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Abstract

Large uncertainties persist in modeling shallow, low clouds because there are many interacting nonlinear processes and multiple

cloud-controlling environmental factors. In addition, sharp changes in behavior can occur when environmental thresholds are

met. Model studies that follow a traditional approach of exploring the effects of factors “one-at-a-time” are unable to capture

interactions between factors. We simulate a stratocumulus cloud based on the Second Dynamics and Chemistry of Marine

Stratocumulus field study using a large-eddy simulation model coupled with a two-moment cloud microphysics scheme. The

simulations are used to train a Gaussian process emulator, which we then use to visualize the relationships between two cloud-

controlling factors and domain-averaged cloud properties. Only 29 model simulations were required to train the emulators,

which then predicted cloud properties at thousands of new combinations of the two factors. Emulator response surfaces of

cloud liquid water path and cloud fraction show two behavioral regimes, one of thin and patchy yet steady stratocumulus

and one of thick, growing stratocumulus with cloud fraction near 1. Natural variability (initial-condition uncertainty) creates

unrealistic “bumpy” response surfaces. However, we show that the variability causing the bumpiness can be characterized in an

emulator “nugget term” that is adjusted to match the distribution of a small number of initial-condition ensemble simulations

at various points on the surface, thereby allowing a smoother, deterministic response surface to be constructed. Accounting for

variability leads to the firm conclusion that there is a smooth but steep change in cloud behavior between regimes, but not a

sharp transition.
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Key Points:8

• Gaussian process emulation of large eddy simulations can be used to visualize shal-9

low cloud response to cloud-controlling factors.10

• The emulator response surface shows how above-cloud temperature and moisture11

have a combined effect on stratocumulus cloud liquid water path.12

• Cloud natural variability can be accounted for so that the emulator smoothly cap-13

tures the deterministic rather variation in cloud properties.14
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Abstract15

Large uncertainties persist in modeling shallow, low clouds because there are many in-16

teracting nonlinear processes and multiple cloud-controlling environmental factors. In17

addition, sharp changes in behavior can occur when environmental thresholds are met.18

Model studies that follow a traditional approach of exploring the effects of factors “one-19

at-a-time” are unable to capture interactions between factors. We simulate a stratocu-20

mulus cloud based on the Second Dynamics and Chemistry of Marine Stratocumulus field21

study using a large-eddy simulation model coupled with a two-moment cloud microphysics22

scheme. The simulations are used to train a Gaussian process emulator, which we then23

use to visualize the relationships between two cloud-controlling factors and domain-averaged24

cloud properties. Only 29 model simulations were required to train the emulators, which25

then predicted cloud properties at thousands of new combinations of the two factors. Em-26

ulator response surfaces of cloud liquid water path and cloud fraction show two behav-27

ioral regimes, one of thin and patchy yet steady stratocumulus and one of thick, grow-28

ing stratocumulus with cloud fraction near 1. Natural variability (initial-condition un-29

certainty) creates unrealistic “bumpy” response surfaces. However, we show that the vari-30

ability causing the bumpiness can be characterized in an emulator “nugget term” that31

is adjusted to match the distribution of a small number of initial-condition ensemble sim-32

ulations at various points on the surface, thereby allowing a smoother, deterministic re-33

sponse surface to be constructed. Accounting for variability leads to the firm conclusion34

that there is a smooth but steep change in cloud behavior between regimes, but not a35

sharp transition.36

Plain Language Summary37

Modeling shallow clouds is important because these clouds have an overall cool-38

ing effect on the planet, but the magnitude of this effect is very uncertain. Shallow cloud39

behaviors are made up of many interacting processes that work at a large range of scales,40

and we are not able to fully describe all these processes in large climate models. We use41

a machine learning technique called Gaussian Process emulation to approximate output42

from the high-resolution cloud model so that we can study the cloud behavior at a much-43

reduced computational cost. By perturbing two cloud-controlling factors, we create a set44

of training data to train the emulator how to approximate the relationship between these45

factors and cloud properties of interest. We produce color maps that visually describe46

this relationship and we show that there are two regimes of cloud behavior. We assess47

the best way to account for cloud natural variability in the approximation. Gaussian Pro-48

cess emulation is a vital tool for cloud modeling because it allows us to inspect whole49

cloud processes and the relationships between different inputs as they influence the out-50

put of interest. In this way we can better understand cloud processes and their uncer-51

tainties.52

1 Introduction53

Shallow, low clouds cover a larger area of the Earth than any other cloud type, with54

stratocumulus clouds alone covering one-fifth of the surface. They increase Earth’s albedo55

in most regions because they reflect more solar radiation than the underlying surfaces56

(Wood, 2012), while having only a small effect on emission of terrestrial radiation. There-57

fore, globally, they have a net cooling effect (Hartmann et al., 1992). These clouds are58

important for the global radiation budget and how it changes over time in response to59

warming (cloud feedback: Ceppi et al., 2017; Schneider et al., 2019; Bretherton, 2015;60

Shen et al., 2022) and changes in aerosols (radiative forcing: Bellouin et al., 2020; J. Smith61

et al., 2020; Douglas & L’Ecuyer, 2020; Malavelle et al., 2017). However, their responses62

to changes in aerosols and the thermodynamic environment (cloud-controlling factors)63

are very uncertain (Myhre et al., 2013). Consequently the corresponding aerosol-cloud64
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radiative forcing (Seinfeld et al., 2016; Lund et al., 2019; Bellouin et al., 2020) and cloud65

feedbacks (Bony & Dufresne, 2005; Zhang et al., 2013; Blossey et al., 2016; Nuijens &66

Siebesma, 2019) are not well understood and significantly contribute to the uncertain-67

ties that persist in climate change projections (Peace et al., 2020; Dufresne & Bony, 2008).68

