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Abstract

Observations of the Lyman-a emissions from Interplanetary Hydrogen (IPH) atoms are made from Mars’ orbit using a high

spectral resolution instrument in echelle configuration. The measurements can uniquely be used to resolve IPH from planetary H

emissions and to subsequently determine the brightness, velocity, and thermal broadening of the IPH flow along the instrument

line of sight. Planned as well as serendipitous observations, both upwind and downwind of the flow, are analyzed to determine

these IPH properties and to examine the variability of IPH brightness with solar activity through the declining phase of Solar

Cycle 24. A heliospheric interface model was used to simulate and interpret the derived IPH properties. The results show

that the IPH brightness trends with solar irradiance, the flow is fainter downwind than upwind, the IPH brightness is variable

and non-negligible compared with planetary emissions, and that deriving thermal properties of IPH requires higher spectral

resolution than is presently available. These results can improve the theoretical understanding of solar system dynamics by

providing empirical constraints to simulations from the inner boundary of the heliosphere and can guide the development of

future interplanetary missions.
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Abstract 16 
 17 
Observations of the Lyman-α emissions from Interplanetary Hydrogen (IPH) atoms are 18 
made from Mars’ orbit using a high spectral resolution instrument in echelle 19 
configuration. The measurements can uniquely be used to resolve IPH from planetary H 20 
emissions and to subsequently determine the brightness, velocity, and thermal 21 
broadening of the IPH flow along the instrument line of sight. Planned as well as 22 
serendipitous observations, both upwind and downwind of the flow, are analyzed to 23 
determine these IPH properties and to examine the variability of IPH brightness with 24 
solar activity through the declining phase of Solar Cycle 24. A heliospheric interface 25 
model was used to simulate and interpret the derived IPH properties. The results show 26 
that the IPH brightness trends with solar irradiance, the flow is fainter downwind than 27 
upwind, the IPH brightness is variable and non-negligible compared with planetary 28 
emissions, and that deriving thermal properties of IPH requires higher spectral 29 
resolution than is presently available. These results can improve the theoretical 30 
understanding of solar system dynamics by providing empirical constraints to 31 
simulations from the inner boundary of the heliosphere and can guide the development 32 
of future interplanetary missions. 33 
 34 
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Background 35 
 36 

The motion of the solar system through the local interstellar medium (LISM) 37 
carves out a cavity around the Sun known as the heliosphere. Neutral H atoms populate 38 
the heliosphere, and these atoms originate from the solar wind, the interstellar 39 
medium, as well as from processes that neutralize protons via charge exchange 40 
throughout the region [Bertaux and Blamont, 1971; Lallement et al., 1993; Thomas and 41 
Krassa, 1971; Quémerais et al., 2006 and references therein]. The collective flow of 42 
these neutral H atoms through the solar system is called Interplanetary Hydrogen (IPH).  43 

 44 
H atoms resonantly scatter Lyman-α photons. IPH properties have therefore 45 

been examined using Lyman-α emissions observed by multiple spacecraft from various 46 
points in the solar system [e.g., Baliukin et al., 2022; Galli et al., 2022; Zank et al. 2022]. 47 
It is found that the IPH flow direction emanates from the heliospheric ‘nose’ at 8.9 ± 48 
0.5° ecliptic latitude and 252 ± 0.7° ecliptic longitude [Lallement et al., 2005; 2010]. The 49 
IPH velocity ranges between 18±2 km/s and 25.7±2 km/s, and varies with solar activity, 50 
line of sight, and distance from the Sun [Vincent et al., 2011; Koutroumpa et al., 2017]. 51 
The abundance, velocity, and thermal distribution of these atoms can vary over solar 52 
cycle timescales and can be used to determine how the Sun and the LISM interact [e.g., 53 
Katushkina et al. 2019]. 54 

 55 
The effects of the Sun on the flow, such as radiation pressure are strongest near 56 

the Sun and fall off as the square of the distance such that within a few AUs from the 57 
Sun, the solar wind ionizing power creates a void of neutral H atoms [Quémerais et al., 58 
2014]. In this work, seven years of observations obtained from ~1.6 AU (Mars’ orbit at 59 
its aphelion) were examined to derive IPH properties over the relatively moderate 60 
maximum through minimum of Solar Cycle 24. Observations from the upwind flow 61 
direction as well as downwind to the flow were analyzed and compared. A model 62 
simulating the heliospheric interface was used for comparison [Izmodenov and 63 
Alexashov, 2015; 2020]. The results from this analysis can empirically constrain IPH 64 
models at 1.6 AU, where few IPH measurements have been made, and can refine our 65 
understanding of how the solar system interacts with the LISM in the dynamic 66 
heliosphere [e.g., Izmodenov, 2007, Vincent et al., 2014].  67 

