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Abstract

Accurately predicting and modeling the total electron content (TEC) of the ionosphere can greatly improve the accuracy of

satellite navigation and positioning and help to correct ionospheric delay. This study tested the effectiveness of four different

machine learning (ML) models in predicting hourly vertical TEC (VTEC) data from a single station in Addis Ababa, Ethiopia.

The models used were gradient boosting machine (GBM), extreme gradient boosting (XGBoost), light gradient boosting machine

(LightGBM) algorithms, and a stacked combination of these algorithms with a linear regression algorithm. The models relied

on input variables that represent solar activity, geomagnetic activity, season, time of the day, interplanetary magnetic field,

and solar wind. The models were trained using the VTEC data from January 2011 to December 2018, excluding the testing

data. The testing data comprised the data for the year 2015 and the initial six months of 2017. The RandomizedSearchCV

algorithm was used to determine the optimal hyperparameters of the models. The predicted VTEC values of the four ML

models were strongly correlated with the GPS VTEC, with a correlation coefficient of $\sim$0.96, which is significantly higher

than the corresponding value of the International Reference Ionosphere (IRI 2020) model, which is 0.87. Comparing the GPS

VTEC values with the predicted VTEC values based on diurnal and seasonal characteristics showed that the predictions of

the developed models were generally in good agreement and outperformed the IRI 2020 model. Overall, the GBDT-based

algorithms and their stacked integration demonstrated promising potential for predicting VTEC over Addis Ababa, Ethiopia.
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Key Points:9

• Three gradient-boosting decision tree-based algorithms and their stacked combi-10

nation with the linear regression algorithm are applied.11

• The predictions of the machine learning models are strongly correlated with the12

GPS VTEC, with a correlation coefficient of ∼0.96.13

• The machine learning models utilized in this work significantly outperformed the14

International Reference Ionosphere (IRI 2020) global model.15
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Abstract16

Accurately predicting and modeling the total electron content (TEC) of the ionosphere17

can greatly improve the accuracy of satellite navigation and positioning and help to cor-18

rect ionospheric delay. This study tested the effectiveness of four different machine learn-19

ing (ML) models in predicting hourly vertical TEC (VTEC) data from a single station20

in Addis Ababa, Ethiopia. The models used were gradient boosting machine (GBM), ex-21

treme gradient boosting (XGBoost), light gradient boosting machine (LightGBM) al-22

gorithms, and a stacked combination of these algorithms with a linear regression algo-23

rithm. The models relied on input variables that represent solar activity, geomagnetic24

activity, season, time of the day, interplanetary magnetic field, and solar wind. The mod-25

els were trained using the VTEC data from January 2011 to December 2018, excluding26

the testing data. The testing data comprised the data for the year 2015 and the initial27

six months of 2017. The RandomizedSearchCV algorithm was used to determine the op-28

timal hyperparameters of the models. The predicted VTEC values of the four ML mod-29

els were strongly correlated with the GPS VTEC, with a correlation coefficient of ∼0.96,30

which is significantly higher than the corresponding value of the International Reference31

Ionosphere (IRI 2020) model, which is 0.87. Comparing the GPS VTEC values with the32

predicted VTEC values based on diurnal and seasonal characteristics showed that the33

predictions of the developed models were generally in good agreement and outperformed34

the IRI 2020 model. Overall, the GBDT-based algorithms and their stacked integration35

demonstrated promising potential for predicting VTEC over Addis Ababa, Ethiopia.36

Plain Language Summary37

Studying the ionosphere is crucial as it significantly impacts satellite navigation38

and communication systems. However, a major challenge in ionospheric studies is the39

unavailability of observational TEC data in some regions. To tackle this problem, researchers40

have employed machine learning modeling as a solution. In this study, we used machine41

learning algorithms such as gradient boosting machine, XGBoost, and LightGBM, as well42

as their stacked integration along with the linear regression algorithm, to model the iono-43

spheric vertical total electron content over a single GPS receiver station in the low-latitude44

ionospheric region. The methods employed are highly efficient in terms of computational45

resources.46
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1 Introduction47

The ionosphere, which is the upper portion of Earth’s atmosphere, comprises ion-48

ized plasma that undergoes variations in its composition due to factors such as latitude49

and longitude, local time, season, solar and geomagnetic activity, and other factors. The50

electromagnetic wave propagating through this dynamic environment suffers a range de-51

lay whose magnitude depends on the frequency of the wave and the amount of the to-52

tal electron content (TEC) (Shi et al., 2022; Hajra et al., 2016). TEC, which is the to-53

tal number of electrons within a unit-square-meter column along a path through the ionop-54

sphere, is a significant parameter characterizing ionospheric variability (Tang et al., 2022).55

