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Abstract

The rate of channel incision in bedrock rivers is often described using a power law relationship that scales erosion with drainage

area. However, erosion in landscapes that experience strong rainfall gradients may be better described by discharge instead of

drainage area. In this study we test if these two end member scenarios result in identifiable topographic signatures in both

idealized numerical simulations and in natural landscapes. We find that in simulations using homogeneous lithology, we can

differentiate a posteriori between drainage area and discharge-driven incision scenarios by quantifying the relative disorder of

channel profiles, as measured by how well tributary profiles mimic both the main stem channel and each other. The more

heterogeneous the landscape becomes, the harder it proves to identify the disorder signatures of the end member incision rules.

We then apply these indicators to natural landscapes, and find, among 8 test areas, no clear topographic signal that allows

us to conclude a discharge or area-driven incision rule is more appropriate. We then quantify the distortion in the channel

steepness index induced by changing the incision rule. Distortion in the channel steepness index can also be driven by changes

to the assumed reference concavity index, and we find that distortions in the normalized channel steepness index, frequently

used as a proxy for erosion rates, is more sensitive to changes in the concavity index than to changes in the assumed incision

rule. This makes it a priority to optimize the concavity index even under an unknown incision mechanism.
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Key Points:7

• Discharge-driven incision can be identified a posteriori in simulated landscapes8

but not in natural topography.9

• The choice of concavity index (θ) can distort the channel steepness index more10

than the choice of incision type.11

• Topographic metrics should be accompanied by field explorations to fully describe12

the erosional history of a landscape.13
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Abstract14

The rate of channel incision in bedrock rivers is often described using a power law re-15

lationship that scales erosion with drainage area. However, erosion in landscapes that16

experience strong rainfall gradients may be better described by discharge instead of drainage17

area. In this study we test if these two end member scenarios result in identifiable to-18

pographic signatures in both idealized numerical simulations and in natural landscapes.19

We find that in simulations using homogeneous lithology, we can differentiate a poste-20

riori between drainage area and discharge-driven incision scenarios by quantifying the21

relative disorder of channel profiles, as measured by how well tributary profiles mimic22

both the main stem channel and each other. The more heterogeneous the landscape be-23

comes, the harder it proves to identify the disorder signatures of the end member inci-24

sion rules. We then apply these indicators to natural landscapes, and find, among 8 test25

areas, no clear topographic signal that allows us to conclude a discharge or area-driven26

incision rule is more appropriate. We then quantify the distortion in the channel steep-27

ness index induced by changing the incision rule. Distortion in the channel steepness in-28

dex can also be driven by changes to the assumed reference concavity index, and we find29

that distortions in the normalized channel steepness index, frequently used as a proxy30

for erosion rates, is more sensitive to changes in the concavity index than to changes in31

the assumed incision rule. This makes it a priority to optimize the concavity index even32

under an unknown incision mechanism.33

Plain Language Summary34

Rivers erode into mountains as a result of both the sediment transported as the35

water flows downstream and the amount of water that the river transports. The amount36

of rainfall that each part of the river receives affects how much the channel cuts into the37

rock. In this study, we assess whether it is possible to differentiate between rivers where38

sediment is responsible for most of the erosion work and rivers where rainfall has a larger39

erosive power. Through computer simulations, we measure the river fingerprint in the40

landscape through calculations involving how tributary and main channel slopes com-41

pare, and how quickly a channel steepens as it travels away from the headwaters. We42

extract these fingerprints and search for them in the more complex natural landscapes,43

measuring how much they change under heavy rainfall. We find that these fingerprints44

are camouflaged by factors such as changes in rock types, making it a challenge to iden-45

tify them without field observations.46

1 Introduction47

Physical intuition suggests that, if all other factors are equal, a steeper river will48

erode faster than a gentler one. This basic relationship has been proposed by geomor-49

phologists for over a century (Gilbert, 1877). It is unusual, however, to find two chan-50

nels identical in their properties with the exception of their gradient. Headwaters are,51

for example, frequently steeper than downstream rivers they feed. In the early 1960s ge-52

omophologists realized that gradient could be related to drainage area in a power law53

with a negative exponent (Hack, 1960; Morisawa, 1962). This basic relationship was for-54

malized by Flint (1974):55

S = ksA
−θ (1)56

where the concavity index, θ, describes how fast the gradient of the river changes down-57

stream and the constant ks, channel steepness index, describes the dependence of gra-58

dient normalized for drainage area. We can further fix the value of θ to a fixed reference59

value (θref ), after which we denote the channel steepness index with ksn. This normal-60
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ization allows us to compare the relative steepness of rivers with different drainage ar-61

eas (Flint, 1974).62

Numerous studies have found that this relative steepness (ksn) is positively cor-63

related with measured erosion rates in upland landscapes (Wobus et al., 2006; DiBiase64

et al., 2010; Kirby & Whipple, 2012; Harel et al., 2016; Adams et al., 2020; Gailleton et65

al., 2021; Harries et al., 2021; Peifer et al., 2021). In regions without data on erosion rates66

we might therefore use ksn as a proxy for erosion rate (Kirby & Whipple, 2012). This67

is not quite as straightforward as it sounds, however. If we return to physical intuition,68

consider two channels with all properties equal apart from the amount of water they con-69

vey (quantified as, e.g., their mean annual discharge or some other statistical represen-70

tation of runoff). Many authors have proposed relationships between channel incision71

and the physical properties of bedrock rivers, and these proposals include the influence72

of sediment supply (dependent on A), sediment transport capacity (dependent on hy-73

draulic conditions and gradient), shear stress (dependent on flow depth, and thus hy-74

draulic conditions), stream power (again, hydraulic conditions), and thresholding behav-75

ior of all the above factors (Howard, 1987; Wobus et al., 2010; Finnegan et al., 2007; John-76

son & Whipple, 2010; Baynes et al., 2020). This means that computation of ksn based77

on drainage area rather than hydraulic conditions (e.g., discharge) may not represent the78

incision process.79

One reason erosion rate proxies have tended towards using and area-based ksn is80

because drainage area is trivial to extract form topographic data. Discharge (Q) records81

are not always easy to obtain, and gauging stations are at points rather than distributed82

throughout the landscape. However, various global datasets, for example TRMM (Kummerow83

et al., 2000) and GPM (Skofronick-Jackson et al., 2017) have made it relatively simple84

to estimate and aggregate precipitation over a basin, over a variety of timescales, which85

means it is now quite simple to obtain an estimate of discharge in a basin given a lin-86

ear relationship between aggregate precipitation and discharge.87

These precipitation datasets enable us to calculate the channel steepness index, ksn,88

based on effective discharge rather than drainage area. And indeed, a number of recent89

authors have taken this approach (e.g., Babault et al., 2018; Adams et al., 2020; Leonard90

& Whipple, 2021; Harries et al., 2021; Leonard et al., 2023). If precipitation rates are91

uniform across a catchment, the drainage area-gradient relationship will have the same92

spatial pattern as the drainage area-discharge relationship. But rainfall can be influenced93

by mountains (Roe et al., 2002; Anders et al., 2006; Bookhagen & Burbank, 2006; Bookha-94

gen & Strecker, 2008; Craddock et al., 2007; Gasparini & Whipple, 2014), meaning that95

the patterns of ksn might be different if one uses A or a more direct estimate of Q that96

incorporates spatially varied precipitation.97

One might assume that the latter is always “better” than the former. But there98

are some reasons why erosion rates, and gradients, might be more sensitive to drainage99

area than discharge. The main reason for this is that water does not erode the bed of100

rivers, sediment does. And the amount of sediment fluxing through any part of the chan-101

nel in a steadily uplifting mountain range should depend on drainage area and not dis-102

charge. In addition, rivers transporting gravel will alter their geometry, for example their103

width (Dunne & Jerolmack, 2020; Phillips & Jerolmack, 2016; Pfeiffer et al., 2017), to104

accommodate sediment supply and this could cause a damping effect on the relationship105

between discharge and erosion rates. So although it intuitively might make sense to al-106

ways use discharge-based calculations of ksn, we are not, at present, certain if this is bet-107

ter than a calculation using A.108

Any proposed erosion rule, be it area or discharge driven, can be transformed into109

a prediction of topography. For example, the most basic erosion law incorporating gra-110

dient and area of takes the form (Howard & Kerby, 1983):111
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E = KAmSn (2)112

where K is an erodibility and m and n are empirical coefficients. If one rearranges equa-113

tion 2 to isolate S and compares the result with equation 1, one can see that, if equa-114

tion 2 is correct, ksn = (E/K)1/n and θ = m/n. Thus equation 2 predicts a power law115

relationship between gradient and drainage area where erosion rates are invariant in time116

and space. It can also be shown that this power law relationship holds in segments of117

constant erosion that move upstream in transiently eroding landscapes (L. Royden &118

Perron, 2013). Various threshold models have been proposed as more complex versions119

of equation 2, but much of their relevant behavior can be captured by altering the n ex-120

ponent (Gasparini & Brandon, 2011). While this approach is not without controversy121

(Lague, 2014), it is at least not clearly falsified by relationships between topographic data122

and measured erosion rates.123

Such topographic predictions suggest a basic test: if there are strong gradients in124

precipitation, we expect the topographic outcomes of incision rules that are driven by125

either A or Q to differ. In this contribution we first explore the question: if we know ero-126

sion rates are driven by either A or Q, could we tell the difference just based on topog-127

raphy? We use numerical experiments to answer this question. We explore the extent128

to which heterogeneity in uplift rates and erodibilities can cloud this signal. Finally, we129

explore real landscapes to see if we can find locations, based on our proposed metrics,130

where it is clear that an area-based or discharge-based calculation of ksn is more appro-131

priate.132

2 Methods133

Our study includes three components. First, we perform a series of numerical ex-134

periments using a simple landscape evolution model with different imposed incision rules,135

and in addition alter other model parameters such as rainfall gradient. The aim of these136

simulations is to produce landscapes under idealized and controlled conditions against137

which metrics for determining the most likely incision rule may be tested. We then de-138

velop metrics that allow us to test if a particular incision rule better describes observed139

topography. Finally, we deploy these metrics on real landscapes.140

2.1 Numerical simulations141

We simulate landscapes where bedrock channels incise through an uplifting land-142

scape. We thus must select an incision rule for our simulations. For the purposes of sim-143

plicity, we use the basic form of the stream power incision model (equation 2), which can144

emulate different incision mechanisms by altering the n exponent (Gasparini & Bran-145

don, 2011).146

Equation 2 is not influenced by discharge. For discharge-based incision, we follow147

other authors (e.g. Adams et al., 2020) and replace drainage area with a proxy for dis-148

charge, which we compute with the substitution Q = A×Rainfall where the rainfall149

is converted into runoff and accumulated downstream, yielding:150

E = KlpQ
mSn. (3)151

In reality, the discharge will be modulated by other features such as evapotranspiration152

and infiltration rates, but these factors are subsumed into the parameter Klp.153

The model then simulates topographic evolution with a simple mass balance:154
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∂z

∂t
= U − E (4)155

where U is the uplift rate and the erosion rate, E, is solved by either equation 2 or 3.156

Simulations are performed using the Fastscape framework (Bovy & Lange, 2023). Fastscape157

uses the methods developed by Braun and Willett (2013) that takes advantage of graph158

theory to efficiently solve equations 2 (or 3) with an implicit finite different scheme.159

In order to implement equation 3, we must assign a precipitation pattern. In our160

experiments, we explore different precipitation gradients. Models do exist where precip-161

itation depends on elevation and prevailing wind direction, for example the model of Smith162

and Barstad (2004) which was used by Han et al. (2015). Such models involve multiple163

parameters, and to obtain the desired precipitation gradient one must engage in fine tun-164

ing each of these parameters. For consistency across experiments, we decided instead to165

increase precipitation linearly as a function of distance from the mountain front, with166

precipitation gradients comparable to real orographic rainfall gradients. Leonard and Whip-167

ple (2021) found that a linear rainfall gradient can be a good approximation to study-168

ing orographic precipitation patterns in natural landscapes.169

We impose rainfall gradients that will mimic natural orographic patterns found in170

natural landscapes. In the driest scenario, we impose a rainfall gradient across the sim-171

ulated mountain range of 1 m/yr (that is, the precipitation is 1 m/yr greater at the peak172

rainfall location than at the minimum rainfall location). In our wettest scenario, the in-173

crease in rainfall reaches 10 m/yr across the simulation domain, corresponding to the174

highest rainfall achieved in the Bhutan Himalayas (Grujic et al., 2018; Anders et al., 2006).175

2.1.1 Homogeneous Lithologies176

We run experiments on a regular grid (∆x = 30m) grid over a mountain range177

that is 15 km by 30 km (see Table 1 in S1 for full parameter details). This size was se-178

lected as a compromise between the number of basins that could be formed during a sim-179

ulation and computational expense. We begin each landscape with a random surface gen-180

erated using the diamond square algorithm (Fournier et al., 1982; Perron & Royden, 2013)181

with noise ranging from 0 to 1 m. We choose this initial condition as it produces a greater182

variety of channel network structures than the more widely used white noise. Each sim-183

ulation is run to steady state, where the change in erosion is balanced by uplift.184

For a given uplift and precipitation gradient, we calculate the landscape resulting185

from each of the two incision laws as described by equations 2 and 3. Initial experiments186

use uniform erodibility to simulate homogeneous lithology. The boundary conditions in-187

clude a fixed elevation on the east and west edges (which allow flux to exit the model)188

and periodic boundaries at the north and south of the model domain. The resulting moun-189

tain range emerges in the North-South direction.190

Within the discharge-driven model, we set up one simulation for each rainfall sce-191

nario, starting from a gradient of 0 m/yr to to 10 m/yr (increasing from East to West192

in the simulation domain), for a total of 11 simulations. The precipitation runs explore193

how different rainfall amounts affect river incision mechanisms and whether larger gra-194

dients generate a stronger signal in the landscape.195

Both the erodibility coefficient and the uplift rate are kept constant across all sim-196

ulations at 3× 10−8 and uplift rate is 1× 10−5 respectively, yielding landscape reliefs197

within the ranges of those found on Earth. Similarly, n is chosen as 1 and m as 0.45 to198

keep the m/n ratio equal to 0.45, which is the central tendency of the concavity index199

across a large number of global landscapes (Kirby & Whipple, 2012; Gailleton et al., 2021;200

Tucker & Whipple, 2002). Although n is thought to take values other than unity in most201

landscapes (Lague, 2014; Harel et al., 2016), the value of this parameter is only man-202
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ifested in topographic outcomes during landscape transience (Whipple & Tucker, 1999;203

L. Royden & Perron, 2013) and does not affect our simulations since the landscapes are204

brought to steady state. When studying the channel steepness index across multiple basins,205

we set a reference value, θref , (Gailleton et al., 2021) of 0.45 to establish a comparison206

between basins.207

2.1.2 Heterogeneous Lithologies208

To study the role of lithology in the prevalence of rainfall patterns we run a set of209

simulations with spatially varying values of erodibity, K. These simulations are designed210

to be closer to natural landscapes where the lithological landscape is more complex.211

Within this study, we choose two lithological units reflecting the properties of a harder212

and a softer rock, with erodibility values ranging between 1e−7 < K < 5e−8. This is213

in line with (Forte et al., 2016; Bernard et al., 2021; Peifer et al., 2021). Peifer et al. (2021),214

which determined that hard rocks can be related by a factor from 2-10 in erodibility to215

softer rocks (Forte et al., 2016; Bernard et al., 2021).216

We simulate three heterogeneous lithologies scenarios: striped (a), sparse blob (b)217

and dense blob (c) lithologies (see SI, Figure S1).218

1. Striped lithology: band of hard rock (K = 5e − 8) in the center of our sim-219

ulated mountain range, surrounded by soft rock (K = 1e− 7) to emulate cases220

like the Pyrénées.221

2. Sparse blob lithology: 4 large hard rock (K = 5e−8) blobs evenly distributed222

on the landscape domain.223

3. Dense blob lithology: many small hard rock blobs (K = 5e−8) of a few square224

meters in diameter, generated using Perlin noise (Perlin, 1985).225

2.1.3 Natural Landscapes226

We have chosen natural landscapes for this analysis on the basis of precipitation227

gradients and lithological structure, avoiding areas that have complex layers of soft rocks228

(Table 1). We analyze basins with a minimum drainage area of 1e7m2. We incorporate229

all channel pixels within tributaries that have a source area greater than 1.35km2 (which230

corresponds to 1500 pixels in topographic data with 30 m grid spacing).231

Table 1. Geographical areas chosen along with the number of selected basins in each regions,

area and rainfall range across the basin, from the outlet to the headwaters of the catchment. We

choose a varied range of area sizes and precipitation gradients with to study prevalent trends

across regions. Data extracted from the 30m Copernicus DEM and NASA’s Global Precipitation

Measurement Mission (GPM) (Skofronick-Jackson et al., 2017).

