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Abstract

Satellite-observed microwave radiances provide information on both surface and atmosphere. For operational weather fore-

casting, information on atmospheric temperature, humidity, cloud and precipitation is directly inferred using all-sky radiance

data assimilation. In contrast, information on the surface state, such as sea surface temperature (SST) and sea ice fraction,

is typically provided through third-party retrieval products. Scientifically, this is a sub-optimal use of the observations, and

practically it has disadvantages such as time delays of more than 48 hours. A better solution is to jointly estimate the surface

and atmospheric state from the radiance observations. This has not been possible until now due to incomplete knowledge of

the surface state and the radiative transfer that links this to the observed radiances. A new approach based on an empirical

state and empirical sea ice surface emissivity model is used here to add sea ice state estimation, including sea ice concentration

(SIC), to the European Centre for Medium-range Weather Forecasts atmospheric data assimilation system. The sea ice state

is estimated using augmented control variables at the observation locations. The resulting SIC estimates are of good quality

and they highlight apparent defects in the existing OCEAN5 sea ice analysis. The SIC estimates can also be used to track

giant icebergs, which may provide a novel maritime application for passive microwave radiances. Further, the SIC estimates

should be suitable for onward use in coupled ocean-atmosphere data assimilation. There is also increased coverage of microwave

observations in the proximity of sea ice, leading to improved atmospheric forecasts out to day 4 in the Southern Ocean.
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state estimation, including sea ice concentration (SIC), to
the European Centre forMedium-rangeWeather Forecasts
atmospheric data assimilation system. The sea ice state is
estimated using augmented control variables at the obser-
vation locations. The resulting SIC estimates are of good
quality and they highlight apparent defects in the existing
OCEAN5 sea ice analysis. The SIC estimates can also be
used to track giant icebergs, which may provide a novel
maritime application for passive microwave radiances. Fur-
ther, the SIC estimates should be suitable for onward use in
coupled ocean-atmosphere data assimilation. There is also
increased coverage of microwave observations in the prox-
imity of sea ice, leading to improved atmospheric forecasts
out to day 4 in the Southern Ocean.
K E YWORD S
sea ice, giant iceberg, microwave radiance, empirical state,
surface emissivity

1 | INTRODUCTION
Observations of the earth system from ground-based platforms and satellite radiances provide the initial state and
boundary conditions for earth system forecasting. Typically the observations are combinedwithmodel forecasts using
a data assimilation system. The most extensive use of observations is in atmospheric data assimilation, where satellite
radiances provide the majority of the information globally (Bormann et al., 2017). These radiances can be assimilated
in all-sky conditions (clear, cloudy and precipitating situations) to improve atmospheric winds, temperature, humidities
and hydrometeors (Geer et al., 2017, 2018). But satellite radiances also provide information on many other parts of
the earth system, particularly on surface variables like soil moisture, vegetation, snow cover, skin temperature and sea
ice concentration (SIC), which is a target of the current work. Information on surface variables is typically obtained
through third-party retrievals and analyses, outside the main atmospheric data assimilation process at forecasting
centres. However, this incurs significant practical and scientific problems.

From the practical point of view, the existing operational processing chains are long and complex and can generate
delays of at least 48 hours compared to the validity time of the observations (e.g. Baordo and Geer, 2015; Browne
et al., 2019; Geer, 2023). The complexity of these processing chains has also resulted in poor robustness at times.
By contrast, the observation processing for atmospheric data assimilation at weather centres is highly robust, with
a huge diversity of observational sources, multiple layers of quality control, and attention paid to ensuring the most
timely use of observations (e.g. Lean et al., 2021). If the processing of surface-related observations could be brought
into this framework it would have great practical benefits.