For long-range radio communications, surveying, navigation, and other space weather-56

related operations, it is necessary to understand the changes in TEC.57

Over the years, to better understand and mitigate the effect of ionospheric delay,58

the ionospheric community and others have investigated the ionospheric delay error in59

trans-ionospheric signals (Davies & Hartmann, 1997; Liu et al., 2020). There are, how-60

ever, challenges associated with ionospheric studies due to the lack of observational data61

on the necessary time and spatial scales. This led to the development of global ionospheric62

models like NeQuick (Hochegger et al., 2000; Nava et al., 2008) and International Ref-63

erence Ionosphere (IRI) models (Bilitza, 2001; Bilitza et al., 2011, 2017) . Despite their64

ability to improve several aspects of ionospheric modeling, different research findings (e.g.,65

Nigussie et al., 2013; Okoh et al., 2018; Tebabal et al., 2018; Habarulema et al., 2007,66

2009) have highlighted the shortcomings of these global models in the African sector.67

Several neural network (NN)-based single station and regional models have been devel-68

oped in the African region to fill these gaps and improve prediction accuracy (e.g., Teba-69

bal et al., 2018, 2019; Habarulema et al., 2007, 2009, 2011; Okoh et al., 2016, 2018; Hab-70

yarimana et al., 2020). It was found from these studies that NN-based models are very71

promising at capturing the overall dynamics of ionospheric variations compared to global72

models. However, this does not imply that the NN models always provide accurate pre-73

dictions in all cases as compared to other machine learning techniques. NN algorithms74

tend to overfit small datasets due to their need for large amounts of data to fully exploit75

their potential (Natras et al., 2022).76

In recent years, gradient-boosting decision tree (GBDT)-based machine learning77

techniques like extreme gradient boosting (XGBoost) (Chen & Guestrin, 2016) and light78
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gradient boosting machine (LightGBM) (Ke et al., 2017) have been created. These meth-79

ods have been successfully used for modeling and forecasting of ionospheric TEC (e.g.,80

Natras et al., 2022; Zhukov et al., 2021; Han et al., 2021). The findings have demonstrated81

that GBDT techniques are efficient and accurate in ionospheric modeling. Thus, adopt-82

ing GBDT algorithms for ionospheric modeling is efficient in regions where there is a short-83

age of ionospheric TEC data, as these techniques are effective for both small and large84

datasets. Apart from that, GBDT-based algorithms are not expensive because they don’t85

necessitate a significant amount of computational resources and training time compared86

to NN algorithms (Bentéjac et al., 2021). As a result, GBDT algorithms are relatively87

simple to optimize compared to NN techniques.88

In previous studies conducted in the African region, machine learning methodolo-89

gies other than GBDT-based algorithms were primarily used for modeling ionospheric90

vertical TEC (VTEC). Therefore, this study has been conducted to test the effective-91

ness of GBDT-based algorithms and their stacked integration to model VTEC. For this92

purpose, gradient boosting machine (GBM), XGBoost, LightGBM, and a stacked model93

of these three algorithms with a linear regression model are employed at a single GPS94

station over Addis Ababa, Ethiopia. Additionally, the present study has incorporated95

model input parameters that represent the influence of the interplanetary magnetic field96

(IMF) and solar wind, which have not been utilized in prior neural network-based mod-97

els in the African region. In order to validate their predictive capability, the performances98

of the machine learning models used in this study are also assessed by comparing them99

with the International Reference Ionosphere (IRI 2020) global ionospheric model.100

2 Data and Methods101

2.1 Data and Data Preparation102

The hourly VTEC data was obtained from a dual-frequency GPS receiver located103

over Addis Ababa, Ethiopia (ADIS, with geo lat: 9.0351◦ N and geo long: 38.7663◦ E).104

The values were derived using the calibration technique of Ciraolo et al. (2007) from 2011105

through 2018. This data is publicly available at the Global Navigation Satellite System106

(GNSS) TEC calibration service provided by the International Center for Theoretical107

Physics (ICTP). To mitigate errors caused by multipath effects, only VTEC values ob-108
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tained at elevation mask angles greater than 30◦ were considered. The calibrated VTEC109

data sampling was 30-second and was then averaged to hourly values.110

The fundamental principle used to obtain ionospheric TEC values from GPS ob-111

servations is that GPS signals with varying frequencies encounter distinct ionosphere time112

delays as they pass through the same part of the ionosphere. A GPS signal with frequency113

f will experience an ionospheric time delay t, which can be given by Klobuchar (1996)114

as:115

t = 40.3
TEC

cf2
(1)116

where c is the speed of light in free space. Dual-frequency GPS receivers make use of two117

frequencies, L1 (1575.42 MHz) and L2 (1227.60 MHz), in order to compensate for the118

delay caused by the ionosphere. This particular receiver, operating at frequencies f1 and119

f2, calculates the discrepancy in time delay between the two frequencies, given by120