Location N basins Area (km2) Precipitation Range (m/yr)

Andes, Southern Perú 5 29979 0.687-3.983
Andes, Northern Argentina 7 5932 0.045-0.010
North Qinling Mts, China 14 30832 0.734-0.938
Kaçkar Mts, Turkey 8 4279 0.784-1.673
Colorado Front Range, USA 7 9282 3.726-4.220
Alburz Mts, Iran 7 8167 0.357-0.849
Massif Central, France 5 1945 0.977-1.092
Pyréneées, Spain-France 5 6632 0.097-0.117
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2.1.4 Varying the simulation concavity index, θ (i.e. m/n ratio)232

We assess the impact of running the homogeneous lithology simulation with a fur-233

ther two choices of m/n: 0.35 and 0.55. The rationale for these experiments is to deter-234

mine if changes to the imposed m/n ratio causes distortions to ksn of the same magni-235

tude as those induced by changing the incision rule. The broad effect on the landscapes236

with different values of m/n compared to the base case of m/n = 0.45 is that at 0.35 the237

landscape is smoother with lower relief and higher drainage density with sinuous trib-238

utaries, whereas at m/n = 0.55 the landscape has sharper features, with higher relief and239

lower drainage density, forming straighter tributaries. For detailed results of these sim-240

ulations, see SI (Text S6, Figures S16-S19, Tables S8-9.241

2.2 Metrics to quantify topographic outcomes242

Our models simulate river incision, and so we use river profiles to explore topographic243

outcomes of simulations. Because gradients should scale by either A or Q (depending244

on the incision rule) we use a coordinate transformation, first proposed by (L. H. Roy-245

den et al., 2000), that integrates either A or Q along the river profile:246

χA =

∫ x

x0

(
A0

A(x)

)θ

dx (5)247

χQ =

∫ x

x0

(
Q0

Q(x)

)θ

dx (6)248

This transformation has various useful features. The gradient in χA–elevation space is249

equivalent to ks if A0 = 1 m2 (e.g., Perron & Royden, 2013; L. Royden & Perron, 2013;250

Mudd et al., 2014), and the gradient in χQ–elevation space is equivalent a metric ks−q251

where gradient is scaled by Q instead of A in the form:252

S = ks−qQ
−θ (7)253

when Q0 = unity in the units of Q used to calculate both χq and ks−q (e.g., Adams et254

al., 2020; Leonard et al., 2023; Leonard & Whipple, 2021; D’Arcy & Whittaker, 2014;255

Harries et al., 2021). These steepness metrics can be used both in steady state and tran-256

sient landscapes (L. Royden & Perron, 2013). Another advantage of using the χ trans-257

formation is that tributaries to the main channel at the same elevation yield the same258

χ value, regardless of their drainage area. Given a landscape in steady state, the main259

channel and its tributaries should follow the same linear relationship on a χ–z plot, as-260

suming the same erosion and uplift rates (Perron & Royden, 2013) and the optimal con-261

cavity index value.262

We exploit this latter feature in our efforts to discriminate, topographically, between263

incision rules. Regardless of the incision rule, selection of the incorrect value of θ will re-264

sult in tributaries that are not collinear, introducing distortions in channel steepness in-265

dex (Perron & Royden, 2013; Mudd et al., 2018; Hergarten & Robl, 2022; Gailleton et266

al., 2021; Goren et al., 2014; Harries et al., 2021). Computing χA or χQ also affects the267

channel steepness index values and the spread of the data, which can lead to different268

patterns of the channel steepness index and spreading the data in χ space (Figure 1).269

Because ksn values are used to infer relative erosion rates across tectonically active re-270

gions, distortions to the spatial patterns of the channel steepness index can cloud inter-271

pretations of topographic pattern (e.g., Gailleton et al., 2021).272

We quantify the spread of the χ−z profiles using a disorder metric, first proposed273

by Goren et al. (2014) and further developed by Hergarten et al. (2016) and Mudd et274
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Figure 1. Illustration of how χ profiles and ksn change based on the choice of incision sce-

nario and concavity index values. The χ profiles result from simulations with a range of precip-

itation of 10m/yr (increasing west to east) under initial m/n=0.35. The basin shown is located

on the wetter side of the domain, draining to the east. (D) shows perfect collinearity under χq

and θbest, which match the simulation parameters. (A) shows distortions using both the incorrect

incision rule and the wrong θ, (B) shows a slightly more collinear profile, in this case only having

the incorrect incision. (C) captures the correct incision (discharge) but uses θ=0.45, where we see

the largest increase in disorder and changes in ksn.

al. (2018). One begins by ranking every point in the channel network by increasing el-275

evation, and then checks to see if the associated χ coordinates are similarly ranked (or276

not):277

R =

N∑
i=1

∣∣χs,i+1 − χs,i

∣∣, (8)278

where the the subscript s, i represents the ith χ coordinate that has been sorted by its279

elevation (χs,i). This sum, R, is minimal if elevation and χ are related monotonically.280

However it scales with the absolute values of χ, which are sensitive to the concavity in-281

dex (see equations 5 and 6), so following Hergarten et al. (2016) we scale the disorder282

metric, D, by the maximum value of χ in the tributary network (χmax):283
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D(θ) =
1

χmax(θ)

( N∑
i=1

∣∣χs,i+1(θ)− χs,i(θ)
∣∣− χmax(θ)

)
. (9)284

We use the method of Mudd et al. (2018) to constrain uncertainty of this metric by cre-285

ating subset networks formed from the trunk stream and every possible combination of286

three tributaries in a particular basin. This creates a population of D values for a given287

basin from which a median and interquartile range may be reported.288

We normalize the disorder values across all tributary combinations, obtaining:289

D∗(θ) =
D(θ)

Dmax(θ)
(10)290

where Dθ is the disorder for each tributary combination and Dmax(θ) is the maximum291

disorder over all combinations.292

In our analysis we aim to decipher whether we can identify the signal from a land-293

scape shaped by rainfall a posteriori. To quantify this, we focus on the effect of rainfall294

in the χ− z profiles and in the disorder metrics. To emulate what the analysis would295

look like if we did not know the incision rule, we calculate the χ profiles in two ways for296

each simulation scenario - regardless of what the actual imposed incision rule is for a given297

numerical experiment. We calculate these metrics for each basin in the simulation drain-298

ing to the edge and reaching the main drainage divide (Figure 2). For each of the basins299

simulated in each model scenario, we calculate the following:300

1. χA: assumes a drainage area-driven incision (equation 5).301

2. χQ: assumes a discharge-driven incision (equation 6).302

For each of the χ cases, we calculate the disorder metric (equation 9). The disor-303

der constrains the value for the optimal concavity index, θbest, that will lead to the most304

collinear river profile configuration (Mudd et al., 2018; Gailleton et al., 2021).305

2.3 Statistical Analysis306

For each incision scenario, we calculate minimum normalized disorder values (D∗(θ))307

corresponding to each of the basins under each of the incision and χ scenarios. To mea-308

sure if D∗(θ) for the basins in the simulations where incision is purely a function of A309

is statistically distinguishable from the basins where incision is driven by Q, we extract310

the value for D∗(θ) for each basin and χ case. We then calculate the absolute error be-311

tween D∗(θ) in the two χ cases. The true value corresponds to calculating D∗(θ) with312

the χ of the matching incision scenario. The distribution of error values (∆D∗) for all313

basins for each incision case can then be expressed as:314

∆D∗ = D∗
rain −D∗

norain (11)315

Since we are dealing with non-parametric distributions, we take the median of ∆D∗
316

to quantify whether the A-based incision models may be distinguished from the Q-based317

incision models. We represent the distributions with kernel density estimates (KDE) (Cox,318

2007; Silverman, 1998). If a percentage smaller than 5% is shared between the two dis-319

tributions we consider them to be distinguishable from each other with 95% confidence.320
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A B

Figure 2. River networks generated with the numerical model under two discharge-driven

incision scenarios, with rainfall ranges between (A) 0-1m/yr and (B) 0-10m/yr in the East-West

direction. The smaller rainfall ranges in (A) lead to higher relief, steeper channels and a sym-

metric drainage divide. The higher rainfall in (B) leads to lower relief and a more sinuous and

asymmetric drainage divide.

2.4 Measuring the effects of rainfall and θ on ksn321

In our numerical landscapes, we impose an erosion rule and then quantify the ex-322

tent to which profiles are disordered when applying the appropriate or incorrect χ trans-323

formation (that is, using either A or Q). In real landscapes, however, we can only infer324

which of the two χ transformations is correct based upon relative disorder, and indeed325

neither may be correct. We resort to distortion in the χ–elevation profiles to quantify326

the impact of the choice of A or Q to scale χ when the correct choice is unclear. Specif-327

ically the distortion metrics quantify the degree to which ksn changes if different choices328

in calculating χ are made. Determining the distortion of ksn due to the choice of A or329

Q in calculating ksn is important because it can affect the interpretations of the tectonic330

and erosional history of a landscape (Kirby & Whipple, 2012).331

We quantify distortion by calculating the ratio between median upstream and down-332

stream ksn values and then investigating how this ratio varies depending on concavity333

index (Case i), incision scenario (Case ii) or both (Case iii), following the methods in334

(Gailleton et al., 2021). A full derivation of equations used to calculate the distortion335

is included in the SI, Text S1.336

3 Results337

In this section we present the numerical experiments and explore the effects of rain-338

fall gradient on channel steepness and concavity index. We cover both homogeneous and339

heterogeneous lithologies.340
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3.1 Homogeneous lithology341

3.1.1 Drainage area or discharge-driven incision?342

Figure 3 shows the distributions of ∆D∗ in each experiment using KDE fitting for343

Q-driven incision rule (equation 3) and A-driven incision rule (equation 2). Each ker-344

nel estimate is obtained for the collection of basins in the simulated domain. We obtain345

the median (solid line), 95th and 5th (dashed lines) percentiles for each kernel, repeat-346

ing this procedure for each of the rainfall gradients. We consider ∆D∗ = 0 as the point347

where calculating χQ or χA would have no effect on the minimum disorder.348

Figure 3 shows the distribution of ∆D∗ values. Basins where the χ and the inci-349

sion scenario match have lower D∗ values. This is represented by the A-driven distribu-350

tions lying on the negative side of the x-axis, meaning that the disorder value calculated351

using χA is lower than the disorder calculated using χQ. That is, unsurprisingly, using352

the version of χ that corresponds with the imposed incision rule results in less disordered353

channel profiles. The opposite is true of the Q-driven basins, which lie on the positive354

x-axis range, where the disorder is lower when calculating χQ than χA. This is true of355

all three indicated metrics: median, 95th and 5th percentiles. None of the distribution356

tails overlap inside of the 5-95th percentile ranges. For every rainfall distribution illus-357

trated, the drainage area and the discharge driven incision are statistically far enough358

apart to be considered distinct distributions.359

As rainfall gradients increase, the medians of the distributions diverge. For smaller360

rainfall gradients, the distribution medians appear closer together but still outside the361

95% of each other that we consider an indication they are statistically distinct. The most362

significant differences arise from the discharge-driven scenarios, with the changes in the363

drainage area ∆D∗ evolving slower with increased rainfall.364

For every rainfall distribution illustrated under homogeneous lithology, calculat-365

ing χQ or χA leads to statistically distinct ∆D∗ distributions for the A and the Q-driven366

scenarios. Disorder can thus be used as a tool to recognize the dominating incision rule367

in numerical simulations: when ∆D∗ < 0, the incision is drainage area-driven, whereas368

∆D∗ > 0 implies that discharge is the main incision mechanism.369

3.1.2 ksn distortion370

We quantify ksn distortion based on the cases outlined in section 2.4. We remind371

the reader of the three distortion cases we consider in this study i) change in θ, ii) change372

in incision rule, and iii) change in both. Similar patterns in changes in ksn can arise from373

either of the three cases.374

Figure 4 illustrates each of the distortion cases along a series of rainfall gradients375

for the discharge simulations. Panels A and B correspond to changes in θ (Case i). Panel376

C represents a change in incision rule (Case ii) and Panel D reflects a combined change377

in incision rule and θ values (Case iii). In all plots we indicate the no-distortion scenario378

at y = 0 with a solid black line.379

Figure 4A reflects data from ksn−q calculations, which capture the rainfall range380

used for the discharge-driven simulations. The associated distortion remains close to 1,381

indicating that using θ = 0.45 as opposed to θbest has minimal effects in the basin-averaged382

ksn values. This can be explained by referring to the model set up. In the discharge-driven383

model with m/n = 0.45, with no other external factors to disturb equilibrium, we ob-384

tain steady state channel profiles with θbest = 0.45. This value is obtained from dis-385

order minimization including rainfall in the calculations. Figure 4B reflects the results386

of not including a rainfall range in the disorder minimization procedure when calculat-387

ing θbest. Starting with a null distortion for the 0 m/yr rainfall range, distortion grad-388

ually increases with rainfall ranges. The distortion values reach 23% where θbest > 0.45389
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Figure 3. Comparison of the median values for ∆D∗ for each of the rainfall gradients for

A and Q-driven incision under homogeneous lithology for an initial m/n=0.45. The two mod-

els are always distinguishable: each of the distributions is on either side of the 0 line, with 95%

confidence. The larger the rainfall gradient, the more separated the distribution medians become.
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(above 1) and 15% when θbest < 0.45 (below 1). As the rainfall range increases, θbest390

values diverge from 0.45. Figure 4C shows the distortion in case ii, which results from391

a difference in the assumed incision rule at a fixed concavity index (θ = 0.45). The dis-392

tortion pattern follows a similar path to Figure 4B: as rainfall ranges increase, so does393

the ksn distortion. In this case, the values > 1 correspond to the windward (wetter) basins,394

where rainfall decreases as we move towards the mountain range. Distortion < 1 cor-395

responds to leeward (drier) basins where rainfall decreases as we move away from the396

mountain range. In both cases, distortion reaches 11%, with differences originating from397

the magnitude and the direction of the rainfall gradient. Figure 4D depicts distortion398

case iii: the effects of both a change in θ and a change in the incision rule. The percent-399

age of ksn distortion is larger than in the other three scenarios: a 34% increase at the400

highest point against 23% and 11% in Figure 4B and C respectively. This arises from401

the basins having different θbest depending on the incision rule used to calculate the ksn402

distortion. The effect in the distortion is additive, meaning that compared to the cor-403

rect case for both incision and θ (ksn−q(θ = θbest)), optimizing θ for the wrong inci-404

sion case would lead to the greatest distortion out of the three cases considered.405
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Figure 4. Distortion in ksn for the Q-driven incision case under homogeneous lithology and

initial m/n=0.45. A distortion of 1 (solid black line) keeps the value of ksn unchanged. (B, Case

iQ) indicates that no ksn distortion occurs when the concavity index and the incision case match

the model scenario. (A), (C) and (D) show the possible distortion scenarios that one might en-

counter under different assumptions. (A) highlights the effects of optimizing concavity index

under an incorrect incision scenario, (C) assumes concavity index is kept at 0.45 but the incision

scenario changes and (D) comprises the effects of θ optimization under different assumptions of

incision scenarios, where we see the largest ksn distortions of up to 34%.
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Distortion in the channel steepness index can be caused both by incorrectly assum-406

ing concavity indices and incorrectly assuming incision rules. That is, to calculate ksn407

one must set a value of θ, and one must choose whether or not to incorporate a proxy408

for discharge, and either of these assumptions may not be the best reflection of reality409

in any given landscape. optimizing θ will decrease the distortion in ksn values, for cases410

when the incision mechanism is unknown. If we identify an incision mechanism, then dis-411

tortion can also be decreased by using either ksn or ksn−q, depending on the case. How-412

ever, we find that optimizing θ for an incorrect incision case leads to the highest distor-413

tion values.414

3.2 Heterogeneous lithology415

We have shown that it is possible to differentiate a signal from an A-driven inci-416

sion scenario from a Q-driven scenario, under homogeneous lithology. However, many417

natural landscapes contain a range of lithologies with different erodibilities. We comple-418

ment our analysis with data from simulations with heterogeneous lithologies, as described419

in Section 2.1.2. We illustrate the behavior from results from the most densely varying420

lithology (dense blob), with two extra cases (blob and striped lithology) included in the421

Supplementary Information.422

In Figure 5 we see that in contrast with the homogeneous lithology case, we see that423

the disorder metrics derived from the A-driven and Q-driven basins are not statistically424

distinct. Both distribution medians are similar regardless of the rainfall range and they425

fall within each other’s 95% percentile of the population. The more heterogeneous the426

erodibility, the harder it becomes to distinguish between the original incision rules. The427

dense blob lithology simulations feature channel metrics where it is most difficult to dif-428

ferentiate A-driven from Q-driven incision rules using, with other lithologic types hav-429

ing larger differences in median disorder (see Supplementary Information).430

We also quantify how heterogeneous lithologies impact the distortion of ksn val-431

ues. We start by looking at the result of adding lithology to the discharge-driven model432

scenario and compare the results to Figure 4. We highlight that in the heterogeneous433

lithology cases, we do not expect θ to be 0.45 at a rainfall range of 0m/yr. We have in-434

troduced a perturbation, leading the system to diverge from θ = 0.45 that we obtained435

in an unperturbed, steady state scenario. This is reflected in a distortion between 10%436

- 20% at rainfall ranges of 0 m/yr in all distortion cases. Irrespective of the range in rain-437

fall, this distortion remains within the same bounds. We see consistently higher distor-438

tion values for all rainfall ranges in 6B, as a result of using the incorrect incision scenario439

when optimizing θ. In Figure 6C we see the distortion associated with Case ii (caused440

by changes in incision rule), when keeping θ = 0.45. As the rainfall range increases, the441

distortion shifts towards being larger, up to 44% in leeward basins. When we optimize442

θ and compare between the two incision scenarios 6D, the distortion in both the wind-443

ward and the leeward side is increasing at a similar rate with increasing rainfall ranges.444

This is the only distortion case where we see a systematic increase in distortion with rain-445

fall ranges.446

Heterogeneities in lithology add to the distortions in channel steepness index caused447

by rainfall ranges. The signal from the rainfall is reflected as a systematic increase in dis-448

tortion in A-driven cases. In Q-driven scenarios the systematic increase of distortion with449

rainfall range is masked by the lithological heterogeneities when comparing between θ450

values. optimizing θ will remove the distortion that we incorporate by using θ = 0.45,451

which is more prominent in heterogeneous than homogeneous lithologies. Making a de-452

cision on the type of incision, will also reduce the distortion. However, this can end up453

with an increased distortion if the incision type assumed for calculating χ is incorrect454

and θ is subsequently optimized using channel information obtained from that incorrect455

incision type.456
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Figure 5. Comparison of the median values for ∆D∗ for each of the rainfall ranges for A and

Q-driven incision under dense blob lithology for an initial m/n=0.45. The distribution medians

and percentiles largely overlap, meaning that the models are not distinguishable, regardless of the

rainfall gradient.
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Figure 6. Distortion in ksn for the Q-driven incision case under heterogeneous lithology and

initial m/n=0.45. A distortion of 1 (solid black line) keeps the value of ksn unchanged. We show

the possible distortion scenarios that one might encounter under different assumptions of con-

cavity index and incision. (A) highlights the effects of optimizing concavity under the incorrect

incision scenario (drainage area), whereas (B) shows the distortion incurred by not optimizing θ

under Q-driven incision. (C) keeps concavity index at 0.45 but compares incision scenario and

(D) comprises the effects of θ optimization under different assumptions of incision scenarios,

where we see the largest ksn distortions of up to 54%.