From the scientific side, the fundamental problem with using surface retrievals external to the data assimilation
system is that observationswhich are sensitive to the surface are usually sensitive to the atmosphere too. This can lead
to the situation where the same satellite observation is used directly in the atmospheric analysis and indirectly in the
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surface state retrievals, which is sub-optimal. For example the surface state retrieval could be based on an out-of-date
estimate of the atmospheric state, or a climatology (e.g. Meissner et al., 2023). Similar problems with the assimilation
of satellite temperature retrievals drove the development of direct radiance assimilation at weather centres (Eyre et al.,
2020) with well known benefits to the quality of weather forecasts (Bauer et al., 2015). There are theoretical ways to
make an optimal analysis using retrievals (e.g. Migliorini et al., 2008) but they rely on an optimal estimation framework
throughout the processing chain and they bring a heavy burden of additional matrices to be passed around with the
retrievals. A cleaner way to make optimal use of the observations is to jointly estimate the atmospheric and surface
state from the radiances. This is one of the main motivations for developing coupled data assimilation (DA) across
different earth system components (e.g. de Rosnay et al., 2022; McNally et al., 2022). However, coupled DA has its
own complexity issues and is still in development. So the current work takes the simpler but still potentially optimal
approach to extend an atmospheric data assimilation system to infer the state of the surface as well, in particular the
state of the sea ice.

Atmospheric data assimilation systems typically do not directly include (or couple to) prognostic surface models.
Sea ice analyses are typically made separately from the atmosphere (e.g. Buehner et al., 2016; Mu et al., 2020) and this
includes the current sea ice analysis at the EuropeanCentre forMedium-rangeWeather Forecasts (ECMWF) (Zuo et al.,
2019). One of the great benefits of four-dimensional (4D) assimilation is the constraint of the forecast model, but in an
uncoupled atmospheric DA, this only applies to the atmosphere and the relevant surface fields are held constant. An
alternative is to add the required additional fields to the control vector in observation space at observation locations:
an augmented control vector approach. This allows the analysis to fit the surface state at the exact moment and in
the exact field of view of the observation. Such a technique has been used for several decades at ECMWF in the skin
temperature ‘sink variable’ for clear-sky radiance assimilation and was also used as a way to estimate cloud variables
for assimilating overcast infrared radiances (McNally, 2009). A two-dimensional auxiliary control variable has been
tested to allow a skin temperature analysis within an atmospheric data assimilation system (Massart et al., 2021) but
for the current work an observation-space approach is used. The intention is then to pass the sea ice retrieval to
the ocean and sea ice analysis, to replace the external sea ice retrievals that are currently used. Improved sea ice
analyses should be useful in their own right as well as to improve the quality of ocean and atmosphere forecasts (the
influence of sea ice on weather and climate is explored in e.g. Chripko et al., 2021). An equivalent approach is already
in development to make use of skin temperature retrievals at observation locations (McNally et al., 2022). This initial
work on sea ice implements the process as far as retrieving sea ice in the auxilliary control variable.

Further motivation for improving the use of surface information in atmospheric data assimilation is to extend the
use of satellite radiances. Observations with strong surface sensitivity have typically been used over the open ocean
but not over sea ice or land surfaces. Due to the need to screen out the more strongly surface-sensitive satellite data
over these surfaces, and due to increased errors in the data that is retained, the satellite contribution to northern
hemisphere forecast quality is much reduced in the winter (e.g. Lawrence et al., 2019). Recent work has extended the
coverage of satellite data over coastlines, high latitudes and land surfaces, using the existing frameworks for satellite
data assimilation, with clear benefit to forecast quality (e.g. Lonitz et al., 2022; Geer et al., 2022). However, sea ice,
snow, desert and high altitude surfaces remain too difficult to use with channels that are strongly sensitive to the
surface. The efforts to improve this situation are known as ‘all-sky all-surface assimilation’.

Themotivation to usemore surface information directly through radiance assimilation is clear, but there are heavy
scientific challenges in doing so, particularly the need to link the surface state to the observed radiance through a
radiative transfer model. The first big problem is that many of the state variables that affect the radiative transfer are
not well known: in the case of sea ice, the temperature and moisture profile of the sea-ice and its snow cover, and
the microphysical properties of these layers, such as grain structure, all strongly affect the surface emission. Second,
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even if these variables were perfectly known, there is also a relative lack of accuracy of current models for radiative
transfer in the surface media (e.g. in sea-ice, soil, snow and vegetation). Typically snow radiative transfer modelling,
based on physical snow model inputs, has been limited in accuracy above 20GHz (e.g. Hirahara et al., 2020). Recent
developments have shown accuracy to around 200GHz under some conditions (Sandells et al., 2023), but this is based
on detailed snow profiles from a research site, so it could be difficult to replicate more globally. The situation can be
seen as a chicken and egg problem: better global analyses of surface properties could help develop improved surface
radiative transfer models, but those global analyses require satellite observations and hence require surface radiative
transfer models to be able to make the required satellite retrievals or analyses.

