy, and grain size. Most lunar rocks and minerals have overall low concentrations of Sm 324 
and Nd (ppb to ppm concentrations) and limited natural variations in Sm/Nd ratios due to their 325 
similar geochemical characteristics in most materials.  The range in 147Sm/144Nd ratios in most 326 
lunar minerals (feldspar, pyroxene, olivine, phosphate) is limited between about 0.14 to 0.30, 327 
unlike Rb-Sr, U-Th-Pb, and Lu-Hf where the range in parent/daughter ratios can be orders of 328 
magnitude greater.  Despite the limited range in Sm/Nd ratios and resulting limited variations in 329 



Manuscript submitted to Journal of Geophysical Research- Planets 
 

12 
 

radiogenic Nd isotopic compositions, advancements in mass spectrometry allow very high 330 
precision (few ppm) measurements of 143Nd/144Nd and 142Nd/144Nd ratios (Rankenburg et al., 2006; 331 
Boyet and Carlson, 2007). These high-precision measurements are also required to accurately 332 
measure and ultimately correct neutron capture effects from cosmic ray exposure that can alter the 333 
Sm and Nd isotopic compositions (Nyquist et al., 1995; Brandon et al., 2009).  334 

 335 
Measured Sm and Nd isotopic compositions corrected for neutron capture effects have yielded 336 

many robust ages of lunar materials (Carlson et al., 2014; Borg and Carlson, 2023).  As opposed 337 
to the other isotope systems listed in Table 1, Sm and Nd are geochemically similar lanthanide 338 
elements that are relatively immobile during periods of shock metamorphism.  Other elements, 339 
such as the alkalis (Rb), can be more easily mobilized than Sm-Nd.  This is evident in some studies 340 
that compare Sm-Nd and Rb-Sr measured on the same sample aliquots where there can be greater 341 
scatter about a Rb-Sr isochron than for a Sm-Nd isochron (Edmunson et al., 2009).  In addition to 342 
standard isochron chronology, coupled 146-147Sm-142-143Nd isotope systematics can be used to 343 
assess the mantle closure ages (i.e., the duration of lunar magma ocean crystallization) for the 344 
sources of lunar basalts (Boyet and Carlson, 2007; Brandon et al., 2009; McLeod et al., 2014).  345 
Finally, the nature and compositions of lunar mantle source compositions and potential mixtures 346 
can be assessed with the Sm-Nd system (Borg et al., 2009; Srivastava et al., 2022).   347 

2.4 Lu-Hf 348 

The Lu-Hf isotope system was first applied to lunar materials by Patchett and Tatsumoto 349 
(1981) and Unruh et al. (1984).  Few subsequent papers presented Lu-Hf data (Beard et al., 1998) 350 
until the application of plasma-source mass spectrometry; now the Lu-Hf isotope system is 351 
routinely applied to lunar materials (Taylor et al., 2009; Sprung et al., 2013; Gaffney and Borg, 352 
2014; Carlson et al., 2014; Melanie Barboni et al., 2017).  The 176Lu half-life used by the isotope 353 
geochemistry community changed from the value of 35.82 Ga (Patchett and Tatsumoto, 1980) to 354 
a value of about 37.12 Ga (Scherer et al., 2001; Söderlund et al., 2004), so care must be taken 355 
when comparing Lu-Hf isotope data and models in the literature. Hult et al. (2014) summarize 356 
many 176Lu half-life measurements and propose a value of 37.22 ± 0.29 Ga.   357 

 358 
The Lu-Hf isotope system is enhanced by the different geochemical behavior of Lu and Hf and 359 

resultant large range in 176Lu/177Hf ratios in many lunar materials.  For example, most zircon has 360 
1-3 wt% Hf and Lu in ppm concentrations resulting in 176Lu/177Hf ratios typically < 0.002.  361 
Combined with its robust retention of U-Th-Pb isotopes for precise chronology, zircon is also a 362 
powerful Lu-Hf isotope tracer requiring minimal age corrections (Taylor et al., 2009; Barboni et 363 
al., 2017).  Phosphate minerals have the potential for 176Lu/177Hf ratios of over 100 (Amelin, 2005).  364 
Overall, in addition to zircon, many oxide minerals can have very low 176Lu/177Hf ratios of < 0.01, 365 
whereas phosphates and garnet have the potential for 176Lu/177Hf ratios greater than 1.0.  Therefore, 366 
Lu-Hf mineral isochron chronology has the potential for relatively large spreads in Lu/Hf ratios 367 
even in lithologies with a simple mineralogy (e.g., Lapen et al., 2010). 368 

 369 
Modern analytical methods for Lu-Hf chronology and/or isotope tracer studies include both 370 

in-situ laser ablation mass spectrometry and wet chemical approaches applied to bulk rock and/or 371 
mineral separates. Because Hf concentrations are in the ppb to ppm range for most rock-forming 372 
minerals, wet chemical approaches are required for analysis with minimum sample sizes typically 373 
of 0.05 to 0.10 g.  Hafnium-rich minerals such as zircon and baddeleyite can be analyzed for Lu-374 
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Hf isotopes by in-situ approaches (Ibanez-Mejia et al., 2014).  All Lu-Hf isotope data of lunar 375 
materials should be assessed for neutron capture effects and corrected (Sprung et al., 2013; Gaffney 376 
and Borg, 2014; Barboni et al., 2017). 377 

2.5 Ar-Ar 378 

Turner (1970) presented some of the first applications of the 40Ar/39Ar method to Apollo 11 379 
samples.  Since then, 40Ar/39Ar data have been essential for unraveling the timing of primary and 380 
secondary lunar events such as protolith formation and impact metamorphism, respectively. 381 
Depending on the material and its temperature-time history, the 40Ar/39Ar method has the potential 382 
to provide precise dates of a wide-range of lunar materials (Turner et al., 1973; Turner and 383 
Cadogan, 1975; Dalrymple and Ryder, 1991, 1993, 1996; Jourdan, 2012; Fernandes et al., 2013).  384 
Impact events that produced melt can be precisely dated and help build impact flux estimates 385 
(Dalrymple and Ryder, 1993, 1996; Culler et al., 2000; Cohen et al., 2000; Kring and Cohen, 2002; 386 
Norman et al., 2006; Mercer et al., 2015, 2019; Zellner and Delano, 2015).  The timing of lunar 387 
volcanism, often expressed as fine-grained and/or amorphous materials (e.g., lunar orange glass 388 
beads in 74220 soil), can be precisely dated (Huneke, 1978; Spangler et al., 1984; Zellner et al., 389 
2009) whereas other isotope systems that rely on mineral-liquid fractionation processes would not 390 
typically yield precise age determinations of these bulk materials.   391 

 392 
Potassium-40 has a branched decay to 40Ca (89.32%) and 40Ar (10.68%) with a total decay 393 

constant of about 5.53 ×10-10 yr-1 (Renne et al., 2011).  Associated 40K-40Ca chronology of felsic 394 
lunar materials (Shih et al., 1993) is possible for specialized applications. Analytical details of the 395 
40Ar-39Ar method are complex (McDougall et al., 1999; Cohen et al., 2000, 2005; Swindle et al., 396 
2009; Weirich et al., 2010; Wittmann et al., 2011; Mercer and Hodges, 2016; Niihara et al., 2019; 397 
Schaen et al., 2020; Beard et al., 2022). Recent advancements in in-situ analytical approaches 398 
(Mercer et al., 2015) make it easier for analyses of critical petrographic contexts.   399 

 400 
Argon-Ar thermochronology is especially useful for understanding the potentially complex 401 

temperature-time (T-t) history of lunar materials.  For short T-t histories relative to the diffusivity 402 
of Ar in a particular material, Ar-Ar data may have remained a closed system since the last Ar-403 
degassing event such as melting (Cohen et al., 2000). For T-t histories that are long and/or extreme 404 
enough to facilitate Ar loss, the timing of these Ar-loss events may be recorded in the measured 405 
Ar isotope data (Niihara et al., 2019; Schaen et al., 2020).  Overall, Ar-Ar approaches, both in-situ 406 
and conventional, are a critical tool for unraveling primary and secondary processes operative on 407 
the Moon. 408 

 409 

3 Lunar Lithologies 410 

The Artemis exploration zone is a feldspathic highland terrain that was originally anorthositic 411 
crust, covered and/or mixed with more mafic lithologies excavated by the SPA and other basin-412 
forming events producing a mixed - nominally noritic - composition (Pieters et al., 2001; Hawke, 413 
2003; Spudis et al., 2008; Lin et al., 2020; Huang et al., 2020; Krasilnikov et al., 2023). Major 414 
minerals in the surface regolith are plagioclase, pyroxene, and olivine, in that order. Reflectance 415 
spectra suggest the region has an average anorthite abundance of ~80 to 90 wt% and ~5 to 10 wt 416 
% Fe) (Lemelin et al., 2022). 417 

 418 
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 419 

420 

 421 

 422 

a. 

b. 

Figure 3. Colorized counts of Kaguya SP mineral data used to determine average lithological 
composition at each of the candidate landing regions (red squares). Gray areas represent 
permanently shadowed regions, which were masked during analyses. Black areas are areas with 
no mineral count data available. (a) Colorized counts of plagioclase from 50 to 100 wt. %. (b) 
Colorized counts of iron from 0 to 15 wt. %. 

Table 2. Artemis zonal statistics of mineralogy at each landing site within an exploration zone 
of 10 radial kilometers. The values below contain minerals modeled from Spectral Profiler data 
with all PSRs masked from Lemelin et al. (2022). The four sites closest to the south pole (001, 
004, 007, and 011) have similar mineralogy. The mineral error is on the order of ±8 wt. % and 
FeO about 2 wt. %. SD = standard deviation. 
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The basin-forming event that created SPA would have been an exceptionally violent impact 423 
(Potter et al., 2012) that excavated material from depth where mafic to ultramafic materials likely 424 
existed (Kring, 2005; Hurwitz and Kring, 2014), produced melt, fallback ejecta, and brecciated 425 
basin floor materials (Petro and Pieters, 2008; Moriarty et al., 2021). This, coupled with billions 426 
of years of subsequent impacts results in a complicated and varied lithological suite of outcrops 427 
and potential return sample targets. The lithologies discussed here are those which were defined 428 
by Stöffler et al. (1980) (Figure 4, Table 3). They may exist as homogenous hand samples (e.g., ~ 429 
5 to 20 cm) or even at the outcrop scale, although there is a strong likelihood of polymict breccias 430 
housing a multitude of lithologies, much like NWA 5000 and various Apollo samples (Duncan et 431 
al., 1975; Grieve et al., 1975; Stöffler et al., 1985; Nagurney et al., 2016; Marks et al., 2019; Cao 432 
et al., 2021). Some lithologies, such as dunite (Shearer et al., 2015), are exceedingly rare within 433 
the Apollo collection and exist as chips and fragments within brecciated samples. Because it 434 
crystallizes at depth, dunite solely relies on impact excavation processes or incorporation into 435 
magmas as xenoliths to be exposed on the lunar surface. The spatial resolution of this study (>500 436 
m) preclude identification of litho-fragments within an individual sample, driving the need for 437 
polymict breccia return samples. 438 
 439 

We understand lunar rocks exist within a continuum of lithologies, however they are discussed 440 
below in accordance with the classification schema outlined in Figure 4. With the exception of 441 
impact melts or fine-grained basaltic clasts, we predict most lithologies in the Artemis exploration 442 
zone to be relatively coarse-grained (~1 to 3 mm grain size; Joy et al., 2008). 443 
 444 

 445 
 446 
Figure 4. Average landing site lithological composition displayed relative to plagioclase, 447 
pyroxene, and olivine. Blue shaded region represents the zone of statistical uncertainty from our 448 
analysis. Modified after Stöffler et al. (1980). 449 
 450 
Table 3. List of lunar lithologies that might be included in the regolith within each site. (List of 451 
lithologies from Hiesinger (2006)). Gray-filled boxes: within the standard deviation range of 452 
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average composition calculated from this study (PSRs not masked); X: presence of lithology 453 
recognized; Y= existence of lithology likely, but below detection limit of current instrumentation; 454 
Z: lithology possibly present as clasts. References: [1] Gawronska et al. (2020); [2] Lemelin et al. 455 
(2022); [3] Yamamoto et al. (2012); [4] Uemoto et al. (2010); [5] Halim et al. (2021); [6] Ohtake 456 
et al. (2009); [7] Borst et al. (2012); [8] Kraettli et al. (2022); [9] Gagnepain-Beyneix et al. (2006); 457 
[10] Kring (2019); [11] Kring et al. (2022). 458 
 459 

Lithology Sites 

 001 004 007 011 102 105 

Purest 
Anorthosite 
(PAN) [1-4] 

Y X Y Y X X 

Anorthosite 
[1-3,5,6] X X X X X X 

Noritic or 
Gabbroic 
Anorthosite 
[2] 

X X X X X X 

Troctolitic 
Anorthosite 
[2] 

X X X X X X 

Anorthositic 
Norite or 
Gabbro[2] 

X X X X X X 

Anorthositic 
Troctolite[2] X X X X X X 

Norite or 
Gabbro[2] X X X X X X 

Olivine 
Norite or 
Gabbro[2] 

X X X X X X 

Troctolite[7] Y Y Y Y Y Y 

Pyroxenite[8,9] Z Z Z Z Z Z 

Peridotite[7] Z Z Z Z Z Z 

Dunite[7] Z Z Z Z Z Z 

Basaltic 
material[7,10] Z Z Z Z Z Z 
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Impact 
Melt[10,11] Z Z Z Z Z Z 

Impact 
Breccia[1,11] Z Z Z Z Z Z 

 460 

3.1 Anorthositic Lithologies 461 

Anorthositic lithologies include anorthosite (and ‘purest anorthosite’) and noritic, gabbroic, 462 
and troctolitic anorthosite.  These lithologies are all characterized by having high proportions of 463 
plagioclase with low, but variable proportions of pyroxene and olivine.  Anorthitic plagioclase 464 
tends to have relatively low concentrations of REE, K, Rb, and U, making direct chronometric 465 
analyses difficult.  The complex thermal and impact histories for many lunar anorthositic rocks 466 
(see Shearer et al., 2006, and references therein) further compromises the accuracy and precision 467 
of chronologic measurements.  Despite these challenges, chronology of anorthositic rocks by U-468 
Pb of mafic phases, mineral and bulk-rock Sm-Nd, and Ar-Ar have been successfully 469 
accomplished (e.g., Norman et al., 2003; Borg et al., 2011; Marks et al., 2019).  Given the overall 470 
low concentrations in alkali elements, Rb/Sr ratios are low, making Rb-Sr analyses of anorthositic 471 
rocks useful as a petrogenetic tracer and for calculating model ages (e.g., Borg et al., 2022). 472 

3.1.1 Anorthosite 473 

Anorthosites are coarse-grained igneous rocks that may record early lunar differentiation 474 
processes. Anorthositic lithologies are common on the Moon because they may have formed from 475 
early differentiation and crust-forming processes (Anderson et al., 1970; Wood et al., 1970; Wood, 476 
1970; Ohtake et al., 2009). They are mineralogically defined as > 90 % by volume of plagioclase 477 
(Figure 4), suggesting they are cumulates produced from an ancient melt (Lucey et al., 2006). 478 
Mafic minerals in some lunar anorthosites have relatively low Mg/(Mg+Fe) ratios (Lucey et al., 479 
2006), and plagioclase within them is typically An96 which may reflect the Moon’s depletion in 480 
sodium and other volatile elements (Borg et al., 2022).  481 

3.1.2 Purest Anorthosite 482 

A particularly pure anorthosite exists in the south polar region and is composed of >97 wt. % 483 
anorthite with <2 wt. % pyroxene (Ohtake et al., 2009). Because it is almost pure anorthite, this 484 
variant is known as ‘purest anorthosite’ (PAN) (Ohtake et al., 2009). Outcrops that correspond to 485 
PAN spectra are recognized at the geographic south pole and extend into the massif bridging 486 
Shackleton to de Gerlache crater (toward the west) and Slater crater (toward the east) (Gawronska 487 
et al., 2020). The physical extent of the PAN unit is debated because no significant samples of 488 
PAN were identified within the Apollo collection (Lemelin et al., 2015). Exposures of anorthosites 489 
(90 to 100 wt. % plagioclase) are somewhat rare in the Artemis region, with a few concentrated 490 
around Shackleton crater and on or near the ridge between Shackleton and Henson craters (∼88.5 491 
°S, 128 °W, near Site 004) (Lemelin et al., 2022). In this region, PAN could be intact and 492 
crystalline, or potentially comprise portion of megabreccia with blocks 100 m in size (Gawronska 493 
et al., 2020).  494 

Small clasts of PAN might exist within lunar meteorites (Nagaoka et al., 2014), but PAN is not 495 
known to exist within the Apollo collection. Some attribute the remote detection of PAN to an 496 
erroneous calibration of spectral data (Warren and Korotev, 2022). The closest representative 497 
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sample is 97.6% An (mode) ferroan anorthosite 15415 (‘Genesis Rock’) (Steele and Smith, 1971; 498 
Wilshire et al., 1972; Turner, 1972), which formed after the Moon’s crust solidified and, therefore, 499 
not representative of the LMO flotation crust remnants present in the south polar region (Ohtake 500 
et al., 2009). For direct testing of the earliest flotation crust products of lunar crust formation, PAN 501 
samples should be collected from the SPA, the oldest impact structure on the Moon. 502 

 503 
PAN is mineralogically-pure in a scale detectable by remote sensing (Ohtake et al., 2009; 504 

Cheek et al., 2013; Donaldson Hanna et al., 2014; Lemelin et al., 2019). A potential opportunity 505 
to study the petrogeneses PAN materials could greatly improve the understanding of early lunar 506 
differentiation processes (Yamamoto et al., 2012; Gawronska et al., 2020; Kring et al., 2022). 507 
Return samples of PAN composition would help determine the spatial extent and composition of 508 
the primary feldspathic crust, improve our inventory of the variety of age, distribution, and origin 509 
of lunar rock types, aid in determining the composition of the lower crust and bulk Moon, and 510 
clarify the local and regional complexity of the current lunar crust (NRC Concepts 3a, 3b, 3c, 3d). 511 
Study of PAN return samples would aid understanding of how massifs were generated from the 512 
SPA basin-forming impact (Kring et al., 2020), and the successive geologic evolution of the region 513 
(NRC Concepts 1b, 1c). PAN samples may also provide an anchor to the early Earth-Moon impact 514 
flux curve by determining the age of the oldest lunar basin (SPA) (Kring, 2007; Mazrouei et al., 515 
2019), establish a precise chronology of lunar geologic events (Marks et al., 2019), help determine 516 
the thickness of the lunar crust (Spudis and Davis, 1986), aid characterization of lunar crust 517 
variability on regional and global scales (NRC Concepts 1b, 1c, 2a). If anorthosite were to be 518 
collected in-situ from strata exposed on the massif cliff (pole-ward) side of Site 102, this would 519 
directly enable the investigation of the structure and composition of the lunar crust (Spudis and 520 
Davis, 1986; Kring et al., 2020) (NRC Concepts 2a, 2d). It would also reveal more about the multi-521 
ring impact basin structure of SPA, quantify the effects of planetary characteristics (composition, 522 
density, impact velocities) on crater formation and morphology, and allow the extent of lateral and 523 
vertical mixing of local and ejecta material to be measured (NRC Concepts 6b, 6c, 6d). 524 