3.3 Natural Landscape Study Cases457

We have quantified how a changing range of rainfall can lead to differences in ksn458

and θbest under various incision scenarios in simulated landscapes. Our numerical exper-459

iments suggest that it is possible to statistically distinguish A-driven and Q-driven in-460

cision landscapes in a lithologically homogeneous model using disorder metrics. Hetero-461

geneous lithologies capture how the rainfall signal is obscured by additional forcings, namely462

spatial variation in erodibility, a common feature in natural landscapes. Having isolated463

these signals in experiments, we now apply this knowledge to real landscapes, where we464

only have a posteriori topographic states from which to infer the landscape incision rule.465

We remind readers, when interpreting our results, that D∗(θbest,Q) < D∗(θbest,A) sug-466

gests that the basin has been shaped by rainfall as a main incision mechanism. On the467

other hand, D∗(θbest,Q) > D∗(θbest,A) suggests that basin incision is driven by drainage468

area. Our numerical experiments suggest that ∆D∗ < 0 in landscapes with A-driven469

incision. In Q-driven, ∆D∗ > 0. We calculate ∆D∗ for natural landscapes in the same470

fashion.471
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For each basin, we repeat the calculations outlined in section 2.2, and plot the me-472

dian values of normalized distortion (∆D∗) and their distributions in Figure 7. As a re-473

minder, this metric quantifies which of the two assumed incision scenarios results in lower474

distortion of the channel network. If all basins are positive, or all are negative, we view475

this as an indication that one of the two assumed incision signals better describes the476

observed topographic data. We see in Figure 7, most natural landscapes have basins that477

straddle ∆D∗ = 0, meaning that we cannot determine the most likely incision scenario478

with any confidence. Only in the cases of the Colorado Front Range and the Massif Cen-479

tral do we see a statistically significant imprint on ∆D∗. Those basins lie on the pos-480

itive side of the x-axis, favoring discharge as the predominant incision mechanism. The481

other sites show smaller confidence intervals in ∆D∗ values, and their basins only a slight482

trend towards an incision scenario (drainage area -Pyrénées, Alburz, Qinling- and dis-483

charge -Perú, Argentina, Kaçkar-). The distributions center largely around the ∆D∗ =484

0 with spreads at either side of the incision case division.485

If we are not able to distinguish the correct incision scenario using the disorder met-486

rics, how uncertain will our interpretations of channel steepness become? In Figure 8 we487

investigate distortions in the channel steepness index. We highlight the difference in scale488

of the results shown here. In the modeling experiments, some scenarios show a distor-489

tion of no more than 10% under low rainfall (eg. Figures 4A, S12B, S3 (A-C)). In real490

landscapes, we observe larger distortion values for all cases, in some instances reaching491

36% in 8D, 50% in 8B and above 75% distortion in 8A and C. In natural basins, using492

θ = 0.45 becomes a large source of distortion to the channel steepness index, regard-493

less of the assumed incision scenario. This is a consequence of the θbest values diverg-494

ing from 0.45, which corresponds to the m/n value of the models. Compared to these495

large distortion values incurred by using θ = 0.45, the distortion values arising from496

choosing A-driven or Q-driven incision scenarios fall considerably. We see most distor-497

tion falls within the 25% bounds, regardless of the mountain range, although with dif-498

ferent amounts of spread around the null distortion line at y = 1. This shows that in499

natural landscapes, optimizing the concavity index is more important than choosing the500

correct incision scenario. As opposed to the model, in natural topography we do not see501

an increase in the distortion originated from case iii compared to the other two cases.502

We plot the distributions of ksn and ksn−q for θbest and θ = 0.45. Under θ = 0.45503

(9B), the differences in channel steepness index are larger, for instance in Argentina or504

Colorado, were the peak of the distribution is shifted and the distributions changing shape.505

However, cases such as the Pyrénées or the Massif Central show little differences in the506

distributions. 9A shows the channel steepness index distributions for θbest. We see that507

the shape of the curves is better preserved, with less variation in the location of the peak508

between the A and the Q cases.509

4 Discussion510

4.1 Channel steepness index and Erosion Rates511

Our numerical experiments show that in lithologically homogeneous landscapes it512

is possible to distinguish between drainage area and discharge-driven landscapes from513

topographic metrics alone. If the imposed incision law is discharge-driven, but channel514

steepness is calculated assuming an area-driven incision driver (that is, χ is calculated515

only taking A into account), the distortions to the channel steepness index can be as high516

as 34% within our simulations, with varying patterns depending on the lithology and the517

type of rainfall. Homogeneous lithology leads to ksn distortion that increases monoton-518

ically with increasing rainfall ranges (Figure 4A, C, D), whereas heterogeneous litholo-519

gies totally overprint rainfall-related signals (see Figure 6A, B, C). Adding heterogeneous520

lithologies in the model simulations also induces a systematic increase in the disorder521

metric. This makes it harder to identify a pattern whereby a worker can clearly extract522
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Figure 7. Comparison of the median values for ∆D∗ for each of the mountain ranges. Results

that lie above the y=0 line correspond to cases driven by rainfall. Points that lie below the y=0

line are cases where other forcings aside from rainfall(such as tectonics or lithology) are domi-

nating over the rainfall signal. Some cases show a slight preference towards χA (Perú, Argentina,

Turkey) whereas the rest prefer χQ. However, the confidence interval for this is lower than 95%,

meaning that the results are largely basin dependent. Topographic analysis is not sufficient to

draw conclusions about the incision mechanisms and further field observations of erosion rates

would be needed.
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Figure 8. Distortion in ksn for a range of natural landscapes. A distortion of 1 (solid black

line) keeps the value of ksn unchanged. The distortion scenarios are a representation of how one

might introduce bias in ksn under an unknown incision scenario, as is the case in many sites.

Keeping θ=0.45 under different incision scenarios can lead to distortions of up to 79% (C). We

show as well the distortion introduced by choosing θ=0.45 instead of θbest, reaching 81% under

A-driven incision (A) and 50% under Q-driven incision (B). (D) depicts the distortion introduced

by optimizing θ under both incision regimes, with values of up to 36%.

the range of rainfall across the mountain range. For instance, in the striped lithology case523

(Figure S2, SI) all basins are affected by both the two erodibilities and the rainfall ranges,524

but at different parts of the catchment, because some tributaries will only have one rock525

type.526

Distortions in channel steepness index are not solely caused by external forcings,527

such as rainfall or erodibility. In simulations depicted in Figure 4 we have imposed a discharge-528

driven incision rule, with a θ of 0.45. The largest distortions result from comparing the529

imposed incision law with the correct θ against the incorrect incision law with an opti-530

mized θ (Figure 4D). However, in a real landscape we will not know the “true” erosion531

law or the “true” value of θ, and we find that the distortions associated with changing532

the θ value between 0.45 (used in many studies) and an optimized θ is similar to the dis-533

tortions introduced by not accounting for rainfall (Figure 4A and C).534

A change in distortion is a reflection of differences between tributaries and trunk535

behavior as a result of spatial changes in rainfall. For instance, tributaries represent a536

larger percentage of the channels in smaller basins, meaning that their signal becomes537

amplified in those cases (Leonard et al., 2023). We then expect different parts of the catch-538

ment and channels of different sizes to react differently to spatially heterogenous rain-539
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Figure 9. Distribution of ksn and ksn−q values for all the basins across each mountain range.

Assuming θ=0.45, we see large difference in ksn values and distribution shape for the Southern

Andes and the Rockies, other areas, such as the Massif Central or the Pyrénées do not experience

significant changes. Under θbest (B), the distribution largely changes from (A), shifting towards

smaller channel steepness index. Mountain ranges like the Rockies now show a closer agreement

between the ksn and the ksn−q distributions.

fall and lithology. According to the modeling work by Han et al. (2015), smaller chan-540

nels are more affected by rainfall, with large variability in ksn reflecting the precipita-541

tion gradient. Recent work by Leonard et al. (2023) proposes that smaller catchments542

are more prone to biases because their contribution to the overall basin metrics is larger.543

In line with this, we have set bounds for basin drainage area size and minimum tribu-544

tary size. This will lead to more consistent ksn values and avoid incorporating tributaries545

dominated by hillslope diffusivity processes. Our modeling results suggest that in Q-driven546

basins, given that the concavity index is optimized, the distortion will be minimal when547

using ksn−q. This is agrees with the study by Leonard et al. (2023), where in areas of548

the Andean Cordillera with strong rainfall gradients ksn−q and θref = 0.50 yield a min-549

imal distortion.550

Natural topography, however, shows more complexity than our sandbox models,551

which leads to difficulties in identifying the different incision scenarios. We choose a small552

number of basins across a multitude of different areas (as opposed to (Leonard et al., 2023),553

where the study is along a single geographical region) to identify topographic metrics554

than can differentiate between incision scenarios. This offers the worker an estimate of555

how much of a distortion they would introduce given the incorrect incision rule or con-556

cavity index. Leonard et al. (2023) also show that in the Andes, the differences between557

the trunk and tributaries are starker when using the incorrect incision mechanism than558

when comparing ksn under different -incorrect- concavity index scenarios.559

Determining the incision rule that is more consistent with observed topography will560

help in interpreting topography in areas with large changes in rainfall across the study561

area. The distortion that we have found in our study can then be translated into uncer-562

tainties in erosion rates. (Adams et al., 2020) found that the erosion rates from Be-10563
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Figure 10. χ profiles for a basin in the Argentinian Andes, under different incision and con-

cavity index scenarios. The disorder decreases when we optimize the concavity index (θbest) ((B)

and (D)). The channel steepness index is higher when θ=0.45 ((A) and (C)). Compared to the

effects that changes in concavity index have in the profiles, the choice of incision rule introduce

secondary differences in the channels.

in the Himalayas and Bhutan are better constrained when using ksn−q instead of ksn (which564

(Leonard et al., 2023) corroborates), otherwise causing them to be artificially high. We565

find that changes in the concavity index can lead to changes in channel steepness index566

which are often larger than those caused by spatially varying rainfall, suggesting a po-567

tential cumulative effect of the different biases.568

However, these changes in θ values are linked not only to different rainfall (Harries569

et al., 2021; Zaprowski et al., 2005) and lithological regimes (Duvall et al., 2004). The570

nature of the river bed (Howard & Kerby, 1983; Tucker & Whipple, 2002), the sediment571

availability (Wickert & Schildgen, 2019), and the tectonic setting (Kirby & Whipple, 2001)572

can also affect the value of θ in different reaches of the rivers in a way that would be-573

come hard to disentangle from spatial changes in rainfall. Han et al. (2015) explores changes574

that spatially varied rainfall can have on the concavity index through modeling exper-575

iments. In natural landscapes, changes around their chosen value of 0.5 vary compar-576

atively less due to rain gradients than changes caused by factors such as the type of chan-577

nel bed (Whipple & Tucker, 2002), sediment amounts (Gasparini et al., 2007) or uplift578

rate changes (Kirby & Whipple, 2001).579

The distribution of ksn and ksn−q values for natural landscapes shows the variabil-580

ity in behavior between mountain ranges (Figure 9). For θ = θbest, the variability be-581

tween ksn and ksn−q is smaller than for θ = 0.45. This means that as long as the con-582

–21–



manuscript submitted to JGR: Earth Surface

cavity index has been constrained, the channel steepness index variations between A and583

Q-scenarios will be smaller than if θ = 0.45 was chosen. We note that the mountain584

ranges where the distributions diverge for A and Q cases often correspond to the ones585

where the disorder is high, demonstrating once more that using unconstrained values of586

theta to extract geomorphometrics can amplify process-linked biases. For instance Ar-587

gentina shows consistently distortion between 25-75% in Figure 8, seeing some of the largest588

variability in channel steepness index for some of the basins. Plotting the χ-elevation plots589

for one of the basins with the strongest distortion Figure 10, we can see that the disor-590

der of the tributaries with respect to the main stem is decreased the most when using591

χQ and θ = θbest. Most of the changes in channel steepness index due to concavity in-592

dex optimization affect the upstream tributaries, we see as well how the profiles collapse593

more as a result of choosing θbest than by including or removing rainfall in the calcula-594

tions.595

4.2 Rainfall and climate596

In this work, we have chosen to simplify the rainfall patterns in manner mirroring597

(Leonard & Whipple, 2021) by approximating the orographic behavior using a linear in-598

crease of rainfall with distance along the mountain range, emulating the effect that oro-599

graphic rainfall has on real landscapes. The rainfall asymmetry generates a displacement600

of the divide towards the drier side of the mountain, where the erosion is smaller. We601

observe different levels of channel steepness index distortion for the wet and the dry side602

of the simulated mountain ranges, and making it possible to identify the type of rain-603

fall gradient (top-heavy or bottom-heavy - following the nomenclature in (Leonard & Whip-604

ple, 2021)- from the value of the distortion ratio. This difference between the wet and605

the dry side of natural landscapes has been studied in depth in natural settings such as606

Hawai’i (Ferrier et al., 2013), albeit in tectonically complex regions outside our scope.607

In the modeling framework, we have assumed that the rainfall pattern remains con-608

stant throughout time, but this is not necessarily the case in natural landscapes. Even609

small climate changes can lead to changes in the rainfall pattern and discharge amounts610

at different parts of the catchment, altering the local erosion rates and displacing the land-611

scape from an equilibrium state (Leonard & Whipple, 2021). The regions of study lie612

within the mid-latitudes, where the climate has remained largely unchanged (Roe et al.,613

2002). Changes in atmospheric circulation patterns or temperature changes (Herman et614

al., 2013; Bradley, 2015; Ward & Galewsky, 2014) are some examples of cases when other615

climate variable can affect erosion rates. Glaciations are also important when consider-616

ing a large portion of the Earth’s landscapes, and they also show a relation with the ero-617

sion rates and the relief of the landscape. From our simulations, we have seen how the618

relief decreases as precipitation rates increase, as expected. In natural landscapes, the619

relationship between relief and rainfall is complex and influenced by local processes be-620

yond the scope of this project (Montgomery et al., 2001; Champagnac et al., 2012).621

4.3 Disorder to indicate incision rate622

Our hypothesis states that basins undergoing a strong rainfall gradient are distin-623

guishable based on their disorder values. This is true under homogeneous lithologies and624

in cases where the erodibility differences happen smoothly over the scale of multiple basins.625

In this case, it is possible to distinguish with 95% confidence between A-driven incision626

and Q-driven incision, regardless of the rainfall gradient. Adding sudden changes in lithol-627

ogy within basins and natural topographies makes identifying the correct incision rule628

challenging. The shape of the basins can have an effect on the disorder values. (Han et629

al., 2015) highlight how longer and narrower catchments experience a similar rainfall gra-630

dient between the tributaries and the trunk channel, whereas wider basins where the trib-631

utaries are more misaligned experience a higher disorder. In our experiments, we are look-632

ing at the overall behavior of the landscape, thus mixing basin shapes which would in-633
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trinsically have different disorders based on their shape, regardless of the forcing. Since634

in the disorder calculations we only compare each basin with itself under different in-635

cision scenarios, the intrinsic disorder differences between basins should not pose a bias.636

4.4 Limitations637

One of the limitations of our study lies in the precipitation treatment, both in the638

modeling study and in the natural landscapes. While it is possible to reproduce a real-639

istic rainfall pattern using the Fastscape module adapted from (Smith & Barstad, 2004),640

it is computationally expensive and requires knowledge of the wind patterns of the re-641

gion of interest, which change at different atmospheric layers. We assume that the oro-642

graphic rainfall can be approximated in the modeling framework by a linear rainfall trend643

that does not change through the simulation, regardless of the relief (Roe et al., 2003).644