∆t = 40.3
TEC

c(f2
2 − f2

1 )
(2)121

Therefore, the measured time delay (∆t) between the L1 and L2 frequencies is utilized122

for the computation of the TEC along the path of the ray. The slant TEC (STEC) mea-123

surements made here are the sum of the actual slant TEC, the GPS satellite differen-124

tial delay bS (satellite bias), and the receiver differential delay bR (receiver bias). Thus,125

the VTEC can be given by (Rama Rao et al., 2006; Ciraolo et al., 2007)126

V TEC =
(STEC − (bR + bS))

S(ε)
(3)127

where S(ε) is the obliquity factor (mapping function) with zenith angle, θz at the iono-128

spheric pierce point, defined by (Mannucci et al., 1993; Rama Rao et al., 2006)129

S(ε) =
1

cos(θz)
=

{
1−

(
RE × cos(ε)

RE + hS

)2
}−0.5

(4)130

where RE is the mean radius of the Earth in km, hS is the height of the ionospheric pierce131

point, and ε is the elevation angle in degrees.132

The variability of VTEC is modeled as a function of known physical and geophys-133

ical parameters. Several of these factors have been well documented, including solar and134

geomagnetic activity, seasonal changes, and diurnal variations (e.g. Maruyama, 2007; Habarulema135

et al., 2007, 2009; Tebabal et al., 2018, 2019). The variation associated with season and136

time of the day is effectively represented by the day number of the year (DOY) and the137
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hour of the day (HR), respectively. The measure of solar activity is represented by the138

sunspot number and the 28- and 81-day moving averages of solar radio flux at 10.7 cm139

wavelength (F10.7 index). The planetary amplitude (ap index) and the disturbance storm140

time (Dst index) were used as inputs for geomagnetic activity. The solar wind plasma141

speed (SW) and the north-south component of the interplanetary magnetic field (IMF142

Bz) based on the Geocentric Solar Ecliptic System (GSE) were also used as input vari-143

ables. The data for the input variables was obtained from the Goddard Space Flight Cen-144

ter Space Physics Data Facility. The data for these input variables was downloaded at145

hourly intervals and used as external geophysical driving sources to improve the predic-146

tive performance of the models.147

2.2 Modeling Techniques148

This study utilized machine learning algorithms for the purpose of creating mod-149

els. Machine learning allows computers to recognize patterns, make predictions, and make150

decisions by analyzing and adapting to data rather than relying on explicit instructions151

(Zhou, 2021). Ensemble learning, a technique that combines multiple models to solve152

computational problems and enhance prediction accuracy, is employed. Bagging, boost-153

ing, and stacking are the most commonly used ensemble machine learning algorithms,154

and this study used models based on boosting and stacking methodologies (Sagi & Rokach,155

2018; Yang, 2017). Boosting is a technique that improves the predictions of weak learn-156

ers by adding them sequentially. This involves training a new weak learner model based157

on the errors of the previously learned models (Natekin & Knoll, 2013). In tree-boosting158

ensembles, decision trees are often used as weak learners. Decision trees are supervised159

learning techniques that can be used for tasks like classification and regression. In re-160

gression trees, the goal is to make predictions of continuous values, and the accuracy of161

these predictions is assessed by calculating the sum of squared differences between the162

predicted values and the actual values (Hastie et al., 2009; Rokach & Maimon, 2005).163

Gradient tree boosting is a boosting ensemble technique that uses a combination of de-164

cision trees and an additive model to minimize a loss function (Brownlee, 2016).165

2.2.1 Gradient Boosting Machine (GBM)166

A gradient-boosting machine uses a learning method that fits new models in suc-167

cession to improve the accuracy of the response variable estimation. The GBM algorithm168
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aims to construct predictive models using back-fitting and non-parametric regressions.169

Rather than creating just one model, the GBM begins by generating an initial model and170

continuously adjusts new models by minimizing the loss function to achieve the most ac-171

curate model (He et al., 2019). The algorithm’s main concept is to create new base learn-172

ers that are highly correlated with the negative gradient of the loss function and asso-173

ciated with the entire ensemble. The loss functions used can be any differentiable func-174

tions, but to provide a clearer understanding, if the error function is the classic squared-175

error loss, the training process will lead to successive fitting of errors (Natekin & Knoll,176

2013).177

2.2.2 Extreme Gradient Boosting (XGBoost)178

XGBoost is a scalable and enhanced implementation of gradient-boosted decision179

trees. XGBoost is an open-source library that was initially developed by Tianqi Chen180

in 2014 and now has contributions from many developers. XGBoost is highly scalable181

because of various system and algorithmic optimizations. These include a unique tree182

learning algorithm for sparse data, a weighted quantile sketch procedure for handling in-183

stance weights, and parallel computing for faster learning. XGBoost also allows data sci-184

entists to process large amounts of data on a desktop using out-of-core computation (Brownlee,185