 68 
Observations 69 
 70 

The Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft has been in 71 
orbit since September 2014, carrying an instrument suite that includes an Imaging 72 
Ultraviolet Spectrograph (IUVS) with a high-spectral resolution echelle component 73 
[McClintock et al., 2014; Jakosky et al., 2105; Mayyasi et al., 2022a]. The high spectral-74 
resolution capabilities were designed to resolve hydrogen and deuterium (D) Lyman-α 75 
emissions at 121.567 and 121.534 nm, respectively [e.g., Mayyasi et al., 2017a; 2019a]. 76 
This optical design can also resolve planetary H from IPH Lyman-α emissions at times 77 
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 5

Mars H (red), IPH (green), and Mars D (blue) emissions. The total best fit curve (grey) 
sums the three emissions as well as the detector background level. The relevant IPH 
properties derived from this observation are listed on the right legend. V represents 
velocity, T represents temperature, and B represents brightness. 

To resolve each emission and derive the IPH properties, minimum variance 143 
analysis was used. First estimates of the (1) planetary at-rest H emission peak 144 
wavelength, (2) Doppler shifted IPH emission peak wavelength, (3) thermal broadening 145 
of the IPH emission, (4) percentage of thermal H contribution to the total Lyman-α 146 
emission, and (5) percentage of IPH contribution to the total Lyman-α emission are 147 
derived from the spacecraft ephemeris and literature adopted values. An iterative 148 
algorithm was then run that varied the first estimates within set ranges and generates a 149 
spectrum for each combination of the five parameters. The modeled spectrum was 150 
compared with the data and a matrix of χ2 values was generated for each combination 151 
of the parameters. The parameter set that produced the minimum χ2 value was used to 152 
generate the best-fit curve, as shown in Fig. 3. The resulting best fit curve for each of 153 
the 125 spectra was examined by eye to confirm accurate representation of the data. 154 

 155 
The first estimate for at-rest emission peak wavelength for Mars H is 121.567 156 

nm. The first estimate for emission peak wavelength of IPH was derived from the line of 157 
sight geometry that accounted for the velocity of Mars, MAVEN, and the IPH flow along 158 
the instrument line of sight. The range of velocities for each emission peak used in the 159 
fitting algorithm were ±0.2×FWHM of their first estimates, varied in 0.1×FWHM 160 
increments, to account for minimal velocity changes due to the motion of the MAVEN 161 
spacecraft around Mars (~2.5 km/s) as well as for the IUVS/ECH spectral resolution (~3.5 162 
km/s/binned pixel [Mayyasi et al., 2017b]). 163 

 164 
Mars H atoms are typically thermalized at ~200-350 K [Mayyasi et al., 2022b]. 165 

These temperatures do not significantly broaden the planetary emission line profile 166 
beyond a characteristic shape, empirically determined by the instrument line spread 167 
function (LSF) [Mayyasi et al., 2022a].  IPH atoms are typically several thousands of 168 
degrees K, resulting in a thermally broadened Lyman-α emission profile [Wu and Judge, 169 
1980; Bertaux et al., 1985; Clarke et al., 1998; Mayyasi et al., 2017b]. An optimal line 170 
shape to use for IPH emission line profile fits was obtained by convolving the instrument 171 
LSF with a Voigt profile of some temperature (LSF⊗Voigt). The IPH temperature range 172 
considered here was between 11,000 K and 15,000 K, varied in 500 K increments. 173 

 174 
The smaller the Doppler shift of the IPH flow along the instrument line of sight, 175 

the closer the overlap between Mars H and IPH emissions. The flux value of the Mars H 176 
peak emission and that of the IPH emission, at the assumed Doppler shift were used as 177 
first estimates to constrain the fits of the emission line shapes generated by the fitting 178 
algorithm. These peak fluxes were then varied by ±10% in 2% increments in the 179 
iterations to obtain an optimal fit to the data.  180 