In real orographic rainfall scenarios, there would be a positive feedback between the rain-645

fall and the topography, which our model does not capture.646

In our natural sites, we also assume that the rainfall pattern, derived from the av-647

erage rainfall from 20 years (2000-2020), is representative of the precipitation at that site648

throughout its history, in geologic timescales. Climate patterns have changed through-649

out the centuries driven by changes in atmospheric condition, solar irradiance, and bio-650

sphere and ocean changes (Bradley, 2015). The regions of study lie within the mid-latitudes,651

where the climate has remained largely unchanged (Roe et al., 2002). However, due to652

having taken into account data from the 21st century, recent changes in rainfall pattern653

due to human made climate change cannot be ruled out to have intervened in the data654

from the past years compared to data prior to industrial revolution.655

The question of whether mean annual precipitation should be used to describe the656

climate of a region is also a highly debated topic, with studies suggesting that it is the657

storms and extreme events which contribute the most to mean annual precipitation and658

do the most erosive work (Sorensen & Yanites, 2019; DiBiase & Whipple, 2011; Deal et659

al., 2017, 2018; Rasmussen et al., 2016). Other studies prefer the use of mean annual pre-660

cipitation (Leonard & Whipple, 2021; Adams et al., 2020; Rossi et al., 2016; Anders et661

al., 2006; D’Arcy & Whittaker, 2014; Gasparini & Whipple, 2014; Armitage et al., 2011),662

especially when capturing the erosion work longer climatic trend or incorporating it in663

long-term landscape evolution models.664

In the modeling framework, many processes have been simplified. We have already665

mentioned the rainfall patterns, which is the main focus of this study. The representa-666

tion of lithological units, the exclusion of sediment supply and the homogeneous uplift,667

have all been choices made to isolate the climatic signal as much as possible. We are also668

assuming that the detachment limited SPM forms a good basis for how rainfall inter-669

acts with uplift and erosion, which many studies support (e.g., Leonard et al., 2023; Leonard670

& Whipple, 2021; Adams et al., 2020; Gasparini & Whipple, 2014; Harries et al., 2021),671

while acknowledging it still does not fully explain all geomorphic processes at the land-672

scape scale.673

5 Conclusions674

In this study, we explore whether it is possible to determine whether channel in-675

cision is most closely related to drainage area or discharge (or some proxy thereof) from676

topographic metrics alone. Many past papers quantify channel steepness calculated based677

on drainage area as an indicator of river incision rates (e.g., Kirby & Whipple, 2012; Harel678

et al., 2016), but now that precipitation records are more readily available (Skofronick-679

Jackson et al., 2017), we must question whether adding rainfall gradients to the equa-680

tion will yield different topographic outcomes in river channels.681
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In a simple numerical model with homogeneous lithology, disorder metrics (Mudd682

et al., 2018; Gailleton et al., 2021; Goren et al., 2014) yield a clear distinction between683

A and Q-driven incision basins with a monotonic dependence on rainfall gradients. When684

the system is perturbed by adding areas with different erodibilities, the incision signal685

is obscured. However, including rainfall gradients is not the only way to distort a sig-686

nal. We have quantified the effects that optimizing the concavity index θ can have in the687

channels, concluding that using the standard value of θ = 0.45 amplifies the distortion688

caused by rainfall effects.689

In natural landscapes, we cannot establish a general topographic rule to distinguish690

between A and Q-shaped basins. We find catchments that are better described by dis-691

charge and others by drainage area, in some cases with quite a stark contrast. Given that692

we are not able to separate those cases topographically, we quantify how much distor-693

tion we would introduce in channel steepness index if we failed to identify the incision694

mechanism. Our results suggest that in most basins we would see maximum changes in695

channel steepness index of up to 25%, which does not constitute enough to drastically696

change the interpretation of erosion rates across the landscape. We compare this to dis-697

tortions in ksn of 50% obtained from using θ = 0.45 instead of optimizing the concav-698

ity index. We suggest readers to use θbest as an efficient method to reduce distortions699

already introduced by an unknown incision mechanism.700

6 Open Research701

Analyses have been run using open source software (lsdtopotools v0.9, lsdtopytools).702

Precipitation data was retrieved using the package gpm precipitation tools. Visualiza-703

tion scripts and model workflows are available in the Github repository https://github704

.com/MarinaRuizSO/JGR paper, which will be archived and assigned a doi if the manuscript705

is accepted for publication.706
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Key Points:7

• Discharge-driven incision can be identified a posteriori in simulated landscapes8

but not in natural topography.9

• The choice of concavity index (θ) can distort the channel steepness index more10

than the choice of incision type.11

• Topographic metrics should be accompanied by field explorations to fully describe12

the erosional history of a landscape.13
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Abstract14

The rate of channel incision in bedrock rivers is often described using a power law re-15

lationship that scales erosion with drainage area. However, erosion in landscapes that16

experience strong rainfall gradients may be better described by discharge instead of drainage17

area. In this study we test if these two end member scenarios result in identifiable to-18

pographic signatures in both idealized numerical simulations and in natural landscapes.19

We find that in simulations using homogeneous lithology, we can differentiate a poste-20

riori between drainage area and discharge-driven incision scenarios by quantifying the21

relative disorder of channel profiles, as measured by how well tributary profiles mimic22

both the main stem channel and each other. The more heterogeneous the landscape be-23

comes, the harder it proves to identify the disorder signatures of the end member inci-24

sion rules. We then apply these indicators to natural landscapes, and find, among 8 test25

areas, no clear topographic signal that allows us to conclude a discharge or area-driven26

incision rule is more appropriate. We then quantify the distortion in the channel steep-27

ness index induced by changing the incision rule. Distortion in the channel steepness in-28

dex can also be driven by changes to the assumed reference concavity index, and we find29

that distortions in the normalized channel steepness index, frequently used as a proxy30

for erosion rates, is more sensitive to changes in the concavity index than to changes in31

the assumed incision rule. This makes it a priority to optimize the concavity index even32

under an unknown incision mechanism.33

Plain Language Summary34

Rivers erode into mountains as a result of both the sediment transported as the35

water flows downstream and the amount of water that the river transports. The amount36

of rainfall that each part of the river receives affects how much the channel cuts into the37

rock. In this study, we assess whether it is possible to differentiate between rivers where38

sediment is responsible for most of the erosion work and rivers where rainfall has a larger39

erosive power. Through computer simulations, we measure the river fingerprint in the40

landscape through calculations involving how tributary and main channel slopes com-41

pare, and how quickly a channel steepens as it travels away from the headwaters. We42

extract these fingerprints and search for them in the more complex natural landscapes,43

measuring how much they change under heavy rainfall. We find that these fingerprints44

are camouflaged by factors such as changes in rock types, making it a challenge to iden-45

tify them without field observations.46

1 Introduction47

Physical intuition suggests that, if all other factors are equal, a steeper river will48

erode faster than a gentler one. This basic relationship has been proposed by geomor-49

phologists for over a century (Gilbert, 1877). It is unusual, however, to find two chan-50

nels identical in their properties with the exception of their gradient. Headwaters are,51

for example, frequently steeper than downstream rivers they feed. In the early 1960s ge-52

omophologists realized that gradient could be related to drainage area in a power law53

with a negative exponent (Hack, 1960; Morisawa, 1962). This basic relationship was for-54

malized by Flint (1974):55

S = ksA
−θ (1)56

where the concavity index, θ, describes how fast the gradient of the river changes down-57

stream and the constant ks, channel steepness index, describes the dependence of gra-58

dient normalized for drainage area. We can further fix the value of θ to a fixed reference59

value (θref ), after which we denote the channel steepness index with ksn. This normal-60
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ization allows us to compare the relative steepness of rivers with different drainage ar-61

eas (Flint, 1974).62

Numerous studies have found that this relative steepness (ksn) is positively cor-63

related with measured erosion rates in upland landscapes (Wobus et al., 2006; DiBiase64

et al., 2010; Kirby & Whipple, 2012; Harel et al., 2016; Adams et al., 2020; Gailleton et65

al., 2021; Harries et al., 2021; Peifer et al., 2021). In regions without data on erosion rates66

we might therefore use ksn as a proxy for erosion rate (Kirby & Whipple, 2012). This67

is not quite as straightforward as it sounds, however. If we return to physical intuition,68

consider two channels with all properties equal apart from the amount of water they con-69

vey (quantified as, e.g., their mean annual discharge or some other statistical represen-70

tation of runoff). Many authors have proposed relationships between channel incision71

and the physical properties of bedrock rivers, and these proposals include the influence72

of sediment supply (dependent on A), sediment transport capacity (dependent on hy-73

draulic conditions and gradient), shear stress (dependent on flow depth, and thus hy-74

draulic conditions), stream power (again, hydraulic conditions), and thresholding behav-75

ior of all the above factors (Howard, 1987; Wobus et al., 2010; Finnegan et al., 2007; John-76

son & Whipple, 2010; Baynes et al., 2020). This means that computation of ksn based77

on drainage area rather than hydraulic conditions (e.g., discharge) may not represent the78

incision process.79

One reason erosion rate proxies have tended towards using and area-based ksn is80

because drainage area is trivial to extract form topographic data. Discharge (Q) records81

are not always easy to obtain, and gauging stations are at points rather than distributed82

throughout the landscape. However, various global datasets, for example TRMM (Kummerow83

et al., 2000) and GPM (Skofronick-Jackson et al., 2017) have made it relatively simple84

to estimate and aggregate precipitation over a basin, over a variety of timescales, which85

means it is now quite simple to obtain an estimate of discharge in a basin given a lin-86

ear relationship between aggregate precipitation and discharge.87

These precipitation datasets enable us to calculate the channel steepness index, ksn,88

based on effective discharge rather than drainage area. And indeed, a number of recent89

authors have taken this approach (e.g., Babault et al., 2018; Adams et al., 2020; Leonard90

& Whipple, 2021; Harries et al., 2021; Leonard et al., 2023). If precipitation rates are91

uniform across a catchment, the drainage area-gradient relationship will have the same92

spatial pattern as the drainage area-discharge relationship. But rainfall can be influenced93

by mountains (Roe et al., 2002; Anders et al., 2006; Bookhagen & Burbank, 2006; Bookha-94

gen & Strecker, 2008; Craddock et al., 2007; Gasparini & Whipple, 2014), meaning that95

the patterns of ksn might be different if one uses A or a more direct estimate of Q that96

incorporates spatially varied precipitation.97

One might assume that the latter is always “better” than the former. But there98

are some reasons why erosion rates, and gradients, might be more sensitive to drainage99

area than discharge. The main reason for this is that water does not erode the bed of100

rivers, sediment does. And the amount of sediment fluxing through any part of the chan-101

nel in a steadily uplifting mountain range should depend on drainage area and not dis-102

charge. In addition, rivers transporting gravel will alter their geometry, for example their103

width (Dunne & Jerolmack, 2020; Phillips & Jerolmack, 2016; Pfeiffer et al., 2017), to104

accommodate sediment supply and this could cause a damping effect on the relationship105

between discharge and erosion rates. So although it intuitively might make sense to al-106

ways use discharge-based calculations of ksn, we are not, at present, certain if this is bet-107

ter than a calculation using A.108

Any proposed erosion rule, be it area or discharge driven, can be transformed into109

a prediction of topography. For example, the most basic erosion law incorporating gra-110

dient and area of takes the form (Howard & Kerby, 1983):111
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E = KAmSn (2)112

where K is an erodibility and m and n are empirical coefficients. If one rearranges equa-113

tion 2 to isolate S and compares the result with equation 1, one can see that, if equa-114

tion 2 is correct, ksn = (E/K)1/n and θ = m/n. Thus equation 2 predicts a power law115

relationship between gradient and drainage area where erosion rates are invariant in time116

and space. It can also be shown that this power law relationship holds in segments of117

constant erosion that move upstream in transiently eroding landscapes (L. Royden &118

Perron, 2013). Various threshold models have been proposed as more complex versions119

of equation 2, but much of their relevant behavior can be captured by altering the n ex-120

ponent (Gasparini & Brandon, 2011). While this approach is not without controversy121

(Lague, 2014), it is at least not clearly falsified by relationships between topographic data122

and measured erosion rates.123

Such topographic predictions suggest a basic test: if there are strong gradients in124

precipitation, we expect the topographic outcomes of incision rules that are driven by125

either A or Q to differ. In this contribution we first explore the question: if we know ero-126

sion rates are driven by either A or Q, could we tell the difference just based on topog-127

raphy? We use numerical experiments to answer this question. We explore the extent128

to which heterogeneity in uplift rates and erodibilities can cloud this signal. Finally, we129

explore real landscapes to see if we can find locations, based on our proposed metrics,130

where it is clear that an area-based or discharge-based calculation of ksn is more appro-131

priate.132

2 Methods133

Our study includes three components. First, we perform a series of numerical ex-134

periments using a simple landscape evolution model with different imposed incision rules,135

and in addition alter other model parameters such as rainfall gradient. The aim of these136

simulations is to produce landscapes under idealized and controlled conditions against137

which metrics for determining the most likely incision rule may be tested. We then de-138

velop metrics that allow us to test if a particular incision rule better describes observed139

topography. Finally, we deploy these metrics on real landscapes.140

2.1 Numerical simulations141

We simulate landscapes where bedrock channels incise through an uplifting land-142

scape. We thus must select an incision rule for our simulations. For the purposes of sim-143

plicity, we use the basic form of the stream power incision model (equation 2), which can144

emulate different incision mechanisms by altering the n exponent (Gasparini & Bran-145

don, 2011).146

Equation 2 is not influenced by discharge. For discharge-based incision, we follow147

other authors (e.g. Adams et al., 2020) and replace drainage area with a proxy for dis-148

charge, which we compute with the substitution Q = A×Rainfall where the rainfall149

is converted into runoff and accumulated downstream, yielding:150

E = KlpQ
mSn. (3)151

In reality, the discharge will be modulated by other features such as evapotranspiration152

and infiltration rates, but these factors are subsumed into the parameter Klp.153

The model then simulates topographic evolution with a simple mass balance:154
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∂z

∂t
= U − E (4)155

where U is the uplift rate and the erosion rate, E, is solved by either equation 2 or 3.156

Simulations are performed using the Fastscape framework (Bovy & Lange, 2023). Fastscape157

uses the methods developed by Braun and Willett (2013) that takes advantage of graph158

theory to efficiently solve equations 2 (or 3) with an implicit finite different scheme.159

In order to implement equation 3, we must assign a precipitation pattern. In our160

experiments, we explore different precipitation gradients. Models do exist where precip-161

itation depends on elevation and prevailing wind direction, for example the model of Smith162

and Barstad (2004) which was used by Han et al. (2015). Such models involve multiple163

parameters, and to obtain the desired precipitation gradient one must engage in fine tun-164

ing each of these parameters. For consistency across experiments, we decided instead to165

increase precipitation linearly as a function of distance from the mountain front, with166

precipitation gradients comparable to real orographic rainfall gradients. Leonard and Whip-167

ple (2021) found that a linear rainfall gradient can be a good approximation to study-168

ing orographic precipitation patterns in natural landscapes.169

We impose rainfall gradients that will mimic natural orographic patterns found in170

natural landscapes. In the driest scenario, we impose a rainfall gradient across the sim-171

ulated mountain range of 1 m/yr (that is, the precipitation is 1 m/yr greater at the peak172

rainfall location than at the minimum rainfall location). In our wettest scenario, the in-173

crease in rainfall reaches 10 m/yr across the simulation domain, corresponding to the174

highest rainfall achieved in the Bhutan Himalayas (Grujic et al., 2018; Anders et al., 2006).175

2.1.1 Homogeneous Lithologies176

We run experiments on a regular grid (∆x = 30m) grid over a mountain range177

that is 15 km by 30 km (see Table 1 in S1 for full parameter details). This size was se-178

lected as a compromise between the number of basins that could be formed during a sim-179

ulation and computational expense. We begin each landscape with a random surface gen-180

erated using the diamond square algorithm (Fournier et al., 1982; Perron & Royden, 2013)181

with noise ranging from 0 to 1 m. We choose this initial condition as it produces a greater182

variety of channel network structures than the more widely used white noise. Each sim-183

ulation is run to steady state, where the change in erosion is balanced by uplift.184

For a given uplift and precipitation gradient, we calculate the landscape resulting185

from each of the two incision laws as described by equations 2 and 3. Initial experiments186

use uniform erodibility to simulate homogeneous lithology. The boundary conditions in-187

clude a fixed elevation on the east and west edges (which allow flux to exit the model)188

and periodic boundaries at the north and south of the model domain. The resulting moun-189

tain range emerges in the North-South direction.190

Within the discharge-driven model, we set up one simulation for each rainfall sce-191

nario, starting from a gradient of 0 m/yr to to 10 m/yr (increasing from East to West192

in the simulation domain), for a total of 11 simulations. The precipitation runs explore193

how different rainfall amounts affect river incision mechanisms and whether larger gra-194

dients generate a stronger signal in the landscape.195

Both the erodibility coefficient and the uplift rate are kept constant across all sim-196

ulations at 3× 10−8 and uplift rate is 1× 10−5 respectively, yielding landscape reliefs197

within the ranges of those found on Earth. Similarly, n is chosen as 1 and m as 0.45 to198

keep the m/n ratio equal to 0.45, which is the central tendency of the concavity index199

across a large number of global landscapes (Kirby & Whipple, 2012; Gailleton et al., 2021;200

Tucker & Whipple, 2002). Although n is thought to take values other than unity in most201

landscapes (Lague, 2014; Harel et al., 2016), the value of this parameter is only man-202
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ifested in topographic outcomes during landscape transience (Whipple & Tucker, 1999;203

L. Royden & Perron, 2013) and does not affect our simulations since the landscapes are204

brought to steady state. When studying the channel steepness index across multiple basins,205

we set a reference value, θref , (Gailleton et al., 2021) of 0.45 to establish a comparison206

between basins.207

2.1.2 Heterogeneous Lithologies208

To study the role of lithology in the prevalence of rainfall patterns we run a set of209

simulations with spatially varying values of erodibity, K. These simulations are designed210

to be closer to natural landscapes where the lithological landscape is more complex.211

Within this study, we choose two lithological units reflecting the properties of a harder212

and a softer rock, with erodibility values ranging between 1e−7 < K < 5e−8. This is213

in line with (Forte et al., 2016; Bernard et al., 2021; Peifer et al., 2021). Peifer et al. (2021),214

which determined that hard rocks can be related by a factor from 2-10 in erodibility to215

softer rocks (Forte et al., 2016; Bernard et al., 2021).216

We simulate three heterogeneous lithologies scenarios: striped (a), sparse blob (b)217

and dense blob (c) lithologies (see SI, Figure S1).218

1. Striped lithology: band of hard rock (K = 5e − 8) in the center of our sim-219

ulated mountain range, surrounded by soft rock (K = 1e− 7) to emulate cases220

like the Pyrénées.221

2. Sparse blob lithology: 4 large hard rock (K = 5e−8) blobs evenly distributed222

on the landscape domain.223

3. Dense blob lithology: many small hard rock blobs (K = 5e−8) of a few square224

meters in diameter, generated using Perlin noise (Perlin, 1985).225

2.1.3 Natural Landscapes226

We have chosen natural landscapes for this analysis on the basis of precipitation227

gradients and lithological structure, avoiding areas that have complex layers of soft rocks228

(Table 1). We analyze basins with a minimum drainage area of 1e7m2. We incorporate229

all channel pixels within tributaries that have a source area greater than 1.35km2 (which230

corresponds to 1500 pixels in topographic data with 30 m grid spacing).231

Table 1. Geographical areas chosen along with the number of selected basins in each regions,

area and rainfall range across the basin, from the outlet to the headwaters of the catchment. We

choose a varied range of area sizes and precipitation gradients with to study prevalent trends

across regions. Data extracted from the 30m Copernicus DEM and NASA’s Global Precipitation

Measurement Mission (GPM) (Skofronick-Jackson et al., 2017).