2016; Chen & Guestrin, 2016). XGBoost uses a term called objective function, which186

is the sum of the loss function and a regularization term. This term plays a crucial role187

in reducing overfitting by promoting smoother learning of weights. Like GBM, XGBoost188

constructs a successive extension of the objective function through the reduction of a loss189

function. XGBoost uses Taylor expansion of the loss function up to the second order to190

discover the best solution, which is then used to balance the complexity of the model and191

the decline of the objective function in order to prevent overfitting (Fafalios et al., 2020).192

2.2.3 Light Gradient Boosting Machine (LightGBM)193

LightGBM is a high-performing implementation of the gradient-boosting decision194

tree algorithm developed by Microsoft in 2017. It is designed to handle large datasets195

and improve prediction accuracy. It does this by using a leaf-wise tree growth approach,196

which focuses on nodes with the highest change in loss. Additionally, it incorporates tech-197

niques such as gradient-based one-side sampling (GOSS) and exclusive feature bundling198

(EFB) to enhance efficiency. The GOSS method selectively keeps instances with large199
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gradients and drops instances with small gradients to better estimate information gain.200

This approach is more effective than random sampling, particularly when the range of201

information gained is wide. In sparse, high-dimensional data, features that do not oc-202

cur together can be combined into one feature bundle to reduce the number of features203

using the EFB technique (Ke et al., 2017).204

2.2.4 Stacking Ensemble Technique205

A stacking technique is a type of ensemble machine learning algorithm that uses206

meta-learning techniques to find the best way to combine predictions from multiple base207

models. It involves two stages: training the base models and training the meta model.208

In the first stage, the original data is split into a training set and a testing set, and the209

training set is trained using k-fold cross-validation. In the second stage, the predictions210

from the base models are reassembled in the original order and used to create a new train-211

ing set for the meta model. The predictions from the testing sets of the base models are212

combined to form the testing set for the meta model. Finally, the meta model is trained213

using this new dataset (Lu et al., 2023). In this study we have applied stacking ensem-214

ble learning, using the linear regression (LR), GBM, XGBoost, and LightGBM as the215

base models and the LR as the a final meta model. Linear regression is a modeling tech-216

nique that linearly combine explanatory variables to predict a response variable (Hastie217

et al., 2009).218

2.3 Development of the Models219

We have used 8-year (2011–2018) GPS VTEC data at an hourly interval at ADIS220

GPS station to train and test the models. Missing data is very common in GNSS mon-221

itoring time series when collecting and processing raw data from GNSS stations. As a222

result, there are a significant number of missing VTEC values at the ADIS GPS station.223

Therefore, to fill these gaps, the nearby GPS stations VTEC data from ABOO (8.99◦224

N, 37.81◦E) and NAZR (8.57◦N, 39.29◦E) was utilized. Selecting appropriate inputs is225

crucial for designing an effective machine-learning model. It determines the model’s abil-226

ity to learn and generalize the relationship between the inputs and the target. In order227

to align the input variables with the VTEC, an approximation function can be used. This228

function establishes a nonlinear connection between the input data and the VTEC pre-229

diction output based on the input variables. As the function is not known, it is estimated230
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by optimizing the machine learning algorithms for the purpose of VTEC prediction, as231

explained by Hastie et al. (2009). The testing data used to assess model performance232

consisted of data for the year 2015 and the first six months of 2017, which represented233

20% of the total data. The remaining data was used to train the models and estimate234

the optimal parameters. The steps we followed to develop the machine learning mod-235

els are shown in Figure 1.236

Data Exploration Data Preparation
Machine Learning

Algorithm

Model Training

Model Candidates

RandomizedSearchCV
Algorithm

Optimum Hyperparameters

Final Machine Learning Model

Find Optimum
Hyperparameters

New Inputs VTEC predicted

Yes

No

Figure 1. Diagram of the development of the VTEC machine learning models

2.3.1 Model Optimization237

Machine learning algorithms contain a set of parameters, called hyperparameters,238

that cannot be predicted from data and must instead be customized for a particular learn-239

ing problem. Hyperparameters specify the complexity and construction of the model.240