A solution to the chicken and egg problem has been found in the combination of machine learning and data
assimilation to simultaneously learn from the observations both the unknown physical state of the surface and the
forward model for the radiative transfer (Geer, 2023). The compromise is that both the physical state and the forward
model are empirical. The current work takes a trained empirical sea ice surface emissivity model from that work in
order to allow surface-sensitive microwave observations to be assimilated over and in proximity to sea ice in the at-
mospheric four-dimensional variational data assimilation (4D-Var) at ECMWF. As mentioned above, this can be done
using observation-space auxiliary control variables to estimate both the SIC and some additional empirical variables
that describe the physical state of the sea ice. This is done at the locations of AdvancedMicrowave Scanning Radiome-
ter 2 (AMSR2) and the GPM Microwave Imager (GMI) observations. This article describes the sea ice sink variable
framework within the ECMWF atmospheric data assimilation system (methodology in Sec. 2) along with results in-
cluding improved observational coverage (Sec. 3.1), better simulations of observations (Sec. 3.2), a good quality sea
ice analysis as compared to existing analyses and in giant iceberg case studies (Sec. 3.3) and improved atmospheric
forecasts (Sec. 3.4). Section 4 concludes.

2 | METHOD
2.1 | New sea ice assimilation framework
Geer (2023) simultaneously estimated daily maps of the sea ice state and a new empirical model for the sea ice surface
emissivity, based on a year of AMSR2 observations between August 2020 and July 2021 and ECMWF atmospheric
and surface fields, using a combination of machine learning and data assimilation. The output from that work to the
current one is the mixed surface emissivity model illustrated in Fig. 1 as adapted for the assimilation of AMSR2 and
GMI observations in the 4D-Var atmospheric data assimilation framework (ECMWF, 2023, more details in Sec. 2.3).
The physical part of the model computes the channel-dependent (vector) mixed surface emissivity e, which depends
on the sea ice concentration Cice as well as the surface emissivities of ocean water ewater and sea ice surfaces eice,

e = (1 − Cice )ewater + Ciceeice . (1)
The ocean water emissivity is modelled using the physical model SURFEM-ocean (Kilic et al., 2023), driven by forecast
model fields such as skin temperature and 10m wind speed. These come from the ECMWF atmospheric forecast
model within the Integrated Forecasting System (IFS). The sea ice surface emissivity is simulated using the empirical
part of the model, to be described shortly. The natural contrast in surface emissivity between ocean water (typically
low emissivity) and surfaces covered in snow or ice (typically higher emissivity, at least at mid microwave frequencies)
is what allows the sea ice concentration to be determined from Eq. 1. However, the physics of this situation means
that what is defined as sea ice concentration in this work includes iceberg ice and excludes any melt ponds, which will
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F IGURE 1 The empirical-physical model for mixed surface emissivity in the field of view of view of one
microwave imager observation. Circles indicate variables: these are scalars except the neural network weights, of
which there are 50, and the surface emissivity variables, which represent 10 frequencies and polarisations measured
by microwave imagers between 10GHz and 89GHz.

be observed as open ocean.
The empirical part of the newmodel is used to determine the frequency or channel-dependent surface emissivity

of the sea ice, which is highly variable depending on the surface conditions. This component is a linear single layer
dense neural network (equivalently, a linear regression model) which takes three empirical inputs representing the
physical and microphysical properties of the sea ice relevant to the surface emissivity as well as the skin temperature
from the IFS model. The empirical input parameters do not have an exact physical meaning but as shown in Geer
(2023) they vary with known physical characteristics of the sea ice, such as the differences between new and multi-
year ice.