Location N basins Area (km2) Precipitation Range (m/yr)

Andes, Southern Perú 5 29979 0.687-3.983
Andes, Northern Argentina 7 5932 0.045-0.010
North Qinling Mts, China 14 30832 0.734-0.938
Kaçkar Mts, Turkey 8 4279 0.784-1.673
Colorado Front Range, USA 7 9282 3.726-4.220
Alburz Mts, Iran 7 8167 0.357-0.849
Massif Central, France 5 1945 0.977-1.092
Pyréneées, Spain-France 5 6632 0.097-0.117
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2.1.4 Varying the simulation concavity index, θ (i.e. m/n ratio)232

We assess the impact of running the homogeneous lithology simulation with a fur-233

ther two choices of m/n: 0.35 and 0.55. The rationale for these experiments is to deter-234

mine if changes to the imposed m/n ratio causes distortions to ksn of the same magni-235

tude as those induced by changing the incision rule. The broad effect on the landscapes236

with different values of m/n compared to the base case of m/n = 0.45 is that at 0.35 the237

landscape is smoother with lower relief and higher drainage density with sinuous trib-238

utaries, whereas at m/n = 0.55 the landscape has sharper features, with higher relief and239

lower drainage density, forming straighter tributaries. For detailed results of these sim-240

ulations, see SI (Text S6, Figures S16-S19, Tables S8-9.241

2.2 Metrics to quantify topographic outcomes242

Our models simulate river incision, and so we use river profiles to explore topographic243

outcomes of simulations. Because gradients should scale by either A or Q (depending244

on the incision rule) we use a coordinate transformation, first proposed by (L. H. Roy-245

den et al., 2000), that integrates either A or Q along the river profile:246

χA =

∫ x

x0

(
A0

A(x)

)θ

dx (5)247

χQ =

∫ x

x0

(
Q0

Q(x)

)θ

dx (6)248

This transformation has various useful features. The gradient in χA–elevation space is249

equivalent to ks if A0 = 1 m2 (e.g., Perron & Royden, 2013; L. Royden & Perron, 2013;250

Mudd et al., 2014), and the gradient in χQ–elevation space is equivalent a metric ks−q251

where gradient is scaled by Q instead of A in the form:252

S = ks−qQ
−θ (7)253

when Q0 = unity in the units of Q used to calculate both χq and ks−q (e.g., Adams et254

al., 2020; Leonard et al., 2023; Leonard & Whipple, 2021; D’Arcy & Whittaker, 2014;255

Harries et al., 2021). These steepness metrics can be used both in steady state and tran-256

sient landscapes (L. Royden & Perron, 2013). Another advantage of using the χ trans-257

formation is that tributaries to the main channel at the same elevation yield the same258

χ value, regardless of their drainage area. Given a landscape in steady state, the main259

channel and its tributaries should follow the same linear relationship on a χ–z plot, as-260

suming the same erosion and uplift rates (Perron & Royden, 2013) and the optimal con-261

cavity index value.262

We exploit this latter feature in our efforts to discriminate, topographically, between263

incision rules. Regardless of the incision rule, selection of the incorrect value of θ will re-264

sult in tributaries that are not collinear, introducing distortions in channel steepness in-265

dex (Perron & Royden, 2013; Mudd et al., 2018; Hergarten & Robl, 2022; Gailleton et266

al., 2021; Goren et al., 2014; Harries et al., 2021). Computing χA or χQ also affects the267

channel steepness index values and the spread of the data, which can lead to different268

patterns of the channel steepness index and spreading the data in χ space (Figure 1).269

Because ksn values are used to infer relative erosion rates across tectonically active re-270

gions, distortions to the spatial patterns of the channel steepness index can cloud inter-271

pretations of topographic pattern (e.g., Gailleton et al., 2021).272

We quantify the spread of the χ−z profiles using a disorder metric, first proposed273

by Goren et al. (2014) and further developed by Hergarten et al. (2016) and Mudd et274
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Figure 1. Illustration of how χ profiles and ksn change based on the choice of incision sce-

nario and concavity index values. The χ profiles result from simulations with a range of precip-

itation of 10m/yr (increasing west to east) under initial m/n=0.35. The basin shown is located

on the wetter side of the domain, draining to the east. (D) shows perfect collinearity under χq

and θbest, which match the simulation parameters. (A) shows distortions using both the incorrect

incision rule and the wrong θ, (B) shows a slightly more collinear profile, in this case only having

the incorrect incision. (C) captures the correct incision (discharge) but uses θ=0.45, where we see

the largest increase in disorder and changes in ksn.

al. (2018). One begins by ranking every point in the channel network by increasing el-275

evation, and then checks to see if the associated χ coordinates are similarly ranked (or276

not):277

R =

N∑
i=1

∣∣χs,i+1 − χs,i

∣∣, (8)278

where the the subscript s, i represents the ith χ coordinate that has been sorted by its279

elevation (χs,i). This sum, R, is minimal if elevation and χ are related monotonically.280

However it scales with the absolute values of χ, which are sensitive to the concavity in-281

dex (see equations 5 and 6), so following Hergarten et al. (2016) we scale the disorder282

metric, D, by the maximum value of χ in the tributary network (χmax):283
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D(θ) =
1

χmax(θ)

( N∑
i=1

∣∣χs,i+1(θ)− χs,i(θ)
∣∣− χmax(θ)

)
. (9)284

We use the method of Mudd et al. (2018) to constrain uncertainty of this metric by cre-285

ating subset networks formed from the trunk stream and every possible combination of286

three tributaries in a particular basin. This creates a population of D values for a given287

basin from which a median and interquartile range may be reported.288

We normalize the disorder values across all tributary combinations, obtaining:289

D∗(θ) =
D(θ)

Dmax(θ)
(10)290

where Dθ is the disorder for each tributary combination and Dmax(θ) is the maximum291

disorder over all combinations.292

In our analysis we aim to decipher whether we can identify the signal from a land-293

scape shaped by rainfall a posteriori. To quantify this, we focus on the effect of rainfall294

in the χ− z profiles and in the disorder metrics. To emulate what the analysis would295

look like if we did not know the incision rule, we calculate the χ profiles in two ways for296

each simulation scenario - regardless of what the actual imposed incision rule is for a given297

numerical experiment. We calculate these metrics for each basin in the simulation drain-298

ing to the edge and reaching the main drainage divide (Figure 2). For each of the basins299

simulated in each model scenario, we calculate the following:300

1. χA: assumes a drainage area-driven incision (equation 5).301

2. χQ: assumes a discharge-driven incision (equation 6).302

For each of the χ cases, we calculate the disorder metric (equation 9). The disor-303

der constrains the value for the optimal concavity index, θbest, that will lead to the most304

collinear river profile configuration (Mudd et al., 2018; Gailleton et al., 2021).305

2.3 Statistical Analysis306

For each incision scenario, we calculate minimum normalized disorder values (D∗(θ))307

corresponding to each of the basins under each of the incision and χ scenarios. To mea-308

sure if D∗(θ) for the basins in the simulations where incision is purely a function of A309

is statistically distinguishable from the basins where incision is driven by Q, we extract310

the value for D∗(θ) for each basin and χ case. We then calculate the absolute error be-311

tween D∗(θ) in the two χ cases. The true value corresponds to calculating D∗(θ) with312

the χ of the matching incision scenario. The distribution of error values (∆D∗) for all313

basins for each incision case can then be expressed as:314

∆D∗ = D∗
rain −D∗

norain (11)315

Since we are dealing with non-parametric distributions, we take the median of ∆D∗
316

to quantify whether the A-based incision models may be distinguished from the Q-based317

incision models. We represent the distributions with kernel density estimates (KDE) (Cox,318

2007; Silverman, 1998). If a percentage smaller than 5% is shared between the two dis-319

tributions we consider them to be distinguishable from each other with 95% confidence.320

–9–
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A B

Figure 2. River networks generated with the numerical model under two discharge-driven

incision scenarios, with rainfall ranges between (A) 0-1m/yr and (B) 0-10m/yr in the East-West

direction. The smaller rainfall ranges in (A) lead to higher relief, steeper channels and a sym-

metric drainage divide. The higher rainfall in (B) leads to lower relief and a more sinuous and

asymmetric drainage divide.

2.4 Measuring the effects of rainfall and θ on ksn321

In our numerical landscapes, we impose an erosion rule and then quantify the ex-322

tent to which profiles are disordered when applying the appropriate or incorrect χ trans-323

formation (that is, using either A or Q). In real landscapes, however, we can only infer324

which of the two χ transformations is correct based upon relative disorder, and indeed325

neither may be correct. We resort to distortion in the χ–elevation profiles to quantify326

the impact of the choice of A or Q to scale χ when the correct choice is unclear. Specif-327

ically the distortion metrics quantify the degree to which ksn changes if different choices328

in calculating χ are made. Determining the distortion of ksn due to the choice of A or329

Q in calculating ksn is important because it can affect the interpretations of the tectonic330

and erosional history of a landscape (Kirby & Whipple, 2012).331

We quantify distortion by calculating the ratio between median upstream and down-332

stream ksn values and then investigating how this ratio varies depending on concavity333

index (Case i), incision scenario (Case ii) or both (Case iii), following the methods in334

(Gailleton et al., 2021). A full derivation of equations used to calculate the distortion335

is included in the SI, Text S1.336

3 Results337

In this section we present the numerical experiments and explore the effects of rain-338

fall gradient on channel steepness and concavity index. We cover both homogeneous and339

heterogeneous lithologies.340

–10–
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3.1 Homogeneous lithology341

3.1.1 Drainage area or discharge-driven incision?342

Figure 3 shows the distributions of ∆D∗ in each experiment using KDE fitting for343

Q-driven incision rule (equation 3) and A-driven incision rule (equation 2). Each ker-344

nel estimate is obtained for the collection of basins in the simulated domain. We obtain345

the median (solid line), 95th and 5th (dashed lines) percentiles for each kernel, repeat-346

ing this procedure for each of the rainfall gradients. We consider ∆D∗ = 0 as the point347

where calculating χQ or χA would have no effect on the minimum disorder.348

Figure 3 shows the distribution of ∆D∗ values. Basins where the χ and the inci-349

sion scenario match have lower D∗ values. This is represented by the A-driven distribu-350

tions lying on the negative side of the x-axis, meaning that the disorder value calculated351

using χA is lower than the disorder calculated using χQ. That is, unsurprisingly, using352

the version of χ that corresponds with the imposed incision rule results in less disordered353

channel profiles. The opposite is true of the Q-driven basins, which lie on the positive354

x-axis range, where the disorder is lower when calculating χQ than χA. This is true of355

all three indicated metrics: median, 95th and 5th percentiles. None of the distribution356

tails overlap inside of the 5-95th percentile ranges. For every rainfall distribution illus-357

trated, the drainage area and the discharge driven incision are statistically far enough358

apart to be considered distinct distributions.359

As rainfall gradients increase, the medians of the distributions diverge. For smaller360

rainfall gradients, the distribution medians appear closer together but still outside the361

95% of each other that we consider an indication they are statistically distinct. The most362

significant differences arise from the discharge-driven scenarios, with the changes in the363

drainage area ∆D∗ evolving slower with increased rainfall.364

For every rainfall distribution illustrated under homogeneous lithology, calculat-365

ing χQ or χA leads to statistically distinct ∆D∗ distributions for the A and the Q-driven366

scenarios. Disorder can thus be used as a tool to recognize the dominating incision rule367

in numerical simulations: when ∆D∗ < 0, the incision is drainage area-driven, whereas368

∆D∗ > 0 implies that discharge is the main incision mechanism.369

3.1.2 ksn distortion370

We quantify ksn distortion based on the cases outlined in section 2.4. We remind371

the reader of the three distortion cases we consider in this study i) change in θ, ii) change372

in incision rule, and iii) change in both. Similar patterns in changes in ksn can arise from373

either of the three cases.374

Figure 4 illustrates each of the distortion cases along a series of rainfall gradients375

for the discharge simulations. Panels A and B correspond to changes in θ (Case i). Panel376

C represents a change in incision rule (Case ii) and Panel D reflects a combined change377

in incision rule and θ values (Case iii). In all plots we indicate the no-distortion scenario378

at y = 0 with a solid black line.379

Figure 4A reflects data from ksn−q calculations, which capture the rainfall range380

used for the discharge-driven simulations. The associated distortion remains close to 1,381

indicating that using θ = 0.45 as opposed to θbest has minimal effects in the basin-averaged382

ksn values. This can be explained by referring to the model set up. In the discharge-driven383

model with m/n = 0.45, with no other external factors to disturb equilibrium, we ob-384

tain steady state channel profiles with θbest = 0.45. This value is obtained from dis-385

order minimization including rainfall in the calculations. Figure 4B reflects the results386

of not including a rainfall range in the disorder minimization procedure when calculat-387

ing θbest. Starting with a null distortion for the 0 m/yr rainfall range, distortion grad-388

ually increases with rainfall ranges. The distortion values reach 23% where θbest > 0.45389
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Figure 3. Comparison of the median values for ∆D∗ for each of the rainfall gradients for

A and Q-driven incision under homogeneous lithology for an initial m/n=0.45. The two mod-

els are always distinguishable: each of the distributions is on either side of the 0 line, with 95%

confidence. The larger the rainfall gradient, the more separated the distribution medians become.
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(above 1) and 15% when θbest < 0.45 (below 1). As the rainfall range increases, θbest390

values diverge from 0.45. Figure 4C shows the distortion in case ii, which results from391

a difference in the assumed incision rule at a fixed concavity index (θ = 0.45). The dis-392

tortion pattern follows a similar path to Figure 4B: as rainfall ranges increase, so does393

the ksn distortion. In this case, the values > 1 correspond to the windward (wetter) basins,394

where rainfall decreases as we move towards the mountain range. Distortion < 1 cor-395

responds to leeward (drier) basins where rainfall decreases as we move away from the396

mountain range. In both cases, distortion reaches 11%, with differences originating from397

the magnitude and the direction of the rainfall gradient. Figure 4D depicts distortion398

case iii: the effects of both a change in θ and a change in the incision rule. The percent-399

age of ksn distortion is larger than in the other three scenarios: a 34% increase at the400

highest point against 23% and 11% in Figure 4B and C respectively. This arises from401

the basins having different θbest depending on the incision rule used to calculate the ksn402

distortion. The effect in the distortion is additive, meaning that compared to the cor-403

rect case for both incision and θ (ksn−q(θ = θbest)), optimizing θ for the wrong inci-404

sion case would lead to the greatest distortion out of the three cases considered.405
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Figure 4. Distortion in ksn for the Q-driven incision case under homogeneous lithology and

initial m/n=0.45. A distortion of 1 (solid black line) keeps the value of ksn unchanged. (B, Case

iQ) indicates that no ksn distortion occurs when the concavity index and the incision case match

the model scenario. (A), (C) and (D) show the possible distortion scenarios that one might en-

counter under different assumptions. (A) highlights the effects of optimizing concavity index

under an incorrect incision scenario, (C) assumes concavity index is kept at 0.45 but the incision

scenario changes and (D) comprises the effects of θ optimization under different assumptions of

incision scenarios, where we see the largest ksn distortions of up to 34%.
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Distortion in the channel steepness index can be caused both by incorrectly assum-406

ing concavity indices and incorrectly assuming incision rules. That is, to calculate ksn407

one must set a value of θ, and one must choose whether or not to incorporate a proxy408

for discharge, and either of these assumptions may not be the best reflection of reality409

in any given landscape. optimizing θ will decrease the distortion in ksn values, for cases410

when the incision mechanism is unknown. If we identify an incision mechanism, then dis-411

tortion can also be decreased by using either ksn or ksn−q, depending on the case. How-412

ever, we find that optimizing θ for an incorrect incision case leads to the highest distor-413

tion values.414

3.2 Heterogeneous lithology415

We have shown that it is possible to differentiate a signal from an A-driven inci-416

sion scenario from a Q-driven scenario, under homogeneous lithology. However, many417

natural landscapes contain a range of lithologies with different erodibilities. We comple-418

ment our analysis with data from simulations with heterogeneous lithologies, as described419

in Section 2.1.2. We illustrate the behavior from results from the most densely varying420

lithology (dense blob), with two extra cases (blob and striped lithology) included in the421