It is crucial that we efficiently use the modeling tools available to narrow this uncertainty69

in the outcomes of perturbations and climate feedbacks.70

Much of the uncertainty in simulating clouds comes from the large number of in-71

teracting cloud-controlling factors. Key factors that affect the state and evolution of shal-72

low clouds are local meteorology, large-scale forcings, radiative feedbacks and aerosols.73

Some of these factors, such as thermodynamic properties, can change on short timescales74

(hours) and shallow clouds respond quickly because internal changes in cloud microphysics75

and precipitation operate on similar timescales. Such cloud-controlling factors can have76

a dramatic effect on cloud properties, such as the rapid change from closed- to open-cell77

cloud structures (Stechmann & Hottovy, 2016). Other factors, such as large-scale diver-78

gence, operate on longer timescales and it can take 2 to 5 days for the cloud to adjust79

(Bellon & Stevens, 2013). Many of these factors covary and they also have joint effects80

on cloud processes, with counteracting effects creating a “buffered system” (Stevens &81

Feingold, 2009). In such a complex interacting system, changing one factor at a time to82

test cloud responses to various drivers cannot fully capture joint effects and interactions.83

Our study has a similar focus to Dal Gesso et al. (2015), a model intercomparison84

that explored how stratocumulus cloud properties depend on two cloud-controlling fac-85

tors (henceforth used interchangeably with “parameters”): the temperature and humid-86

ity differences between the surface and the free troposphere. The initial profiles of these87

factors were perturbed over a range of values at discrete Cartesian grid points across the88

2-dimensional parameter space to study the effect on model outputs, such as cloud cover89

and liquid water content. This array of discrete model outputs across the parameter space90

allowed the model response to be partially visualized. However, this grid-point method91

restricts the information available from the simulation ensemble and, the number of sim-92

ulations required to explore n factors also rises with 2n. Additionally, as shown in Feingold93

et al. (2016), such a design of simulations may misrepresent the joint effects of factors.94

To overcome the limitations of one-at-a-time sensitivity testing and to understand95

the joint effects of factors, we use Gaussian process emulation to generate “response sur-96

faces” that describe how cloud properties respond to the joint effects of multiple cloud-97

controlling factors. Gaussian process emulation is a machine learning method to approx-98

imate the relationship between a set of model input parameters and a model output (O’Hagan,99

2006). Compared to other machine learning methods, this requires only a small num-100

ber of well-designed model simulations as training data. The emulator function (the ap-101

proximated relationship between model outputs and inputs) can then be sampled mil-102

lions of times at a fraction of the computational cost of running the model for the equiv-103

alent points in parameter space. From this dense sampling, we can produce a response104

surface with an associated uncertainty at any point in parameter space. The power of105

emulation is in the ability to study how large numbers of parameters interact to influ-106

ence the output of interest and also to visualize all combinations of parameters within107

their realistic ranges at comparatively low computational cost. In previous emulation work,108

the parameters were often related to uncertain processes in the model, but here the pa-109

rameters are cloud-controlling factors.110

Gaussian process emulation has been widely applied in aerosol and aerosol-cloud111

science. First, response surfaces are an effective tool for visualizing the combined effects112

of the uncertain input parameters and an output of interest, such as in Marshall et al.113

(2019, 2021) for volcanic eruptions. Transformations from parameter space to state space114

(Glassmeier et al., 2019; Hoffmann et al., 2020) or selection of a few key parameters at115

once allows higher dimensions to be visualized (Lee et al., 2011). Second, variance-based116

sensitivity analysis based on a large number of emulator data points rather than the sparse117

–3–



manuscript submitted to Journal of Advances in Modeling Earth Systems

training data is used to understand which parameters contribute most to the variance118

in the output of interest (Saltelli et al., 2000; Johnson et al., 2015; Regayre et al., 2014,119

2015, 2018; Lee et al., 2011, 2013). Third, the uncertain parameter ranges can be con-120

strained using observations of the model outputs (Johnson et al., 2018; Regayre et al.,121

2018, 2020; Marshall et al., 2021), which can lead to constraint of additional outputs for122

which observations are not available.123

The first cloud model emulation study was Johnson et al. (2015). They perturbed124

initial aerosol concentrations and nine microphysical model parameters in a deep con-125

vective cloud microphysics model. Sensitivity analysis showed that the cloud properties126

considered were most sensitive to aerosol concentrations and graupel collection efficiency.127

This demonstrated the insight that can be gained from emulating cloud models, where128

buffering can obscure relationships between input parameters and cloud responses. Per-129

turbing multiple input parameters together reveals how they jointly affect an output and130

under what conditions certain parameters have a larger effect than others. Following this131

work, emulation has been used to analyze the sensitivity of deep convective cloud prop-132

erties (Wellmann et al., 2018, 2020) and sea breeze convection (Igel et al., 2018; Park133

et al., 2020) to initial meteorological conditions. Additionally, Glassmeier et al. (2019)134

and Hoffmann et al. (2020) have used emulation of state variables to explore cloud-processes135

in stratocumulus. Here, we use emulation to study the covariance of initial meteorolog-136

ical conditions in stratocumulus and, like Johnson et al. (2015) and Park et al. (2020),137

we identify regimes of cloud behavior in parameter space.138

Shallow clouds often display sharp changes in behavior (between regimes) as cloud-139

controlling factors change. This can make Gaussian Process emulation challenging be-140

cause of the required assumptions about smoothness. Feingold et al. (2016) found a steep141

gradient in a study of nocturnal marine stratocumulus clouds in which six parameters142

were perturbed. Pope et al. (2021) demonstrated that the steep gradient in this dataset143

could be emulated using a non-stationary method, where Voronoi tessellations defined144

regions of the 6-dimensional parameter space where separate, stationary emulators could145

be applied, which followed the assumption of smoothness. The discontinuity was primar-146

ily caused by perturbations in aerosol concentration, but the high dimensionality of the147

parameter space made visualizing the discontinuity difficult. Here, we have visualized148