 181 
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Figure 10. IPH brightness measurements with time. (Top) The black line indicates the 
scaled solar Lyman-α irradiance, measured from Earth, averaged over 28 days to 
account for solar rotation variations. (Bottom) Same as Top but with the solar irradiance 
normalized (dashed black line) and with it the brightness values to account for solar 
activity variations across the mission timeline. 
 316 

Solar irradiance variability was accounted for by constraining the brightness 317 
values to the irradiance in MY33 (at 0.025 W/m2/nm) and normalizing the Solar 318 
irradiance for remaining data points to that value by adjusting the IPH brightness by a 319 
similar scaling factor as the irradiance normalization factor. This correction is shown in 320 
Fig. 10B. The normalized IPH brightness in MY33 remained unchanged and the averages 321 
for subsequent data points were 0.427 kR in MY34, 0.414 kR in MY35, and 0.543 kR in 322 
MY36. 323 
 324 

Using the irradiance-normalized values, the average brightness, temperature, 325 
and Doppler shift of all upwind IPH observations from MY35 (campaign and limb-326 
pointed) were 0.484 kR, 15000 K, and -37.7 km/s, respectively. The average brightness, 327 
temperature, and Doppler shift of all downwind observation from MY35 (campaign and 328 
limb-pointed) are 0.332 kR, 12800 K, and 40 km/s.  329 

 330 
Interpretation 331 

 332 
The IPH brightness showed that downwind H populations were fainter than the 333 

upwind populations. This was expected, as H atoms are more depleted closer to the Sun 334 
due to photoionization and charge exchange that subsequently diminish their collective 335 
Lyman-α emissions. These empirical results were consistent with previous findings 336 
[Clarke et al., 1995; 1998]. When normalized to account for solar cycle variability, the 337 
values of solar irradiance and IPH brightness, averaged for each MY, correlated well 338 
(0.98 correlation coefficient) as would be causally expected for observations resulting 339 
from solar resonant scattering photons along a nearly constant column of IPH atoms. 340 
 341 

The IPH velocity showed a decreasing trend as the line of sight moved away from 342 
up/downstream orientation toward cross-stream orientation, as was expected. The 343 
velocity scatter for similar viewing angle was due to the velocity of the MAVEN 344 
spacecraft. In the next section the velocity derived relative to the solar rest frame 345 
demonstrates a smoother trend, as expected. 346 
 347 

The IPH temperature derivations were constrained to a range of values that are 348 
consistent with previous models and observations of IPH temperatures in the inner 349 
heliosphere [Costa et al., 1999; Quémerais et al., 2006]. However, the best fits showed 350 
that the temperature range may have limited the fitting algorithm. A broader range of 351 
temperatures was applied, spanning 10,000 – 28,000 K, and showed the scatter in the 352 
best-fit temperatures to persist and to have minimal consequences on the brightness 353 
derivations that integrate across the spectral range. The absence of a smoother 354 
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temperature trend is likely due to the data fitting algorithm that would result in very 355 
small changes in the χ2 value for temperatures that are a few thousand K different 356 
paired with the limited spectral resolution of the data. Due to these factors, the derived 357 
temperatures should not be considered definitive. 358 

 359 
In examining the relative contribution of IPH to the planetary emission from 360 

Mars’ orbit, it was found that the IPH contribution ranged between significant (close to 361 
upwind orientations) and comparable (close to downwind orientation). This result is 362 
critical for lower-resolution Lyman-α observations made from Mars (and other 363 
planetary bodies with thermal H emissions) where assumptions are made to ignore IPH 364 
contributions or to assume a fixed value across a range of observing conditions. 365 
 366 
Comparison to Model 367 
 368 

IPH observations made in the inner heliosphere and relatively close to the Sun 369 
can serve to constrain heliospheric models due to the unique differences of flow 370 
properties along the various lines of sight in the region where photoionization, charge 371 
exchange with solar wind, solar gravity, and radiation pressure are dynamically affecting 372 
neutral H atoms. Additionally, the properties of interplanetary H atoms can be 373 
compared with models and observations of interplanetary He atoms for insights into the 374 
differences in flow dynamics throughout the heliosphere [e.g., Bzowski et al., 2019]. 375 