In potential sea ice areas, the mixed surface emissivity from this model, along with the skin temperature, are
the surface boundary conditions for the RTTOV atmospheric radiative transfer model (Radiative Transfer for TOVS;
Saunders et al., 2018). RTTOV simulates the effects of atmospheric gas absorption (primarily water vapour) and the
scattering and absorption from clouds and precipitation, based on the atmospheric profile from the IFS model at
the observation location. The output of RTTOV is the top of atmosphere brightness temperatures observed by the
relevant satellite instrument. RTTOV also provides gradient models, as does the new sea ice component, to allow
4D-Var to adjust the analysed surface and atmospheric state to bring the simulated observations closer to the real
observations from GMI and AMSR2, along with fitting all other atmospheric observations that are being assimilated
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(see Sec. 2.3). The variables with dashed outlines are adjusted within the data assimilation, with square dashes indi-
cating variables that are estimated independently at each observation location (observation space augmented control
variables) and round dots indicating variables that are updated indirectly by 4D-Var adjusting the atmospheric fore-
cast trajectory. This latter is done indirectly by adjusting the initial atmospheric conditions for the forecast trajectory,
namely the surface pressure and the 3D fields of temperature, humidity, horizontal wind and ozone, which are the
main control variables of 4D-Var. The 50 neural network weights that comprise the linear offline-trained empirical
sea ice surface emissivity model are held fixed. One of the biggest problems of using microwave radiances over sea
ice has been the unknown sea ice surface emissivity; this is now provided by the empirical model, but it is necessary
for 4D-Var to simultaneously estimate the empirical sea ice state variables which describe the radiatively-relevant
physical and microphysical characteristics of the sea ice.

The sea ice assimilation framework, with four observation-space augmented control variables and the empirical-
physical model of Fig. 1, is activated for selected channels of GMI and AMSR2 over ocean surfaces if the background
sea surface temperature is lower than 277.0K. Any scene with a land fraction greater than 0.01 is excluded and
treated in the existing framework for all-sky microwave assimilation over land (Geer et al., 2022). All-sky assimilation
over ’open’ ocean surfaces is done the same way as before, with the ocean surface emissivity provided solely by
SURFEM-ocean and without any observation space augmented control variables. Sea ice assimilation is only applied
to AMSR2 and GMI and other microwave imagers currently available in the ECMWF system are excluded: SSMIS
(Special Sensor Microwave Imager Sounder Kunkee et al., 2008) because it does not have the 10GHz channel that is
used to estimate the background sea ice concentration; MWRI (Micro-Wave Radiation Imager) because it has been
excluded from assimilation sinceMay 2022 due to orbit-dependent biases (Scanlon et al., 2023). The results presented
in this work are mainly from AMSR2, given its full polar coverage, but the impact on GMI utilisation is also important.

2.2 | Observation-space augmented control variables
The background value for the sea ice concentration control variable is taken from a sea ice concentration retrieval
rather than the available sea ice estimate from the ECMWF ocean analysis, OCEAN5 (Zuo et al., 2019). The OCEAN5
estimate is a forecast valid at the correct time but is in practice around 48h - 72 h behind instantaneous observations
(Geer, 2023) due to delays in the arrival of its input sea ice analyses, as well as a possible slowness of the underlying
sea ice model to adapt to changed conditions. This means it has such large sea ice position errors in some places that
many observations would be rejected because of the resulting large background departures (up to around ±100K).
Hence OCEAN5 does not provide a viable background sea ice concentration for assimilating microwave radiances.
The alternative is a retrieval based on inverting Eq. 1 for the 10v channel only. The mixed surface emissivity is also
retrieved dynamically from the observations as part of the previous way of using observations over sea ice (Baordo
and Geer, 2016), giving er et ,10v . It is assumed the sea ice emissivity in channel 10v, e i ce,10v , is a constant 0.93 (Lee
et al., 2017). As in Eq. 1 the SURFEM-ocean model (Kilic et al., 2023) provides the ocean water surface emissivity,
here ewat er ,10v for the 10v channel. Hence:

Ci ce =
er et ,10v − ewat er ,10v

e i ce,10v − ewat er ,10v
(2)

If the denominator is negative, Ci ce is set to zero, and if it is outside physical bounds, it is reset to the nearest bound
(0 or 1).