Supplementary Information.422

In Figure 5 we see that in contrast with the homogeneous lithology case, we see that423

the disorder metrics derived from the A-driven and Q-driven basins are not statistically424

distinct. Both distribution medians are similar regardless of the rainfall range and they425

fall within each other’s 95% percentile of the population. The more heterogeneous the426

erodibility, the harder it becomes to distinguish between the original incision rules. The427

dense blob lithology simulations feature channel metrics where it is most difficult to dif-428

ferentiate A-driven from Q-driven incision rules using, with other lithologic types hav-429

ing larger differences in median disorder (see Supplementary Information).430

We also quantify how heterogeneous lithologies impact the distortion of ksn val-431

ues. We start by looking at the result of adding lithology to the discharge-driven model432

scenario and compare the results to Figure 4. We highlight that in the heterogeneous433

lithology cases, we do not expect θ to be 0.45 at a rainfall range of 0m/yr. We have in-434

troduced a perturbation, leading the system to diverge from θ = 0.45 that we obtained435

in an unperturbed, steady state scenario. This is reflected in a distortion between 10%436

- 20% at rainfall ranges of 0 m/yr in all distortion cases. Irrespective of the range in rain-437

fall, this distortion remains within the same bounds. We see consistently higher distor-438

tion values for all rainfall ranges in 6B, as a result of using the incorrect incision scenario439

when optimizing θ. In Figure 6C we see the distortion associated with Case ii (caused440

by changes in incision rule), when keeping θ = 0.45. As the rainfall range increases, the441

distortion shifts towards being larger, up to 44% in leeward basins. When we optimize442

θ and compare between the two incision scenarios 6D, the distortion in both the wind-443

ward and the leeward side is increasing at a similar rate with increasing rainfall ranges.444

This is the only distortion case where we see a systematic increase in distortion with rain-445

fall ranges.446

Heterogeneities in lithology add to the distortions in channel steepness index caused447

by rainfall ranges. The signal from the rainfall is reflected as a systematic increase in dis-448

tortion in A-driven cases. In Q-driven scenarios the systematic increase of distortion with449

rainfall range is masked by the lithological heterogeneities when comparing between θ450

values. optimizing θ will remove the distortion that we incorporate by using θ = 0.45,451

which is more prominent in heterogeneous than homogeneous lithologies. Making a de-452

cision on the type of incision, will also reduce the distortion. However, this can end up453

with an increased distortion if the incision type assumed for calculating χ is incorrect454

and θ is subsequently optimized using channel information obtained from that incorrect455

incision type.456
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Figure 5. Comparison of the median values for ∆D∗ for each of the rainfall ranges for A and

Q-driven incision under dense blob lithology for an initial m/n=0.45. The distribution medians

and percentiles largely overlap, meaning that the models are not distinguishable, regardless of the

rainfall gradient.
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Figure 6. Distortion in ksn for the Q-driven incision case under heterogeneous lithology and

initial m/n=0.45. A distortion of 1 (solid black line) keeps the value of ksn unchanged. We show

the possible distortion scenarios that one might encounter under different assumptions of con-

cavity index and incision. (A) highlights the effects of optimizing concavity under the incorrect

incision scenario (drainage area), whereas (B) shows the distortion incurred by not optimizing θ

under Q-driven incision. (C) keeps concavity index at 0.45 but compares incision scenario and

(D) comprises the effects of θ optimization under different assumptions of incision scenarios,

where we see the largest ksn distortions of up to 54%.

3.3 Natural Landscape Study Cases457

We have quantified how a changing range of rainfall can lead to differences in ksn458

and θbest under various incision scenarios in simulated landscapes. Our numerical exper-459

iments suggest that it is possible to statistically distinguish A-driven and Q-driven in-460

cision landscapes in a lithologically homogeneous model using disorder metrics. Hetero-461

geneous lithologies capture how the rainfall signal is obscured by additional forcings, namely462

spatial variation in erodibility, a common feature in natural landscapes. Having isolated463

these signals in experiments, we now apply this knowledge to real landscapes, where we464

only have a posteriori topographic states from which to infer the landscape incision rule.465

We remind readers, when interpreting our results, that D∗(θbest,Q) < D∗(θbest,A) sug-466

gests that the basin has been shaped by rainfall as a main incision mechanism. On the467

other hand, D∗(θbest,Q) > D∗(θbest,A) suggests that basin incision is driven by drainage468

area. Our numerical experiments suggest that ∆D∗ < 0 in landscapes with A-driven469

incision. In Q-driven, ∆D∗ > 0. We calculate ∆D∗ for natural landscapes in the same470

fashion.471
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For each basin, we repeat the calculations outlined in section 2.2, and plot the me-472

dian values of normalized distortion (∆D∗) and their distributions in Figure 7. As a re-473

minder, this metric quantifies which of the two assumed incision scenarios results in lower474

distortion of the channel network. If all basins are positive, or all are negative, we view475

this as an indication that one of the two assumed incision signals better describes the476

observed topographic data. We see in Figure 7, most natural landscapes have basins that477

straddle ∆D∗ = 0, meaning that we cannot determine the most likely incision scenario478

with any confidence. Only in the cases of the Colorado Front Range and the Massif Cen-479

tral do we see a statistically significant imprint on ∆D∗. Those basins lie on the pos-480

itive side of the x-axis, favoring discharge as the predominant incision mechanism. The481

other sites show smaller confidence intervals in ∆D∗ values, and their basins only a slight482

trend towards an incision scenario (drainage area -Pyrénées, Alburz, Qinling- and dis-483

charge -Perú, Argentina, Kaçkar-). The distributions center largely around the ∆D∗ =484

0 with spreads at either side of the incision case division.485

If we are not able to distinguish the correct incision scenario using the disorder met-486

rics, how uncertain will our interpretations of channel steepness become? In Figure 8 we487

investigate distortions in the channel steepness index. We highlight the difference in scale488

of the results shown here. In the modeling experiments, some scenarios show a distor-489

tion of no more than 10% under low rainfall (eg. Figures 4A, S12B, S3 (A-C)). In real490

landscapes, we observe larger distortion values for all cases, in some instances reaching491

36% in 8D, 50% in 8B and above 75% distortion in 8A and C. In natural basins, using492

θ = 0.45 becomes a large source of distortion to the channel steepness index, regard-493

less of the assumed incision scenario. This is a consequence of the θbest values diverg-494

ing from 0.45, which corresponds to the m/n value of the models. Compared to these495

large distortion values incurred by using θ = 0.45, the distortion values arising from496

choosing A-driven or Q-driven incision scenarios fall considerably. We see most distor-497

tion falls within the 25% bounds, regardless of the mountain range, although with dif-498

ferent amounts of spread around the null distortion line at y = 1. This shows that in499

natural landscapes, optimizing the concavity index is more important than choosing the500

correct incision scenario. As opposed to the model, in natural topography we do not see501

an increase in the distortion originated from case iii compared to the other two cases.502

We plot the distributions of ksn and ksn−q for θbest and θ = 0.45. Under θ = 0.45503

(9B), the differences in channel steepness index are larger, for instance in Argentina or504

Colorado, were the peak of the distribution is shifted and the distributions changing shape.505

However, cases such as the Pyrénées or the Massif Central show little differences in the506

distributions. 9A shows the channel steepness index distributions for θbest. We see that507

the shape of the curves is better preserved, with less variation in the location of the peak508

between the A and the Q cases.509

4 Discussion510

4.1 Channel steepness index and Erosion Rates511

Our numerical experiments show that in lithologically homogeneous landscapes it512

is possible to distinguish between drainage area and discharge-driven landscapes from513

topographic metrics alone. If the imposed incision law is discharge-driven, but channel514

steepness is calculated assuming an area-driven incision driver (that is, χ is calculated515

only taking A into account), the distortions to the channel steepness index can be as high516

as 34% within our simulations, with varying patterns depending on the lithology and the517

type of rainfall. Homogeneous lithology leads to ksn distortion that increases monoton-518

ically with increasing rainfall ranges (Figure 4A, C, D), whereas heterogeneous litholo-519

gies totally overprint rainfall-related signals (see Figure 6A, B, C). Adding heterogeneous520

lithologies in the model simulations also induces a systematic increase in the disorder521

metric. This makes it harder to identify a pattern whereby a worker can clearly extract522
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Figure 7. Comparison of the median values for ∆D∗ for each of the mountain ranges. Results

that lie above the y=0 line correspond to cases driven by rainfall. Points that lie below the y=0

line are cases where other forcings aside from rainfall(such as tectonics or lithology) are domi-

nating over the rainfall signal. Some cases show a slight preference towards χA (Perú, Argentina,

Turkey) whereas the rest prefer χQ. However, the confidence interval for this is lower than 95%,

meaning that the results are largely basin dependent. Topographic analysis is not sufficient to

draw conclusions about the incision mechanisms and further field observations of erosion rates

would be needed.
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Figure 8. Distortion in ksn for a range of natural landscapes. A distortion of 1 (solid black

line) keeps the value of ksn unchanged. The distortion scenarios are a representation of how one

might introduce bias in ksn under an unknown incision scenario, as is the case in many sites.

Keeping θ=0.45 under different incision scenarios can lead to distortions of up to 79% (C). We

show as well the distortion introduced by choosing θ=0.45 instead of θbest, reaching 81% under

A-driven incision (A) and 50% under Q-driven incision (B). (D) depicts the distortion introduced

by optimizing θ under both incision regimes, with values of up to 36%.

the range of rainfall across the mountain range. For instance, in the striped lithology case523

(Figure S2, SI) all basins are affected by both the two erodibilities and the rainfall ranges,524

but at different parts of the catchment, because some tributaries will only have one rock525

type.526

Distortions in channel steepness index are not solely caused by external forcings,527

such as rainfall or erodibility. In simulations depicted in Figure 4 we have imposed a discharge-528

driven incision rule, with a θ of 0.45. The largest distortions result from comparing the529

imposed incision law with the correct θ against the incorrect incision law with an opti-530

mized θ (Figure 4D). However, in a real landscape we will not know the “true” erosion531

law or the “true” value of θ, and we find that the distortions associated with changing532

the θ value between 0.45 (used in many studies) and an optimized θ is similar to the dis-533

tortions introduced by not accounting for rainfall (Figure 4A and C).534

A change in distortion is a reflection of differences between tributaries and trunk535

behavior as a result of spatial changes in rainfall. For instance, tributaries represent a536

larger percentage of the channels in smaller basins, meaning that their signal becomes537

amplified in those cases (Leonard et al., 2023). We then expect different parts of the catch-538

ment and channels of different sizes to react differently to spatially heterogenous rain-539
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Figure 9. Distribution of ksn and ksn−q values for all the basins across each mountain range.

Assuming θ=0.45, we see large difference in ksn values and distribution shape for the Southern

Andes and the Rockies, other areas, such as the Massif Central or the Pyrénées do not experience

significant changes. Under θbest (B), the distribution largely changes from (A), shifting towards

smaller channel steepness index. Mountain ranges like the Rockies now show a closer agreement

between the ksn and the ksn−q distributions.

fall and lithology. According to the modeling work by Han et al. (2015), smaller chan-540

nels are more affected by rainfall, with large variability in ksn reflecting the precipita-541

tion gradient. Recent work by Leonard et al. (2023) proposes that smaller catchments542

are more prone to biases because their contribution to the overall basin metrics is larger.543

In line with this, we have set bounds for basin drainage area size and minimum tribu-544

tary size. This will lead to more consistent ksn values and avoid incorporating tributaries545

dominated by hillslope diffusivity processes. Our modeling results suggest that in Q-driven546

basins, given that the concavity index is optimized, the distortion will be minimal when547

using ksn−q. This is agrees with the study by Leonard et al. (2023), where in areas of548

the Andean Cordillera with strong rainfall gradients ksn−q and θref = 0.50 yield a min-549

imal distortion.550

Natural topography, however, shows more complexity than our sandbox models,551

which leads to difficulties in identifying the different incision scenarios. We choose a small552

number of basins across a multitude of different areas (as opposed to (Leonard et al., 2023),553

where the study is along a single geographical region) to identify topographic metrics554

than can differentiate between incision scenarios. This offers the worker an estimate of555

how much of a distortion they would introduce given the incorrect incision rule or con-556

cavity index. Leonard et al. (2023) also show that in the Andes, the differences between557

the trunk and tributaries are starker when using the incorrect incision mechanism than558

when comparing ksn under different -incorrect- concavity index scenarios.559

Determining the incision rule that is more consistent with observed topography will560

help in interpreting topography in areas with large changes in rainfall across the study561

area. The distortion that we have found in our study can then be translated into uncer-562

tainties in erosion rates. (Adams et al., 2020) found that the erosion rates from Be-10563
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Figure 10. χ profiles for a basin in the Argentinian Andes, under different incision and con-

cavity index scenarios. The disorder decreases when we optimize the concavity index (θbest) ((B)

and (D)). The channel steepness index is higher when θ=0.45 ((A) and (C)). Compared to the

effects that changes in concavity index have in the profiles, the choice of incision rule introduce

secondary differences in the channels.

in the Himalayas and Bhutan are better constrained when using ksn−q instead of ksn (which564

(Leonard et al., 2023) corroborates), otherwise causing them to be artificially high. We565

find that changes in the concavity index can lead to changes in channel steepness index566

which are often larger than those caused by spatially varying rainfall, suggesting a po-567

tential cumulative effect of the different biases.568

However, these changes in θ values are linked not only to different rainfall (Harries569

et al., 2021; Zaprowski et al., 2005) and lithological regimes (Duvall et al., 2004). The570

nature of the river bed (Howard & Kerby, 1983; Tucker & Whipple, 2002), the sediment571

availability (Wickert & Schildgen, 2019), and the tectonic setting (Kirby & Whipple, 2001)572

can also affect the value of θ in different reaches of the rivers in a way that would be-573

come hard to disentangle from spatial changes in rainfall. Han et al. (2015) explores changes574

that spatially varied rainfall can have on the concavity index through modeling exper-575

iments. In natural landscapes, changes around their chosen value of 0.5 vary compar-576

atively less due to rain gradients than changes caused by factors such as the type of chan-577

nel bed (Whipple & Tucker, 2002), sediment amounts (Gasparini et al., 2007) or uplift578

rate changes (Kirby & Whipple, 2001).579

The distribution of ksn and ksn−q values for natural landscapes shows the variabil-580

ity in behavior between mountain ranges (Figure 9). For θ = θbest, the variability be-581

tween ksn and ksn−q is smaller than for θ = 0.45. This means that as long as the con-582
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cavity index has been constrained, the channel steepness index variations between A and583

Q-scenarios will be smaller than if θ = 0.45 was chosen. We note that the mountain584

ranges where the distributions diverge for A and Q cases often correspond to the ones585

where the disorder is high, demonstrating once more that using unconstrained values of586

theta to extract geomorphometrics can amplify process-linked biases. For instance Ar-587

gentina shows consistently distortion between 25-75% in Figure 8, seeing some of the largest588

variability in channel steepness index for some of the basins. Plotting the χ-elevation plots589

for one of the basins with the strongest distortion Figure 10, we can see that the disor-590

der of the tributaries with respect to the main stem is decreased the most when using591

χQ and θ = θbest. Most of the changes in channel steepness index due to concavity in-592

dex optimization affect the upstream tributaries, we see as well how the profiles collapse593

more as a result of choosing θbest than by including or removing rainfall in the calcula-594

tions.595

4.2 Rainfall and climate596

In this work, we have chosen to simplify the rainfall patterns in manner mirroring597

(Leonard & Whipple, 2021) by approximating the orographic behavior using a linear in-598

crease of rainfall with distance along the mountain range, emulating the effect that oro-599

graphic rainfall has on real landscapes. The rainfall asymmetry generates a displacement600

of the divide towards the drier side of the mountain, where the erosion is smaller. We601

observe different levels of channel steepness index distortion for the wet and the dry side602

of the simulated mountain ranges, and making it possible to identify the type of rain-603

fall gradient (top-heavy or bottom-heavy - following the nomenclature in (Leonard & Whip-604

ple, 2021)- from the value of the distortion ratio. This difference between the wet and605

the dry side of natural landscapes has been studied in depth in natural settings such as606

Hawai’i (Ferrier et al., 2013), albeit in tectonically complex regions outside our scope.607