a steep gradient in two dimensions and used adaptive sampling to explore it, but we found149

that it emulates reasonably so stationary methods sufficed.150

Another challenge in visualizing cloud behavior as a response surface is that cloud151

models exhibit a high degree of natural variability, which may obscure the determinis-152

tic behavior that an emulator is designed to represent. In a purely deterministic model,153

the emulator function can interpolate exactly through all the training data. However,154

cloud models represent the non-deterministic behavior of clouds through initial small ran-155

dom temperature perturbations, so the simulated cloud properties at each point in pa-156

rameter space also depend on these initial conditions. Such variability can be averaged157

out by running initial-condition ensembles at each point in parameter space and using158

the ensemble mean as training data (Johnson et al., 2011; Oyebamiji et al., 2017; Hen-159

derson et al., 2009). For global climate models, which are resource intensive, this vari-160

ability is usually estimated using maximum likelihood methods (Williamson & Blaker,161

2014; Pope et al., 2021). Here, we show the natural variability of our cloud model can162

be approximated based on initial-condition ensembles at just a few points in parame-163

ter space.164

In this study, we assess the ability of statistical emulation to capture the transi-165

tion between two regimes of shallow cloud behavior as initial vertical profiles of two cloud-166

controlling factors (parameters) are varied. We also explore a method to quantify nat-167

ural variability and account for it when training emulators. We start from a homogeneous168

stratocumulus-topped boundary layer that has steady cloud properties despite environ-169

mental conditions that make the cloud prone to breaking up, as hypothesized by Lilly170
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(1968), Randall (1980) and Deardorff (1980). Two parameters are perturbed to identify171

where cloud breakup occurs across the parameter space. We will answer the following172

questions. First, does the hypothetical cloud-breakup threshold separate two cloud regimes?173

Second, how well can we characterize the change in cloud behavior using statistical em-174

ulation? Is there a discontinuity or a smooth change? Third, how can we account for the175

model’s natural variability in the emulators so that the response surfaces represent de-176

terministic cloud behavior rather than noise?177

The remainder of this paper is laid out as follows. Section 2 gives context to the178

cloud-breakup region and section 3 describes the model simulation setup, the initial sim-179

ulation and the parameter perturbations. Section 4 discusses the cloud behavior displayed180

across the perturbed parameter ensemble and exploring the model’s behavior around the181

cloud-breakup threshold. The model’s natural variability will be quantified and included182

in the emulation method in section 5. The results are discussed further in section 6.183

2 Theoretical context184

The simulations are based on observations from the first research flight (RF01) of185

the Second Dynamics and Chemistry of Marine Stratocumulus field study (DYCOMS-186

II) (Stevens et al., 2003), which took place off the west coast of California in July 2001.187

Flight RF01 observed a homogeneous, non-drizzling stratocumulus cloud deck over nine188

hours through the night. Dropsondes measured a well-mixed boundary layer up to 850 m189

initially, but the boundary layer and cloud layer deepened by 50 m over the course of190

the flight, resulting in a 250 m thick cloud. The well-mixed stratocumulus-topped bound-191

ary layer was capped by a temperature inversion, where the potential temperature, θ,192

increased by 8.5 K and the total water mass mixing ratio, qt, decreased by 7.5 g kg−1
193

within a few tens of meters of cloud top.194

Stevens et al. (2005) conducted a large-eddy simulation (LES) model intercompar-195

ison study based on RF01 to compare ten models. Many of the models simulated a more196

broken cloud than observed, with lower cloud fraction and lower liquid water path (the197

vertically integrated liquid water content), and some simulated boundary layer decou-198

pling, which was not observed. A decoupled boundary layer is no longer well-mixed and199

cloud water content tends to decrease because ocean moisture no longer reaches the cloud200

layer. Stevens et al. (2005) suggested that differences between the models and observa-201

tions might partially be because the temperature and humidity properties of the inver-202

sion made the simulations particularly sensitive to a cloud-dissipating mechanism, cloud-203

top entrainment instability, described below. Other LES studies that have simulated DYCOMS-204

II RF01 generally fall within the multi-model range of the intercomparison study (Yamaguchi205

& Randall, 2008; Xiao et al., 2011; Ghonima et al., 2015; Pressel et al., 2017).206

The stratocumulus-topped marine boundary layer can persist as a uniform cloud207

field for days before transitioning to a cumulus state or breaking up (sometimes entirely)208

within a couple of hours. Lilly (1968) proposed a theoretical mechanism for this rapid209

change where warm, dry air mixed into the cloud from above (entrainment) leads to evap-210

orative cooling and enhanced mixing, which may create a positive feedback that can rapidly211

dissipate the cloud. However, as with DYCOMS-II, many observations and LES stud-212

ies have found stratocumulus clouds persisting within this theoretical region of cloud dis-213

sipation (Kuo & Schubert, 1988; Siems et al., 1990; Moeng, 2000; Stevens et al., 2005).214

Mellado (2017) summarized recent studies that found the feedback is generally not strong215

enough under realistic conditions to dissipate marine stratocumulus clouds, especially216

alongside other confounding factors.217

Randall (1980) and Deardorff (1980) derived an inversion instability parameter, κ,218

with a threshold beyond which the cloud-dissipating feedback occurs,219
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κ = 1 +
cp
Lv

∆θl
∆qt

, (1)

where cp is the specific heat of air, Lv is the latent heat of vaporization, ∆θl and ∆qt220

are the changes in potential temperature (for liquid water) and in total water mass mix-221

ing ratio, both at the inversion. Several studies since have made alternative derivations222

and attempted to map out the dependence of κ on these two parameters, ∆θl and ∆qt,223

using one-at-a-time model sensitivity simulations (Kuo & Schubert, 1988; MacVean &224