The background values for the three empirical variables describing the state of the sea ice are set to zero. Back-
ground error standard deviations are set to 0.25 for the sea ice concentration and 0.34, 0.34 and 0.3 for the empirical
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state variables. The latter is based on the covariance matrix of the empirical state variables after training of the offline
physical-empirical network (Geer, 2023) but with twomodifications: it ignores correlations between the variables, and
it doubles the error standard deviations. These choices were determined by trial and error during a rapid prototyping
phase, in conjunction with tuning the observation errors (see Secs. 2.3 and 2.3.1). The chosen configuration appeared
to help the sea ice emissivity model better fit the observations in the context of 4D-Var. However, no systematic
investigation of the optimum error settings has been performed.

Because the augmented control variable in 4D-Var can only use a Gaussian background error model, it is not
possible to suppress unphysical values of SIC in the way it was done by Geer (2023). Instead, any values of SIC that
evolve to a value outside the bounds 0 and 1 are reset to the nearest value within bounds, during the trajectory update
(outer loop) phase of 4D-Var.

The use of observation-space control variables is an important difference from the empirical-physical training
process used by Geer (2023), which only estimated daily values for the four state variables, and therefore suppressed
any sub-daily variability in the surface properties. By contrast, the implementation in 4D-Var gives greater scope to
fit the observations. This gives a good opportunity to explore the sub-daily variability in the sea ice state (Sec. 3.3.3)
which was not explored in the previous work.

2.3 | Testing framework
The sea ice developments in this work are intended for operational implementation within cycle 49r1 of the IFS in mid
2024. The developments are tested within the atmospheric data assimilation system on top of a baseline (or Control)
that represents the previous operational cycle (48r1; ECMWF, 2023) plus most of the upgrades intended for 49r1 in
the area of satellite microwave data assimilation. This baseline IFS configuration uses an atmospheric resolution of
TCo399 (about 25 km horizontally) which is reduced compared to the operational resolution TCo1279 (about 9 km).
The atmospheric data assimilation system is a non-overlapping 12-hour window 4D-Var with three inner loops up to
TL255 resolution (40 km) which omits the additional complexities of continuous data assimilation in the operational
system (Lean et al., 2021). The 12h analysis windows run from 0900 to 2100 UTC and from 2100 to 0900 UTC,
with the main 4D-Var control variables being the atmospheric state at the beginning of these windows. Deterministic
10-day forecasts are launched twice a day from these windows with the start times of 0000 and 1200 UTC.

The background errors for data assimilation are derived from the operational ensemble of data assimilations
(Bonavita et al., 2016) and are thus the same in both control and experiment. The sea surface temperature (SST)
and sea ice concentration (SIC) initial conditions are derived from the preceding analysis of the OCEAN5 operational
assimilation system (Zuo et al., 2019) which assimilates the OSTIA daily sea ice analysis (Operational Sea Surface
Temperature and Sea Ice Analysis; Good et al., 2020) into an ocean model including the LIM2 sea ice model (Louvain-
la-Neuve sea ice model; Timmermann et al., 2005). Within the data assimilation window, the sea ice concentration is
not evolved and remains constant, but the skin temperature over sea ice (and land) is adjusted within the atmospheric
forecast model according to energy balance and other physical considerations (ECMWF, 2023, the skin temperature
over open ocean is not adjusted by 4D-Var and instead comes from the OSTIA SST analysis, at least at the high
latitudes relevant to this work). Over sea ice especially there are known issues with the skin temperature (Zampieri
et al., 2023) but the new sea ice surface emissivity model is intended to work with, and is trained on, these skin
temperatures. It should also be noted that the OCEAN5 sea ice boundary conditions for the model are the same
in both the control and the experiment, and OCEAN5 itself is driven by the operational atmospheric forecast. This
means that the current experiments are not weakly coupled (Browne et al., 2019) and do not test the feedback of the
new sea ice observations into the ocean component, which will be the subject of further work.
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The atmospheric data assimilation system assimilates a full global observing system comprising ground-based
measurements such as aircraft, radiosondes and surface stations, and satellite observations, which comprise infrared
and microwave radiances, scatterometers, radio occultation bending angles, atmospheric motion vectors and line of
sight Doppler wind measurements. Concially scanning microwave imagers, the focus of this work, form a subset of
the microwave observations that are mainly intended for sensing surface properties and atmospheric humidity, cloud
and precipitation. However, as discussed in the introduction, the strongly-surface sensitive channels are only used
over oceans without sea-ice, and land areas excluding snow, high altitudes and dry soils (Lonitz et al., 2022; Geer
et al., 2022). The only surface information that is currently inferred is the near-surface windspeed over ocean, which
is obtained through the surface emissivity model SURFEM-ocean (Kilic et al., 2023; Geer et al., 2023). The aim of
the current work is to extend the use of these observations for their atmospheric information content over and near
sea-ice areas, and to better exploit their sea ice information content.