Depending on the data and the problem, the optimal values of hyperparameters may dif-241

fer, and they are often discovered by testing with varying combinations and analyzing242

how well each model performs. Hyperparameters of boosting ensemble machine learn-243

ing techniques that frequently require optimization include the maximum depth of the244

tree (max depth), minimum loss reduction to create a new tree split (gamma), the num-245

ber of trees used in ensemble learning (n estimators), the fraction of samples to be used246

for fitting the individual base learners (subsample), the learning rate to reduce the gra-247

dient step (learning rate), and the maximum number of leaves in each weak learner (num leaves).248
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The RandomizedSearchCV algorithm was applied to the training data to determine the249

optimal hyperparameters for the three gradient boosting models used in this study. Ran-250

domizedSearchCV is an algorithm that combines random search with cross-validation251

to randomly select combinations of hyperparameters to train the model. Cross-validation252

is an approach to measuring the performance of a model by training it on a particular253

portion of input data and then testing it on a subset of input data that has not been used254

before (Rahmadayana et al., 2021). The selected optimal hyperparameters and the range255

of values used to search for the best hyperparameters are provided in Table 1.256

Model Hyperparameters used Range of Search

GBM

max depth = 6 (3,4,5,6,7,8,9,10,11,12,13,14,15)

subsample = 1 (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1)

learning rate = 0.1 (0.01,0.03,0.04,0.05,0.06,0.08,0.1, 0.15,0.2)

n estimators = 200 (100,150,200,250,300,350,400,450,500,600)

XGBoost

max depth = 6 (3,4,5,6,7,8,9,10,11,12,13,14,15)

learning rate = 0.05 (0.01,0.02,0.04,0.05,0.06,0.08,0.1,0.15,0.2)

gamma = 0.5 (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,1,1.1,1.2,1.3)

n estimators = 200 (100,150,200,250,300,350,400,450,500,600)

LightGBM

max depth = 5 (3,4,5,6,7,8,10,11,12,13,14,15)

num leaves=300 (100,200,250,300,350,400,450,500)

learning rate = 0.1 (0.01,0.03,0.04,0.05,0.06,0.08,0.1,0.15,0.2)

n estimators = 300 (100,150,200,250,300,350,400,450,500,600)

Table 1. Hyperparameters used to build GBM, XGBoost, and LightGBM models.

2.3.2 Model Evaluation257

To evaluate the effectiveness of the models, we have utilized various statistical pa-258

rameters such as residual error (ri), root-mean-square error (RMSE), mean absolute er-259

ror (MAE), standard deviation of residual errors (σ), and correlation coefficient (R). These260

parameters are widely recognized and utilized to determine the performance of a model(Shi261
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et al., 2022; Xiong et al., 2021). The equations are as follows:262

ri = V TECObs
i − V TECPred

i263

RMSE =

√√√√ 1

N

N∑
i=1

(V TECObs
i − V TECPred

i )2264

MAE =
1

N

N∑
i=1

|V TECObs
i − V TECPred

i | (5)265

σ =

√∑N
i=1(ri − r̄i)

N − 1
266

R =

∑N
i=1(V TECObs

i − V TEC
Obs

)(V TECPred
i − V TEC

Pred
)√∑N

i=1(V TECObs
i − V TEC

Obs
)2

∑N
i=1(V TECPred

i − V TEC
Pred

)2
267

268

where N is the number of data points, VTECObs
i is the GPS VTEC value, VTECPred

i269

is the predicted VTEC value of the ith data point, V TEC
Obs

is the mean of GPS VTEC270

values, V TEC
Pred

is the mean of predicted VTEC, and r̄i is the mean of the residuals271

for i = 1, 2,..., N.272

3 Results and Discussion273

3.1 Performance of the Models274

We utilized gradient boosting and stacking machine learning techniques to inves-275

tigate their effectiveness in VTEC modeling. The dataset for the years 2011–2014, 2016,276

2018, and the second half of 2017 was used in developing the ML models. Once the es-277

tablishment of the models was done, we saved the model hyperparameters for future ap-278

plications. The data for 2015 and the first six months of 2017 was then used to test the279

models. The scatter plots of the predicted VTEC by each model against the GPS VTEC280

for the testing data are shown in Figure 2. The horizontal axis represents the observed281

values, while the vertical axis represents the predicted values. A scatter-fitted red-colored282

solid line is defined by y = f(x), where y represents the predicted value and x repre-283

sents the GPS VTEC value. As seen from the figure, it is evident that the modeled VTEC284

values have a strong correlation with the observational values of GPS VTEC, with a cor-285

relation coefficient of R ≈ 0.96. This high correlation indicates that the ML models can286

precisely represent most of the variations and are capable of explaining over 98% of the287

variability of GPS VTEC. To enable further comparisons, we present a contour plot in288

Figure 3 that highlights the differences in error distribution between GPS VTEC and289
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predicted values for the testing periods. The x-axis represents the DOY, while the y-axis290

represents universal time coordinates (UTC). The maximum differences between GPS291