Mason, 1990; Siems et al., 1990; Yamaguchi & Randall, 2008; Xiao et al., 2011; Van Der Dussen225

et al., 2014; Dal Gesso et al., 2015).226

Here we simulate DYCOMS-II RF01 and perturb ∆θl and ∆qt across a range of227

values to map out cloud behavior in their joint parameter space.228

3 Experiment design229

3.1 Model Description230

The LES model used here is the UK Met Office/Natural Environment Research Coun-231

cil (NERC) Cloud (MONC) model (N. Brown et al., 2020). All simulations were noc-232

turnal and used a longwave cooling parameterisation based on Bretherton et al. (1999).233

Horizontal resolution was 30 m and vertical resolution varied between 7.5 m around the234

inversion and 10 - 20 m elsewhere in the boundary layer. The domain size was 250 by235

250 grid boxes with 110 vertical layers up to 1500 m. The subgrid mixing scheme for un-236

resolved turbulence, diffusion and viscosity is an extension of the Smagorinsky-Lilly model237

(detailed in A. R. Brown et al., 1994).238

The microphysics scheme used is the Cloud AeroSol Interacting Microphysics (CASIM)239

model, which is a bulk scheme that can use up to three moments for each hydrometeor240

(Shipway & Hill, 2012; Hill et al., 2015; Dearden et al., 2018; Field et al., 2023). Here241

we define cloud liquid and rain droplets by two moments: number concentration and mass242

mixing ratio.243

The particle size distribution is defined as,244

N(r) = N0r
µe−γr, (2)

where r is a measure of size, N0 is the distribution intercept parameter, µ is the shape245

parameter and γ is the slope parameter (Shipway & Hill, 2012). The kth moment is then246

defined by,247

Mk =

∫
rkN(r)dr, (3)

giving the number concentration (zeroth moment) as M0 = N0 and the mass mixing ra-248

tio (third moment) is M3 = 4
3πr

3N0exp(
9
2 ln

2σ) for a lognormal distribution.249

Condensation and evaporation were calculated by a saturation adjustment scheme,250

where any surplus water vapor in the cloud condenses onto the fixed number of cloud251

droplets and any deficit evaporates from the droplets, keeping the relative humidity within252

the cloud at 100%. Cloud droplets can be autoconverted and collected into rain droplets,253

and rain droplets can precipitate and either reach the surface or evaporate in sub-saturated254

air below the cloud base. Condensation of water vapor onto rain cannot occur due to255

the saturation adjustment scheme (Gray et al., 2001). Sedimentation was switched on256
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Figure 1. Initial profiles of potential temperature and total water mass mixing ratio for all

simulations. Solid lines show the base simulation values taken from the DYCOMS-II obser-

vational campaign flight RF01, while gray lines show the profiles for the perturbed ensemble

members.

for both cloud droplets and rain, which advects water mass downwards through the bound-257

ary layer. Autoconversion and collection are dependent on cloud water mass mixing ra-258

tio, rain water mass mixing ratio and droplet number concentration (Khairoutdinov &259

Kogan, 2000). New air is homogeneously mixed from above the cloud into the cloud layer,260

which means clear air is mixed into the cloudy air before evaporation is calculated so all261

droplets are evaporated equally until saturation is reached. Thus, there is a reduction262

in cloud droplet radius, but cloud droplet number is not affected.263

3.2 Perturbed parameter ensemble264

A base simulation was initialized to match the DYCOMS-II RF01 setup in Stevens265

et al. (2005). The simulation was run for 8 hours with initial surface sensible and latent266

heat fluxes of 15 W m−2 and 115 W m−2. The initial profiles of θ and qt are shown in267

Figure 1.268

We perturbed the initial ∆θ and ∆qt to explore the joint effect of these two pa-269

rameters, creating a perturbed parameter ensemble (PPE) in the 2-dimensional param-270

eter space (Figure 1). The initial profiles were kept the same up to the inversion at 840 m,271

where the magnitude of the jump was varied for both. The ranges for these parameters272

were chosen based on the ranges outlined in Van Der Dussen et al. (2014):273

2 K ≤ ∆θ ≤ 20 K (4)

−9 g kg−1 ≤ ∆qt ≤ 0 g kg−1. (5)

Theoretically, cloud thickening occurs for conditions below the κ threshold which is in274

the region of parameter space where ∆θ → 20 K and ∆ qt → 0 g kg−1. Cloud thin-275

ning occurs above the κ threshold where ∆θ → 2 K and ∆ qt → -9 g kg−1. For a276

cloud fraction≈1, cloud thickening is roughly analogous to an increasing liquid water path277

throughout the simulation - a positive liquid water path tendency.278

The PPE simulation data were used as training data for Gaussian process emula-279

tion. The combination of joint values of ∆θ and ∆qt were defined using a “maximin”280

Latin hypercube algorithm comprised of 20 simulations, which has been shown to be suf-281

ficient to create an emulator over a 2-dimensional parameter space (Morris & Mitchell,282

1995; Loeppky et al., 2009; Lee et al., 2011). The Latin hypercube (Figure 2) is a space-283

–7–



manuscript submitted to Journal of Advances in Modeling Earth Systems

5 10 15 20

∆θ (K)

−8

−6

−4

−2

0

∆
q t

(g
kg
−

1
)

Training points

Validation points

DYCOMS-II RF01

Figure 2. Latin hypercube design for the PPE. Circles show training points and squares

show validation points. Faded markers show the distribution along each dimension. The triangle

marker is the base simulation.

filling design that samples the parameter space efficiently to provide as much informa-284

tion as possible about the model to an emulator. In comparison, regular gridded (Carte-285

sian) designs are an inefficient way of sampling a high-dimensional space. This becomes286

crucial if the sensitivity to some parameter perturbations is much greater than for oth-287

ers. When this type of design is projected to lower dimensions, as in Figure 2, design points288

are not replicated.289

3.3 Gaussian process emulation290

Gaussian process emulation is a Bayesian statistical approach to generate a map-291

ping between a multi-dimensional input space (the parameters) and an output of inter-292

est (O’Hagan, 2006). This mapping can be used to predict the model’s output for thou-293

sands of new parameter input combinations at a considerably reduced computational cost.294