3.1.3 Noritic, Gabbroic, or Troctolitic Anorthosite 525 

Noritic/gabbroic anorthosites belong to the ferroan anorthosite (FAN) suite of lunar rocks and 526 
have been confirmed to exist within the SPA farside Highlands by analyses of the Chang’E-5 527 
return sample CE5C0800YJYX132GP (Wang, 2022). Noritic/gabbroic anorthosite or troctolitic 528 
anorthosite (77.5 to 90 wt. % plagioclase, Figure 4) are the second most abundant lithologies in 529 
the south polar region (Lemelin et al., 2022).The parent melts of noritic/gabbroic anorthosites are 530 
believed to be produced during the lunar magma ocean (LMO) overturn by the decompression 531 
melting of upwelling Mg cumulates and coincident mixing with incompatible element enriched 532 
materials (e.g., potassium, rare earth elements, and phosphorous-rich; KREEP) (Hess and 533 
Parmentier, 1995; Elkins-Tanton et al., 2002, 2011). However, Apollo FANs are not representative 534 
of all lunar highland-type crust (Gross et al., 2014, 2020; Xu et al., 2020), so further study of 535 
noritic/gabbroic anorthosites returned by Artemis astronauts would provide information about the 536 
early evolution of the Moon as relevant to the LMO hypothesis. 537 

 538 
Troctolitic anorthosite is an anorthosite with a minor olivine component (Figure 4) and the 539 

Mg# = 87 ± 5 (Lucey et al., 2006). Troctolitic anorthosite is a member of the magnesian suite (Mg-540 
suite) of lunar lithologies and does not belong to the ferroan anorthosite (FAN) group of lunar 541 
lithologies (Lucey et al., 2006). It is representative of the average lithological composition of Site 542 
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004 (Lemelin et al., 2022). The collection of noritic or gabbroic anorthosite samples from the lunar 543 
surface would enable a more in-depth understanding of lunar crust formation and differentiation 544 
through the study of coexisting pyroxene and plagioclase, which is rare in other early LMO 545 
cumulates (Elardo et al., 2011). A better understanding of LMO crystallization trends from a more 546 
complete suite of materials that record this process will better inform thermal models of the Moon 547 
and the thermal state of the interior during early crustal formation periods (Shearer and Papike, 548 
2005; Elardo et al., 2011) (NRC Concepts 2a, 2d) (NRC, 2007). 549 

 550 
Noritic/gabbroic return samples would improve our understanding of the extent and 551 

composition of the primary feldspathic crust and other products of planetary differentiation, in turn 552 
quantifying the local and regional complexity of the current lunar crust (NRC Concepts 3a, 3c, 553 
3d). This can be most accurately accomplished by collecting samples with known impact crater 554 
sources (i.e., in ejecta blankets with a clear crater source or in-situ from strata within crater walls). 555 
Certain samples may also enable clarification of the lateral rock type variability on regional and 556 
global scales. 557 

 558 
Geochronological analyses of noritic/gabbroic anorthosites would improve the established 559 

global lunar time scale and timing of large impact basin formation (Wood et al., 1970; Hawke, 560 
2003) (NRC Concepts 1b, 1c). Noritic/gabbroic samples will add to our efforts to inventory the 561 
diversity of lunar crustal rocks with respect to composition, age, distribution, and origin (NRC 562 
Concepts 3b, 3c). For example, should troctolitic anorthosite be collected from Shackleton ejecta, 563 
it would improve the understanding of early mafic cumulate products from the Lunar Magma 564 
Ocean (LMO), in particular the precipitation and equilibration of olivine within the lunar crust 565 
(Elkins-Tanton et al., 2011; Elardo et al., 2011) (NRC Concepts 3a, 3b, 3c, 3d). Direct sampling 566 
of troctolitic anorthosite could show how it was generated and preserved relative to the SPA basin-567 
forming impact (Miljković et al., 2021) (NRC Concepts 1b, 1c, 2a, 3a, 3b, 3c, 3d), and the later 568 
geologic evolution of the region (NRC Concepts 1b, 1c) (NRC, 2007). 569 

3.2 Mafic Lithologies 570 

Lunar mafic lithologies include troctolite, norite, and gabbro, including anorthositic and 571 
olivine-bearing norite and gabbro. Many of these lithologies, especially coarse-grained varieties, 572 
contain a mineralogic diversity that allows for most chronologic systems in Table 1 to be applied. 573 
Methods involving Rb-Sr, Sm-Nd, and Lu-Hf isochron approaches have been applied (e.g., Borg 574 
and Carlson, 2023, and references therein). In many cases, important U-rich accessory phases such 575 
as zircon, baddeleyite, and phosphate group minerals are present, allowing for in-situ chronology 576 
by laser ablation and ion probe (e.g., Shaulis et al, 2017; Merle et al., 2020).   577 

3.2.1 Anorthositic Norite, Gabbro, or Troctolite 578 

The regolith of the south polar region is dominated by anorthositic noritic/gabbroic and 579 
anorthositic troctolitic mineral spectra (Lemelin et al., 2022). Of that regolith, anorthositic 580 
norite/gabbro and anorthositic troctolite (60 to 77.5 wt. % plagioclase with varying proportions of 581 
clino- to orthopyroxene, Figure 4) were identified at sites 011, 102, and 105 (Lemelin et al., 2022). 582 
Anorthositic troctolite is an igneous rock with more plagioclase component than traditional 583 
troctolite (Figure 4) It is still unknown if anorthositic troctolites from the AEZ will be coarse- or 584 
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fine-grained. Anorthositic troctolites from SPA may signify lithologies formed very early on in 585 
lunar history (Lucey et al., 2006).  586 

 587 
If anorthositic norite/gabbro or anorthositic troctolite were to be collected from the Artemis 588 

region, those samples may illuminate how differentiation occurred after the overturn of the LMO 589 
including a better characterization of the thermal state of the interior (Elkins-Tanton et al., 2011; 590 
Elardo et al., 2011) (NRC Concepts 2a, 2b, 2d). These differentiation products are valuable tools 591 
to understand more details of the extent and composition of varied lithologies, and to quantify our 592 
inventory of the nuanced complexities therein (i.e., variety, age, distribution, origin) (NRC 593 
Concepts 3a, 3b, 3d) (NRC, 2007). Anorthositic norite/gabbros may also aid in the understanding 594 
of the bombardment history of the inner solar system recorded within the uniquely preserved lunar 595 
crust in samples with impact-reset ages (Kring, 2019). This would allow for the anchoring of the 596 
impact flux curve, determining the cadence of the creation of lunar basins (Kring, 2007), and 597 
establishing a precise absolute chronology of the geologic evolution of the lunar south pole region 598 
(NRC Concepts 1a, 1b, 1c).  599 

3.2.2 Gabbro and Norite 600 

Gabbro is a general term for a coarse-grained (typically plutonic) mafic igneous rock composed 601 
of plagioclase, Ca-rich clinopyroxene (augite), and <5 wt% of each of olivine and orthopyroxene 602 
(Figure 4). Norite is an orthopyroxene-bearing gabbro, with < 5 wt. % clinopyroxene or olivine 603 
(Figure 4). Lunar norites are distinguished from lithologies termed ‘gabbronorites’ by the absence 604 
of a discrete high-Ca pyroxene phase and presence of a wider variety of trace phases (Papike et 605 
al., 2006). Because Shackleton crater is on the edge of the SPA basin, target material of Shackleton 606 
may be ancient noritic crust which may be exposed within crater walls (Gawronska et al., 2020). 607 
Gabbro/norite lithologies in SPA are believed to originate from upper mantle ejecta and contain a 608 
high abundance of Th- and K-bearing materials (Moriarty et al., 2021).  609 

 610 
Gabbros and other mafic lunar lithologies can be used to define magmatic periods and chemical 611 

characteristics of mantle components contributing to the sources of the magmas (Papike et al., 612 
2006). Gabbroic/noritic cumulates may not have participated in the gravitational overturn during 613 
the time of SPA formation (Moriarty et al., 2021), so return samples of this type would reveal 614 
critical information about magmatic differentiation events in early lunar history (NRC Concepts 615 
2a, 2b, 2d, 3a, 3b, 3d).  616 

 617 
If gabbro or norite were to be collected from the Artemis region, it would aid in understanding 618 

the diversity of lunar crustal rocks through the comparison with Apollo samples of similar 619 
composition (NRC Concepts 3a, 3b, 3c, 3d, 6c, 6d). The large-scale lateral and vertical distribution 620 
of gabbro/norite lithologies could be better determined through in-situ observations of strata in 621 
crater walls and determination of source magmas via geochemical study (Shaulis et al., 2017). 622 
Defining isochron ages from analyses of these pyroxene-rich lithologies would aid in the 623 
understanding of the bombardment history of the inner solar system recorded within the lunar crust 624 
(Shih et al., 1993; Norman et al., 2003; Carlson et al., 2014; Zhang et al., 2021) (NRC Concepts 625 
1a, 1b, 1c, 3a, 3b, 3c, 3d). Gabbro/norite analyses could also show how magmatic events, including 626 
differentiation, transpired after the LMO overturn (NRC Concepts 2a, 2b, 2d, 3a, 3b, 3d) (NRC, 627 
2007). 628 
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3.2.3 Olivine Norite or Gabbro 629 

Olivine norite or gabbro are composed of 10 to 50 wt. % plagioclase with varying proportions 630 
of olivine and pyroxene (Figure 4). This lithology is included in the Mg-suite of lunar rocks, which 631 
is representative of the crustal growth and basaltic magmatism period in lunar history (Shearer and 632 
Papike, 2005). The Chinese lunar farside mission Chang’E-4 identified a rock of olivine norite 633 
composition that is believed to have crystallized from the SPA impact pool using a visible and 634 
near-infrared spectrometer aboard the Yutu-2 rover (Lin et al., 2020). Although olivine 635 
norite/gabbro is not a dominant lithology within a 10-km radial exploration zone from any of the 636 
six potential crewed Artemis landing sites, fragments of it could be entrained in breccias. The 637 
Yutu-2 rover discovery of an olivine norite greatly increases the likelihood of finding others like 638 
it within SPA on the lunar nearside. Compositions consistent with olivine norite have been 639 
recognized but those compositions can also represent clast contamination in breccia (Lemelin et 640 
al., 2019). Olivine norite has also been recognized to exist as the most abundant host lithology of 641 
olivine on the edges of the innermost ring material of several basins (e.g., Moscoviense, Humorum, 642 
Imbrium, and Serentitatis), although may represent ‘contamination’ from basaltic materials 643 
(Yamamoto et al., 2010; Lemelin et al., 2019).  644 

 645 
If olivine norite/gabbro were to be collected from the Artemis region, it would shed light on 646 

impact kinematics and ‘contamination’ effects within impact structures (Lemelin et al., 2019), 647 
reveal a more detailed record of the bombardment history of the inner solar system recorded within 648 
the lunar crust (NRC Concepts 1a, 1b, 1c, 3a, 3b, 3c, 3d), and add valuable information to the 649 
diversity of lunar crustal rocks in an impact terrane (NRC Concepts 3a, 3b, 3c, 3d, 6c, 6d) (NRC, 650 
2007). The higher proportions of olivine within an olivine norite or gabbro would allow for more 651 
opportunities to investigate early differentiation processes within the lunar crust. 652 

3.2.4 Troctolite 653 

Troctolite is composed of plagioclase and olivine, with < 5 wt. % of pyroxene (Stöffler et al., 654 
1980; Prissel and Prissel, 2021). Troctolites are included in the “Mg-suite” of nonmare lunar rocks 655 
and analyzed specimens contain a whole rock composition of Mg # = 87 ± 5. Troctolites are the 656 
most abundant Mg-suite sample type in the Apollo collection (Shearer et al., 2015), but the spatial 657 
distribution on a global scale is not well understood. 658 

 659 
Troctolites may represent the start of mantle materials in a subsurface depth profile (Hess, 660 

1994). An olivine-bearing lithology, possibly troctolite, is abundant in the peak-ring of the 661 
Shrodinger basin near the Artemis exploration zone. The original spectroscopy was published by 662 
Kramer et al. (2013). An LRO picture showing many kilometers of rock exposure in the peak ring 663 
was published by Kring et al. (2017). Hydrocode calculations indicate the olivine-bearing lithology 664 
was uplifted from depths of 20 to 30 km (Kring et al., 2016). Previous study of phosphorous 665 
diffusion patterns within olivine grains within lunar troctolite 76535 revealed a two-stage cooling 666 
model (initial rapid cooling at high temperatures, then slow cooling at lower temperatures) (Nelson 667 
et al., 2021). Therefore, continued study of lunar troctolites in impact ejecta or fragments of 668 
troctolites harvested from polymict breccias would lead to greater understanding of the thermal 669 
history of the Moon. However, if troctolite were to be collected from in-situ outcrops within crater 670 
walls, it would provide the most detailed context of the specific landing site’s history through the 671 
observation of geologic relationships and large-scale textures. Because the global distribution of 672 
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Mg-suite lithologies is still unknown, the sampling of troctolite (or another in-situ mafic lithology) 673 
could bring more understanding to their spatial extent and source regions (Shearer et al., 2015).  674 

 675 
If troctolite were to be collected from impact ejecta or otherwise, it would allow for the creation 676 

of a more detailed absolute chronology of serial magmatism, crust/mantle formation and evolution, 677 
and impact and degassing events (McCallum et al., 2006; Elardo et al., 2012; Shearer et al., 2015; 678 
McCubbin and Barnes, 2020) (NRC Concepts 1a, 1b, 1c, 1e). Troctolite samples would improve 679 
the understanding of the structure and composition of the lunar interior, including a potentially 680 
stratified upper mantle (Moriarty et al., 2021) (NRC Concepts 2a, 2b, 2d), and elucidate the nature 681 
of the lower crust-mantle boundary (NRC Concepts 3a, 3b, 3c, 3d) (NRC, 2007). 682 

3.3 Ultramafic Lithologies 683 

Lunar ultramafic lithologies include pyroxenite, peridotite, and dunite.  These lithologies are 684 
typically incompatible trace-element (ITE) depleted, thus rock and mineral compositions can be 685 
low in REE, U, K, and Rb.  Depending on the mineralogy and ITE compositions, Rb-Sr, Sm-Nd, 686 
and Lu-Hf have be applied to certain martian and terrestrial ultramafic specimens (e.g., Lapen et 687 
al. 2005; 2010). Currently, lunar ultramafic rock specimens are extremely rare but are extremely 688 
important for unraveling the timing of early lunar differentiation.  689 

3.3.1 Pyroxenites 690 

Pyroxenite is a cumulate, igneous rock comprised of >90 wt. % pyroxene (Figure 4). It is 691 
believed to be representative of lunar upper mantle layers crystallized directly from the LMO, and 692 
thus difficult to observe in-situ due to a mostly subsurface existence (Gagnepain-Beyneix et al., 693 
2006; Kraettli et al., 2022). Despite the presence of deep craters within SPA, pyroxenite is not 694 
currently known to be present at outcrop-scale within the Artemis region, which may be a relic of 695 
the generally coarse spatial resolution of spectral data. Pyroxenite may, however, have been 696 
excavated from depth and exist at the surface as lithic fragments within brecciated hand samples 697 
within the Artemis region. 698 

 699 
If pyroxenite were to be collected from impact ejecta, it would improve the understanding of 700 

the structure and composition of the lunar interior (NRC Concepts 2a, 2b, 2d), elucidate the nature 701 
of the lower crust-mantle boundary (NRC Concepts 3a, 3b, 3c, 3d), and reveal a more detailed 702 
absolute chronology of impact events that led to the formation of SPA (NRC Concepts 1a, 1b, 1c, 703 
1e) (NRC, 2007). 704 

3.3.2 Peridotite 705 

Peridotite is an olivine-rich (Figure 4) cumulate igneous rock that is not yet known to exist 706 
within the SPA region, however olivine-rich exposures have been identified throughout SPA 707 
(Pieters et al., 2001; Yamamoto et al., 2010, 2012). Although it is not yet known to exist in sizable 708 
deposits identifiable by current detection limitations, the possibility of a peridotite fragment 709 
existing in a brecciated sample remains.  710 

 711 
If peridotite were to be collected from impact ejecta, it would improve the understanding of 712 

the composition of the lunar mantle and therefore, increase knowledge of structure and 713 
differentiation in the lunar interior (NRC Concepts 2a, 2b, 2d), allow interpretation of the nature 714 



Manuscript submitted to Journal of Geophysical Research- Planets 
 

23 
 

of the lower crust-mantle boundary (NRC Concepts 3a, 3b, 3c, 3d), and reveal a more detailed 715 
absolute chronology of impact events, specifically the formation kinematics of the SPA basin 716 
(NRC Concepts 1a, 1b, 1c, 1e) (NRC, 2007). 717 

3.3.3 Dunite 718 

Dunite is composed of 90 to 100 vol. % olivine (Figure 4). Olivine exposures have been 719 
detected within walls, ejecta, and peaks of craters within the SPA basin (Yamamoto et al., 2010). 720 
It is unclear whether the exposures were excavated upper mantle (dunite) material or Mg-rich 721 
plutonic material (troctolite) in the Moon’s lower crust (Yamamoto et al., 2010). Deep-seated 722 
olivine-rich layers would be hidden by a differentiated impact melt sheet (Grieve et al., 1991; 723 
Nakamura et al., 2009; Hurwitz and Kring, 2014), but later impacts could have excavated and 724 
exposed the olivine. This olivine-rich lithology is best observed at young, fresh craters in the 725 
concentric regions around large basins (Yamamoto et al., 2010). It is possible the SPA impact may 726 
have excavated into the mantle (Lucey et al., 1998), although it would have reprocessed the 727 
material in some manner (e.g., giant, differentiated impact melt sheet (Hurwitz and Kring, 2014).  728 

 729 
Very little ultramafic material exists within the Apollo collection. The only sample large 730 

enough to make the parent rock known (dunite fragments 72415-72418) has been extensively 731 
crushed and shows a complex history of shock, deformation, and recrystallization (Albee et al., 732 
1974; Dymek et al., 1975; Lally et al., 1976; Papike et al., 2006). Dunite is representative of lunar 733 
mantle materials. The collection and return of in-situ lunar dunite to Earth would be a significant 734 
finding, as none of this yet exists in the lunar collections and is only hypothesized to exist in select 735 
areas within SPA. If dunite were to be collected from outcrop, it would improve the understanding 736 
of the structure and composition of the lunar interior (NRC Concepts 2a, 2b, 2c, 2d), however this 737 
scenario is unlikely because dunite exists at depth and would not easily be exhumed. If dunite is 738 
present within the Artemis exploration zone, it most likely exists as fragments and chips within 739 
ejecta blankets produced via impact cratering processes significant enough to reach the lunar 740 
mantle depths (Vaughan and Head, 2014; Moriarty and Pieters, 2018).  741 
 742 