VTEC and predicted VTEC by GBM, XGBoost, LightGBM, and Stacked models are292

27.5, 28.0, 29.5, and 27.0 TECU, respectively. The LightGBM and Stacked models showed293

72% and 75% of data points, respectively, with absolute residual errors within the range294

of 0 and 5 TECU. Meanwhile, both GBM and XGBoost models demonstrated 73% of295

data points. Therefore, it can be concluded that the stacked model is slightly better at296

reducing errors when compared to other gradient-boosting decision tree (GBDT)-based297

techniques.298

Table 2 is a summary of the R, RMSE, MAE, and σ values computed using GPS299

VTEC and modeled VTEC for both the ML models (from 4 algorithms) and the IRI 2020300

model. The RMSE, MAE, and σ values for ML models are considerably smaller than301

those obtained from the IRI 2020 global model, indicating superior performance. These302

statistical analysis confirms that ML models are well-trained with the training data and303

exhibit accurate predictions for new datasets. Although there is no significant difference304

between statistical values of the four ML models, the stacked ensemble model shows a305

slight improvement of ∼0.2 TECU in RMSE and σ compared to individual GBDT-based306

models. To better display the ability of the GDBT models to reproduce the temporal307

feature of the VTEC, Figure 4 indicates the VTEC maps for high and low solar activ-308

ity periods of years 2015 and 2017, respectively, for both GPS VTEC and modeled val-309

ues. The accurate predictions of daily, seasonal, and annual VTEC variations are vis-310

ible on the maps for model predictions in year 2015. However, in year 2017, the mod-311

els tend to overestimate VTEC predictions at the beginning of April. This could be due312

to reliance on data from periods of high solar activity.313

The results of the current study indicate that the performance level of the ML mod-314

els developed is comparable to, or in most cases, better than, other existing single-station315

and regional models applied in the low-latitude African region. The models showed ex-316

ceptional prediction accuracy with minimal error. The testing data produced an RMSE317

value of approximately 5.3 TECU for the three GBDT models, while the stacked model318

achieved an RMSE value of 5.1 TECU. In contrast, previous studies by Tebabal et al.319

(2018) on a single-station feed neural network-based model over Arba Minch, Ethiopia,320

yielded R and RMSE values of 0.95 and 6.0 TECU, respectively, which are less favor-321

able than those obtained in our study. Similarly, in another single-station neural network-322
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based model over Mbarara, Uganda, by Habyarimana et al. (2020), an RMSE value of323

5.7 TECU was found, which exceeded the RMSE values achieved in the present study.324

Okoh et al. (2016) reported that the RMSE values for a neural network-based model over325

Nigeria ranged from 5.4 to 12.6 TECU, which is significantly higher than the values ob-326

tained in our study. Another regional neural network-based model over Ethiopia, devel-327

oped by Tebabal et al. (2019), reported RMSE values ranging from 3.8 to 6.5 TECU,328

which are comparable to the values obtained in this study.329

Figure 2. Scatter plots for hourly GPS VTEC and corresponding modeled VTEC values us-

ing different ML algorithms on the testing data

3.2 Day-to-day variability330

In this section, the day-to-day variations between the observed and predicted VTEC331

values are presented. The performance of the models was tested on both quiet and dis-332

turbed days based on the unseen data. The quiet and disturbed days for the analysis333

were chosen based on the Dst-index values.334
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Figure 3. Contour plots of residual errors between the GPS VTEC and the VTEC predicted

by the models for years 2015 (left panel) and 2017 (right panel).

Models R RMSE (TECU) MAE (TECU) σ (TECU)

GBM 0.960 5.355 3.801 5.313

XGBoost 0.961 5.322 3.786 5.264

LightGBM 0.960 5.326 3.811 5.275

Stacked 0.964 5.143 3.717 5.120

IRI 2020 0.873 11.782 8.117 10.956

Table 2. Table of R, RMSE, MAE, and σ values of the machine learning models and IRI 2020

model for testing data.

3.2.1 Quiet Time335

The performance of the models under geomagnetically undisturbed conditions was336

evaluated by comparing the predicted VTEC values with GPS VTEC and IRI 2020 model337
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Figure 4. Contour plots of the GPS VTEC and the VTEC predicted by the models for years

2015 (left panel) and 2017 (right panel)

predictions on selected quiet days (-20 nT ≤ Dst ≤ -20 nT) in September and Decem-338

ber 2015, and March and June 2017. Figure 5 shows the comparison for the quiet days339

of September 2015, December 2015, March 2017, and June 2017. In the figure, the red340

solid lines represent GPS VTEC, while the blue, black, lime (yellow-green), dark violet,341

and orange-colored lines depict VTEC values predicted by the GBM, XGBoost (XGB),342

LightGBM (LGBM), stacked (STK), and IRI 2020 models, respectively. The results sug-343

gest that the machine learning (ML) models consistently exhibit better agreement with344

GPS VTEC predictions on these selected quiet days. In each instance, the VTEC pre-345

dictions by the ML models closely align with GPS VTEC, outperforming the IRI 2020346

model, as shown in the plots for the quiet days.347

–15–



manuscript submitted to Space Weather

Figure 5. Comparison of predicted VTEC with the GPS VTEC for five quiet days of the

months of September 2015 (first row), December 2015 (second row), March 2017 (third row), and

June 2017 (fourth row).