It requires training data, consisting of input settings and corresponding output data from295

multiple model simulations over the perturbed parameter ranges. Under the Bayesian296

paradigm, the approach is initiated with a prior Gaussian process specification for this297

mapping, which encapsulates any prior knowledge about the model output. The prior298

is updated using the training data to create a better estimation of the function repre-299

senting the model output response (also of Gaussian form) to the perturbed inputs. This300

better estimation is a posterior Gaussian process specification, and is our emulator which301

can be thoroughly sampled. The uncertainty surrounding each emulator-predicted out-302

put value is also calculated assuming a Gaussian error structure and based on proxim-303

ity to the training data. A second smaller set of simulations is used to validate the em-304

ulator to ensure that it is producing a reasonable representation of the model’s behav-305

ior. The emulation in this work has been conducted in R using the DiceKriging pack-306

age (R Core Team, 2018; Roustant et al., 2012).307

4 Results308

We focus on the response of in-cloud liquid water path and cloud fraction to per-309

turbations in cloud-controlling factors. The cloud fraction is the fraction of columns with310

liquid water content greater than 0.01 g m−3. The liquid water path and cloud fraction311

values are calculated as domain means over the final 2 hours of simulation time. The ten-312

–8–



manuscript submitted to Journal of Advances in Modeling Earth Systems

dencies of both are the rates of change over the 8-hr simulation after disregarding the313

2-hour spin-up period.314

4.1 Base case simulation315

The base simulation has mean liquid water path, L, of 38 g m−2 (Figure 3a), sim-316

ilar to the multi-model mean in Stevens et al. (2005) of 40 g m−2. The top-down liquid317

water path snapshots in Figure 3c (inset) show that the cloud initializes as homogeneous318

stratocumulus and the cells grow and thicken slightly over 6 hours. The cloud bound-319

aries are mostly constant during the simulation, with cloud base at around 600 m and320

cloud top at 840 m. L increases through the simulation up to 56 g m−2, so the L ten-321

dency is 2.2 g m−2 hr−1, whereas it is slightly negative in Stevens et al. (2005). Cloud322

fraction, fc, starts at 0.87 (Figure 3c) and decreases to 0.72 giving a fc tendency of -323

0.02 hr−1. The initial fc is in the lowest quartile of the multi-model range in Stevens324

et al. (2005). The multi-model mean fc begins near 1 and decreases to approximately325

0.8, with the majority following similar behavior, but a small number of models simu-326

lated a decrease to around 0.2.327

4.2 Perturbed cloud behavior328

Figures 3a and c show that there is considerable spread across the PPE for both329

L and fc. The space is split into two regions: A where κ is above the threshold, B where330

κ is below the threshold. In region A, two simulations do not show any substantial stra-331

tocumulus, with L < 25 g m−2 and fc < 0.5. Four simulations show a very thin stra-332

tocumulus with 25 < L < 50 g m−2 and initial fc > 0.7. These clouds thicken slightly333

through the simulation with L increasing up to 65 g m−2 and fc decreasing by 0.1-0.2334

as the cloud water aggregates. One point in this region, at coordinates ∆θ = 5 K and335

∆qt = -4 g kg−1, is better described alongside the simulations in region B. For those sim-336

ulations, L begins in the range of 50-80 g m−2 and increases by 30-120 g m−2. These337

clouds all have initial stratocumulus with fc > 0.9 and most remain in that region or338

decrease to 0.8.339

Low ∆θ (a weak temperature inversion) generally produces low L, shown in Fig-340

ure 3b, which reaches a minimum of 21 g m−2 at ∆θ = 2.5 K. With a stronger inver-341

sion L also generally increases, up to 160 g m−2 at ∆θ = 20 K. For high ∆qt (a moist342

free troposphere) L is high, up to 185 g m−2 for ∆qt = 0 g kg−1. With a drier free tro-343

posphere L is generally lower, down to 20 g m−2 for ∆qt = -8.7 g kg−1. The two param-344

eters have a combined effect such that L is lowest for weak inversions with a dry free tro-345

posphere and highest for strong inversions with humidity similar to the boundary layer.346

Low ∆θ generally produces low fc, shown in Figure 3d, down to 0.3 at ∆θ = 2.5 K.347

As the inversion gets stronger, fc generally increases up to 0.9 at ∆θ = 20 K. At high348

∆qt fc approaches 1 for ∆qt = 0 g kg−1. With a drier free troposphere fc is generally349

lower, down to about 0.5 for ∆qt = -8.7 g kg−1. As with L, the two parameters have a350

combined effect such that fc is lowest for weak inversions with a dry free troposphere351

and highest for strong inversions with humidity similar to the boundary layer.352

The spatial distribution of L is shown in Figure 4 at the end of each simulation.353

The two simulations that do not form stratocumulus can be seen to the lower left of the354

figure as small cumulus clouds. Moving towards higher ∆qt and ∆θ the plots show stra-355

tocumulus with higher L and fc, and in the top row they become quite thick.356

None of the simulations are drizzling significantly, but most region A simulations357

drizzle two to three orders of magnitude less than those in region B. The exception is358

the point at ∆θ = 5 K and ∆qt = -4 g kg−1 previously identified.359
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Figure 3. Ensemble model output. Liquid water path a) timeseries post-spinup to the end of

the simulation, the last two hours of which is averaged (shaded area) to produce b) the training

data in joint parameter space, ∆θ vs ∆qt. Cloud fraction c) timeseries and d) training data. The

inset in c shows top-down snapshots of the liquid water path for the base simulation. The κ line

is the theoretical threshold described in section 2, which splits the regions into A and B.
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Figure 4. Liquid water path for the last timestep of the first 20 training simulations. Plots

are ordered approximately by location in parameter space. The dark blue shows the areas with

liquid cloud droplet mass mixing ratio < 0.01 g kg−1 at all levels.
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In summary, the PPE simulations show that cloud behavior across parameter space360

falls into two behavioral regimes that are approximately separated by the theoretical κ361

parameter threshold. Above the κ threshold, in region A, the simulations generally have362

very thin stratocumulus cloud or small cumulus that show little to no growth through-363

out the simulation. Below the κ threshold, in region B, the simulations have stratocu-364

mulus cloud with a high fc and a medium L that increases throughout the simulation.365