Any lunar dunite would be a unique and rare addition to the lunar collection and could increase 743 
our knowledge of the diversity of lunar crustal rocks (NRC Concepts 3a, 3b, 3c, 3d). Because it 744 
would have been excavated from depth via large impactor, it could a) act as a ‘probe’ to examine 745 
mantle lithologies and petrologic evolution of the lunar interior, and b) highlight  information about 746 
the bombardment history of the inner solar system (NRC Concepts 1a, 1b, 1c, 1e) (NRC, 2007). 747 

3.4 Basaltic Materials 748 

Basaltic materials are fine-grained mafic rocks that display a wide range in compositions 749 
similar to the suite of mafic plutonic rocks described earlier.  Understanding the ages of these 750 
materials constrains the volcanic history of the Moon.  Some basaltic materials have U-rich 751 
accessory phases that can be dated in-situ or can be dated by the Pb isotope systematics of other 752 
igneous phases (e.g., Curran et al., 2019; Li et al., 2021).  In many cases, and where the rock has 753 
a relatively simple thermal history, Ar-Ar chronology has the potential for precise determinations 754 
of eruption ages. 755 
 756 

Photogeologic studies and return samples confirmed the lunar mare areas are formed by large 757 
volumes of flood basaltic lava, like the Columbia River Basalts on Earth (Wilson and Head, 1981). 758 
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Although no traditional mare materials are confirmed to exist at the surface in SPA, it likely resides 759 
in considerable quantities at depth in this region and is known as cryptomare. Cryptomare is 760 
basaltic in composition and represents some of the earliest volcanism on the Moon that has been 761 
buried by the later emplacement of crater ejecta material and basin-forming events (Head and 762 
Wilson, 1992). Cryptomare within SPA is estimated to cover a minimum area of 2.5 x 105 km2, be 763 
at least 400 m thick, volumetrically encompass >1.0 x 105 km3, and be 3.63 to 4.1 Ga (Shearer et 764 
al., 2006). Cryptomare is observed within SPA through examination of dark-haloed craters 765 
(Schultz and Spudis, 1983) which enable the darker albedo cryptomare to be studied against the 766 
lighter albedo regolith materials. In-situ cryptomare exposures may not be present or accessible at 767 
any of the six potential landing regions but may still be present within the Artemis exploration 768 
zone as hashed fragments within crater ejecta. Impact melt ponds also exist on the margins of 769 
craters and are composed of basaltic ‘mare’ material, though they are not the classical mare 770 
deposits we were familiarized with from the Apollo landing sites. 771 

 772 
If basaltic materials were to be collected in-situ from ‘cryptomaria’ strata within crater walls, 773 

application of geochronology methods would primarily reveal vital information about early lunar 774 
volcanism including the lunar volcanic flux, mantle sources, and compositional variability of 775 
basalts (NRC Concepts 5a, 5b, 5d). Impact melt ponds may also be sampled in-situ from the outer 776 
margins of craters within the Artemis region but would be more telling of the bombardment history 777 
of a region than a distinct new type of volcanism generated from depth (NRC Concepts 1a, 1b, 1c, 778 
1e). Collecting ‘mare’ type materials from impact ejecta would also prove useful toward 779 
establishing absolute chronology (NRC Concept 1c), broaden our understanding of the diversity 780 
of lunar crustal rocks (NRC Concept 3a, 3b, 3d), and reveal limited information on lunar volcanism 781 
(NRC Concept 5a, 5b, 5d) (NRC, 2007). 782 

3.5 Impact Melts 783 

Impact melt is created by intense shock pressures and temperatures that result in instantaneous 784 
melting and rapid quenching of a rock during impact. The original rock bulk chemistry is 785 
preserved, but the mineralogy and petrography is destroyed to varying degrees (Kettrup et al., 786 
2003). Chronology of these materials typically rely on systems that are susceptible to thermal 787 
disturbances and systems (e.g., Ar-Ar) that can be applied to melts (Turner, 1972; Turner et al., 788 
1973; Dalrymple and Ryder, 1993, 1996; Zellner and Delano, 2015; Norman et al., 2019) .  789 
Distinctions between impact melt, impact glasses, and volcanic glasses are important. Impact 790 
glasses are similar to volcanic glasses but are instead associated with shock and metamorphosed 791 
lithic fragments. Impact melt fragments are found in breccia deposits within and outside impact 792 
craters (‘suevite’), and as spherules in distal ejecta (‘tektites’) (Dressler and Reimold, 2001). 793 
Impact melt rocks differ from impact glasses in that they occur as massive bodies of rock 794 
crystallized from melt bodies, commonly in the form of sheet-like masses, in the interior of some 795 
impact craters. 796 

 797 
Most impact-melt rocks contain lithic and mineral clasts from the target  (Dressler and 798 

Reimold, 2001 and references therein; Stahle, 1972), which show clear shock and thermal effects 799 
(Bischoff and Stöffler, 1984). Complete homogenization of a target rock is only achieved in 800 
impacts by vaporization and whole-rock melting. The shock pressures required to produce whole-801 
rock melting of gabbro is >75-80 GPa, dunite is >60-70 GPa, and most relevant to SPA, anorthosite 802 
is >45-50 GPa (Müller and Hornemann, 1969; Stöffler and Hornemann, 1972; Stöffler, 1974; 803 
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Reimold and Stöffler, 1978; Schaal et al., 1979; Ostertag, 1983; Bischoff and Stöffler, 1992). 804 
Material identified as impact melt composes 30-50% of all hand-specimen-sized rocks returned 805 
from highland landing sites and ~50% of all lunar soil materials, including non-mare collections 806 
(Ryder, 1981). Impact-melt rocks from the parent crater are the most reliable for dating the time 807 
of impact (Staudacher et al., 1982; Stephan and Jessberger, 1992; Deutsch and Scharer, 1994) and 808 
should be the first choice for any dating effort. 809 

 810 
The SPA impact likely formed from a 170 km diameter impactor with an energy of 811 

~4 × 1026 J, replacing the basin center with a melt pool of mantle-dominated composition (Potter 812 
et al., 2012). This large melt pond would have cooled slow enough to differentiate within itself, 813 
creating a differentiated melt sheet within SPA, and therefore the Artemis region (Hurwitz and 814 
Kring, 2014). Sampling of different locations (e.g., quenched margins vs. strongly differentiated 815 
center) of the SPA impact melt sheet would reveal a more detail about the impact, its age, and 816 
thermal history of the Moon.  817 

 818 
Sampling of varied locations of a differentiated melt sheet within SPA would uniquely enable 819 

fundamental information about impact processes including melt sheet differentiation (Hurwitz and 820 
Kring, 2014) (NRC Concepts 6a, 6b, 6c, and 6d), make a distinct and diverse addition to our current 821 
sample collection of lunar crustal rocks (NRC Concepts 3a, 3b, 3d), aid in untangling the 822 
bombardment history of the inner solar system (Kettrup et al., 2003; Lin et al., 2020) (NRC 823 
Concepts 1a, 1b, 1c), and better constrain the thickness and variability of the lunar crust within 824 
SPA (Wieczorek and Zuber, 2001; Besserer et al., 2014) (NRC Concepts 2a, 2b). Impact melt 825 
fragments collected from ejecta would reveal impact event timing in the Artemis region, although 826 
in some cases it may be difficult to identify the source crater of the melt.  827 

3.6 Impact Breccias 828 

Impact breccias can contain a wide assortment of lithologies, a range in textures, materials with 829 
wide ranges in thermal histories, and contain clasts from various locations/levels in the Moon.  830 
Because of this variability, thus the chronologic opportunities can be rock/clast specific. Due to 831 
the classification of SPA as an impact terrain, a significant fraction of the surface lithologies 832 
available to Artemis astronauts and robotic assets will be breccias. Impact breccias are composed 833 
of older rocks that have been broken or melted by meteoroid impact (Stöffler et al., 1979). The 834 
components of breccias may be mineral and lithic fragments, crystallized impact melt, or glassy 835 
impact melt. Despite their randomized nature of rock and mineral components generated by 836 
impacts, they are lithified by the heat and shock associated with the impact. Most of the rock 837 
fragments in breccias of the distal part of the continuous ejecta deposits are from the local bedrock 838 
(Deutsch and Stöffler, 1987; Stöffler and Ryder, 2001). 839 

 840 
A melt rock with clasts of unmelted (potentially shock-metamorphosed) targeted material is 841 

an ‘impact melt breccia.’ These melt bodies may intrude into fractures on the crater floor as veins 842 
and dikes that have been resampled by later impact events (Dressler and Reimold, 2001). 843 
Conversely, breccias composed of exclusively clastic components are ‘fragmental’ or ‘lithic’, and 844 
allow for the possibility to identify the nature of their dominant source rock types (Dressler and 845 
Reimold, 2001).  The lithology, texture, and clast-types within breccias can be so widely varied 846 
that they, as a group, host the potential to address a majority of the NRC (2007) concepts. For 847 
example, a single polymict impact breccia could contain fragments from units with the ability 848 
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reveal the age of the SPA basin (NRC Concepts 1b, 1c), record a history of the ancient thermal 849 
state of the lunar interior (NRC Concept 2d), contain a wide diversity of lithologies (e.g., polymict 850 
breccias) (NRC Concepts 3a, 3b, 3c, 3d), host a cryptomare clast (NRC Concepts 5a, 5b, 5d), host 851 
a clast from a specific impact-associated unit such as a differentiated melt sheet (NRC Concepts 852 
6a, 6b, 6c), and exist as a mixture of units from depth and local ejecta and regolith materials (NRC 853 
Concepts 6d, 7a, 7c, 7d). Breccias are common to find in impact terrains but vary greatly in their 854 
contents. Each brecciated sample will require a highly individualized approach to the analyses and 855 
assessment of applicable NRC Concepts (2007). 856 
 857 
3.7 Regolith Breccias and Soils 858 

The lunar regolith was created by large impacts which reduced the grain size of the underlying 859 
bedrock (Horz et al., 1991; McKay et al., 1991). This regolith layer records the Moon’s impact 860 
history and the nature and timing of material delivered to the Moon’s surface (e.g., Lucey et al., 861 
2006). Due to the high velocity of impact (e.g., Le Feuvre and Wieczorek, 2011) and resultant 862 
melting and/or vaporization, a projectile imparts its geochemical signature into impact melt 863 
deposits it creates (Morgan et al., 1972a, b; Ganapathy et al., 1974; Higuchi and Morgan, 1975; 864 
Gros et al., 1976; James, 1996, 2002; Norman et al., 2002; Puchtel et al., 2008). However, some 865 
impactors completely or partially survive the lunar impact process intact, as evidenced by 866 
unmelted fragments of meteorites that have been found in lunar rocks and soils (e.g., McSween Jr, 867 
1976; Jolliff et al., 1993; Zolensky et al., 1996; Rubin, 1997; Zolensky, 1997; Day et al., 2006). 868 
When paired with a time of impact, these partially unmelted samples help to provide better 869 
geochemical and chronological constraints for models of Solar system dynamics and causes of 870 
impact spikes to the Earth-Moon system (Turner et al., 1973; Tera et al., 1974; Dalrymple and 871 
Ryder, 1993, 1996; Cohen et al., 2000; Kring and Cohen, 2002; Kring et al., 2005; Norman et al., 872 
2006; Ćuk et al., 2010). Geochemical and chronological evidence from lunar samples informs our 873 
understanding of the Earth-Moon system, and the wider inner Solar system. Ages of lunar regolith 874 
breccias and soils can be estimated from the trapped 40Ar/36Ar ratio of a sample. The abundances 875 
of trapped 40Ar within a regolith sample is normalized to 36Ar as an indicator of the point in time 876 
of the last exposure to solar wind (i.e., the space environment), before closure of the system 877 
through burial by an ejecta blanket or a basalt flow. Variations of trapped Ar with time has been 878 
used to estimate the ages of lunar regolith samples (Eugster et al., 1980, 1983, 2001; McKay et al., 879 
1986; Eugster and Polnau, 1997). A model age representing breccia closure represents the last time 880 
grain-size components of the breccia were exposed to solar wind and may be used to calculate the 881 
formation time of the breccia (Joy et al., 2011, after Eugster et al., 2001). The technique was used 882 
to determine the ages of 191 lunar regolith samples from Apollo, Luna, and meteorite collections 883 
(Fagan et al., 2014).  884 

 885 
In addition to what was stated in the impact breccia section, regolith breccias and lunar soils 886 

have the potential to address physical properties of the extremely cold (and possible volatile-rich) 887 
polar regolith (NRC Concept 4d), measure the extent of lateral and vertical mixing of local and 888 
ejecta material (NRC Concept 6d), and utilize the Moon as a natural laboratory for regolith 889 
processes and weathering on anhydrous airless bodies (NRC Concepts 7a, 7b, 7c, 7d). 890 
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4 Chronologic Applications: Limitations and Opportunities 891 

In the previous sections, the Artemis exploration zone lithologies are described and the science 892 
potential for these returned materials is discussed.  Applications of chronologic approaches to these 893 
lithologies and some specific and unresolved major questions are informed by previous 894 
chronologic studies (Nyquist and Shih, 1992; Nyquist et al., 2001; Carlson et al., 2014; Borg et 895 
al., 2015; Barboni et al., 2017; Papike et al., 2018; Borg and Carlson, 2023).  A primary question 896 
is: what is the age of the Moon?  This seemingly simple question has been exceedingly difficult to 897 
answer.   898 
 899 
4.1 Age of the Moon and timing of the LMO 900 

 901 
In the context of a Moon-forming impact model of Lock et al. (2018), the violence of this event 902 

served to destroy most, if not all evidence of the impactor and proto-Earth. The Moon would have 903 
formed from a terrestrial synestia and undergone a magma ocean phase (Elkins-Tanton et al., 2011; 904 
Elardo et al., 2011).  During the lunar magma ocean (LMO) crystallization phase, metal-silicate 905 
differentiation would take place. The timing of lunar core formation is robustly constrained to have 906 
occurred after 4.51 to 4.50 Ga based on the short-lived 182Hf-182W isotope system (Touboul et al., 907 
2007; Kruijer and Kleine, 2017). Thus, the Moon formed after 4.51 – 4.50 Ga. Constraints on the 908 
first silicate minerals to form in the crust and mantle during the magma ocean crystallization phase 909 
is where significant debate exists. Prominent, accessible lithologies that should reflect LMO 910 
fractionation products are anorthositic flotation cumulate rocks that form after about 75% of the 911 
LMO crystallized (Rapp and Draper, 2018). As discussed in Borg and Carlson (2023), numerous 912 
attempts to date lunar anorthosites have yielded many different results. They discuss many issues 913 
that could result in ‘excess’ scatter about an isochron (meaning that the scatter is greater than 914 
predicted from analytical uncertainties alone) and initial isotopic compositions that suggest open-915 
system behavior or variable effects of secondary processes. Thus, Borg and Carlson (2023) suggest 916 
that the most reliable ages are those that are supported by independent confirmation with another 917 
isotopic system and from these criteria conclude that anorthosites related to LMO crystallization 918 
are likely no older than about 4.36 Ga. There are, however, other studies that show relatively robust 919 
isochrons indicative of older ages but lack independent confirmation. These include a Sm-Nd 920 
mineral and whole rock isochron age of 4.463 ±0.040 Ga in Descartes breccia 67215 (Norman et 921 
al., 2003), an Sm-Nd isochron age of 4.436 ±0.034 for an anorthositic clast in Y-86032 (Nyquist 922 
et al., 2006). The oldest reliable age determined directly from a ferroan anorthosite constrains how 923 
late the Moon-forming event was.  The potential for additional anorthositic materials from the 924 
Artemis explorations areas, especially the potential PAN lithologies, may provide materials that 925 
could help better constrain the timing of LMO crystallization and the age of lunar formation, 926 
overall. Other constraints on the age of the Moon come from Lu-Hf model ages of lunar zircon 927 
(Barboni et al., 2017).  These data provide strong evidence that the Moon-forming event occurred 928 
at about 4.50-4.51 Ga and highlight an ‘old versus young’ Moon formation debate. Collection of 929 
any materials containing zircon (e.g., gabbroic clasts) in the exploration zone can further test the 930 
Lu-Hf constraints on lunar formation. 931 

 932 
In addition to the sample return of materials that may help directly date the Moon-forming 933 

event through an expanded sample suite, new analytical opportunities are evolving.  These include 934 
advances in in-situ Rb-Sr isotopic analyses (Dauphas et al., 2022; Zhang, 2022).  Because 935 
anorthositic lithologies are susceptible to disturbance and have experienced protracted thermal 936 
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histories that may have resulted in isotopic disequilibrium (Borg and Carlson, 2023), in-situ 937 
approaches have the potential for identifying sample areas (e.g., in a thick or thin section) that are 938 
disturbed and those that are more pristine. This information will be invaluable for identifying lunar 939 
materials that best preserve their primary or protolith components and target those areas for dating.  940 
Robust ages, as defined by Borg and Carlson (2023), determined directly from LMO products will 941 
have major implications for lunar age models and the timing and duration of the LMO.  942 

 943 
Another way to date the LMO is to assess the formation timing of lunar mantle sources.  A 944 

robust method to determine when the lunar mantle ceased evolving through LMO crystallization 945 
processes is to investigate the 146Sm-142Nd and 147Sm-143Nd isotopic compositions of lunar 946 
materials (Nyquist et al., 1995; Boyet and Carlson, 2007; Borg et al., 2019).  These studies show 947 
that the lunar mantle closed to fractionation at about 4.33 Ga, but these data do not constrain when 948 
LMO crystallization began.  Thus, additional constraints on the timing of LMO crystallization can 949 
be made if additional LMO products were collected and returned, such as those that may have been 950 
excavated from depth during the SPA impact (Potter et al., 2012; Hurwitz and Kring, 2014; 951 
Garrick-Bethell et al., 2020; Lin et al., 2020; Moriarty et al., 2021).  952 
 953 
4.2 Timing of Lunar Magmatism 954 
  955 

Lunar magmatism has been ongoing until at least 2.030 ±0.003 Ga (Li et al., 2021).  Models 956 
that explain the evolution of lunar magmatism through time are underpinned by robust chronology. 957 
While anorthositic rocks are often associated with LMO processes, lunar magmatism is often 958 
associated with materials that are more basaltic in composition. Because these materials (which 959 
include mare basalt, cryptomare, and most Mg-suite rocks) have more diverse mineralogies than 960 
anorthositic rocks, the chronologic opportunities are far greater and essentially encapsulate all of 961 
the systems and approaches listed in Table 1. Of critical note, trace U-rich phases such as zircon 962 
and baddeleyite have the potential for precise U-Pb ages, even in thermally and chemically 963 
disturbed specimens. In thermally undisturbed specimens and/or fine-grained or amorphous 964 
specimens, precise Ar-Ar chronology can yield precise magmatic age determinations (e.g., 965 
Jourdan, 2012 and references therein). Precise mineral isochrons have been successfully applied 966 
to numerous basaltic lunar compositions coarse enough for mineral separations (Nyquist and Shih, 967 
1992; Rankenburg et al., 2007; Carlson et al., 2014). Given that most of the compositional mapping 968 
noted in section 2 indicates anorthositic compositions, mafic clasts could be present that are below 969 
the spatial resolution of spectral mapping. Thus, mafic lithologies have relatively high probabilities 970 
of success for chronology and these data can better inform models for the magmatic evolution of 971 
the Moon and help develop thermal models that explain at least ~2.5 billion years of lunar 972 
magmatic activity. 973 
 974 
4.3 Impact Processes and the Age of SPA 975 