3.2.2 Disturbed Conditions348

To assess how well the models can predict VTEC during geomagnetic disturbances,349

we compared the predicted VTEC values of the four ML and IRI 2020 models with the350

GPS VTEC. We analyzed the comparisons between predicted VTEC and GPS VTEC351

during intense (-200 nT<Dst≤-100 nT), moderate (-100 nT<Dst≤-50 nT), and weak (-352

50 nT<Dst≤-30 nT) geomagnetic storms. We selected three intense storm days on June353

23, 2015 (minimum Dst = -198 nT), October 7, 2015 (minimum Dst = -130 nT), and354

May 28, 2017 (minimum Dst = -125 nT). Also, we chose three moderate storm days on355

September 20, 2015, April 16, 2015, and March 27, 2017, with minimum Dst values of356

-81, -88, and -70 nT, respectively. Moreover, we selected three weak storm days on Jan-357

uary 26, 2015, October 1, 2015, and September 14, 2015, with minimum Dst values of358

-43, -40, and -47 nT, respectively. The figures in this report present the variations of the359

Dst index and comparisons of VTEC, which is predicted by machine learning and IRI360
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2020 models, with GPS VTEC for five-day periods during each event. The periods are361

centered on the day with the peak Dst index for intense, moderate, and weak geomag-362

netic storms. Figures 6, 7, and 8 show the results, respectively. In the graphs, GPS VTEC363

is shown with a red-colored solid line, and the VTEC values predicted by GBM, XGBoost364

(XGB), LightGBM (LGBM), stacked (STK), and IRI 2020 models are represented by365

blue, black, lime, dark violet, and orange-colored lines.366

The plots show that the ML models effectively captured the variations in VTEC367

and were closely aligned with GPS VTEC measurements, unlike the IRI 2020 model, which368

had less accurate VTEC predictions in most instances. During the intense storm period369

from June 21–25, 2015, the ML models slightly overestimated GPS VTEC but were still370

well captured by the IRI 2020 model in the early stages of the storm. The ML models371

accurately predicted VTEC during the intense storm day and the subsequent recovery372

phase, while the IRI 2020 model underestimated it. During the intense storm period from373

October 7-9, 2015, the storm caused an enhancement in VTEC the following day; how-374

ever, the models slightly underestimated the enhancement in GPS VTEC. This may be375

because the models may not have obtained the necessary information from the training376

data to make predictions during such times since all geomagnetic storms don’t result in377

VTEC enhancements. The bar graph in Figure 9 compares the RMSE values of the four378

ML models with the IRI 2020 model for selected geomagnetic storm periods. This com-379

parison aims to evaluate the performance of the models during geomagnetic disturbances.380

The RMSE values of all ML models are consistently much lower than the RMSE values381

of the IRI 2020 model during every geomagnetic storm period. During five of the cho-382

sen storm periods, the stacked model shows slightly lower RMSE values than the three383

GBDT models. This suggests that it performs slightly better in predicting VTEC dur-384

ing disturbed conditions compared to the other three ML models. The RMSE values of385

the stacked model range from 2.88 to 6.43 TECU, whereas the RMSE values of the IRI386

2020 model range from 4.02 to 16.75 TECU. This indicates that the predictions made387

by the IRI 2020 model are poor compared to the ML models during geomagnetic dis-388

turbances at the specific location our study has focused on.389

3.3 Seasonal Analysis390

To compare the predictive performance of different models in predicting seasonal391

variations of VTEC, we used the 24-hour monthly average VTEC data for selected months392
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Figure 6. Plots of Dst index and comparison of predicted VTEC with the GPS VTEC for

five-day periods with the day with intense storm considered at the center.

in various seasons as the testing data. In 2015, we selected March, June, September, and393

December, while March and June were selected in 2017. Figures 10 present the compar-394

isons of 24-hour monthly mean variations of GPS VTEC and VTEC predicted by the395

GBM, XGBoost (XGB), LightGBM (LGBM), stacked (STK), and IRI 2020 models for396

the selected months. In the plots, GPS VTEC is represented by the red-colored line, while397

VTEC predicted by the models is represented by the blue, black, lime, dark violet, and398

orange-colored lines, respectively. As shown in the plots, the ML models successfully pre-399

dicted VTEC values that align with GPS VTEC. However, the IRI 2020 model predic-400

tions showed significant deviations from GPS VTEC during the selected months.401
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Figure 7. Plots of Dst index and comparison of predicted VTEC with the GPS VTEC for

five-day periods with the day with moderate storm considered at the center.

