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Abstract

During characterization efforts of complex sites and geologies, it is important to estimate material properties efficiently and
robustly. We present data and modeling related to the heat of wetting process during spontaneous imbibition, as observed in
zeolitic tuff. The heat of wetting is due to adsorption of liquid water and water vapor to an oven-dry core sample and results
in an observable temperature rise. The fitting of numerical models to imbibition observations allows simultaneous constraint
of single-phase (porosity, permeability), two-phase (van Genuchten m and alpha), thermal (thermal diffusivity), and transport
(tortuosity) properties from a single imbibition test. Petrographic analysis informs how microstructure connectivity and pore-
lining phases affect the imbibition process. Estimating multiple properties simultaneously from a single test on a core sample
helps ensure consistency in interpreted material properties. SNL is managed and operated by NTESS under DOE NNSA
contract DE-NA0003525 (SAND2023-07021A).
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1. Background and Zeolitic Test Results 2. Physical Processes 3. Vitric Tuff Results
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L : potential than planar surfaces, resulting in , _ Fig 8. Temperature rise using RTDs (bottom) and
monitoring the temperature at locations along the - The measured electrical resistance drops resistance (top) vs. square root time for vitric tuff core
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sides of the sample. Electrical resistance across the ) : two orders of magnitude when the
: Water on vapor adsorption (Zotgdek-Nowak et al., . : 7200
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the arrival of the thermal front. The wetting front ‘ i Fig 6 illustrates the two mechanisms drop (top) and peak temperature s
height was estimated from images and from the Fig 1. Zeolitic tuff core sample (left) e Open to air ™\ that release energy during an (bottom), along with times and heights “ .
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