The Artemis exploration zones are located within the SPA basin and within heavily impacted 976 
terrain.  It is expected that most materials collected from these regions will have been affected to 977 
some degree by impact processes.  Figure 2 summarizes some of the predicted geology and unit 978 
ages that might be encountered in the exploration zones.  Critical to assessing the source(s) of 979 
ejecta and their impact ages, dating impact metamorphism and/or impact melting is required.  980 
Standard approaches involve Ar-Ar analyses of impact glass or material that experienced 981 
significant Ar-loss during impact metamorphism.  Materials that crystallized from an impact melt 982 
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can have U-rich phases that can be dated by in-situ U-Pb analyses or can be dated by mineral 983 
isochron approaches.  In most cases, specimens that developed through impact processes can be 984 
dated in a variety of ways depending on the severity of impact metamorphism/melting; often, both 985 
the age of the protolith and the age of thermal metamorphism can be established (Burgess et al., 986 
2007; Fernandes et al., 2013; Shaulis et al., 2017; Černok et al., 2021). The opportunity that impact 987 
materials would be collected from mapped terrains, connections between ejecta and impact basin 988 
can be strengthened.  For impact chronology, the limit on science return is not the analytical 989 
techniques, it’s the nature and types of samples collected from the surface and how they relate to 990 
the surface geology. 991 

5 Sampling Strategy 992 

The lithologies detected in the Artemis region by numerous previous studies (Yamamoto et 993 
al., 2012; Lemelin et al., 2017, 2022) were identified at relatively coarse spatial resolutions (1 994 
km/pixel; 500 m/pixel). It should be noted that two upcoming instruments with improved spatial 995 
resolution (Imaging Infrared Spectrometer aboard Chandrayaan-2; High-Resolution Volatiles and 996 
Minerals Moon Mapper aboard Lunar Trailblazer) will launch prior to crewed Artemis activities. 997 
Both instruments will produce data at a spatial resolution of 70 to 80 m/pixel, which will 998 
dramatically increase the mineralogical detail available to identify less abundant lithologies (i.e., 999 
PAN, olivine-rich units, mafic lithologies, etc.). 1000 

 1001 
The Apollo astronauts were instructed to collect the greatest diversity of samples with the 1002 

coarsest grain sizes to allow for easier mineral separation in laboratory analyses on Earth (Phinney, 1003 
2015). This practice does not need to hold true for the Artemis astronauts. There is benefit in 1004 
collecting the greatest diversity of samples possible with respect to grain size and composition. To 1005 
broaden the potential science impact from returned samples, the Artemis astronauts should focus 1006 
on material diversity and areas that may contain deeply excavated materials, among other activities 1007 
and sampling related to the broader mission goals. 1008 

6 Concluding Remarks 1009 

The Artemis exploration zone contains several regions that may be explored by future crewed 1010 
and uncrewed surface missions. Lithologies in this region were created from igneous and impact 1011 
processes that have persisted over billions of years. Some brecciated samples may contain clasts 1012 
petrogenetically unrelated to one another, which could be an efficient strategy to study a greater 1013 
variety of lunar lithologies without venturing over large spatial regions on the surface. The 1014 
potential for such breadth of lithological variety in an as-yet-unexplored region of the Moon will 1015 
provide chronologic opportunities for untangling the mysterious history of lunar evolution. 1016 
Chronologic opportunities that exist from analyses of returned samples include U-Th-P, Rb-Sr, 1017 
Sm-Nd, Lu-Hf, and Ar-Ar. 1018 

These data will address issues such as the age of the Moon, timing of crucial events in lunar 1019 
history, allow for recalibration of melt extraction model ages, crystallization ages of lithologies, 1020 
and impact flux during the early Solar system. It is evident samples returned from the Artemis 1021 
exploration zone will provide incredible insight into the history of the Moon and early Solar 1022 
system. There is no ‘silver bullet’ analytical approach for all sample types. It will take a highly 1023 
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coordinated effort between lithologies, chronometers, instruments, and institutions to fully 1024 
understand what can be learned from these precious samples.  1025 
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Abstract 18 

The Artemis exploration zone is a geologically-complex region likely hosting some  of the oldest 19 
and as-yet-unstudied materials on the Moon. We review six potential Artemis landing sites (001, 20 
004, 007, 011, 102, and 105) within candidate Artemis III landing regions ‘Connecting Ridge,’ 21 
‘Peak Near Shackleton,’ ‘Leibnitz Beta Plateau,’ ‘de Gerlache Rim,’ and ‘de Gerlache Rim 2.’ 22 
Kaguya Spectral Profiler mineral data were used to determine average lithological composition at 23 
each landing site. Potentially accessible geologic materials, their ages and significance, and 24 
appropriate application of radiometric chronometers are discussed in reference to return samples 25 
from each potential landing site. Chronologic analyses of return samples from the Artemis 26 
exploration zone will enable the anchoring of the lunar impact flux curve, determine the absolute 27 
timing of pivotal events in lunar geologic history, and reveal geological diversity of the 28 
differentiated lunar body. 29 

 30 

Plain Language Summary 31 

Artemis astronauts will bring new samples from the Moon back to Earth. We discuss the 32 
geology of some landing sites the astronauts might visit, what types of rocks they may encounter, 33 
and how to examine them using geochronology. The application of geochronology to Moon rocks 34 
is essential to know the absolute timing of major events in lunar and early Solar system history. 35 

1 Introduction 36 

The Artemis exploration zone (AEZ) includes terrain dominated by photogeologically-mapped 37 
and stratigraphically-determined Nectarian and pre-Nectarian age surfaces.  These surfaces have 38 
materials that can help answer important questions regarding impact chronology, history of major 39 
lunar events such as formation and differentiation, and an opportunity to sample deeply excavated 40 
materials. To answer these questions, detailed petrologic analyses coupled with chronologic 41 
analyses of specimens collected from the AEZ are required.   42 

 43 
Examination of impact-cratered surfaces can determine fluxes in impact events in lunar history 44 

(Neukum et al., 1975; Boyce et al., 1977; Kring, 2008; Mazrouei et al., 2019; Lagain et al., 2022; 45 
Fairweather et al., 2022). Establishing the ages of specific impact craters and basins is important 46 
because these ages can anchor a crater chronology of the lunar surface (Arvidson et al., 1979; 47 
Neukum, 1984; Neukum et al., 2001; Che et al., 2021; Yue et al., 2022) and better define the 48 
bombardment history of the inner solar system (Kring et al., 2005; Kring, 2006, 2007, 2008, 2009). 49 
The returned lunar samples by the Apollo program were subjected to radioisotope dating, but many 50 
of the sampling sites might be part of the perturbated megaregolith formed by ejecta of large impact 51 
basins  (Howard et al., 1974; Moore et al., 1974; Head et al., 1993; Haskin, 1998; Haskin et al., 52 
1998; Petro and Pieters, 2008) and many studied specimens cannot be reliably attributed to a 53 
specific impact event (Korotev et al., 2002).  The Imbrium basin is dated at roughly ~3.5 Ga 54 
(Deutsch and Stöffler, 1987; Spudis et al., 1988; Merle et al., 2014; Zhang et al., 2015), but ages 55 
of other significant lunar basins, such as the Orientale Basin, have yet to be firmly established 56 
(Stöffler et al., 2006; Meyer et al., 2016; Wu et al., 2019). The mapped ages of features in Figure 57 
1 are in flux based on crater-counting ages determined from orbit (Tye et al., 2015; Deutsch et al., 58 
2020).  While Spudis et al. (2008) mapped Shackleton crater with a 3.6 Ga age, Zuber et al. (2012), 59 
Tye et al. (2015), and Kring et al. (2021) reported Imbrian ages of ~3.69 Ga, 3.51 +0.05/-0.08 Ga, 60 
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and 3.43 +0.04/-0.05 Ga, respectively.  Moreover, while Spudis et al. (2008) mapped Shoemaker 61 
and Faustini craters with Nectarian ages, Tye et al. (2015) report pre-Nectarian ages, similar to 62 
those at Haworth. The variable age estimates illustrate the need for sample return and radiometric 63 
analyses in Earth-based laboratories. The age of the South Pole-Aitkin (SPA) basin, thought to be 64 
the oldest and largest basin on the Moon and, thus, a key anchor point in defining the lunar 65 
chronology, is still not precisely known (Wilhelms et al., 1987; Hiesinger et al., 2012). The South 66 
Pole-Aitken Terrane has not yet been directly sampled but it is the focus for the crewed Artemis 67 
missions (Jolliff et al., 2000) (Figure 1).  68 

 69 
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 Sampling impact-generated pre-Nectarian- and Nectarian-age materials in the Artemis 70 
exploration zone also provides a way to test the crater counting calibration curve and refine the 71 
impact flux during the first billion years of Earth-Moon history; i.e., testing the lunar cataclysm 72 

hypothesis, which is the highest priority science objective as defined by the National Research 73 
Council (NRC) (2007).  In addition, the region may contain debris from the SPA basin. Recovering 74 
debris with an SPA impact-reset age will provide an opportunity to address the second highest 75 
priority science objective (NRC, 2007): to provide an anchor to the basin-forming epoch on the 76 
Moon. Currently, ages for SPA range from 4.39 Ga to 4.25 Ga (Hiesinger et al., 2012; Morbidelli 77 
et al., 2012).  Collectively, those data will refine the crater calibration curve, which can then be 78 
applied to surfaces around the entire Moon and other planetary surfaces in the Solar system. The 79 

Figure 1. Shaded relief geological map of the lunar south polar region with the locations of 
several potential Artemis landing sites (001, 004, 007, 011, 102, and 105).  Base map by 
Allender et al. (2019) in the LPI Lunar South Pole Atlas using geology of Spudis et al. (2008) 
and Lunar Orbiter Laser Altimeter data.  The mapped ages of features are in flux based on 
crater-counting ages determined from orbit.  For example, while Spudis et al. (2008) mapped 
Shackleton crater with a 3.6 Ga age, Zuber et al. (2012), Tye et al. (2015), and Kring et al. 
(2021) reported Imbrian ages of ~3.69 Ga, 3.51 +0.05/-0.08 Ga, and 3.43 +0.04/-0.05 Ga, 
respectively.  Moreover, while Spudis et al. (2008) mapped Shoemaker and Faustini craters 
with Nectarian ages, Tye et al. (2015) report pre-Nectarian ages, similar those that of Haworth.  
Those disparate ages illustrate the need for sample return and radiometric analyses in Earth-
based laboratories. Cab- Cabeus; Haw- Haworth; Shoe- Shoemaker; Fau- Faustini; deG- de 
Gerlache; Sha- Shackleton; Sl- Slater; H- Henson; Sv- Sverdrup. 
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pre-Nectarian and Nectarian impact events in the Artemis exploration zone excavated and 80 
produced breccias composed, in part, of unusually old highland terrain crust. Samples of that 81 
material could provide additional opportunities to constrain the timing of the giant Moon-forming 82 
impact, lunar differentiation, crustal formation, and subsequent magmatism, which are tied to 83 
several other important scientific objectives (NRC, 2007; Artemis III Science Definition Team 84 
Report).   85 

 86 
The impact cratering process is critical for excavating materials from depth and allows access 87 

to materials that may otherwise be deeply buried.  Exhumed lithologies also provide information 88 
on the local stratigraphy (Pieters et al., 1994; Kring, 2009; Kenkmann and Artemieva, 2021), for 89 
example, at Shackleton crater (Gawronska et al., 2020). Because SPA is the largest and oldest 90 
impact basin on the Moon (Wilhelms et al., 1987), it may contain rare upper mantle materials at 91 
the surface in select locations (Moriarty et al., 2021). Thus, a cross-section of lunar crust up to 10’s 92 
of kilometers deep may be developed if the return sample collection strategy includes samples 93 
collected from varied crater features (e.g., modification zones, central uplifts, etc.) and impact 94 
breccias (Kring, 2009).  Impact crater ejecta may also allow for the determination of the average 95 
composition of impacted crust from the sampling of homogenized subsurface lithologies in the 96 
form of impact melt materials (Kring, 2009). The environmental consequences (e.g., dust lofting, 97 
ejecta blanketing, flood basalts, rockfall; mountain-forming, etc.) of these impacts may also be 98 
inferred through orbital, field, and sample observation of impact craters (Mukhametshin et al., 99 
2018; Michaut and Pinel, 2018; Xie et al., 2020; Bickel et al., 2020). The delivery and abundance 100 
of elements through impacts may also be determined and used to piece together a history of the 101 
chemical evolution of the lunar interior and crust (Bottke et al., 2010; Barnes et al., 2016; Joy et 102 
al., 2016, 2020; Zhu et al., 2019). Finally, investigations and sampling of heavily impact-cratered 103 
terrain may also provide access to impact melt samples from other craters (Kring et al., 2005; 104 
Kring, 2007, 2009).   105 

 106 
This study reviews six potential Artemis landing sites (001, 004, 007, 011, 102, and 105) within 107 

candidate Artemis III landing regions ‘Connecting Ridge,’ ‘Peak Near Shackleton,’ ‘Leibnitz Beta 108 
Plateau,’ ‘de Gerlache Rim,’ and ‘de Gerlache Rim 2’ (NASA, 2020b, 2022). The numbered 109 
potential landing sites correspond to the illumination sites identified in previous work (Bussey et 110 
al., 2010; Mazarico et al., 2011; Speyerer and Robinson, 2013). Kaguya Spectral Profiler mineral 111 
count data were used to determine average lithological composition at each landing site. Potential 112 
accessible geologic materials, their ages and significance, and appropriate application of 113 
radiometric chronometers are discussed in reference to return samples from each potential landing 114 
site. Chronologic analyses of return samples from the Artemis exploration zone will enable the 115 
anchoring of the lunar impact flux curve, determine the absolute timing of pivotal events in lunar 116 
geologic history, and reveal geological diversity of the differentiated lunar body. 117 

1.1 Input Data 118 

Kayuga Spectral Profiler (SP) is a visible to near infrared spectrometer with a ~500 m spatial  119 
footprint acquiring data via three spectral bands (one visible, two near infrared) between 500 and 120 
2600 nm (Haruyama et al., 2008).  However, topography in the polar regions causes different 121 
surfaces to receive widely uneven solar illumination, from no direct incident sunlight in 122 
topographic depressions (such as permanently shaded regions) to abundant sunlight on steep Sun-123 
facing slopes, which makes spectral interpretation challenging.  Lemelin et al. (2022) converted 124 
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the SP radiance data (level 2B1) measured in each SP orbit into bidirectional reflectance using the 125 
photometric function of Yokota et al. (2011), which allowed the conversion of radiance data into 126 
reflectance data at a standard viewing geometry of 30° incidence angle and 0° emission angle. 127 
However, as the photometric function of Yokota et al. (2011) assumes a flat sphere, reflectance 128 
measurements higher or lower than expected occur on sloped surfaces. The Lunar Orbiter Laser 129 
Altimeter (LOLA) onboard LRO acquires reflectance data at 1064 nm and is unaffected by slope 130 
effects as it sends its own illumination. Lemelin et al. (2022) thus scaled the gridded SP reflectance 131 
data to the gridded and calibrated LOLA data at their common wavelength of 1064 nm. They could 132 
then calculate FeO abundances using reflectance data at 750 and 950 nm, and use Hapke radiative 133 
model (e.g., Hapke, 1981, 2001) to estimate the abundance of olivine, low-calcium pyroxene 134 
(LCP), high-calcium pyroxene (HCP), and plagioclase on continuum removed spectra, using FeO  135 
 136 

 137 
as a constraint. We used these gridded mineral maps and the gridded abundance of FeO to study 138 
the probable geology of the Artemis region. 139 

1.2 Potential Landing Sites 140 

The Artemis III mission will not be supported with a rover, so crew will be limited to walking 141 
extravehicular activities (EVAs) within 2 km distance of the Human Landing System (HLS) 142 
(Coan, 2020; Kring et al., 2023).  An unpressurized Lunar Terrain Vehicle (LTV) will be deployed 143 

Figure 2. Summary of age units at each potential landing site in accordance with Figure 1. 
Upper and lower age limits of each time period are from Stöffler et al. (2006).  Although not 
visible at the scale mapped in Figure 1, all sites will contain small Copernican-age craters. 
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for later missions (NASA, 2021, 2023) and should provide an exploration range up to 10 km radial 144 
distance from a lander.  For the purposes of our study, we utilize that 10 km radial distance around 145 
potential Artemis landing sites to evaluate the types of samples available for collection and return 146 
to Earth.  147 

1.2.1 Site 001 (‘Connecting Ridge’ region) 148 

Potential Artemis landing site 001 (NASA, 2020a) (Site “SP-1” at (-89.45, 222.69) in Mazarico 149 
et al. (2011); “Point B” at (89.44°S, 141.8°W) in Bussey et al. (2010)) is within the Artemis III 150 
candidate landing region called “Connecting Ridge” and located on a massif ridge connecting 151 
Shackleton and Henson craters (Figure 1a). This ridge itself is roughly pre-Nectarian in age 152 
(Stöffler et al., 2006) but is cross-cut by Shackleton crater and secondary crater ejecta believed to 153 
be of significantly younger Imbrian age (3.51 to 3.69 ± 0.4 Ga) (Spudis et al., 2008; Zuber et al., 154 
2012). The ridge will be covered with Shackleton ejecta, potentially including fragments of the 155 
original highland crust, components from the lunar magma ocean and later intrusive rocks, 156 
cryptomare from SPA, plus impact melts from Shackleton, SPA, and other pre-Nectarian impacts 157 
(Kring, 2019; Halim et al., 2021; Kring et al., 2022). Anticipated dominant lithologies are 158 
anorthosite below the Shackleton crater rim down to ~900 m, regolith, and breccia (Gawronska et 159 
al., 2020). Lowest FeO values within the Artemis exploration region determined by Kaguya SP 160 
(~5 to 7 wt. %) are found in the 89° to 90°S region near Shackleton crater (applies to Site 004 as 161 
well) (Lemelin et al., 2022). 162 

1.2.2 Site 004 (along margin of ‘Connecting Ridge’ region) 163 

Potential Artemis landing site 004 (NASA, 2020a) ( Site “SP-4” at (-89.78, 204.27) in 164 
Mazarico et al. (2011); “Point A” at (89.68°S, 166.0°W) in Bussey et al. (2010)) is along the 165 
margin of Artemis III candidate landing region called “Connecting Ridge” on a portion of 166 
Shackleton crater (ridge is pre-Nectarian age, 4.52 to 3.92 Ga, (Stöffler et al., 2006); crater is 167 
Imbrian age; 3.6 ± 0.4 Ga (Spudis et al., 2008; Zuber et al., 2012; Tye et al., 2015; Halim et al., 168 
2021)) rim and is nearly coincident with the geographic south pole of the Moon (Figure 1). 169 
Imbrium secondary crater materials and pre-Nectarian ejecta from Henson crater are accessible 170 
within a 10 km radial distance (Figure 2). This site contains multiple rock exposures (Gawronska 171 
et al., 2020). Anticipated lithologies include pure anorthosite exposures (Yamamoto et al., 2012; 172 
Lemelin et al., 2017). Sites 001 and 004 provide a unique opportunity to sample rays from Tycho 173 
crater that reach directly between the two sites (Lemelin et al., 2022). Both sites provide an 174 
opportunity to sample pre-Nectarian crater, Imbrian crater, and Imbrian secondary crater materials. 175 