In the modeling framework, we have assumed that the rainfall pattern remains con-608

stant throughout time, but this is not necessarily the case in natural landscapes. Even609

small climate changes can lead to changes in the rainfall pattern and discharge amounts610

at different parts of the catchment, altering the local erosion rates and displacing the land-611

scape from an equilibrium state (Leonard & Whipple, 2021). The regions of study lie612

within the mid-latitudes, where the climate has remained largely unchanged (Roe et al.,613

2002). Changes in atmospheric circulation patterns or temperature changes (Herman et614

al., 2013; Bradley, 2015; Ward & Galewsky, 2014) are some examples of cases when other615

climate variable can affect erosion rates. Glaciations are also important when consider-616

ing a large portion of the Earth’s landscapes, and they also show a relation with the ero-617

sion rates and the relief of the landscape. From our simulations, we have seen how the618

relief decreases as precipitation rates increase, as expected. In natural landscapes, the619

relationship between relief and rainfall is complex and influenced by local processes be-620

yond the scope of this project (Montgomery et al., 2001; Champagnac et al., 2012).621

4.3 Disorder to indicate incision rate622

Our hypothesis states that basins undergoing a strong rainfall gradient are distin-623

guishable based on their disorder values. This is true under homogeneous lithologies and624

in cases where the erodibility differences happen smoothly over the scale of multiple basins.625

In this case, it is possible to distinguish with 95% confidence between A-driven incision626

and Q-driven incision, regardless of the rainfall gradient. Adding sudden changes in lithol-627

ogy within basins and natural topographies makes identifying the correct incision rule628

challenging. The shape of the basins can have an effect on the disorder values. (Han et629

al., 2015) highlight how longer and narrower catchments experience a similar rainfall gra-630

dient between the tributaries and the trunk channel, whereas wider basins where the trib-631

utaries are more misaligned experience a higher disorder. In our experiments, we are look-632

ing at the overall behavior of the landscape, thus mixing basin shapes which would in-633
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trinsically have different disorders based on their shape, regardless of the forcing. Since634

in the disorder calculations we only compare each basin with itself under different in-635

cision scenarios, the intrinsic disorder differences between basins should not pose a bias.636

4.4 Limitations637

One of the limitations of our study lies in the precipitation treatment, both in the638

modeling study and in the natural landscapes. While it is possible to reproduce a real-639

istic rainfall pattern using the Fastscape module adapted from (Smith & Barstad, 2004),640

it is computationally expensive and requires knowledge of the wind patterns of the re-641

gion of interest, which change at different atmospheric layers. We assume that the oro-642

graphic rainfall can be approximated in the modeling framework by a linear rainfall trend643

that does not change through the simulation, regardless of the relief (Roe et al., 2003).644

In real orographic rainfall scenarios, there would be a positive feedback between the rain-645

fall and the topography, which our model does not capture.646

In our natural sites, we also assume that the rainfall pattern, derived from the av-647

erage rainfall from 20 years (2000-2020), is representative of the precipitation at that site648

throughout its history, in geologic timescales. Climate patterns have changed through-649

out the centuries driven by changes in atmospheric condition, solar irradiance, and bio-650

sphere and ocean changes (Bradley, 2015). The regions of study lie within the mid-latitudes,651

where the climate has remained largely unchanged (Roe et al., 2002). However, due to652

having taken into account data from the 21st century, recent changes in rainfall pattern653

due to human made climate change cannot be ruled out to have intervened in the data654

from the past years compared to data prior to industrial revolution.655

The question of whether mean annual precipitation should be used to describe the656

climate of a region is also a highly debated topic, with studies suggesting that it is the657

storms and extreme events which contribute the most to mean annual precipitation and658

do the most erosive work (Sorensen & Yanites, 2019; DiBiase & Whipple, 2011; Deal et659

al., 2017, 2018; Rasmussen et al., 2016). Other studies prefer the use of mean annual pre-660

cipitation (Leonard & Whipple, 2021; Adams et al., 2020; Rossi et al., 2016; Anders et661

al., 2006; D’Arcy & Whittaker, 2014; Gasparini & Whipple, 2014; Armitage et al., 2011),662

especially when capturing the erosion work longer climatic trend or incorporating it in663

long-term landscape evolution models.664

In the modeling framework, many processes have been simplified. We have already665

mentioned the rainfall patterns, which is the main focus of this study. The representa-666

tion of lithological units, the exclusion of sediment supply and the homogeneous uplift,667

have all been choices made to isolate the climatic signal as much as possible. We are also668

assuming that the detachment limited SPM forms a good basis for how rainfall inter-669

acts with uplift and erosion, which many studies support (e.g., Leonard et al., 2023; Leonard670

& Whipple, 2021; Adams et al., 2020; Gasparini & Whipple, 2014; Harries et al., 2021),671

while acknowledging it still does not fully explain all geomorphic processes at the land-672

scape scale.673

5 Conclusions674

In this study, we explore whether it is possible to determine whether channel in-675

cision is most closely related to drainage area or discharge (or some proxy thereof) from676

topographic metrics alone. Many past papers quantify channel steepness calculated based677

on drainage area as an indicator of river incision rates (e.g., Kirby & Whipple, 2012; Harel678

et al., 2016), but now that precipitation records are more readily available (Skofronick-679

Jackson et al., 2017), we must question whether adding rainfall gradients to the equa-680

tion will yield different topographic outcomes in river channels.681
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In a simple numerical model with homogeneous lithology, disorder metrics (Mudd682

et al., 2018; Gailleton et al., 2021; Goren et al., 2014) yield a clear distinction between683

A and Q-driven incision basins with a monotonic dependence on rainfall gradients. When684

the system is perturbed by adding areas with different erodibilities, the incision signal685

is obscured. However, including rainfall gradients is not the only way to distort a sig-686

nal. We have quantified the effects that optimizing the concavity index θ can have in the687

channels, concluding that using the standard value of θ = 0.45 amplifies the distortion688

caused by rainfall effects.689

In natural landscapes, we cannot establish a general topographic rule to distinguish690

between A and Q-shaped basins. We find catchments that are better described by dis-691

charge and others by drainage area, in some cases with quite a stark contrast. Given that692

we are not able to separate those cases topographically, we quantify how much distor-693

tion we would introduce in channel steepness index if we failed to identify the incision694

mechanism. Our results suggest that in most basins we would see maximum changes in695

channel steepness index of up to 25%, which does not constitute enough to drastically696

change the interpretation of erosion rates across the landscape. We compare this to dis-697

tortions in ksn of 50% obtained from using θ = 0.45 instead of optimizing the concav-698

ity index. We suggest readers to use θbest as an efficient method to reduce distortions699

already introduced by an unknown incision mechanism.700

6 Open Research701

Analyses have been run using open source software (lsdtopotools v0.9, lsdtopytools).702

Precipitation data was retrieved using the package gpm precipitation tools. Visualiza-703

tion scripts and model workflows are available in the Github repository https://github704

.com/MarinaRuizSO/JGR paper, which will be archived and assigned a doi if the manuscript705

is accepted for publication.706
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Introduction This supporting information document contains the derivation of the dis-

tortion metrics used in the main text. In addition we present the model parameters and

lithologic scenarios. We also provide additional figures for distortion as a function of the

change in rainfall as well as for different scenarios of the concavity index.

Text S1. Calculation of ksn distortion

Distortions in the local values of ksn can affect the interpretation of the tectonic and

erosional history of a landscape (e.g. Kirby & Whipple, 2012). In order to measure the

extent of the ksn distortion caused by different θ values, or alternatively application of
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either discharge or area driven calculation of the χ metric, we follow a method similar to

that described by (Gailleton et al., 2021).

For the equations below, we compare values in two areas within the same catchment

and take the median value of all the ksn values within that area. The equations below

are then quoted in terms of medians instead of absolute values, as was originally devised

by (Gailleton et al., 2021).

We start by defining ksn at two points in the catchment, defined by their median slope

and drainage area. We label these points M and N , and use subscripts to denote which

point is being analysed:

kM = SMAθ
M (S1)

and

kN = SNA
θ
N (2)

We then take the ratio between the two values of ksn, this we call rk,θ.

rk,θ =
SMAθ

M

SNAθ
N

(3)

To simplify the equation, we can express the drainage area and the slope ratios as rS and

rθA:

rk,θ = rSr
θ
A (4)

Since we are investigating the effect of varying the concavity between two θ values, we

can define:
November 21, 2023, 2:43pm



: X - 3

∆θ = θ2 − θ1 (5)

Transforming this into natural log space, we can then see the linear relations between the

terms. Note that only the drainage area ratios depend on the concavity θ, which allows

us to remove the dependence on the slope ratios, rS.

ln[rk,θ2 ]− ln[rk,θ1 ] = ln[rS] + θ2ln[rA]− ln[rS]− θ1ln[rA] (6)

ln[rk,θ2 ]− ln[rk,θ1 ] = ∆θln[rA] (7)

Finally, we can rewrite this ratio of ratios as a distortion originated from the variation in

θ values.

β(∆θ) =
rk,θ2
rk,θ1

= r∆θ
A (8)

We then use these equations with the following series of steps in order calculate the

degree of distortion in ksn values that may be introduced by selection of the wrong method

of calculating χ (for example, using A to calculate χA when incision depends on Q).

1. We select tributaries based on the drainage area: normalise the drainage area (DA∗)

to be able to establish a common threshold for all the basins.

2. We remove the pixels that have a DA∗ < 0.1.

3. We choose the pixels corresponding to larger rivers (DA∗ > 0.8) and those belonging

to side tributaries (DA∗ < 0.3).
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4. We normalise the ksn values by the largest value in each basin.

5. We take the median value of the k∗
sn values for the smaller and the larger tributaries.

6. We calculate the ratio between the two medians (large DA/small DA).

These calculations are aimed at quantifying the distortion in ksn related to a change

in concavity index, θ. To study the distortion incurred by a change in incision rule (i.e.

using discharge instead of drainage area) we need to introduce a further variable. We

express discharge as Q = RA, where R is the rainfall rate (m/yr). The framework is the

same, but we define the discharge ksn ratio as:

rk,θ,Q =
SM(RMAM)θ

SN(RNAN)θ
(9)

which we express as

rk,θ,Q = rS(rRrA)
θ (10)

To see the distortion caused by the inclusion of rainfall in the calculations we take the

ratio between rk and rk,Q:

rk,θ,Q =
rS(rRrA)

θ

rsrθA
(11)

If we assume a constant value for θ, the equation becomes:

rk,θ,Q
rk,θ

= rθR (12)

If we then combine both ksn distortion cases (i.e. change in θ and change in incision rule)

together we get the following expressions:
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rk,Q,θ1

rk,θ2
=

rSr
θ1
R rθ1A

rSr
θ2
A

(13)

doing the natural log transformation of equation 13 leads to the ratio:

rk,Q,θ1

rk,θ2
= rθ1R + r∆θ

A (14)

.

Equations 8, 12, and 14 allow us to quantify three varieties of distortion: those caused by

changes in θ, those caused by changes in the incision rule, and a combination of both. To

capture the variety of distortion we calculate four distortion ratios:

• ksn(θ=θbest)
ksn(θ=0.45)

(Distortion case iA)

• ksn−q(θ=θbest)
ksn−q(θ=0.45)

(Distortion case iQ)

• ksn(θ=θbest)
ksn−q(θ=θbest)

(Distortion case ii)

• ksn(θ=0.45)
ksn−q(θ=0.45)

(Distortion case iii)

A ratio value of 1 means that there is no change in the ksn values being compared,

whereas values above or below 1 show a trend in either of the directions.

We always take basin M to be the larger basin. That is, This means that the ratio

AM/AN > 1 in all our calculations. To understand what this means physically, we consider

the following scenarios:

• Case a): ksn distortion > 1

• Case b): ksn distortion < 1

In this case, the area M has a larger drainage area than the area N in the calculations.

Given this, for Case a), this implies that θ2 > θ1. In Case b), the opposite is true, θ1 > θ2.
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When we have only a difference in the incision case, the distortion signal is dominated

by the strength of the rainfall gradient. In our set up, the rainfall increases toward the

east of the simulation. We will refer to the western-facing basins “dry” and the eastern-

facing basins as “wet”. In this case, a change of sign in the ksn distortion arises from

RM/RN < 1 on the dry basins and RM/RN > 1 on the wet basins.

Case i: Distortion from changes in θ

Distortion:

r∆θ
A =

(
AM

AN

)θ2−θ1

(15)

θ2 > θ1 ⇒
(
AM

AN

)+

⇒ r∆θ
A > 1 (16)

θ2 < θ1 ⇒
(
AM

AN

)−
⇒ r∆θ

A < 1 (17)

(18)

Based on the distortion value we can find out what the relationship between the different

θ is and vice versa. In our case θ1 is the numerator and θ2 the denominator in the 4

distortion ratios above. Larger θ values mean faster change of gradient downstream.

Case ii: Distortion from changes in incision rule (rainfall)

In this case, we are not comparing the effect of different θ so we only focus on the

rainfall impact. We assume that θ is fixed to some reference value, in this case θ = 0.45.

Distortion:

rθR =
(
RM

RN

)θ

(19)

As explained above, we reason through this step in terms of dry and wet basins:
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Dry side : RM < RN ⇒
(
RM

RN

)0.45

< 1 ⇒ rθR < 1 (20)

Wet side : RM > RN ⇒
(
RM

RN

)0.45

> 1 ⇒ rθR > 1 (21)

(22)

In this case, given the rainfall constraints that we have in the simulations, the maximum

value for rR is 10 (as this is the largest gradient case).

Case iii: Distortion from changes in θ and incision rule (due to rainfall)

Distortion:

rθR + r∆θ
A =

(
RM

RN

)θ1

+
(
AM

AN

)∆θ

(23)

Always: AM > AN

Dry: RM < RN

Wet: RM > RN

θ1 >> ∆θ

We study the two terms in the distortion equation.

Distortion < 1:

Dry side:

(
RM

RN

)0.45

< 1 (24)(
AM

AN

)0.45

> 1 (25)

(26)
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For the overall distortion to be negative, ∆θ < 0. So that θ1 > θ2.

Wet side:

(
RM

RN

)0.45

> 1 (27)(
AM

AN

)0.45

> 1 (28)

(29)

From these parameters, the distortion will never be below 1 in this case for the wet area.

Distortion > 1:

Dry side:

(
RM

RN

)0.45

< 1 (30)(
AM

AN

)0.45

> 1 (31)

(32)

For the overall distortion to be above 1 for the dry side, θ2 > θ1.

Wet side:

(
RM

RN

)0.45

> 1 (33)(
AM

AN

)0.45

> 1 (34)

(35)
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From these parameters, the distortion in the wet side will always be above 1 in this case

for the wet area regardless of θ.

Text S2. Model parameters

For our numerical simulations, we run models using the parameters described in Ta-

ble S1.

Text S3. Lithologic scenarios

We run simulations with a number of different lithologic scenarios, examples of which

are shown in Figure S1.

Dense blob lithology

The drainage area-driven incision is represented in Figure S2A. Compared to Figure

S11A, we notice that the distinctions between calculating disorder with and without rain-

fall are largely masked by the presence of a heterogeneous lithology. In this drainage

area-driven case, we would expect that calculating χA would lead to higher disorder val-

ues than using χQ. However, this is not clearly seen, with the results yielding the lowest

disorder being mixed.

Even though from the overall behavior it is difficult to pick out the scenario with the

least disorder. Looking at individual pairs of basins, we can see a signal. Note that in

this case, the basins are identical regardless of the rainfall gradient, as there is only one

model evolution. We can see that for each of the basins, the value for the case χQ presents

higher disorder values than χA. In this case, the behaviour of the basins becomes case

specific. In S11, A, all basins showed a base disorder close to 0 as there were no forcings

present and therefore and consequent disorder calculations with χQ shows always higher

disorder value regardless of the basin or the rainfall gradient. In this case, however, we
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see that the baseline disorder for χA has increased from 0 by up to 14% in some basins.

We still see, however, that the basins record a lower disorder when χA is calculated, as

we expect from a drainage area-driven scenario.

In Figure S2B, we can see the effects of adding rainfall. Similarly to Figure S2A, it

is very difficult to distinguish the signal from each of the χ cases in terms of the overall

behaviour of all the basins in the same simulation run (for each rainfall gradient). If we

look at individual basins, however, we see that the disorder is smaller when we use χQ for

some of the basins.

Blob lithology

We present results from the blob lithology simulations in Figures S5, S6, and S7. The

distortions associated with this scenario are shown in Table S7.

Striped Lithology

We present results from the striped lithology simulations in Figures S8, S9, and S10.

The distortions associated with this scenario are shown in Table S10.

Text S4. Incision: Drainage Area vs Incision: Discharge

Figure S11 shows how D∗ responds to changes in both rainfall gradients and incision

rule (one basin is represented by one plot point). In the A-driven incision experiment (top

plot), we expect the χA − z profiles to be linear and the associated θbest,A to be 0.45. The

disorder in this case is close to 0 for all the basins in all rainfall instances. In contrast,

calculation using χQ results in more disorder and values of θbest,Q that diverge from 0.45,

with the differences increasing as the rainfall gradient increases.