Compared to the previously documented IFS cycle 48r1 (ECMWF, 2023) and in particular superseding the latest
fully documented configuration of the microwave assimilation (Geer et al., 2022) the IFS baseline includes two impor-
tant changes. First, the RTTOV radiative transfer model is upgraded to version 13.2. This is mostly a non-scientific
upgrade, except that the newly-available ocean surface emissivity component, SURFEM-ocean (Kilic et al., 2023) is
activated in the IFS (Geer et al., 2023) in preference to FASTEM-6 (Kazumori and English, 2015). Second is to move
from an 80 km resolution superobservation strategy for the microwave imagers to 40 km, which was particularly in-
tended to provide a better resolution in the new surface analysis. A number of other new extensions to the use of
SSMIS, AMSU-A and microwave humidity sounders (Scanlon et al., 2023; Duncan et al., 2022, 2023) are included in
the baseline system but these are less directly relevant, since they do not fill the observational gaps at low levels over
the sea ice and surrounding ocean, which are the target of the current work.

The control and sea ice configurations of the atmospheric data assimilation and forecasting systemwere compared
for 12 months between 1st November 2021 and 31st October 2022. This was generated using two approximately
6-month long experiments in each configuration: one starting from 20th October 2021 and running until the end
of April 2022 and another starting 19th April and running until the end of October 2022. The experiments were in
each case initialised from the ECMWF operational forecast, with the initial 12 days discarded for spinup. Additionally,
just in Sec. 3.3.4, results are shown from an equivalent set of experiments during autumn 2020. The main 12 month
period is chosen to avoid the training period for the empirical sea ice surface emissivity model (August 2020 to July
2021) in order to check that the new sea ice emissivity model can work outside its training period.

Note that, as already mentioned, the new configuration being tested here was developed during a rapid proto-
typing phase that was time-limited by the deadline for integration in the 49r1 operational cycle. Due to the cost
of experimentation using 4D-Var, it is not possible to justify every implementation choice individually using further
experimentation. The success of the combination of all these settings together should give reasonable confidence in
this initial implementation, though it is likely that the settings and techniques could be improved further.

2.3.1 | Assimilation settings
Table 1 summarises the assimilation settings for AMSR2 and GMI over ocean in the new framework. These settings
now vary depending on whether the scene is considered open ocean or whether the new sea ice approach is active,
which depends on the 277.0K SST threshold. Over open ocean, the standard cloud-dependant observation error
models are applied (Kazumori, 2016; Lean et al., 2017, AMSR2 and GMI respectively). In the sea ice framework,
the detailed form of the observation error is still not known, since as shown later, there are large error variations
dependent on cloud, ocean surface conditions and the sea ice state. Hence the observation errors, shown in Table 2,
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TABLE 1 Assimilation settings for the ocean data assimilation pathways
Open ocean Possible sea ice

Selection SST at background ≥ 277.0K SST at background < 277.0K
Observation errors Cloud-dependent Fixed: Table 2
Cold air outbreak screening Yes No
Sea ice screening Yes No
Background quality control 2.5 times observation error std. dev. As ocean except the 10GHz v-

polarised channel (10v) uses 4.0 times
std. dev.