 376 
A heliospheric simulation tool was used to independently determine the 377 

brightness, Doppler shift, and temperature values of IPH atoms for the observations 378 
utilized here. The simulation used a 3-dimensional time-dependent kinetic-379 
magnetohydrodynamic model that accounted for multi-constituent solar wind and 380 
interstellar plasmas, solar and interstellar magnetic fields, different interstellar 381 
hydrogen atom populations, and the latitudinal dependence of solar wind [Izmodenov 382 
and Alexashov, 2015; 2020]. This global heliospheric model calculated the H distribution 383 
at a sphere of radius 70 AU from the Sun as the boundary condition for a local model 384 
[Izmodenov et al. 2013, Katushkina et al. 2015].  385 

 386 
The local model simulated the H distribution inside the 70-AU sphere by solving 387 

the kinetic equation to account for non-Maxwellian kinetic features, temporal variations 388 
of solar radiation pressure, and ionization rates during the solar cycle. Charge exchange 389 
ionization rates were taken from the analysis of the SOHO/SWAN Lyman-α observations 390 
[Katushkina et al., 2019; Koutroumpa et al., 2019] that were normalized using in situ 391 
data from the OMNIWeb database collected in the ecliptic plane (https://omniweb. 392 
gsfc.nasa.gov/). The dependence of radiation pressure on time, radial velocity, and 393 
heliolatitude of H atoms was adopted from Kowalska-Leszczynska et al. [2020]. The total 394 
solar Lyman-α flux measured at the Earth’s orbit was taken from Machol et al. [2019] 395 
(http://lasp.colorado.edu/lisird/data/composite_lyman_alpha/). 396 

 397 
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Using the H distribution from the model simulations, the solar Lyman-α radiation 398 
backscattered by H atoms was calculated. Single-scattered photon emissions were 399 
calculated by integrating the radiative transfer equation, and the multiple scattering 400 
emissions were calculated using the radiative transfer code developed by Quémerais 401 
[2000], which utilized the Monte Carlo method. In the simulations done for this work, 402 
the spectral properties that are moments of the Lyman-α spectrum were calculated. 403 
Namely, the brightness, line shift (Doppler shift), and line width (temperature) were 404 
obtained for the 125 observations made by MAVEN/IUVS. 405 

 406 
The model brightness, Doppler shift, and temperature values were compared 407 

with the values derived from the observations, as shown in Figure 11. The simulated 408 
brightness values were consistently higher than the observed brightness values by a 409 
factor of two for both upwind and downwind datapoints. The comparison was therefore 410 
shown between the data and the modified simulated values (that were scaled by 0.5). 411 
This discrepancy may be in part due to differences between the model and data 412 
calibration methods [Mayyasi et al., 2017b; 2022a; Baliukinet al., 2022]. At the time of 413 
this writing, upcoming HST/STIS observations of the upwind IPH are planned to occur 414 
simultaneously with MAVEN/IUVS observations (HST GO-Cycle 17196). Subsequent 415 
analysis of these data would help address any potential data/model calibration offsets. 416 

 417 
The Doppler shifts, converted into the solar rest frame (SRF) were compared for 418 

the empirical and simulated results. These are found to be in good agreement for both 419 
upwind and downwind observations. 420 

 421 
The simulated temperatures were, on average, ~20% cooler and showed less 422 

scatter than the average temperatures derived from the fits to the data. The model 423 
predicts higher temperatures for downwind IPH atoms than for upwind atoms, as is 424 
consistent with previous observations [Izmodenov, 2006; Katushkina and Izmodenov, 425 
2011]. 426 
 427 

In summary, IPH atoms observed from Mars’ vantage have provided constraints 428 
that show some agreements as well as disagreements with theoretical predictions. 429 
Understanding these differences will refine our understanding of how the IPH flow is 430 
affected by interface dynamics at the outer edge of the heliosphere as the flow 431 
propagates closer to the Sun. These and future analyses can further elucidate how solar 432 
drivers affect heliospheric dynamics in the inner solar system. 433 
 434 
Data Availability Statement 435 
 436 
The MAVEN limb data used in this study are available on the NASA PDS Atmospheres 437 
Node at: https://pds-438 
atmospheres.nmsu.edu/data_and_services/atmospheres_data/MAVEN/ 439 
maven_main.html. IUVS echelle level1a data were used and reduced using the most up-440 
to-date pipeline [Mayyasi et al., 2022a]. 441 
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