There is one point in region A at ∆θ = 5 K and ∆qt = -4 g kg−1 that behaves more like366

the simulations in region B.367

4.3 Response surface analysis368

We ran 6 additional simulations to fill gaps in parameter space near the κ thresh-369

old and in regions with more extreme model output values. Here we show emulator re-370

sults from the 26-point training set. We used the PPE to build Gaussian process em-371

ulators of L, fc, L tendency and fc tendency. To validate the emulators, we compared372

the emulator predictions against model output from the validation runs. For all the em-373

ulators, the model values are within the emulator prediction 95% uncertainty ranges. The374

validation results can be found in Figure S1.375

The L response surface in Figure 5a follows the behavior described previously by376

the training data, with low L for low ∆qt, low ∆θ (dry, cool free troposphere) and high377

L for high ∆qt, high ∆θ (moist, warm free troposphere). But the response surface re-378

veals that ∆qt has the largest effect on L and for high ∆qt L becomes invariant to ∆θ.379

There is a local maximum at ∆θ = 15 K and ∆qt = -4.5 g kg−1, which we will discuss380

in section 5. The L tendency response surface in Figure 5b follows a similar pattern to381

L. The tendency is most positive where the L is high, i.e., where there is most growth.382

The tendency is very close to zero where the liquid water path is low. It also shows a383

higher dependency on ∆qt and has a local maximum in a similar location. Additionally,384

the emulator predicts some slightly negative values in the corner of parameter space with385

low L, however the emulator has limited information at extremities so large uncertain-386

ties exist here.387

The fc response surface in Figure 5c also follows the behavior described previously,388

with low fc for low ∆qt, low ∆θ (dry, cool free troposphere) and high fc for high ∆qt,389

high ∆θ (moist, warm free troposphere). As with L, ∆qt has a larger effect than ∆θ,390

but it is not as stark as in L. The fc tendency is mostly negative across the parameter391

space, with only a slightly positive region at low values of ∆qt and ∆θ. This is because392

there are only small cumulus clouds at start of the simulation (Figure 4) and these are393

mostly unchanging throughout the simulations, but increase in cloud cover slightly. Where394

fc is approximately 1, fc tendency is close to zero and slightly negative. The rest of the395

fc tendency surface is very uneven (noisy) since there are only small changes in fc through-396

out the simulations (Figure 3c). Some of the validation points are close in value to the397

predicted surface, but a few points are quite contrasting suggesting that this is not very398

representative of the model behavior.399

The κ threshold separating regions A and B approximately follows the surface con-400

tours, except for fc tendency. The surfaces show a smooth gradient between these re-401

gions of parameter space rather than a discontinuity. In the cloud behavior analysis in402

section 4.2, there was a single point in region A at ∆θ = 5 K and ∆qt = -4 g kg−1 that403

did not fit with the other points in terms of behavior. We can now see in Figure 5a and404

b that the contours curve round in this part of parameter space.405

5 Natural variability406

Cloud properties are sensitive to small variations in initial conditions, not just the407

parameter perturbations we have discussed so far but also slight differences in turbulence408
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Figure 5. Response surfaces produced from emulator mean predictions. a) liquid water path,

b) liquid water path tendency, c) cloud fraction and d) cloud fraction tendency. The base simu-

lation is the inverse white triangle, the training data are the black circles, the validation data are

the black squares, and the extra simulation points are the black triangles. The dashed white line

is the theoretical κ threshold, which divides parameter space into regions A and B.
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structure. Each training datapoint represents only one possible cloud state for those par-409

ticular parameter settings – i.e., it is effectively a random draw from an unquantified dis-410

tribution representing natural variability. The effect of this variability is to create a “bumpy”411

response surface as the emulator interpolates through each model output exactly rather412

than allowing for the range of possible values at that point (see Figure 6a). In attempt-413

ing to fit to the training data, the mean function may also distort away from the train-414

ing points creating additional extrema that are not based on the model’s mean deter-415

ministic behavior. An example is the maximum around ∆θ = 15 and ∆qt = -4.5 in Fig-416

ure 5a. Bumps from training points and additional extrema do not allow the emulator417

to accurately represent the deterministic cloud behavior that we aim to capture with re-418

sponse surfaces.419

A much smoother response surface could be created by running an initial-condition420

ensemble at each point in parameter space and building an emulator of the initial-condition-421

ensemble mean. The ensembles can be created by randomizing the small temperature422

perturbations that are imposed at the beginning of each simulation, which initiate tur-423

bulence and cloud formation in the boundary layer. However, these ensembles would be-424

come very computationally expensive for a large number of parameters. Here, we there-425

fore explore to use a small number of initial-condition ensembles to estimate natural vari-426

ability and produce smooth, deterministic emulator surfaces by exploiting a hyperpa-427

rameter within the emulator called a “nugget term”. This term allows a smoother re-428

sponse surface because it no longer has to interpolate the points exactly.429

In the posterior Gaussian process, the covariance function estimates the uncertainty430

for any predicted point depending on its distance from the training data. In this study,431

the covariance between any two points is,432

V (xj , xk) = σ2K(xj , xk), (6)

where σ2 is the variance of the Gaussian process and in this case K(xj , xk) represents433

the Matérn class of covariance functions. The covariance function can be extended to434

include the nugget term, σ2
N ,435

V (xj , xk) = σ2K(xj , xk) + σ2
Nδj,k, (7)

where δ.,. is the Kronecker delta function, which equals 1 for j = k and equals 0 oth-436

erwise. The nugget term is often included to alleviate numerical issues in deterministic437

models, but there are additional benefits to adding one (Andrianakis & Challenor, 2012;438