1.2.3 Site 007 (‘Peak near Shackleton’ region) 176 

Potential Artemis landing site 007 (NASA, 2020a) (Site “SP-7” at (-88.81, 123.64) in Mazarico 177 
et al. (2011); “Point D” at (88.79°S, 124.5°E) in Bussey et al. (2010)) is within the Artemis III 178 
candidate landing region “Peak near Shackleton” located on a massif ridge between Shackleton 179 
and Slater craters (Figure 1a). Within a 10 km radial distance, Site 007 would enable the sampling 180 
of materials from the pre-Nectarian massif, Nectarian crater, and Imbrian crater (Figure 2). This 181 
site may provide the possibility to observe layered strata from Shackleton and compare ejecta and 182 
stratigraphy with Slater crater. Layered terrain is 10 to 50 m thick in Shackleton (Halim et al., 183 
2021). The lateral extent of these layers is difficult to observe due to poor illumination conditions, 184 
but they may be ejecta produced from older impacts (i.e., Haworth, Shoemaker, Faustini). 185 
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Interestingly, numerical modeling efforts have determined the top bed in this stratigraphic 186 
sequence may contain over ~150 m of Shackleton ejecta (Halim et al., 2021). Kumari et al. (2022) 187 
identified 3,204 resolvable boulders (ranging from 0.7 to 14 m diameter) within a 10 km radius of 188 
site 007.  189 

1.2.4 Site 011 (‘de Gerlache Rim 1’ and ‘de Gerlache Rim 2’ regions) 190 

Potential Artemis landing site 011 (NASA, 2020a) (Site “SP-11” at (-88.67, 291.90) in 191 
Mazarico et al. (2011); “Point C” at (88.71°S, 68.7°W) in Bussey et al. (2010)) is within the 192 
Artemis III candidate landing region “de Gerlache Rim”. De Gerlache Rim 1 is approximately 193 
centered on the crater rim, while de Gerlache Rim 2 is mostly north of the crater rim (Figure 1). 194 
Based on absolute crater counting models, de Gerlache is believed to be Nectarian in age (Tye et 195 
al., 2015; Deutsch et al., 2020) and, just beyond de Gerlache Rim 1, its rim is cross-cut by an 196 
Eratosthenian-age Marvin crater. The de Gerlache impact appears to be younger than the pre-197 
Nectarian ‘Connecting Ridge’ massif (Spudis et al., 2008) and, thus, may have covered the massif 198 
with ejecta prior to the Shackleton impact. Pre-Nectarian terra, Nectarian crater, and Imbrian 199 
secondary crater materials are present within a 10 km radial distance from Site 011 (Figure 2). 200 
This site may allow for volatile sampling within secondary craters and comparison to Apollo 201 
permanently shadowed region (PSR) crater samples (Li and Milliken, 2017; Kereszturi et al., 202 
2022). The de Gerlache ejecta within the region may provide samples of anorthositic crustal 203 
lithologies and SPA ejecta. Within a 10 km radial distance around site 011, over 3,774 boulders 204 
from 0.7 to 26 m in diameter have been identified (Kumari et al., 2022). 205 

1.2.5 Site 102 (‘Leibnitz Beta Plateau’ region) 206 

Potential Artemis landing site 102 (NASA, 2020a) (Site “SP-20” at (-85.43, 31.73) in Mazarico 207 
et al. (2011)) is within the Artemis III candidate landing region called “Leibnitz Beta Plateau” 208 
located atop informally-named Mons Leibnitz Beta, which is now called Mons Mouton (Figure 1). 209 
The Leibnitz Mountains lie on the topographically-high ring outlining the SPA basin (Garrick-210 
Bethell and Zuber, 2009). This plateau is bounded by a nearly vertical cliff facing south-poleward. 211 
The cliff may provide a unique opportunity to access a roughly 8-km-thick cross-section of lunar 212 
crust. Massifs like Mons Mouton may also provide an opportunity to identify additional lithologies 213 
produced by early lunar magmatic processes. This site may allow for sampling from adjacent pre-214 
Nectarian and Nectarian aged impacts Haworth (4.18 ± 0.02 Ga), Shoemaker (4.15 ± 0.02 Ga), 215 
and Faustini (4.10 ± 0.03 Ga) craters (Figure 2; Tye et al., 2015). NASA’s VIPER rover is set to 216 
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land and traverse near this site to search for and sample volatiles up to approximately 1 meter deep 217 
within the regolith (Shirley and Balaban, 2022). 218 

1.2.6 Site 105 219 

Potential Artemis landing site 105 (NASA, 2020a) ((-87.18, 62.84) in Patterson et al. (2022) 220 
is located between pre-Nectarian aged Shoemaker (4.15 ± 0.02 Ga) and Faustini (4.10 ± 0.03 Ga) 221 
craters (Tye et al., 2015) (Figures 1, 2). Site 105 is downslope from Site 102. This region contains 222 
many large blocks and boulders (1.5 to 9 m diameter) (Patterson et al., 2022) and the floors of 223 
Shoemaker and Faustini likely house icy volatile deposits (Tye et al., 2015; Patterson et al., 2022; 224 
Brown et al., 2022), and the ridge bisecting Faustini and Shoemaker crater rims has ejecta deposits 225 
likely to be up to Nectarian in age (Tai Udovicic et al., 2022). This site contains the lowest FeO 226 
values (~5-7 wt. %) of all of the 84° to 90° S region (Figure 1a; Lemelin et al., 2022). 227 

2 Isotope Chronology 228 

The timing of major events, including the timing of lunar differentiation, duration of igneous 229 
activity, and impact history, can be constrained with isotope chronology of lunar materials (e.g., 230 
Nyquist and Shih, 1992).  Foundational chronologic analyses of Apollo 11 samples are 231 
summarized in the Proceedings of the Apollo 11 Lunar Science Conference (1970) and “The Moon 232 
Issue” of the journal Science (Abelson, 1970, and articles in the issue) and laid the groundwork 233 
for all future studies of lunar return samples. The commonly applied isotope systems are 234 
summarized in Table 1 and described below.  Each radiometric system is best suited to a particular 235 
subset of geologic events and temperatures. For example, some approaches are best suited to date 236 
high-temperature igneous crystallization, whereas other systems best reflect cooling below 300 to 237 
500 ºC.  Furthermore, the radiometric systems may require specific minerals and/or chemical 238 
compositions.  Thus, some chronologic approaches may be more suitable to different lunar 239 
lithologies than others, simply by the nature of the texture and/or mineralogy of the sample. The 240 

Isotope System 

Analytical Technique 
Bulk 
sample 
or glass 

Mineral/ 
bulk rock 
isochron 

Single 
mineral 

In-situ  
(Laser ablation/ 
secondary ion) 

Wet 
chemistry 

40K  40Ar 
(40Ar - 39Ar) X  X X  
87Rb  87Sr  X  X X 
147Sm  143Nd  X    
146*Sm  142Nd  X    
176Lu  176Hf  X X X X 
187Re  187Os  X    
232Th  208Pb  X X X X 
235U  207Pb  X X X X 
238U  206Pb  X X X X 

Table 1. Commonly applied radiogenic isotope systems and the methods by which they may be 
analyzed. 



Manuscript submitted to Journal of Geophysical Research- Planets 
 

10 
 

ages of secondary processes, such as impact metamorphism, may also be determined, depending 241 
on the material and degree of metamorphism/melting.   242 

2.1 U-Th-Pb 243 

The 238U-206Pb, 235U-207Pb, and 232Th-208Pb isotope systems are some of the most versatile 244 
isotope systems that can be applied to a wide variety of lunar lithologies.  These systems were 245 
developed prior to the Apollo 11 mission and were applied to the first returned specimens (e.g., 246 
Silver, 1970; Tatsumoto and Rosholt, 1970).  Because 238U-206Pb and 235U-207Pb reflect two isotope 247 
systems in the U-Pb system, ages can be determined using multiple approaches including standard 248 
U-Pb isochrons, inverse Pb-Pb isochrons, and U-Pb concordia diagrams (e.g., Wetherill and Tera-249 
Wasserburg diagrams).  The 238U, 235U, and 232Th half-lives are 4.468, 0.704, and 14.01 Ga, 250 
respectively (Steiger and Jäger, 1977).  Despite recent studies that refine the decay constants (e.g., 251 
Amelin and Zaitsev, 2002; Schoene et al., 2006), the IUGS-IUPAC recommends the decay 252 
constants of Jaffey et al. (1971) for 238U and 235U (Villa et al., 2022). Uranium and Th-rich and 253 
high U/Pb and/or Th/Pb ratio trace phases such as zircon, baddeleyite, zirconolite, tranquillityite, 254 
apatite, merrillite, and monazite are documented in many lunar lithologies and have the potential 255 
for precise chronology (e.g., Lovering et al., 1974; Rasmussen et al., 2008; Barboni et al., 2017; 256 
Shaulis et al., 2017).  Even in materials without these trace phases, many lunar rocks and/or their 257 
sources have relatively high 238U/204Pb ratios (denoted as µ) of about 360 to over 2600 for lunar 258 
basaltic rocks (e.g., Snape et al., 2018) whereas the µ-value of the terrestrial mantle is about 8 259 
(e.g., Ballhaus et al., 2013).   260 

 261 
Since most lunar rocks have experienced secondary processes such as thermal and/or impact 262 

metamorphism, some mineral hosts are more resilient to disturbances of the U-Th-Pb systems than 263 
others.  For example, zircon has the potential to preserve the U-Th-Pb systematics of crystallization 264 
from a melt and will retain those characteristics even through metamorphic events that would 265 
disturb U-Th-Pb in other materials (Cherniak and Watson, 2001).  Zircon is considered one of the 266 
most robust time capsules nature has to offer. Uranium and Pb in baddeleyite also has the potential 267 
to record igneous events despite the host rock being subjected to high-grade metamorphic 268 
conditions (Niihara et al., 2009). Microstructural analyses of trace phases such as baddeleyite can 269 
reveal relict polymorphs that provide additional context for age data (White et al., 2020).  Other U 270 
and/or Th-rich mineral hosts such as apatite, however, are less resistant to disturbances than zircon 271 
for any given temperature-time (T-t) history (Chew et al., 2021) and can record the timing of 272 
metamorphic events (Nemchin et al., 2009).   273 

 274 
Analytical approaches for U-Th-Pb analyses include in-situ (minimally destructive) or wet 275 

chemical (fully destructive).  In-situ analyses usually involve either a laser or secondary ion source 276 
that samples the material of interest at spatial resolutions between 5 and 100 µm.  The advantages 277 
of in-situ approaches are that analyses often have petrological context through microstructural 278 
and/or mineral textural data.  Age data can be collected from very small specimens (Che et al., 279 
2021) and clasts (Snape et al., 2018).  One disadvantage of in-situ analyses is that the measurement 280 
precision is often significantly less than that of wet chemical approaches such as isotope-dilution 281 
thermal ionization mass spectrometry (ID TIMS; see Schoene (2014) for a full treatment of the 282 
methods).  In lithologies that do not typically contain U and Th-rich trace phases, measurement of 283 
the 207Pb/206Pb and 204Pb/206Pb ratios of other phases such as pyroxene can yield precise ages.  For 284 
example, Borg et al. (2011) measured an age of 4359.2 ± 2.4 Ma for sequentially-dissolved 285 
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pyroxene in ferroan anorthosite 60025. Overall, with modern analytical techniques, the ages of 286 
most lunar lithologies can be precisely determined with the U-Th-Pb systems. 287 

2.2 Rb-Sr 288 

The Rb-Sr isotope system has been applied to Apollo lunar materials since they were collected 289 
(Gopalan et al., 1970; Hurley and Pinson, Jr., 1970; Papanastassiou et al., 1970) and has the 290 
potential for precise chronology (Rankenburg et al., 2007) and chemical/isotopic tracing (Borg et 291 
al., 2022).  The IUGS-IUPAC-recommended decay constant for 87Rb is (1.3972 ± 0.0045) × 10-292 
11a-1 (Villa et al., 2015).  Great care must be taken in comparing data because many studies used 293 
and/or still use the value of 1.42 × 10-11a-1 reported in Steiger and Jäger (1977) and other studies 294 
may adopt the new decay constants.  In any case, most published age data can be recalculated to 295 
the same or updated decay constant. 296 

 297 
Strontium isotopic and 87Rb/86Sr ratios of rock, glass, and/or mineral materials are typically 298 

measured with wet chemical approaches (destructive analyses) where the materials are digested 299 
and Rb and Sr are chemically purified and analyzed (Charlier et al., 2006). Common lunar rock-300 
forming minerals such as pyroxene, plagioclase, K-feldspar, and olivine have highly variable 301 
Rb/Sr ratios making them amenable for dating using the isochron approach.  Very recent 302 
advancements in mass spectrometry have enabled in-situ analysis of 87Sr/86Sr and 87Rb/86Sr by 303 
laser ablation plasma-source mass spectrometry (Dauphas et al., 2022) opening a vast new area for 304 
investigation with a minimally-destructive, high-spatial resolution (~100 µm) technique.  305 

 306 
In addition to chronology, the Rb-Sr system can be used as an isotope tracer.  For example, 307 

Borg et al. (2022) model the Rb-Sr isotope systematics of the Earth, Moon, and Theia (the proto-308 
Earth impactor) to constrain the timing of volatile addition and the timing of the Moon-forming 309 
event.  The Rb-Sr isotope system can also be used to trace potential mixing relationships and the 310 
sources of lunar igneous rocks (Hui et al., 2013), and potentially define model age constraints in 311 
materials that cannot otherwise be dated (McLeod et al., 2016). 312 

2.3 Sm-Nd 313 

Similar to U-Pb, Sm-Nd consists of two isotope systems (146Sm-142Nd and 147Sm-143Nd) in one 314 
element system, except 146Sm is now extinct. The Sm-Nd system has been applied to most lunar 315 
lithologies for chronology and tracers of magma sources (Nyquist et al., 1995; Brandon et al., 316 
2009; Carlson et al., 2014; Borg et al., 2015; Johnston et al., 2022). The IUGS-IUPAC 317 
recommended half-lives of 146Sm and 147Sm are 0.068 – 0.103 and 106.25 ± 0.38 Ga, respectively 318 
(Villa et al., 2020).  Given the uncertainty of the 146Sm decay rate, recent papers (McLeod et al., 319 
2014) use both half-life values of 0.068 and 0.103 Ga in their model calculations. 320 

 321 
High-precision analyses of Sm-Nd requires wet chemical approaches and relatively large 322 

samples with minimum mass requirements of 0.05 to 1 g, depending on Sm and Nd concentrations, 323 
mineralogy, and grain size. Most lunar rocks and minerals have overall low concentrations of Sm 324 
and Nd (ppb to ppm concentrations) and limited natural variations in Sm/Nd ratios due to their 325 
similar geochemical characteristics in most materials.  The range in 147Sm/144Nd ratios in most 326 
lunar minerals (feldspar, pyroxene, olivine, phosphate) is limited between about 0.14 to 0.30, 327 
unlike Rb-Sr, U-Th-Pb, and Lu-Hf where the range in parent/daughter ratios can be orders of 328 
magnitude greater.  Despite the limited range in Sm/Nd ratios and resulting limited variations in 329 
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radiogenic Nd isotopic compositions, advancements in mass spectrometry allow very high 330 
precision (few ppm) measurements of 143Nd/144Nd and 142Nd/144Nd ratios (Rankenburg et al., 2006; 331 
Boyet and Carlson, 2007). These high-precision measurements are also required to accurately 332 
measure and ultimately correct neutron capture effects from cosmic ray exposure that can alter the 333 
Sm and Nd isotopic compositions (Nyquist et al., 1995; Brandon et al., 2009).  334 

 335 
Measured Sm and Nd isotopic compositions corrected for neutron capture effects have yielded 336 

many robust ages of lunar materials (Carlson et al., 2014; Borg and Carlson, 2023).  As opposed 337 
to the other isotope systems listed in Table 1, Sm and Nd are geochemically similar lanthanide 338 
elements that are relatively immobile during periods of shock metamorphism.  Other elements, 339 
such as the alkalis (Rb), can be more easily mobilized than Sm-Nd.  This is evident in some studies 340 
that compare Sm-Nd and Rb-Sr measured on the same sample aliquots where there can be greater 341 
scatter about a Rb-Sr isochron than for a Sm-Nd isochron (Edmunson et al., 2009).  In addition to 342 
standard isochron chronology, coupled 146-147Sm-142-143Nd isotope systematics can be used to 343 
assess the mantle closure ages (i.e., the duration of lunar magma ocean crystallization) for the 344 
sources of lunar basalts (Boyet and Carlson, 2007; Brandon et al., 2009; McLeod et al., 2014).  345 
Finally, the nature and compositions of lunar mantle source compositions and potential mixtures 346 
can be assessed with the Sm-Nd system (Borg et al., 2009; Srivastava et al., 2022).   347 

2.4 Lu-Hf 348 

The Lu-Hf isotope system was first applied to lunar materials by Patchett and Tatsumoto 349 
(1981) and Unruh et al. (1984).  Few subsequent papers presented Lu-Hf data (Beard et al., 1998) 350 
until the application of plasma-source mass spectrometry; now the Lu-Hf isotope system is 351 
routinely applied to lunar materials (Taylor et al., 2009; Sprung et al., 2013; Gaffney and Borg, 352 
2014; Carlson et al., 2014; Melanie Barboni et al., 2017).  The 176Lu half-life used by the isotope 353 
geochemistry community changed from the value of 35.82 Ga (Patchett and Tatsumoto, 1980) to 354 
a value of about 37.12 Ga (Scherer et al., 2001; Söderlund et al., 2004), so care must be taken 355 
when comparing Lu-Hf isotope data and models in the literature. Hult et al. (2014) summarize 356 
many 176Lu half-life measurements and propose a value of 37.22 ± 0.29 Ga.   357 

 358 
The Lu-Hf isotope system is enhanced by the different geochemical behavior of Lu and Hf and 359 

resultant large range in 176Lu/177Hf ratios in many lunar materials.  For example, most zircon has 360 
1-3 wt% Hf and Lu in ppm concentrations resulting in 176Lu/177Hf ratios typically < 0.002.  361 
Combined with its robust retention of U-Th-Pb isotopes for precise chronology, zircon is also a 362 
powerful Lu-Hf isotope tracer requiring minimal age corrections (Taylor et al., 2009; Barboni et 363 
al., 2017).  Phosphate minerals have the potential for 176Lu/177Hf ratios of over 100 (Amelin, 2005).  364 
Overall, in addition to zircon, many oxide minerals can have very low 176Lu/177Hf ratios of < 0.01, 365 
whereas phosphates and garnet have the potential for 176Lu/177Hf ratios greater than 1.0.  Therefore, 366 
Lu-Hf mineral isochron chronology has the potential for relatively large spreads in Lu/Hf ratios 367 
even in lithologies with a simple mineralogy (e.g., Lapen et al., 2010). 368 