The bar graph in Figure 11 displays the comparison of RMSE values for the ma-402

chine learning (ML) models and the IRI 2020 model for the selected months on the test-403

ing data. The graph shows that the stacked model had lower RMSE values in March 2015,404

September 2015, and March 2017 when compared to other GBDT models. The XGBoost405

model exhibited a slightly lower RMSE value in June 2015 compared to other ML mod-406

els. On the other hand, the GBM model had a slightly smaller RMSE value in June 2017.407

During the chosen months, the RMSE values for all models were higher in March 2015,408

which is due to the larger VTEC values during that month caused by it being closer to409

the solar maximum. The stacked model exhibited RMSE values ranging from 2.327 to410

8.428 TECU, while the IRI 2020 model showcased RMSE values ranging from 4.085 to411
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Figure 8. Plots of Dst index and comparison of predicted VTEC with the GPS VTEC for

five-day periods with the day with weak storm considered at the center.

19.985 TECU. This indicates that the IRI 2020 model is less effective in predicting VTEC412

compared to the ML models.413

4 Conclusions414

This paper compares the performance of four machine learning models for estimat-415

ing ionospheric VTEC. The models used include GBM, XGBoost, Light-GBM, and a stacked416

algorithm that combines the three models with a linear regression algorithm. A total of417

8 years (2011–2018) of data was derived from the Addis Ababa GPS station in Ethiopia.418

The data for years 2011–2014, 2016, 2018, and the second half of 2017 was utilized in419

the development of the ML models. Testing was conducted on the dataset for 2015 and420
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Figure 9. Comparison of the RMSE values of the machine learning models and IRI 2020

model for the periods considered to compare the performance of the models in geomagnetic dis-

turbance.

Figure 10. Comparison of seasonal variations of VTEC using the monthly 24 hour average

VTEC of the models with the GPS VTEC for selected months in 2015 and 2017.

the first six months of 2017. In developing and testing models, the ML input data in-421

cludes factors affecting VTEC variation such as time of day, season, solar and geomag-422

netic activity, and solar wind. The RandomizedSearchCV algorithm was used to deter-423

mine the optimal hyperparameters of the models. A comparative analysis was conducted424

to validate the performance of machine learning models against the global model. The425

correlation between GPS VTEC and predicted VTEC for the four machine learning mod-426

els showed almost identical results, with an R value of approximately 0.96, while the global427

model had a correlation of 0.87.428
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Figure 11. Comparison of RMSE values of the ML and IRI 2020 models for the selected

months at different seasons in 2015 and 2017.

An error analysis between the model-predicted VTEC values and the GPS VTEC429

for the testing data showed that the ML models have significantly outperformed the IRI430

2020 model in predicting VTEC. The VTEC predictions of the four ML and IRI 2020431

models were compared with the GPS VTEC at selected quiet and geomagnetically dis-432

turbed conditions. The ML models have predicted VTEC with good accuracy and out-433

performed the IRI 2020 model in the selected quiet and disturbed conditions. The sea-434

sonal predictive performances of the models were also evaluated by comparing the 24-435

hour monthly average predicted VTEC values with the GPS VTEC for selected months436

at different seasons on the testing data. The VTEC values predicted by the ML mod-437

els are in good agreement with the GPS VTEC, greatly outperforming the IRI 2020 model438

in the selected months with far smaller RMSE values. In general, the stacking algorithm439

applied in this study slightly reduced errors and slightly enhanced the predictive per-440

formance of the three gradient-boosting-based models in some instances. The findings441

in this study suggest that using GBDT algorithms and their stacked combination can442

accurately predict ionospheric VTEC in the African low-latitude region while also be-443

ing computationally efficient.444

Data Availability Statement445

The calibrated IGS TEC data for the Addis Ababa GPS receiver is available at the446

ICTP GNSS TEC calibration service (https://arplsrv.ictp.it/). Data corresponding to447

Amboo and Nazeret GPS receiver stations was obtained from the UNAVCO data archive448
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(https://www.unavco.org/data/gps-gnss). The data for the input variables sunspot num-449

ber, solar radio flux F10.7, ap index, Dst index, solar wind plasma speed (SW), and Bz450

component of the IMF were downloaded from https://omniweb.gsfc.nasa.gov/form/dx1.html.451

The IRI 2020 model TEC data is available at https://kauai.ccmc.gsfc.nasa.gov/instantrun/iri/.452
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