Gramacy & Lee, 2012). Practically, the nugget term is a variance that is added at each439

training point allowing the mean function to vary within that range and no longer in-440

terpolate exactly through that point.441

For the response surface to most-realistically represent the model’s deterministic442

behavior, we hypothesize that the variance added with the nugget term should be equal443

to the variance of the model’s natural variability. In Figure 6a, the emulator mean func-444

tion interpolates exactly through the training points resulting in a bumpy response sur-445

face, where the residuals between the emulator mean function (the response surface) and446

model outputs are zero. However, each training point is a single draw from the initial-447

condition ensemble (Figure 6b). With a nugget term that represents the variance of the448

initial-condition ensemble, the residuals become spread around zero. Following our hy-449

pothesis, we aim to create a surface for which the distribution of emulator residuals has450

a similar spread to the distribution of the initial-condition members, which represent the451

natural variability.452

We use the variance of the “model” residuals (difference between each ensemble mem-453

ber and the ensemble mean) to estimate an appropriate nugget term for the L emula-454
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Figure 6. Schematic of the effect of adding a nugget term on the response surface smooth-

ness. a) The purple response surface interpolates exactly through the blue and green training

points so the emulator residuals are zero. b) The response surface is smooth after adding a

nugget term, so the surface interpolates through a prescribed buffer around the blue and green

training points. The nugget term is appropriately large when the distribution of model residuals

matches the emulator residuals. Initial-condition ensembles have been run at a selection of points

(orange) to gauge the nugget term.

tor as follows. For each of the training points, Zi, in the training data set Z1, ..., Zl, run-455

ning initial-condition ensembles gives a set of estimates, (Z
(1)
i , ..., Z

(k)
i ), for k ensemble456

members at Zi. Values of L averaged over the last 2 hours in Figure 7a show that the457

variance increases with the mean value. The ensemble means are calculated as458

Z̄i =
1

k

k∑
j=1

Z
(j)
i . (8)

The variances of the model residuals, σ2
i , also increase with mean L (Figure 7b). To com-459

bine these into one distribution we normalize the model residuals and assume that the460

normalized variance is constant across the response surface. Note that other data may461

require a different normalization process, or may already be normal. Here we normal-462

ize by dividing by the ensemble means to obtain the normalized model residuals as:463

r
(j)
i =

Z
(j)
i − Z̄i

Z̄i
, (9)

as shown in Figure 7c. We can then assume that each normalized residual is drawn from
a normal distribution, R, with mean µ (=0) and standard deviation σ,

R ∼ N (µ, σ2
R).

Our hypothesis is that using the residual distribution’s variance, σ2
R, is an appro-464

priate substitute for using the variance for each initial-condition ensemble, σ2
i , which we465

could only know by running ensembles at every training point. We can use the variance466

of the sample of model residuals to estimate the population variance467

σ2
R =

∑
(r − µ)2

NR
, (10)

for the number, NR, of residuals, r, in the distribution. However, since we normalized468

the residuals by the ensemble means, we need to multiply by a factor on the same or-469
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Figure 8. In-cloud liquid water path in the final timestep for each five-member ensemble

simulation.

der magnitude as Z̄2
i to use this estimate in the emulation process (see appendix Appendix470

A).471

We ran 5-member ensembles at nine training points to estimate the natural vari-472

ability. The timeseries evolution of the ensembles is shown in Figure 3 and the intra-ensemble473

differences in the simulated final cloud fields are shown in Figure 8. We explored how474

the estimated variance depends on the number of initial-condition ensemble points and475

their location in parameter space. A similar result was achieved from initial-condition476

ensembles at just three well-spaced points, rather than the full nine.477

The nugget term is applied as a vector, V = (v1, ..., vl), where vi is an estimate478

for the variance, σ2
i , that should be applied at each Zi. We trialed multiplying our es-479

timate of σ2
R by three different squared factors: the value of the cloud property variable480

at each training point (proportional); the mean value over all training points in the PPE;481

and the maximum output value from the PPE over the whole parameter space. Two ad-482

ditional noise vectors were tested using arbitrary large numbers of the maximum value483

×10 and ×100.484

Figure 9 shows that the distribution of emulator residuals compares best with the485

residual distribution from the model residuals when we use the maximum or ×10 mul-486

tipliers. The largest overlap of the two distributions (0.78) comes from the maximum mul-487

tiplier in column d. We used the Kolmogorov-Smirnov (KS) two-sample test to test whether488

these samples are statistically likely to be from the same distribution. For those with a489

p-value less than 0.05 we must reject the null hypothesis that the samples are drawn from490

the same distribution, so only the maximum multiplier and the ×10 terms (columns d491

and e) fulfill this criteria. Column f shows that the nugget term can be too large and the492

emulator will default to the underlying prior linear function. This appears as a smooth493

linearly increasing surface across parameter space and does not fit well with the train-494

ing data. For smaller nugget variances (columns a, b, c) the distribution of the emula-495

tor residuals is narrower than the distribution of the model residuals, showing that the496

emulator surface is still forced to pass too closely to the training points.497

Figure 10 shows how adding an appropriately sized nugget term to the other em-498

ulators removes some of the bumpy behavior created by natural variability. We found499
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Figure 10. Cloud property emulators with and without nugget terms applied. a) liquid water

path tendency, b) cloud fraction and c) cloud fraction tendency. Top row: emulator predicted
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function and the associated uncertainty. Bottom row: histogram comparison of emulator and
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the procedure for calculating the nugget term depended on the output of interest. The500

residuals from both tendencies could be combined without normalization, whereas L and501

fc both required normalization by dividing by the mean. For L tendency, an appropri-502

ate nugget term could be derived from only three points. But for the fc and fc tendency,503

all nine points were required for an appropriate nugget term. This was most likely be-504

cause three points that cover the range of behavior in one cloud property do not nec-505

essarily cover the full range of behavior in another cloud property. For all of these re-506

sponse surfaces with the nugget term added, the behavior across parameter space remains507

approximately as described in section 4.2, but it is now smoother and represents the model’s508

general behavior better. Figure S2 shows the validation results of these response surfaces.509