 369 
Modern analytical methods for Lu-Hf chronology and/or isotope tracer studies include both 370 

in-situ laser ablation mass spectrometry and wet chemical approaches applied to bulk rock and/or 371 
mineral separates. Because Hf concentrations are in the ppb to ppm range for most rock-forming 372 
minerals, wet chemical approaches are required for analysis with minimum sample sizes typically 373 
of 0.05 to 0.10 g.  Hafnium-rich minerals such as zircon and baddeleyite can be analyzed for Lu-374 
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Hf isotopes by in-situ approaches (Ibanez-Mejia et al., 2014).  All Lu-Hf isotope data of lunar 375 
materials should be assessed for neutron capture effects and corrected (Sprung et al., 2013; Gaffney 376 
and Borg, 2014; Barboni et al., 2017). 377 

2.5 Ar-Ar 378 

Turner (1970) presented some of the first applications of the 40Ar/39Ar method to Apollo 11 379 
samples.  Since then, 40Ar/39Ar data have been essential for unraveling the timing of primary and 380 
secondary lunar events such as protolith formation and impact metamorphism, respectively. 381 
Depending on the material and its temperature-time history, the 40Ar/39Ar method has the potential 382 
to provide precise dates of a wide-range of lunar materials (Turner et al., 1973; Turner and 383 
Cadogan, 1975; Dalrymple and Ryder, 1991, 1993, 1996; Jourdan, 2012; Fernandes et al., 2013).  384 
Impact events that produced melt can be precisely dated and help build impact flux estimates 385 
(Dalrymple and Ryder, 1993, 1996; Culler et al., 2000; Cohen et al., 2000; Kring and Cohen, 2002; 386 
Norman et al., 2006; Mercer et al., 2015, 2019; Zellner and Delano, 2015).  The timing of lunar 387 
volcanism, often expressed as fine-grained and/or amorphous materials (e.g., lunar orange glass 388 
beads in 74220 soil), can be precisely dated (Huneke, 1978; Spangler et al., 1984; Zellner et al., 389 
2009) whereas other isotope systems that rely on mineral-liquid fractionation processes would not 390 
typically yield precise age determinations of these bulk materials.   391 

 392 
Potassium-40 has a branched decay to 40Ca (89.32%) and 40Ar (10.68%) with a total decay 393 

constant of about 5.53 ×10-10 yr-1 (Renne et al., 2011).  Associated 40K-40Ca chronology of felsic 394 
lunar materials (Shih et al., 1993) is possible for specialized applications. Analytical details of the 395 
40Ar-39Ar method are complex (McDougall et al., 1999; Cohen et al., 2000, 2005; Swindle et al., 396 
2009; Weirich et al., 2010; Wittmann et al., 2011; Mercer and Hodges, 2016; Niihara et al., 2019; 397 
Schaen et al., 2020; Beard et al., 2022). Recent advancements in in-situ analytical approaches 398 
(Mercer et al., 2015) make it easier for analyses of critical petrographic contexts.   399 

 400 
Argon-Ar thermochronology is especially useful for understanding the potentially complex 401 

temperature-time (T-t) history of lunar materials.  For short T-t histories relative to the diffusivity 402 
of Ar in a particular material, Ar-Ar data may have remained a closed system since the last Ar-403 
degassing event such as melting (Cohen et al., 2000). For T-t histories that are long and/or extreme 404 
enough to facilitate Ar loss, the timing of these Ar-loss events may be recorded in the measured 405 
Ar isotope data (Niihara et al., 2019; Schaen et al., 2020).  Overall, Ar-Ar approaches, both in-situ 406 
and conventional, are a critical tool for unraveling primary and secondary processes operative on 407 
the Moon. 408 

 409 

3 Lunar Lithologies 410 

The Artemis exploration zone is a feldspathic highland terrain that was originally anorthositic 411 
crust, covered and/or mixed with more mafic lithologies excavated by the SPA and other basin-412 
forming events producing a mixed - nominally noritic - composition (Pieters et al., 2001; Hawke, 413 
2003; Spudis et al., 2008; Lin et al., 2020; Huang et al., 2020; Krasilnikov et al., 2023). Major 414 
minerals in the surface regolith are plagioclase, pyroxene, and olivine, in that order. Reflectance 415 
spectra suggest the region has an average anorthite abundance of ~80 to 90 wt% and ~5 to 10 wt 416 
% Fe) (Lemelin et al., 2022). 417 

 418 
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 419 

420 

 421 

 422 

a. 

b. 

Figure 3. Colorized counts of Kaguya SP mineral data used to determine average lithological 
composition at each of the candidate landing regions (red squares). Gray areas represent 
permanently shadowed regions, which were masked during analyses. Black areas are areas with 
no mineral count data available. (a) Colorized counts of plagioclase from 50 to 100 wt. %. (b) 
Colorized counts of iron from 0 to 15 wt. %. 

Table 2. Artemis zonal statistics of mineralogy at each landing site within an exploration zone 
of 10 radial kilometers. The values below contain minerals modeled from Spectral Profiler data 
with all PSRs masked from Lemelin et al. (2022). The four sites closest to the south pole (001, 
004, 007, and 011) have similar mineralogy. The mineral error is on the order of ±8 wt. % and 
FeO about 2 wt. %. SD = standard deviation. 
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The basin-forming event that created SPA would have been an exceptionally violent impact 423 
(Potter et al., 2012) that excavated material from depth where mafic to ultramafic materials likely 424 
existed (Kring, 2005; Hurwitz and Kring, 2014), produced melt, fallback ejecta, and brecciated 425 
basin floor materials (Petro and Pieters, 2008; Moriarty et al., 2021). This, coupled with billions 426 
of years of subsequent impacts results in a complicated and varied lithological suite of outcrops 427 
and potential return sample targets. The lithologies discussed here are those which were defined 428 
by Stöffler et al. (1980) (Figure 4, Table 3). They may exist as homogenous hand samples (e.g., ~ 429 
5 to 20 cm) or even at the outcrop scale, although there is a strong likelihood of polymict breccias 430 
housing a multitude of lithologies, much like NWA 5000 and various Apollo samples (Duncan et 431 
al., 1975; Grieve et al., 1975; Stöffler et al., 1985; Nagurney et al., 2016; Marks et al., 2019; Cao 432 
et al., 2021). Some lithologies, such as dunite (Shearer et al., 2015), are exceedingly rare within 433 
the Apollo collection and exist as chips and fragments within brecciated samples. Because it 434 
crystallizes at depth, dunite solely relies on impact excavation processes or incorporation into 435 
magmas as xenoliths to be exposed on the lunar surface. The spatial resolution of this study (>500 436 
m) preclude identification of litho-fragments within an individual sample, driving the need for 437 
polymict breccia return samples. 438 
 439 

We understand lunar rocks exist within a continuum of lithologies, however they are discussed 440 
below in accordance with the classification schema outlined in Figure 4. With the exception of 441 
impact melts or fine-grained basaltic clasts, we predict most lithologies in the Artemis exploration 442 
zone to be relatively coarse-grained (~1 to 3 mm grain size; Joy et al., 2008). 443 
 444 

 445 
 446 
Figure 4. Average landing site lithological composition displayed relative to plagioclase, 447 
pyroxene, and olivine. Blue shaded region represents the zone of statistical uncertainty from our 448 
analysis. Modified after Stöffler et al. (1980). 449 
 450 
Table 3. List of lunar lithologies that might be included in the regolith within each site. (List of 451 
lithologies from Hiesinger (2006)). Gray-filled boxes: within the standard deviation range of 452 
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average composition calculated from this study (PSRs not masked); X: presence of lithology 453 
recognized; Y= existence of lithology likely, but below detection limit of current instrumentation; 454 
Z: lithology possibly present as clasts. References: [1] Gawronska et al. (2020); [2] Lemelin et al. 455 
(2022); [3] Yamamoto et al. (2012); [4] Uemoto et al. (2010); [5] Halim et al. (2021); [6] Ohtake 456 
et al. (2009); [7] Borst et al. (2012); [8] Kraettli et al. (2022); [9] Gagnepain-Beyneix et al. (2006); 457 
[10] Kring (2019); [11] Kring et al. (2022). 458 
 459 

Lithology Sites 

 001 004 007 011 102 105 

Purest 
Anorthosite 
(PAN) [1-4] 

Y X Y Y X X 

Anorthosite 
[1-3,5,6] X X X X X X 

Noritic or 
Gabbroic 
Anorthosite 
[2] 

X X X X X X 

Troctolitic 
Anorthosite 
[2] 

X X X X X X 

Anorthositic 
Norite or 
Gabbro[2] 

X X X X X X 

Anorthositic 
Troctolite[2] X X X X X X 

Norite or 
Gabbro[2] X X X X X X 

Olivine 
Norite or 
Gabbro[2] 

X X X X X X 

Troctolite[7] Y Y Y Y Y Y 

Pyroxenite[8,9] Z Z Z Z Z Z 

Peridotite[7] Z Z Z Z Z Z 

Dunite[7] Z Z Z Z Z Z 

Basaltic 
material[7,10] Z Z Z Z Z Z 
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Impact 
Melt[10,11] Z Z Z Z Z Z 

Impact 
Breccia[1,11] Z Z Z Z Z Z 

 460 

3.1 Anorthositic Lithologies 461 

Anorthositic lithologies include anorthosite (and ‘purest anorthosite’) and noritic, gabbroic, 462 
and troctolitic anorthosite.  These lithologies are all characterized by having high proportions of 463 
plagioclase with low, but variable proportions of pyroxene and olivine.  Anorthitic plagioclase 464 
tends to have relatively low concentrations of REE, K, Rb, and U, making direct chronometric 465 
analyses difficult.  The complex thermal and impact histories for many lunar anorthositic rocks 466 
(see Shearer et al., 2006, and references therein) further compromises the accuracy and precision 467 
of chronologic measurements.  Despite these challenges, chronology of anorthositic rocks by U-468 
Pb of mafic phases, mineral and bulk-rock Sm-Nd, and Ar-Ar have been successfully 469 
accomplished (e.g., Norman et al., 2003; Borg et al., 2011; Marks et al., 2019).  Given the overall 470 
low concentrations in alkali elements, Rb/Sr ratios are low, making Rb-Sr analyses of anorthositic 471 
rocks useful as a petrogenetic tracer and for calculating model ages (e.g., Borg et al., 2022). 472 

3.1.1 Anorthosite 473 

Anorthosites are coarse-grained igneous rocks that may record early lunar differentiation 474 
processes. Anorthositic lithologies are common on the Moon because they may have formed from 475 
early differentiation and crust-forming processes (Anderson et al., 1970; Wood et al., 1970; Wood, 476 
1970; Ohtake et al., 2009). They are mineralogically defined as > 90 % by volume of plagioclase 477 
(Figure 4), suggesting they are cumulates produced from an ancient melt (Lucey et al., 2006). 478 
Mafic minerals in some lunar anorthosites have relatively low Mg/(Mg+Fe) ratios (Lucey et al., 479 
2006), and plagioclase within them is typically An96 which may reflect the Moon’s depletion in 480 
sodium and other volatile elements (Borg et al., 2022).  481 

3.1.2 Purest Anorthosite 482 

A particularly pure anorthosite exists in the south polar region and is composed of >97 wt. % 483 
anorthite with <2 wt. % pyroxene (Ohtake et al., 2009). Because it is almost pure anorthite, this 484 
variant is known as ‘purest anorthosite’ (PAN) (Ohtake et al., 2009). Outcrops that correspond to 485 
PAN spectra are recognized at the geographic south pole and extend into the massif bridging 486 
Shackleton to de Gerlache crater (toward the west) and Slater crater (toward the east) (Gawronska 487 
et al., 2020). The physical extent of the PAN unit is debated because no significant samples of 488 
PAN were identified within the Apollo collection (Lemelin et al., 2015). Exposures of anorthosites 489 
(90 to 100 wt. % plagioclase) are somewhat rare in the Artemis region, with a few concentrated 490 
around Shackleton crater and on or near the ridge between Shackleton and Henson craters (∼88.5 491 
°S, 128 °W, near Site 004) (Lemelin et al., 2022). In this region, PAN could be intact and 492 
crystalline, or potentially comprise portion of megabreccia with blocks 100 m in size (Gawronska 493 
et al., 2020).  494 

Small clasts of PAN might exist within lunar meteorites (Nagaoka et al., 2014), but PAN is not 495 
known to exist within the Apollo collection. Some attribute the remote detection of PAN to an 496 
erroneous calibration of spectral data (Warren and Korotev, 2022). The closest representative 497 
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sample is 97.6% An (mode) ferroan anorthosite 15415 (‘Genesis Rock’) (Steele and Smith, 1971; 498 
Wilshire et al., 1972; Turner, 1972), which formed after the Moon’s crust solidified and, therefore, 499 
not representative of the LMO flotation crust remnants present in the south polar region (Ohtake 500 
et al., 2009). For direct testing of the earliest flotation crust products of lunar crust formation, PAN 501 
samples should be collected from the SPA, the oldest impact structure on the Moon. 502 

 503 
PAN is mineralogically-pure in a scale detectable by remote sensing (Ohtake et al., 2009; 504 

Cheek et al., 2013; Donaldson Hanna et al., 2014; Lemelin et al., 2019). A potential opportunity 505 
to study the petrogeneses PAN materials could greatly improve the understanding of early lunar 506 
differentiation processes (Yamamoto et al., 2012; Gawronska et al., 2020; Kring et al., 2022). 507 
Return samples of PAN composition would help determine the spatial extent and composition of 508 
the primary feldspathic crust, improve our inventory of the variety of age, distribution, and origin 509 
of lunar rock types, aid in determining the composition of the lower crust and bulk Moon, and 510 
clarify the local and regional complexity of the current lunar crust (NRC Concepts 3a, 3b, 3c, 3d). 511 
Study of PAN return samples would aid understanding of how massifs were generated from the 512 
SPA basin-forming impact (Kring et al., 2020), and the successive geologic evolution of the region 513 
(NRC Concepts 1b, 1c). PAN samples may also provide an anchor to the early Earth-Moon impact 514 
flux curve by determining the age of the oldest lunar basin (SPA) (Kring, 2007; Mazrouei et al., 515 
2019), establish a precise chronology of lunar geologic events (Marks et al., 2019), help determine 516 
the thickness of the lunar crust (Spudis and Davis, 1986), aid characterization of lunar crust 517 
variability on regional and global scales (NRC Concepts 1b, 1c, 2a). If anorthosite were to be 518 
collected in-situ from strata exposed on the massif cliff (pole-ward) side of Site 102, this would 519 
directly enable the investigation of the structure and composition of the lunar crust (Spudis and 520 
Davis, 1986; Kring et al., 2020) (NRC Concepts 2a, 2d). It would also reveal more about the multi-521 
ring impact basin structure of SPA, quantify the effects of planetary characteristics (composition, 522 
density, impact velocities) on crater formation and morphology, and allow the extent of lateral and 523 
vertical mixing of local and ejecta material to be measured (NRC Concepts 6b, 6c, 6d). 524 

3.1.3 Noritic, Gabbroic, or Troctolitic Anorthosite 525 

Noritic/gabbroic anorthosites belong to the ferroan anorthosite (FAN) suite of lunar rocks and 526 
have been confirmed to exist within the SPA farside Highlands by analyses of the Chang’E-5 527 
return sample CE5C0800YJYX132GP (Wang, 2022). Noritic/gabbroic anorthosite or troctolitic 528 
anorthosite (77.5 to 90 wt. % plagioclase, Figure 4) are the second most abundant lithologies in 529 
the south polar region (Lemelin et al., 2022).The parent melts of noritic/gabbroic anorthosites are 530 
believed to be produced during the lunar magma ocean (LMO) overturn by the decompression 531 
melting of upwelling Mg cumulates and coincident mixing with incompatible element enriched 532 
materials (e.g., potassium, rare earth elements, and phosphorous-rich; KREEP) (Hess and 533 
Parmentier, 1995; Elkins-Tanton et al., 2002, 2011). However, Apollo FANs are not representative 534 
of all lunar highland-type crust (Gross et al., 2014, 2020; Xu et al., 2020), so further study of 535 
noritic/gabbroic anorthosites returned by Artemis astronauts would provide information about the 536 
early evolution of the Moon as relevant to the LMO hypothesis. 537 

 538 
Troctolitic anorthosite is an anorthosite with a minor olivine component (Figure 4) and the 539 

Mg# = 87 ± 5 (Lucey et al., 2006). Troctolitic anorthosite is a member of the magnesian suite (Mg-540 
suite) of lunar lithologies and does not belong to the ferroan anorthosite (FAN) group of lunar 541 
lithologies (Lucey et al., 2006). It is representative of the average lithological composition of Site 542 
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004 (Lemelin et al., 2022). The collection of noritic or gabbroic anorthosite samples from the lunar 543 
surface would enable a more in-depth understanding of lunar crust formation and differentiation 544 
through the study of coexisting pyroxene and plagioclase, which is rare in other early LMO 545 
cumulates (Elardo et al., 2011). A better understanding of LMO crystallization trends from a more 546 
complete suite of materials that record this process will better inform thermal models of the Moon 547 
and the thermal state of the interior during early crustal formation periods (Shearer and Papike, 548 
2005; Elardo et al., 2011) (NRC Concepts 2a, 2d) (NRC, 2007). 549 

 550 
Noritic/gabbroic return samples would improve our understanding of the extent and 551 

composition of the primary feldspathic crust and other products of planetary differentiation, in turn 552 
quantifying the local and regional complexity of the current lunar crust (NRC Concepts 3a, 3c, 553 
3d). This can be most accurately accomplished by collecting samples with known impact crater 554 
sources (i.e., in ejecta blankets with a clear crater source or in-situ from strata within crater walls). 555 
Certain samples may also enable clarification of the lateral rock type variability on regional and 556 
global scales. 557 

 558 
Geochronological analyses of noritic/gabbroic anorthosites would improve the established 559 

global lunar time scale and timing of large impact basin formation (Wood et al., 1970; Hawke, 560 
2003) (NRC Concepts 1b, 1c). Noritic/gabbroic samples will add to our efforts to inventory the 561 
diversity of lunar crustal rocks with respect to composition, age, distribution, and origin (NRC 562 
Concepts 3b, 3c). For example, should troctolitic anorthosite be collected from Shackleton ejecta, 563 
it would improve the understanding of early mafic cumulate products from the Lunar Magma 564 
Ocean (LMO), in particular the precipitation and equilibration of olivine within the lunar crust 565 
(Elkins-Tanton et al., 2011; Elardo et al., 2011) (NRC Concepts 3a, 3b, 3c, 3d). Direct sampling 566 
of troctolitic anorthosite could show how it was generated and preserved relative to the SPA basin-567 
forming impact (Miljković et al., 2021) (NRC Concepts 1b, 1c, 2a, 3a, 3b, 3c, 3d), and the later 568 
geologic evolution of the region (NRC Concepts 1b, 1c) (NRC, 2007). 569 