Figure S11B portrays the effect of including rainfall in the χA calculations, given a

Q-driven incision model. In this case, there are as many models as there are rainfall
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scenarios, with the first one corresponding to the A-driven incision model with a base

rainfall of 1 m/yr and no gradient. Calculating χQ with matching incision rule rainfall

gradient yields D∗ values of 0 compared to calculating χA. For instance, in the model

run with a rainfall gradient of 5 m/yr, the χQ calculations with 5 m/yr will yield a lower

disorder than calculating χA (without rainfall). This also means that the value for θbest,Q

will be 0.45 in that case. We see that as the rainfall gradient increases the differences

between the minimum disorder values increases, and the model behaviour diverges from

the A-driven incision case.

Note that in the discharge-driven incision case, the simulated basins vary under each of

the rainfall scenarios, showing the differences that different rainfall gradients make in the

evolution of basins. In the drainage area incision case we only have one set of simulated

basins as the modelling conditions are the same and it is only in the χ calculations that

we incorporate a dependence on rainfall.

In the drainage area scenario, the variations in χQ and θbest,Q arise from including a

rainfall gradient in the calculations, they are purely a mathematical bias. In the discharge

scenarios, changes in χQ are captured from changes in the topography of the simulated

basins due to the imposed rainfall gradients.

The scale of the change in disorder varies between the two incision scenarios. In the

A-driven case (plot A), disorder ranges between less than 0.01 (when calculating χA with

the 1 m/yr rainfall gradient) and over 0.04 (with a 10 m/yr χA calculation). On the other

hand, the Q-driven scenario leads to larger disorder changes of one order of magnitude,

ranging from 0.01 to 0.14. Thus, when applying disorder minimisation, choosing the
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incorrect incision rule leads to stronger variations in optimal θbest when discharge is the

main incision mechanism.

Text S5. Disorder in natural landscapes

Figure S14 shows the values of the minimum D∗ points for χA and χQ for all the

selected mountain ranges. We see a resemblance with the model results with heterogeneous

lithology, where it is difficult to distinguish whether there is an overall trend suggesting

the preference of one incision mechanism over another at a large scale.

The disorder value ranges are considerably larger than those for the model runs. In

natural landscapes, the minimum D∗ values range between 0.1 and 0.75. We compare

this to the minimum D∗ from the simulations, where the maximum disorder was 0.4

for the discharge-driven heterogeneous lithology case and 0.14 for the discharge-driven

homogeneous lithology case.

We note that basins within the same geographical area have ∆D∗ of up to 0.4. The dif-

ferences when calculating D∗ with or without rainfall are one order of magnitude smaller,

which makes it challenging to compare the influence of disorder across multiple mountain

range of different scales.
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Text S6. Effect of varying the concavity index, θ: 0.35 and 0.55

In the following section we explore how choosing θ = 0.45 in a landscape carved by a

different m/n ratio affects the ksn distortion. We highlight this case because of the large

body of literature that assumes θ = 0.45 when deriving erosion rates and determining the

tectonic history of a basin. Figure S16 reflects data run from models with m/n = 0.35,

where the resulting landscapes show higher relief and straighter rivers than those for

m/n = 0.45.

The plots from a discharge driven model (Figure S16) suggests that regardless of the

incision case chosen, the wrong concavity (θ = 0.45 in this case) will lead to ksn distortions

reaching 30% (plots A and B). The ratios are all> 1, which is in line with the mathematical

formulation of distortion, given θ1 = 0.35 and θ2 = 0.45. Opting for the incorrect incision

scenario (Figure S16C) under θ = 0.35 leads to a smaller distortions of up to 13% for the

largest rainfall gradient scenario.

This implies that analysing the incision pattern for a landscape where the concavity rule

is not constrained, a mistaken choice of θ = 0.45 causes larger distortion than assuming

the incorrect incision scenario.

Next we choose m/n = 0.55 (Figure S18), which forms a landscape with lower relief and

more sinuous rivers than m/n = 0.45. The behaviour is similar to that of the m/n = 0.35

scenario, but in this case the distortion is < 1 when we compare the effects of choosing

0.45 or 0.55 for θ (Figures S18A and B). There is no change in the distortion values based

on the rainfall in Figure S18A and B. The highest distortion occurs when using optimising

θ under the incorrect incision scenario (Figure S18D). The maximum distortion originated
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from varying the incision rule is lower compared to the other scenarios (Figure S18E, 13%

compared to 20-26% in Figures S18A, B, D).

Aside from the distortions in ksn and ksn−q, we also include the distributions of steep-

ness indices under different rainfall, concavity and incision scenarios. In Figure S13, we

show the distributions for the cases when the initial m/n = 0.45. The absolute channel

steepness index values show a bimodal distribution when we use the optimal concavity,

but a smoother and narrower monomodal shape when using 0.45. We see that for the

A-driven incision, under θ = 0.45, including rainfall gradients in the calculations increases

the channel steepness values. When we have the Q-driven incision case, we obtain lower

channel steepness values when we do not include rainfall in the calculations. Between

the two incision cases, channel steepness is reduced with increased precipitation rates,

with variability depending on the values of the concavity, as quantified by (D’Arcy &

Whittaker, 2014).
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Table S1. Summary of the conditions upon which the distortion in ksn values are

above or below 1 for distortion calculated with changes in incision rate and θ.

DRY WET

Dist. < 1 θ1 > θ2 AND ratio dependence ALWAYS

Dist. > 1 ALL θ, ratio dependence NEVER

Table S2. Model parameters values for the initial conditions of the discharge simulation.

Parameter Value

Pixel resolution (m) 30

Lx (m) 1.5e4

Ly (m) 3e4

Diamond min height (m) 0

Diamond max height (m) 1

Roughness 0.75

Random seed 420

K (m−1yr−1) 3e-8

EU (m−1) 1e-5

snastm 0.45

n 1
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Figure S1. The four types of lithologies modelled: (a) Homogeneous lithology, (b)

Striped lithology, (c) blob lithology and (d) dense blob lithology.
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Figure S2. Evolution of the minimum disorder for model runs with drainage area (A)

and discharge-driven (B) incision rule for a range of rainfall gradients (0-10m/yr) under

dense blob lithology. We show the minimum disorder values when calculating χA and χQ,

for rainfall values increasing from 0 m/yr to 10 m/yr. Under a dense blob lithology it is

not possible to establish a pattern in disorder values when using χA as opposed to χQ,

regardless of the incision scenario.
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Figure S3. Distortion in ksn for the A-driven incision case under dense blob lithol-

ogy and initial m/n=0.45. A distortion of 1 (solid black line) keeps the value of ksn

unchanged. We show the possible distortion scenarios that one might encounter under

different assumptions of concavity index and incision. (A) shows the distortion incurred

by not optimising θ under A-driven incision, whereas (B) highlights the effects of optimis-

ing concavity under the incorrect incision scenario (discharge), where we see the largest

ksn distortions of up to 34%. (C) keeps concavity index at 0.45 but compares incision

scenario and (D) comprises the effects of θ optimisation under different assumptions of

incision scenarios.

November 21, 2023, 2:43pm



: X - 19

Dense blob lithology

Figure S4. Distribution of ksn and ksn−q values for the basins in the dense blob

lithology simulation. (A) and (C) show how the channel steepness distribution remains

largely unchanged when using ksn−q but it shifts towards smaller channel when using ksn.

(B) and (D) shows a similar trend, but in this case the ksn distributions remain unchanged

while the ksn−q as the rainfall is increased.
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Table S3. Maximum values of ksn distortion for the dense blob lithology case with

m/n = 0.45. Bold values indicate the highest distortion for each incision scenario.

Dense Blob Litho. Case iA Case iQ Case ii Case iii

Drainage Area (A) 23% 6% 30% 31%

Discharge (Q) 19% 35% 44% 54%
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Figure S5. Comparison of the median values for ∆D∗ for each of the rainfall ranges

for A and Q-driven incision under blob lithology for an initial m/n=0.45. Even though

the medians lie at either side of the 0 indicator regardless of the rainfall gradient, it is

not possible to establish with 95% that the distributions are distinguishable because the

percentiles overlap.
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Figure S6. Distortion in ksn for the A-driven incision case under blob lithology and

initialm/n=0.45. A distortion of 1 (solid black line) keeps the value of ksn unchanged. We

show the possible distortion scenarios that one might encounter under different assump-

tions of concavity index and incision. (A) shows the distortion incurred by not optimising

θ under A-driven incision, where we see the largest ksn distortions of up to 46%. (B) high-

lights the effects of optimising concavity under the incorrect incision scenario (discharge).

(C) keeps concavity index at 0.45 but compares incision scenario and (D) comprises the

effects of θ optimisation under different assumptions of incision scenarios.
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Figure S7. Distortion in ksn for the Q-driven incision case under blob lithology and

initialm/n=0.45. A distortion of 1 (solid black line) keeps the value of ksn unchanged. We

show the possible distortion scenarios that one might encounter under different assump-

tions of concavity index and incision. (A) highlights the effects of optimising concavity

under the incorrect incision scenario (drainage area), whereas (B) shows the distortion

incurred by not optimising θ under Q-driven incision. (C) keeps concavity index at 0.45

but compares incision scenario and (D) comprises the effects of θ optimisation under dif-

ferent assumptions of incision scenarios, where we see the largest ksn distortions of up to

32%.
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Table S4. Maximum values of ksn distortion for the blob lithology case with m/n =

0.45. Bold values indicate the highest distortion for each incision scenario.

Blob Litho. Case iQ Case iA Case ii Case iii

Drainage Area (A) 46% 26% 17% 29%

Discharge (Q) 5% 22% 12% 32%
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Figure S8. Comparison of the median values for ∆D∗ for each of the rainfall ranges

for A and Q-driven incision under striped lithology for an initial m/n=0.45. In this case,

all medians lie on the negative side of the x-axis, with the percentiles fully overlapping,

making the distributions non-distinguishable.
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Figure S9. Distortion in ksn for the A-driven incision case under striped lithology and

initialm/n=0.45. A distortion of 1 (solid black line) keeps the value of ksn unchanged. We

show the possible distortion scenarios that one might encounter under different assump-

tions of concavity index and incision. (A) shows the distortion incurred by not optimising

θ under A-driven incision, whereas (B) highlights the effects of optimising concavity un-

der the incorrect incision scenario (discharge), where we see the largest ksn distortions of

up to 115%. (C) keeps concavity index at 0.45 but compares incision scenario and (D)

comprises the effects of θ optimisation under different assumptions of incision scenarios.

November 21, 2023, 2:43pm



: X - 27

0 1 2 3 4 5 6 7 8 9 10
Rainfall Gradient (m/yr)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

k s
n

D
is

to
rt

io
n

A

Case iA

ksn ( = best)
ksn( = 0.45)

0 1 2 3 4 5 6 7 8 9 10
Rainfall Gradient (m/yr)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

k s
n

D
is

to
rt

io
n

B

Case iQ

ksn q ( = best)
ksn q( = 0.45)

0 1 2 3 4 5 6 7 8 9 10
Rainfall Gradient (m/yr)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

k s
n

D
is

to
rt

io
n

C

Case ii

ksn( = 0.45)
ksn q( = 0.45)

0 1 2 3 4 5 6 7 8 9 10
Rainfall Gradient (m/yr)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

k s
n

D
is

to
rt

io
n

D

Case iii
ksn ( = best)

ksn q ( = best)

Striped Lithology

Figure S10. Distortion in ksn for the Q-driven incision case under striped lithology and

initialm/n=0.45. A distortion of 1 (solid black line) keeps the value of ksn unchanged. We

show the possible distortion scenarios that one might encounter under different assump-

tions of concavity index and incision. (A) highlights the effects of optimising concavity

under the incorrect incision scenario (drainage area), whereas (B) shows the distortion

incurred by not optimising θ under Q-driven incision. (C) keeps concavity index at 0.45

but compares incision scenario and (D) comprises the effects of θ optimisation under dif-

ferent assumptions of incision scenarios, where we see the largest ksn distortions of up to

114%.
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Table S5. Maximum values of ksn distortion for the striped lithology case with

m/n = 0.45. Bold values indicate the highest distortion for each incision scenario.

Striped Litho. Case iQ Case iA Case ii Case iii

Drainage Area (A) 38% 26% 115% 109%

Discharge (Q) 25% 31% 94% 114%
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Figure S11. Evolution of the minimum disorder for model runs with a drainage area

(A) and a discharge-driven (B) incision rule for a range of rainfall gradients (0-10m/yr)

under homogeneous lithology. We show the minimum disorder values when calculating χA

and χQ, for rainfall gradients increases from 0 m/yr to 10 m/yr. The disorder calculated

with χQ is lower than that calculated with χA. The differences become progressively larger

as the rainfall gradients increase.
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Figure S12. Distortion in ksn for the A-driven incision case under homogeneous

lithology and initial m/n=0.45. A distortion of 1 (solid black line) keeps the value of

ksn unchanged. (A, Case iA) indicates that no ksn distortion occurs when the concavity

index and the incision case match the model scenario. (B), (C) and (D) show the possible

distortion scenarios that one might encounter under different assumptions. (B) highlights

the effects of optimising concavity index under an incorrect incision scenario, (C) assumes

concavity index is kept at 0.45 but the incision scenario changes and (D) comprises the

effects of θ optimisation under different assumptions of incision scenarios, where we see

the largest ksn distortions of up to 27%.
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Homogeneous Lithology

Figure S13. Distribution of ksn and ksn−q values for the basins in the homogeneous

lithology simulation. Channel steepness is well constrained when the incision case matches

the channel steepness case. The higher the rainfall rate, the larger the distortion in the

channel steepness index distributions.
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Table S6. Maximum values of ksn distortion for the homogeneous lithology case with

m/n = 0.45. Bold values indicate the highest distortion for each incision scenario.

Homogeneous Litho. Case iQ Case iA Case ii Case iii

Drainage Area (A) 13% 0% 15% 27%

Discharge (Q) 0% 23% 11% 34%
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Figure S14. Evolution of the minimum disorder basins in natural landscapes. We

show that the minimum D∗ values with χA and χQ have very similar values, making it a

challenge to identify the preferential incision route.
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Figure S15. Distribution of the length of the main trunk for the chosen basins in

each of the study areas. Areas such as the Northern Andes show a wider range of trunk

sizes, from ∼ 100km to > 300km. Regions such as the Southern Andes or the Kaçkar

Mountains all show trunk sizes < 100km.
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Table S7. Values for the ksn of the basins with maximum distortion in each mountain

range under each of the distortion scenarios. Bold values correspond to the case with the

highest distortion for each mountain range.

Mountain Range Case iA Case iQ Case ii Case iii

N. Andes 20% 23% 26% 32%

S. Andes 56% 26% 79% 26%

Qinling 81% 50% 28% 33%

Kaçkar 40% 38% 15% 14%

Rockies 47% 44% 6% 5%

Alburz 48% 45% 18% 26%

Massif Central 48% 25% 25% 36%

Pyrénées 67% 49% 34% 17%
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Figure S16. Distortion in ksn for the A-driven incision case under homogeneous

lithology and initial m/n=0.35. A distortion of 1 (solid black line) keeps the value of ksn

unchanged. (C, Case iQ) indicates that no ksn distortion occurs when the concavity index

and the incision case match the model scenario. (D) highlights the effects of optimising

concavity index under an incorrect incision scenario, (A) and (B) assumes that concavity

index has been chosen as 0.45 for discharge and drainage area-driven scenarios respectively.

(E) assesses the distortion caused by different incision assumptions under the correct

concavity index (0.35). We see the largest ksn distortions (up to 30%) in (B).
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θ = 0.35

Figure S17. Distribution of ksn and ksn−q values for the basins in the homogeneous

lithology simulation with initial concavity of θ=0.35. Channel steepness is well constrained

when the incision case matches the channel steepness case. (C) and (D) show the largest

deviations from the expected channel steepness distributions. This shows that an incorrect

choice of concavity can distort the ksn distributions to a larger extent than rainfall.

November 21, 2023, 2:43pm



: X - 37

Table S8. Maximum values of ksn distortion for the homogeneous lithology case with

m/n = 0.35. Bold values indicate the highest distortion for each incision scenario.

m/n = 0.35 Case iQ,θ=0.45 Case iA,θ=0.45 Case iQ,θ=θbest Case iA,θ=θbest Case ii

Drainage Area (A) 26% 22% 10% 0% 10%

Discharge (Q) 25% 30% 1% 17% 13%
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Figure S18. Distortion in ksn for the A-driven incision case under homogeneous

lithology and initial m/n=0.55. A distortion of 1 (solid black line) keeps the value of ksn

unchanged. (C, Case iQ) indicates that no ksn distortion occurs when the concavity index

and the incision case match the model scenario. (D) highlights the effects of optimising

concavity index under an incorrect incision scenario, (A) and (B) assumes that concavity

index has been chosen as 0.45 for discharge and drainage area-driven scenarios respectively.

(E) assesses the distortion caused by different incision assumptions under the correct

concavity index (0.55). We see the largest ksn distortions (up to 26%) in (D).
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θ = 0.55

Figure S19. Distribution of ksn and ksn−q values for the basins in the homogeneous

lithology simulation with initial concavity of θ=0.55. Channel steepness is well constrained

when the incision case matches the channel steepness case.
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Table S9. Maximum values of ksn distortion for the homogeneous lithology case with

m/n = 0.55. Bold values indicate the highest distortion for each incision scenario.

m/n = 0.55 Case iQ,θ=0.45 Case iA,θ=0.45 Case iQ,θ=θbest Case iA,θ=θbest Case ii

Drainage Area (A) 21% 17% 18% 0% 10%

Discharge (Q) 20% 21% 0% 26% 13%
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