6 Discussion and conclusions510

We have used Gaussian process emulation to analyze and visualize the dependence511

of stratocumulus clouds on the initial profiles of two cloud-controlling factors. Using an512

emulator in this way helps to visualize the relationships between cloud-controlling fac-513

tors and the model output at a much-reduced computational cost.514

We found there are two distinct behavioral cloud regimes in the explored param-515

eter space, with a smooth transition between them, rather than a discontinuity. We do516

not find a distinct point beyond which the cloud rapidly breaks up, as hypothesized by517

Lilly (1968), Randall (1980) and Deardorff (1980). Our findings agree with Mellado (2017),518

in that cloud-top entrainment instability is not strong enough to break up the cloud by519

itself. However the κ parameter does approximately mark a behavior change between520

region A (Figure 5), which has thin stratocumulus cloud (or small cumulus) and very521

little growth, and region B, which has stratocumulus that starts with high cloud frac-522

tion, moderate liquid water path, and grows throughout the simulation. Emulation al-523

lowed us to densely sample the parameter space to map out cloud behavior based on model524

output, and the addition of the nugget term more smoothly captures the underlying de-525

terministic behavior.526

Natural variability presents a challenge for training an emulator describing the de-527

terministic response of cloud fields to cloud-controlling factors. Failure to account for528

variability resulted in bumpy response surfaces. We used initial-condition ensembles at529

a small number of points across the parameter space to define an appropriate emulator530

nugget term, which resulted in a smooth emulator response surface. The size of the nugget531

term was defined as appropriate when the distribution of the residuals of the training532

data around the smooth surface was approximately the same as the distribution of the533

initial-condition ensembles. Although previous studies have used initial-condition-ensemble534

means as training data (Johnson et al., 2011) this is not feasible with cloud or climate535

models due to the expense of running ensembles. Our approach of effectively tuning the536

size of the nugget term provides an efficient alternative, although it would be difficult537

to apply if the variability varied in a complicated way across the parameter space.538

Without including aerosol processes in the simulation some cloud breakup mech-539

anisms are not accounted for in our simulations, such as rain-depletion feedbacks (Goren540

et al., 2019). We also used a lower fixed droplet number concentration than Stevens et541

al. (2005), however we repeated the simulations with a higher fixed concentration and542

found the general behaviors were not altered in each region. The lack of rapid cloud breakup543

fits with the conclusion in Mellado (2017) that the feedback mechanism is too weak to544

break up the cloud by itself.545

One unexpected benefit of producing a response surface from a PPE and emula-546

tor was the ability to identify outliers in the data. Against the backdrop of the PPE and547

the emulated surface these simulations clearly stand out, allowing further investigation548

into why they do not fit with the rest of the data. In some cases, this could identify an549
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interesting region of parameter space in the real world, or a natural variability extrem-550

ity that could be investigated with a small ensemble, or perhaps a collection of param-551

eter settings for which the model is unstable. If none of those are true and it is simply552

a corrupted value in the model, it has been caught and can be discarded.553

As climate models get more complex, machine learning is invaluable tool for un-554

derstanding processes. The number of simulations required to fully explore uncertain-555

ties and certain aspects of models is already infeasible, particularly with the nonlinear556

behavior of clouds. Statistical emulation has already proven to be immensely useful for557

sensitivity analysis of model parameters in climate studies. Here we have shown it in a558

different capacity by perturbing cloud-controlling factors, which has only recently be-559

gun to be explored. We believe this is a unique method for exploring cloud processes,560

and it can be expanded to include changes in aerosol concentrations, parameterisation561

coefficients and more meteorological parameters.562

7 Open Research563

Data availability statement: The data from the perturbed parameter ensem-564

ble can be found on Zenodo at https://doi.org/10.5281/zenodo.10036710 (Sansom, 2023).565

All code used in the analysis can be found at https://github.com/eers1/dycoms analysis.566

Appendix A Approximating variance567

Because we normalized the residuals by the mean, a multiplying factor is required568

to make the variance the correct order of magnitude before being used in the emulation569

process. This is proven by simplifying the variance of the normalized residuals,570

σ2
R =

∑l
i=1

∑k
j=1[(

Z
(j)
i

−Z̄i

Z̄i
)− µ]2

NR
, µ = 0 (A1)

=

∑l
i=1

∑k
j=1[(

Z
(j)
i

−Z̄i

Z̄i
)]2

NR
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1
Z̄i

2

∑k
j=1[(Z

(j)
i − Z̄i)]

2

NR
, NR =

l∑
i=1

Ni (A3)

=
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1
Z̄i

2
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j=1[(Z

(j)
i − Z̄i)]

2∑l
i=1 Ni

, (A4)

=

l∑
i=1

1

Z̄i
2

∑k
j=1[(Z

(j)
i − Z̄i)]

2

Ni
, (A5)

=

l∑
i=1

1

Z̄i
2σ

2
i , (A6)

where σ2
i is the variance of each ensemble, Zi, and Ni is the number of members in each571

ensemble. Thus, from this normalization process, the variance of the residuals needs to572

be multiplied by a factor on the same order of magnitude as Z̄2
i to be used in the em-573

ulation process. Note that we are not using a summation of the ensemble variances, as574

equation A6 indicates, because we are simply estimating from a small sample. The vari-575

ance we are estimating is the lower bound, since any distribution is likely to be wider576

than what we have sampled.577
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