3.2 Mafic Lithologies 570 

Lunar mafic lithologies include troctolite, norite, and gabbro, including anorthositic and 571 
olivine-bearing norite and gabbro. Many of these lithologies, especially coarse-grained varieties, 572 
contain a mineralogic diversity that allows for most chronologic systems in Table 1 to be applied. 573 
Methods involving Rb-Sr, Sm-Nd, and Lu-Hf isochron approaches have been applied (e.g., Borg 574 
and Carlson, 2023, and references therein). In many cases, important U-rich accessory phases such 575 
as zircon, baddeleyite, and phosphate group minerals are present, allowing for in-situ chronology 576 
by laser ablation and ion probe (e.g., Shaulis et al, 2017; Merle et al., 2020).   577 

3.2.1 Anorthositic Norite, Gabbro, or Troctolite 578 

The regolith of the south polar region is dominated by anorthositic noritic/gabbroic and 579 
anorthositic troctolitic mineral spectra (Lemelin et al., 2022). Of that regolith, anorthositic 580 
norite/gabbro and anorthositic troctolite (60 to 77.5 wt. % plagioclase with varying proportions of 581 
clino- to orthopyroxene, Figure 4) were identified at sites 011, 102, and 105 (Lemelin et al., 2022). 582 
Anorthositic troctolite is an igneous rock with more plagioclase component than traditional 583 
troctolite (Figure 4) It is still unknown if anorthositic troctolites from the AEZ will be coarse- or 584 
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fine-grained. Anorthositic troctolites from SPA may signify lithologies formed very early on in 585 
lunar history (Lucey et al., 2006).  586 

 587 
If anorthositic norite/gabbro or anorthositic troctolite were to be collected from the Artemis 588 

region, those samples may illuminate how differentiation occurred after the overturn of the LMO 589 
including a better characterization of the thermal state of the interior (Elkins-Tanton et al., 2011; 590 
Elardo et al., 2011) (NRC Concepts 2a, 2b, 2d). These differentiation products are valuable tools 591 
to understand more details of the extent and composition of varied lithologies, and to quantify our 592 
inventory of the nuanced complexities therein (i.e., variety, age, distribution, origin) (NRC 593 
Concepts 3a, 3b, 3d) (NRC, 2007). Anorthositic norite/gabbros may also aid in the understanding 594 
of the bombardment history of the inner solar system recorded within the uniquely preserved lunar 595 
crust in samples with impact-reset ages (Kring, 2019). This would allow for the anchoring of the 596 
impact flux curve, determining the cadence of the creation of lunar basins (Kring, 2007), and 597 
establishing a precise absolute chronology of the geologic evolution of the lunar south pole region 598 
(NRC Concepts 1a, 1b, 1c).  599 

3.2.2 Gabbro and Norite 600 

Gabbro is a general term for a coarse-grained (typically plutonic) mafic igneous rock composed 601 
of plagioclase, Ca-rich clinopyroxene (augite), and <5 wt% of each of olivine and orthopyroxene 602 
(Figure 4). Norite is an orthopyroxene-bearing gabbro, with < 5 wt. % clinopyroxene or olivine 603 
(Figure 4). Lunar norites are distinguished from lithologies termed ‘gabbronorites’ by the absence 604 
of a discrete high-Ca pyroxene phase and presence of a wider variety of trace phases (Papike et 605 
al., 2006). Because Shackleton crater is on the edge of the SPA basin, target material of Shackleton 606 
may be ancient noritic crust which may be exposed within crater walls (Gawronska et al., 2020). 607 
Gabbro/norite lithologies in SPA are believed to originate from upper mantle ejecta and contain a 608 
high abundance of Th- and K-bearing materials (Moriarty et al., 2021).  609 

 610 
Gabbros and other mafic lunar lithologies can be used to define magmatic periods and chemical 611 

characteristics of mantle components contributing to the sources of the magmas (Papike et al., 612 
2006). Gabbroic/noritic cumulates may not have participated in the gravitational overturn during 613 
the time of SPA formation (Moriarty et al., 2021), so return samples of this type would reveal 614 
critical information about magmatic differentiation events in early lunar history (NRC Concepts 615 
2a, 2b, 2d, 3a, 3b, 3d).  616 

 617 
If gabbro or norite were to be collected from the Artemis region, it would aid in understanding 618 

the diversity of lunar crustal rocks through the comparison with Apollo samples of similar 619 
composition (NRC Concepts 3a, 3b, 3c, 3d, 6c, 6d). The large-scale lateral and vertical distribution 620 
of gabbro/norite lithologies could be better determined through in-situ observations of strata in 621 
crater walls and determination of source magmas via geochemical study (Shaulis et al., 2017). 622 
Defining isochron ages from analyses of these pyroxene-rich lithologies would aid in the 623 
understanding of the bombardment history of the inner solar system recorded within the lunar crust 624 
(Shih et al., 1993; Norman et al., 2003; Carlson et al., 2014; Zhang et al., 2021) (NRC Concepts 625 
1a, 1b, 1c, 3a, 3b, 3c, 3d). Gabbro/norite analyses could also show how magmatic events, including 626 
differentiation, transpired after the LMO overturn (NRC Concepts 2a, 2b, 2d, 3a, 3b, 3d) (NRC, 627 
2007). 628 
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3.2.3 Olivine Norite or Gabbro 629 

Olivine norite or gabbro are composed of 10 to 50 wt. % plagioclase with varying proportions 630 
of olivine and pyroxene (Figure 4). This lithology is included in the Mg-suite of lunar rocks, which 631 
is representative of the crustal growth and basaltic magmatism period in lunar history (Shearer and 632 
Papike, 2005). The Chinese lunar farside mission Chang’E-4 identified a rock of olivine norite 633 
composition that is believed to have crystallized from the SPA impact pool using a visible and 634 
near-infrared spectrometer aboard the Yutu-2 rover (Lin et al., 2020). Although olivine 635 
norite/gabbro is not a dominant lithology within a 10-km radial exploration zone from any of the 636 
six potential crewed Artemis landing sites, fragments of it could be entrained in breccias. The 637 
Yutu-2 rover discovery of an olivine norite greatly increases the likelihood of finding others like 638 
it within SPA on the lunar nearside. Compositions consistent with olivine norite have been 639 
recognized but those compositions can also represent clast contamination in breccia (Lemelin et 640 
al., 2019). Olivine norite has also been recognized to exist as the most abundant host lithology of 641 
olivine on the edges of the innermost ring material of several basins (e.g., Moscoviense, Humorum, 642 
Imbrium, and Serentitatis), although may represent ‘contamination’ from basaltic materials 643 
(Yamamoto et al., 2010; Lemelin et al., 2019).  644 

 645 
If olivine norite/gabbro were to be collected from the Artemis region, it would shed light on 646 

impact kinematics and ‘contamination’ effects within impact structures (Lemelin et al., 2019), 647 
reveal a more detailed record of the bombardment history of the inner solar system recorded within 648 
the lunar crust (NRC Concepts 1a, 1b, 1c, 3a, 3b, 3c, 3d), and add valuable information to the 649 
diversity of lunar crustal rocks in an impact terrane (NRC Concepts 3a, 3b, 3c, 3d, 6c, 6d) (NRC, 650 
2007). The higher proportions of olivine within an olivine norite or gabbro would allow for more 651 
opportunities to investigate early differentiation processes within the lunar crust. 652 

3.2.4 Troctolite 653 

Troctolite is composed of plagioclase and olivine, with < 5 wt. % of pyroxene (Stöffler et al., 654 
1980; Prissel and Prissel, 2021). Troctolites are included in the “Mg-suite” of nonmare lunar rocks 655 
and analyzed specimens contain a whole rock composition of Mg # = 87 ± 5. Troctolites are the 656 
most abundant Mg-suite sample type in the Apollo collection (Shearer et al., 2015), but the spatial 657 
distribution on a global scale is not well understood. 658 

 659 
Troctolites may represent the start of mantle materials in a subsurface depth profile (Hess, 660 

1994). An olivine-bearing lithology, possibly troctolite, is abundant in the peak-ring of the 661 
Shrodinger basin near the Artemis exploration zone. The original spectroscopy was published by 662 
Kramer et al. (2013). An LRO picture showing many kilometers of rock exposure in the peak ring 663 
was published by Kring et al. (2017). Hydrocode calculations indicate the olivine-bearing lithology 664 
was uplifted from depths of 20 to 30 km (Kring et al., 2016). Previous study of phosphorous 665 
diffusion patterns within olivine grains within lunar troctolite 76535 revealed a two-stage cooling 666 
model (initial rapid cooling at high temperatures, then slow cooling at lower temperatures) (Nelson 667 
et al., 2021). Therefore, continued study of lunar troctolites in impact ejecta or fragments of 668 
troctolites harvested from polymict breccias would lead to greater understanding of the thermal 669 
history of the Moon. However, if troctolite were to be collected from in-situ outcrops within crater 670 
walls, it would provide the most detailed context of the specific landing site’s history through the 671 
observation of geologic relationships and large-scale textures. Because the global distribution of 672 
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Mg-suite lithologies is still unknown, the sampling of troctolite (or another in-situ mafic lithology) 673 
could bring more understanding to their spatial extent and source regions (Shearer et al., 2015).  674 

 675 
If troctolite were to be collected from impact ejecta or otherwise, it would allow for the creation 676 

of a more detailed absolute chronology of serial magmatism, crust/mantle formation and evolution, 677 
and impact and degassing events (McCallum et al., 2006; Elardo et al., 2012; Shearer et al., 2015; 678 
McCubbin and Barnes, 2020) (NRC Concepts 1a, 1b, 1c, 1e). Troctolite samples would improve 679 
the understanding of the structure and composition of the lunar interior, including a potentially 680 
stratified upper mantle (Moriarty et al., 2021) (NRC Concepts 2a, 2b, 2d), and elucidate the nature 681 
of the lower crust-mantle boundary (NRC Concepts 3a, 3b, 3c, 3d) (NRC, 2007). 682 

3.3 Ultramafic Lithologies 683 

Lunar ultramafic lithologies include pyroxenite, peridotite, and dunite.  These lithologies are 684 
typically incompatible trace-element (ITE) depleted, thus rock and mineral compositions can be 685 
low in REE, U, K, and Rb.  Depending on the mineralogy and ITE compositions, Rb-Sr, Sm-Nd, 686 
and Lu-Hf have be applied to certain martian and terrestrial ultramafic specimens (e.g., Lapen et 687 
al. 2005; 2010). Currently, lunar ultramafic rock specimens are extremely rare but are extremely 688 
important for unraveling the timing of early lunar differentiation.  689 

3.3.1 Pyroxenites 690 

Pyroxenite is a cumulate, igneous rock comprised of >90 wt. % pyroxene (Figure 4). It is 691 
believed to be representative of lunar upper mantle layers crystallized directly from the LMO, and 692 
thus difficult to observe in-situ due to a mostly subsurface existence (Gagnepain-Beyneix et al., 693 
2006; Kraettli et al., 2022). Despite the presence of deep craters within SPA, pyroxenite is not 694 
currently known to be present at outcrop-scale within the Artemis region, which may be a relic of 695 
the generally coarse spatial resolution of spectral data. Pyroxenite may, however, have been 696 
excavated from depth and exist at the surface as lithic fragments within brecciated hand samples 697 
within the Artemis region. 698 

 699 
If pyroxenite were to be collected from impact ejecta, it would improve the understanding of 700 

the structure and composition of the lunar interior (NRC Concepts 2a, 2b, 2d), elucidate the nature 701 
of the lower crust-mantle boundary (NRC Concepts 3a, 3b, 3c, 3d), and reveal a more detailed 702 
absolute chronology of impact events that led to the formation of SPA (NRC Concepts 1a, 1b, 1c, 703 
1e) (NRC, 2007). 704 

3.3.2 Peridotite 705 

Peridotite is an olivine-rich (Figure 4) cumulate igneous rock that is not yet known to exist 706 
within the SPA region, however olivine-rich exposures have been identified throughout SPA 707 
(Pieters et al., 2001; Yamamoto et al., 2010, 2012). Although it is not yet known to exist in sizable 708 
deposits identifiable by current detection limitations, the possibility of a peridotite fragment 709 
existing in a brecciated sample remains.  710 

 711 
If peridotite were to be collected from impact ejecta, it would improve the understanding of 712 

the composition of the lunar mantle and therefore, increase knowledge of structure and 713 
differentiation in the lunar interior (NRC Concepts 2a, 2b, 2d), allow interpretation of the nature 714 
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of the lower crust-mantle boundary (NRC Concepts 3a, 3b, 3c, 3d), and reveal a more detailed 715 
absolute chronology of impact events, specifically the formation kinematics of the SPA basin 716 
(NRC Concepts 1a, 1b, 1c, 1e) (NRC, 2007). 717 

3.3.3 Dunite 718 

Dunite is composed of 90 to 100 vol. % olivine (Figure 4). Olivine exposures have been 719 
detected within walls, ejecta, and peaks of craters within the SPA basin (Yamamoto et al., 2010). 720 
It is unclear whether the exposures were excavated upper mantle (dunite) material or Mg-rich 721 
plutonic material (troctolite) in the Moon’s lower crust (Yamamoto et al., 2010). Deep-seated 722 
olivine-rich layers would be hidden by a differentiated impact melt sheet (Grieve et al., 1991; 723 
Nakamura et al., 2009; Hurwitz and Kring, 2014), but later impacts could have excavated and 724 
exposed the olivine. This olivine-rich lithology is best observed at young, fresh craters in the 725 
concentric regions around large basins (Yamamoto et al., 2010). It is possible the SPA impact may 726 
have excavated into the mantle (Lucey et al., 1998), although it would have reprocessed the 727 
material in some manner (e.g., giant, differentiated impact melt sheet (Hurwitz and Kring, 2014).  728 

 729 
Very little ultramafic material exists within the Apollo collection. The only sample large 730 

enough to make the parent rock known (dunite fragments 72415-72418) has been extensively 731 
crushed and shows a complex history of shock, deformation, and recrystallization (Albee et al., 732 
1974; Dymek et al., 1975; Lally et al., 1976; Papike et al., 2006). Dunite is representative of lunar 733 
mantle materials. The collection and return of in-situ lunar dunite to Earth would be a significant 734 
finding, as none of this yet exists in the lunar collections and is only hypothesized to exist in select 735 
areas within SPA. If dunite were to be collected from outcrop, it would improve the understanding 736 
of the structure and composition of the lunar interior (NRC Concepts 2a, 2b, 2c, 2d), however this 737 
scenario is unlikely because dunite exists at depth and would not easily be exhumed. If dunite is 738 
present within the Artemis exploration zone, it most likely exists as fragments and chips within 739 
ejecta blankets produced via impact cratering processes significant enough to reach the lunar 740 
mantle depths (Vaughan and Head, 2014; Moriarty and Pieters, 2018).  741 
 742 

Any lunar dunite would be a unique and rare addition to the lunar collection and could increase 743 
our knowledge of the diversity of lunar crustal rocks (NRC Concepts 3a, 3b, 3c, 3d). Because it 744 
would have been excavated from depth via large impactor, it could a) act as a ‘probe’ to examine 745 
mantle lithologies and petrologic evolution of the lunar interior, and b) highlight  information about 746 
the bombardment history of the inner solar system (NRC Concepts 1a, 1b, 1c, 1e) (NRC, 2007). 747 

3.4 Basaltic Materials 748 

Basaltic materials are fine-grained mafic rocks that display a wide range in compositions 749 
similar to the suite of mafic plutonic rocks described earlier.  Understanding the ages of these 750 
materials constrains the volcanic history of the Moon.  Some basaltic materials have U-rich 751 
accessory phases that can be dated in-situ or can be dated by the Pb isotope systematics of other 752 
igneous phases (e.g., Curran et al., 2019; Li et al., 2021).  In many cases, and where the rock has 753 
a relatively simple thermal history, Ar-Ar chronology has the potential for precise determinations 754 
of eruption ages. 755 
 756 

Photogeologic studies and return samples confirmed the lunar mare areas are formed by large 757 
volumes of flood basaltic lava, like the Columbia River Basalts on Earth (Wilson and Head, 1981). 758 
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Although no traditional mare materials are confirmed to exist at the surface in SPA, it likely resides 759 
in considerable quantities at depth in this region and is known as cryptomare. Cryptomare is 760 
basaltic in composition and represents some of the earliest volcanism on the Moon that has been 761 
buried by the later emplacement of crater ejecta material and basin-forming events (Head and 762 
Wilson, 1992). Cryptomare within SPA is estimated to cover a minimum area of 2.5 x 105 km2, be 763 
at least 400 m thick, volumetrically encompass >1.0 x 105 km3, and be 3.63 to 4.1 Ga (Shearer et 764 
al., 2006). Cryptomare is observed within SPA through examination of dark-haloed craters 765 
(Schultz and Spudis, 1983) which enable the darker albedo cryptomare to be studied against the 766 
lighter albedo regolith materials. In-situ cryptomare exposures may not be present or accessible at 767 
any of the six potential landing regions but may still be present within the Artemis exploration 768 
zone as hashed fragments within crater ejecta. Impact melt ponds also exist on the margins of 769 
craters and are composed of basaltic ‘mare’ material, though they are not the classical mare 770 
deposits we were familiarized with from the Apollo landing sites. 771 

 772 
If basaltic materials were to be collected in-situ from ‘cryptomaria’ strata within crater walls, 773 

application of geochronology methods would primarily reveal vital information about early lunar 774 
volcanism including the lunar volcanic flux, mantle sources, and compositional variability of 775 
basalts (NRC Concepts 5a, 5b, 5d). Impact melt ponds may also be sampled in-situ from the outer 776 
margins of craters within the Artemis region but would be more telling of the bombardment history 777 
of a region than a distinct new type of volcanism generated from depth (NRC Concepts 1a, 1b, 1c, 778 
1e). Collecting ‘mare’ type materials from impact ejecta would also prove useful toward 779 
establishing absolute chronology (NRC Concept 1c), broaden our understanding of the diversity 780 
of lunar crustal rocks (NRC Concept 3a, 3b, 3d), and reveal limited information on lunar volcanism 781 
(NRC Concept 5a, 5b, 5d) (NRC, 2007). 782 

3.5 Impact Melts 783 

Impact melt is created by intense shock pressures and temperatures that result in instantaneous 784 
melting and rapid quenching of a rock during impact. The original rock bulk chemistry is 785 
preserved, but the mineralogy and petrography is destroyed to varying degrees (Kettrup et al., 786 
2003). Chronology of these materials typically rely on systems that are susceptible to thermal 787 
disturbances and systems (e.g., Ar-Ar) that can be applied to melts (Turner, 1972; Turner et al., 788 
1973; Dalrymple and Ryder, 1993, 1996; Zellner and Delano, 2015; Norman et al., 2019) .  789 
Distinctions between impact melt, impact glasses, and volcanic glasses are important. Impact 790 
glasses are similar to volcanic glasses but are instead associated with shock and metamorphosed 791 
lithic fragments. Impact melt fragments are found in breccia deposits within and outside impact 792 
craters (‘suevite’), and as spherules in distal ejecta (‘tektites’) (Dressler and Reimold, 2001). 793 
Impact melt rocks differ from impact glasses in that they occur as massive bodies of rock 794 
crystallized from melt bodies, commonly in the form of sheet-like masses, in the interior of some 795 
impact craters. 796 

 797 
Most impact-melt rocks contain lithic and mineral clasts from the target  (Dressler and 798 

Reimold, 2001 and references therein; Stahle, 1972), which show clear shock and thermal effects 799 
(Bischoff and Stöffler, 1984). Complete homogenization of a target rock is only achieved in 800 
impacts by vaporization and whole-rock melting. The shock pressures required to produce whole-801 
rock melting of gabbro is >75-80 GPa, dunite is >60-70 GPa, and most relevant to SPA, anorthosite 802 
is >45-50 GPa (Müller and Hornemann, 1969; Stöffler and Hornemann, 1972; Stöffler, 1974; 803 
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Reimold and Stöffler, 1978; Schaal et al., 1979; Ostertag, 1983; Bischoff and Stöffler, 1992). 804 
Material identified as impact melt composes 30-50% of all hand-specimen-sized rocks returned 805 
from highland landing sites and ~50% of all lunar soil materials, including non-mare collections 806 
(Ryder, 1981). Impact-melt rocks from the parent crater are the most reliable for dating the time 807 
of impact (Staudacher et al., 1982; Stephan and Jessberger, 1992; Deutsch and Scharer, 1994) and 808 
should be the first choice for any dating effort. 809 

 810 
The SPA impact likely formed from a 170 km diameter impactor with an energy of 811 

~4 × 1026 J, replacing the basin center with a melt pool of mantle-dominated composition (Potter 812 
et al., 2012). This large melt pond would have cooled slow enough to differentiate within itself, 813 
creating a differentiated melt sheet within SPA, and therefore the Artemis region (Hurwitz and 814 
Kring, 2014). Sampling of different locations (e.g., quenched margins vs. strongly differentiated 815 
center) of the SPA impact melt sheet would reveal a more detail about the impact, its age, and 816 
thermal history of the Moon.  817 

 818 
Sampling of varied locations of a differentiated melt sheet within SPA would uniquely enable 819 

fundamental information about impact processes including melt sheet differentiation (Hurwitz and 820 
Kring, 2014) (NRC Concepts 6a, 6b, 6c, and 6d), make a distinct and diverse addition to our current 821 
sample collection of lunar crustal rocks (NRC Concepts 3a, 3b, 3d), aid in untangling the 822 
bombardment history of the inner solar system (Kettrup et al., 2003; Lin et al., 2020) (NRC 823 
Concepts 1a, 1b, 1c), and better constrain the thickness and variability of the lunar crust within 824 
SPA (Wieczorek and Zuber, 2001; Besserer et al., 2014) (NRC Concepts 2a, 2b). Impact melt 825 
fragments collected from ejecta would reveal impact event timing in the Artemis region, although 826 
in some cases it may be difficult to identify the source crater of the melt.  827 

3.6 Impact Breccias 828 

Impact breccias can contain a wide assortment of lithologies, a range in textures, materials with 829 
wide ranges in thermal histories, and contain clasts from various locations/levels in the Moon.  830 
Because of this variability, thus the chronologic opportunities can be rock/clast specific. Due to 831 
the classification of SPA as an impact terrain, a significant fraction of the surface lithologies 832 
available to Artemis astronauts and robotic assets will be breccias. Impact breccias are composed 833 
of older rocks that have been broken or melted by meteoroid impact (Stöffler et al., 1979). The 834 
components of breccias may be mineral and lithic fragments, crystallized impact melt, or glassy 835 
impact melt. Despite their randomized nature of rock and mineral components generated by 836 
impacts, they are lithified by the heat and shock associated with the impact. Most of the rock 837 
fragments in breccias of the distal part of the continuous ejecta deposits are from the local bedrock 838 
(Deutsch and Stöffler, 1987; Stöffler and Ryder, 2001). 839 

 840 
A melt rock with clasts of unmelted (potentially shock-metamorphosed) targeted material is 841 

an ‘impact melt breccia.’ These melt bodies may intrude into fractures on the crater floor as veins 842 
and dikes that have been resampled by later impact events (Dressler and Reimold, 2001). 843 
Conversely, breccias composed of exclusively clastic components are ‘fragmental’ or ‘lithic’, and 844 
allow for the possibility to identify the nature of their dominant source rock types (Dressler and 845 
Reimold, 2001).  The lithology, texture, and clast-types within breccias can be so widely varied 846 
that they, as a group, host the potential to address a majority of the NRC (2007) concepts. For 847 
example, a single polymict impact breccia could contain fragments from units with the ability 848 
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reveal the age of the SPA basin (NRC Concepts 1b, 1c), record a history of the ancient thermal 849 
state of the lunar interior (NRC Concept 2d), contain a wide diversity of lithologies (e.g., polymict 850 
breccias) (NRC Concepts 3a, 3b, 3c, 3d), host a cryptomare clast (NRC Concepts 5a, 5b, 5d), host 851 
a clast from a specific impact-associated unit such as a differentiated melt sheet (NRC Concepts 852 
6a, 6b, 6c), and exist as a mixture of units from depth and local ejecta and regolith materials (NRC 853 
Concepts 6d, 7a, 7c, 7d). Breccias are common to find in impact terrains but vary greatly in their 854 
contents. Each brecciated sample will require a highly individualized approach to the analyses and 855 
assessment of applicable NRC Concepts (2007). 856 
 857 
3.7 Regolith Breccias and Soils 858 

The lunar regolith was created by large impacts which reduced the grain size of the underlying 859 
bedrock (Horz et al., 1991; McKay et al., 1991). This regolith layer records the Moon’s impact 860 
history and the nature and timing of material delivered to the Moon’s surface (e.g., Lucey et al., 861 
2006). Due to the high velocity of impact (e.g., Le Feuvre and Wieczorek, 2011) and resultant 862 
melting and/or vaporization, a projectile imparts its geochemical signature into impact melt 863 
deposits it creates (Morgan et al., 1972a, b; Ganapathy et al., 1974; Higuchi and Morgan, 1975; 864 
Gros et al., 1976; James, 1996, 2002; Norman et al., 2002; Puchtel et al., 2008). However, some 865 
impactors completely or partially survive the lunar impact process intact, as evidenced by 866 
unmelted fragments of meteorites that have been found in lunar rocks and soils (e.g., McSween Jr, 867 
1976; Jolliff et al., 1993; Zolensky et al., 1996; Rubin, 1997; Zolensky, 1997; Day et al., 2006). 868 
When paired with a time of impact, these partially unmelted samples help to provide better 869 
geochemical and chronological constraints for models of Solar system dynamics and causes of 870 
impact spikes to the Earth-Moon system (Turner et al., 1973; Tera et al., 1974; Dalrymple and 871 
Ryder, 1993, 1996; Cohen et al., 2000; Kring and Cohen, 2002; Kring et al., 2005; Norman et al., 872 
2006; Ćuk et al., 2010). Geochemical and chronological evidence from lunar samples informs our 873 
understanding of the Earth-Moon system, and the wider inner Solar system. Ages of lunar regolith 874 
breccias and soils can be estimated from the trapped 40Ar/36Ar ratio of a sample. The abundances 875 
of trapped 40Ar within a regolith sample is normalized to 36Ar as an indicator of the point in time 876 
of the last exposure to solar wind (i.e., the space environment), before closure of the system 877 
through burial by an ejecta blanket or a basalt flow. Variations of trapped Ar with time has been 878 
used to estimate the ages of lunar regolith samples (Eugster et al., 1980, 1983, 2001; McKay et al., 879 
1986; Eugster and Polnau, 1997). A model age representing breccia closure represents the last time 880 
grain-size components of the breccia were exposed to solar wind and may be used to calculate the 881 
formation time of the breccia (Joy et al., 2011, after Eugster et al., 2001). The technique was used 882 
to determine the ages of 191 lunar regolith samples from Apollo, Luna, and meteorite collections 883 
(Fagan et al., 2014).  884 

 885 
In addition to what was stated in the impact breccia section, regolith breccias and lunar soils 886 

have the potential to address physical properties of the extremely cold (and possible volatile-rich) 887 
polar regolith (NRC Concept 4d), measure the extent of lateral and vertical mixing of local and 888 
ejecta material (NRC Concept 6d), and utilize the Moon as a natural laboratory for regolith 889 
processes and weathering on anhydrous airless bodies (NRC Concepts 7a, 7b, 7c, 7d). 890 
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4 Chronologic Applications: Limitations and Opportunities 891 

In the previous sections, the Artemis exploration zone lithologies are described and the science 892 
potential for these returned materials is discussed.  Applications of chronologic approaches to these 893 
lithologies and some specific and unresolved major questions are informed by previous 894 
chronologic studies (Nyquist and Shih, 1992; Nyquist et al., 2001; Carlson et al., 2014; Borg et 895 
al., 2015; Barboni et al., 2017; Papike et al., 2018; Borg and Carlson, 2023).  A primary question 896 
is: what is the age of the Moon?  This seemingly simple question has been exceedingly difficult to 897 
answer.   898 
 899 
4.1 Age of the Moon and timing of the LMO 900 

 901 
In the context of a Moon-forming impact model of Lock et al. (2018), the violence of this event 902 

served to destroy most, if not all evidence of the impactor and proto-Earth. The Moon would have 903 
formed from a terrestrial synestia and undergone a magma ocean phase (Elkins-Tanton et al., 2011; 904 
Elardo et al., 2011).  During the lunar magma ocean (LMO) crystallization phase, metal-silicate 905 
differentiation would take place. The timing of lunar core formation is robustly constrained to have 906 
occurred after 4.51 to 4.50 Ga based on the short-lived 182Hf-182W isotope system (Touboul et al., 907 
2007; Kruijer and Kleine, 2017). Thus, the Moon formed after 4.51 – 4.50 Ga. Constraints on the 908 
first silicate minerals to form in the crust and mantle during the magma ocean crystallization phase 909 
is where significant debate exists. Prominent, accessible lithologies that should reflect LMO 910 
fractionation products are anorthositic flotation cumulate rocks that form after about 75% of the 911 
LMO crystallized (Rapp and Draper, 2018). As discussed in Borg and Carlson (2023), numerous 912 
attempts to date lunar anorthosites have yielded many different results. They discuss many issues 913 
that could result in ‘excess’ scatter about an isochron (meaning that the scatter is greater than 914 
predicted from analytical uncertainties alone) and initial isotopic compositions that suggest open-915 
system behavior or variable effects of secondary processes. Thus, Borg and Carlson (2023) suggest 916 
that the most reliable ages are those that are supported by independent confirmation with another 917 
isotopic system and from these criteria conclude that anorthosites related to LMO crystallization 918 
are likely no older than about 4.36 Ga. There are, however, other studies that show relatively robust 919 
isochrons indicative of older ages but lack independent confirmation. These include a Sm-Nd 920 
mineral and whole rock isochron age of 4.463 ±0.040 Ga in Descartes breccia 67215 (Norman et 921 
al., 2003), an Sm-Nd isochron age of 4.436 ±0.034 for an anorthositic clast in Y-86032 (Nyquist 922 
et al., 2006). The oldest reliable age determined directly from a ferroan anorthosite constrains how 923 
late the Moon-forming event was.  The potential for additional anorthositic materials from the 924 
Artemis explorations areas, especially the potential PAN lithologies, may provide materials that 925 
could help better constrain the timing of LMO crystallization and the age of lunar formation, 926 
overall. Other constraints on the age of the Moon come from Lu-Hf model ages of lunar zircon 927 
(Barboni et al., 2017).  These data provide strong evidence that the Moon-forming event occurred 928 
at about 4.50-4.51 Ga and highlight an ‘old versus young’ Moon formation debate. Collection of 929 
any materials containing zircon (e.g., gabbroic clasts) in the exploration zone can further test the 930 
Lu-Hf constraints on lunar formation. 931 

 932 
In addition to the sample return of materials that may help directly date the Moon-forming 933 

event through an expanded sample suite, new analytical opportunities are evolving.  These include 934 
advances in in-situ Rb-Sr isotopic analyses (Dauphas et al., 2022; Zhang, 2022).  Because 935 
anorthositic lithologies are susceptible to disturbance and have experienced protracted thermal 936 
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histories that may have resulted in isotopic disequilibrium (Borg and Carlson, 2023), in-situ 937 
approaches have the potential for identifying sample areas (e.g., in a thick or thin section) that are 938 
disturbed and those that are more pristine. This information will be invaluable for identifying lunar 939 
materials that best preserve their primary or protolith components and target those areas for dating.  940 
Robust ages, as defined by Borg and Carlson (2023), determined directly from LMO products will 941 
have major implications for lunar age models and the timing and duration of the LMO.  942 

 943 
Another way to date the LMO is to assess the formation timing of lunar mantle sources.  A 944 

robust method to determine when the lunar mantle ceased evolving through LMO crystallization 945 
processes is to investigate the 146Sm-142Nd and 147Sm-143Nd isotopic compositions of lunar 946 
materials (Nyquist et al., 1995; Boyet and Carlson, 2007; Borg et al., 2019).  These studies show 947 
that the lunar mantle closed to fractionation at about 4.33 Ga, but these data do not constrain when 948 
LMO crystallization began.  Thus, additional constraints on the timing of LMO crystallization can 949 
be made if additional LMO products were collected and returned, such as those that may have been 950 
excavated from depth during the SPA impact (Potter et al., 2012; Hurwitz and Kring, 2014; 951 
Garrick-Bethell et al., 2020; Lin et al., 2020; Moriarty et al., 2021).  952 
 953 
4.2 Timing of Lunar Magmatism 954 
  955 

Lunar magmatism has been ongoing until at least 2.030 ±0.003 Ga (Li et al., 2021).  Models 956 
that explain the evolution of lunar magmatism through time are underpinned by robust chronology. 957 
While anorthositic rocks are often associated with LMO processes, lunar magmatism is often 958 
associated with materials that are more basaltic in composition. Because these materials (which 959 
include mare basalt, cryptomare, and most Mg-suite rocks) have more diverse mineralogies than 960 
anorthositic rocks, the chronologic opportunities are far greater and essentially encapsulate all of 961 
the systems and approaches listed in Table 1. Of critical note, trace U-rich phases such as zircon 962 
and baddeleyite have the potential for precise U-Pb ages, even in thermally and chemically 963 
disturbed specimens. In thermally undisturbed specimens and/or fine-grained or amorphous 964 
specimens, precise Ar-Ar chronology can yield precise magmatic age determinations (e.g., 965 
Jourdan, 2012 and references therein). Precise mineral isochrons have been successfully applied 966 
to numerous basaltic lunar compositions coarse enough for mineral separations (Nyquist and Shih, 967 
1992; Rankenburg et al., 2007; Carlson et al., 2014). Given that most of the compositional mapping 968 
noted in section 2 indicates anorthositic compositions, mafic clasts could be present that are below 969 
the spatial resolution of spectral mapping. Thus, mafic lithologies have relatively high probabilities 970 
of success for chronology and these data can better inform models for the magmatic evolution of 971 
the Moon and help develop thermal models that explain at least ~2.5 billion years of lunar 972 
magmatic activity. 973 
 974 
4.3 Impact Processes and the Age of SPA 975 

The Artemis exploration zones are located within the SPA basin and within heavily impacted 976 
terrain.  It is expected that most materials collected from these regions will have been affected to 977 
some degree by impact processes.  Figure 2 summarizes some of the predicted geology and unit 978 
ages that might be encountered in the exploration zones.  Critical to assessing the source(s) of 979 
ejecta and their impact ages, dating impact metamorphism and/or impact melting is required.  980 
Standard approaches involve Ar-Ar analyses of impact glass or material that experienced 981 
significant Ar-loss during impact metamorphism.  Materials that crystallized from an impact melt 982 
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can have U-rich phases that can be dated by in-situ U-Pb analyses or can be dated by mineral 983 
isochron approaches.  In most cases, specimens that developed through impact processes can be 984 
dated in a variety of ways depending on the severity of impact metamorphism/melting; often, both 985 
the age of the protolith and the age of thermal metamorphism can be established (Burgess et al., 986 
2007; Fernandes et al., 2013; Shaulis et al., 2017; Černok et al., 2021). The opportunity that impact 987 
materials would be collected from mapped terrains, connections between ejecta and impact basin 988 
can be strengthened.  For impact chronology, the limit on science return is not the analytical 989 
techniques, it’s the nature and types of samples collected from the surface and how they relate to 990 
the surface geology. 991 

5 Sampling Strategy 992 

The lithologies detected in the Artemis region by numerous previous studies (Yamamoto et 993 
al., 2012; Lemelin et al., 2017, 2022) were identified at relatively coarse spatial resolutions (1 994 
km/pixel; 500 m/pixel). It should be noted that two upcoming instruments with improved spatial 995 
resolution (Imaging Infrared Spectrometer aboard Chandrayaan-2; High-Resolution Volatiles and 996 
Minerals Moon Mapper aboard Lunar Trailblazer) will launch prior to crewed Artemis activities. 997 
Both instruments will produce data at a spatial resolution of 70 to 80 m/pixel, which will 998 
dramatically increase the mineralogical detail available to identify less abundant lithologies (i.e., 999 
PAN, olivine-rich units, mafic lithologies, etc.). 1000 

 1001 
The Apollo astronauts were instructed to collect the greatest diversity of samples with the 1002 

coarsest grain sizes to allow for easier mineral separation in laboratory analyses on Earth (Phinney, 1003 
2015). This practice does not need to hold true for the Artemis astronauts. There is benefit in 1004 
collecting the greatest diversity of samples possible with respect to grain size and composition. To 1005 
broaden the potential science impact from returned samples, the Artemis astronauts should focus 1006 
on material diversity and areas that may contain deeply excavated materials, among other activities 1007 
and sampling related to the broader mission goals. 1008 

6 Concluding Remarks 1009 

The Artemis exploration zone contains several regions that may be explored by future crewed 1010 
and uncrewed surface missions. Lithologies in this region were created from igneous and impact 1011 
processes that have persisted over billions of years. Some brecciated samples may contain clasts 1012 
petrogenetically unrelated to one another, which could be an efficient strategy to study a greater 1013 
variety of lunar lithologies without venturing over large spatial regions on the surface. The 1014 
potential for such breadth of lithological variety in an as-yet-unexplored region of the Moon will 1015 
provide chronologic opportunities for untangling the mysterious history of lunar evolution. 1016 
Chronologic opportunities that exist from analyses of returned samples include U-Th-P, Rb-Sr, 1017 
Sm-Nd, Lu-Hf, and Ar-Ar. 1018 

These data will address issues such as the age of the Moon, timing of crucial events in lunar 1019 
history, allow for recalibration of melt extraction model ages, crystallization ages of lithologies, 1020 
and impact flux during the early Solar system. It is evident samples returned from the Artemis 1021 
exploration zone will provide incredible insight into the history of the Moon and early Solar 1022 
system. There is no ‘silver bullet’ analytical approach for all sample types. It will take a highly 1023 
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coordinated effort between lithologies, chronometers, instruments, and institutions to fully 1024 
understand what can be learned from these precious samples.  1025 
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