Variational quality control Yes Yes
Thinning 1 in 8 superobs assimilated for atmo-

sphere
1 in 8 superobs assimilated for atmo-
sphere and surface
Other 7 of 8 superobs assimilated for
surface only

SST = sea surface temperature

are fixed and have been set partly by trial and error. These errors were inspired by the values used in the offline study
(Geer, 2023) but they are 4 times larger in all channels except 10v. For this channel, the errors were inflated by a
smaller multiple, reflecting the importance of this channel in constraining the SIC, and noting that the 10v channel is
less vulnerable to the cold air outbreak errors described below. The observation errors are necessarily larger than in
the offline study, both to deal with the cold air outbreak problem and to avoid damaging the atmospheric analysis in
areas where the sea ice emissivity modelling has residual errors.

Over open ocean, there are two specific screening packages applied (Table 1). The first is because the IFS moist
physics performs poorly in cold air outbreak regions (CAO; e.g. Forbes et al., 2016). The affected areas have back-
ground departure biases of around 10K so they have had to be screened out. Sometimes there is no way for the
assimilation system to fit these observations without making large temperature increments, to the extent that it can
sometimes cause a forecast model explosion. The CAO rejection is based on low total column water vapour (< 8 kg
m−2) or low values of a lower tropospheric stability parameter (Lonitz and Geer, 2015). In the new sea ice framework,
CAOs had to be included because otherwise a lot of data would be rejected from the sea ice pathway. As previously
mentionedm this is one reason the observation errors are in general much larger than over open ocean. Further, the
ability to adjust the surface emissivity using the sea ice model acts a ‘safety valve’ that can absorb the CAO biases
where they occur, so they are less dangerous to assimilate. As will be explained later, this means that the missing
CAO cloud can be fitted by generating spurious low-concentration sea ice. Although this is scientifically imperfect, it
is an important practical change that significantly boosts the atmospheric forecast impact of the sea ice assimilation
(Sec. 3.4).

The pre-existing sea-ice screening package (Geer et al., 2022) is retained for open ocean areas, just in case sea ice
is present at SSTs above 277.0K. Other more general quality control aspects are retained in both open ocean and sea
ice. These are the background quality control, which rejects data with background departures greater than a multiple
of the observation error, ordinarily 2.5 times, and variational quality control (Andersson and Järvinen, 1998). The only
change for sea ice is that the background quality control for the 10v channel is relaxed from 2.5 times to 4.0 times to
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TABLE 2 Channel usage over oceans in the sea ice assimilation configuration
Channel AMSR2 ocean AMSR2 sea ice GMI ocean GMI sea ice Sea ice observation error [K]
10v x S x S 7.0
10h x S x S 20.0
19v A S A S 11.0
19h A S A S 21.0
24v A S A S 12.0
24h A S - - 20.0
37v A S A S 22.0
37h x x x x x
89v A S A S 23.0
89h x x x x x
166v - - A x x
166h - - A x x
183±7v - - A x x
183±3v - - A A Variable

x, unused or passive in the data assimilation; A, active for atmospheric data assimilation; S, active for sea ice and
atmospheric data assimilation; -, channel does not exist.
AMSR2 channels 6v, 6h, 7v, 7h are not included as they are not currently used in 4D-Var.
Channel codes like ’10v’ include an approximate frequency in GHz along with the polarisation, either ’v’ for
vertical or ’h’ for horizontal.

retain observations with larger discrepancies between background and observed sea ice.
Table 2 shows the channel usage for AMSR2 and GMI in the new sea ice framework. The usage depends on

whether the scene is open ocean or sea ice according to the SST threshold. The new sea ice approach is applied to
the channels for which the empirical sea ice surface emissivity model is valid, namely channels between 10v and 89h.
The 10GHz channels 10v and 10h are activated for the first time in the IFS to support the new framework, but they
are not activated over open ocean areas. Following existing treatment over ocean, horizontally polarised channels at
37GHz and 89GHz (37h and 89h) are not activated in sea ice areas, due to the very strong sensitivity to cloud liquid
water. The 166GHz and 183GHz channels of GMI are actively assimilated, in the sameway as in the control, and they
are not covered by the new framework. In these channels, the 277.0K threshold for the sea ice is not relevant, but
rather the pre-existing utilisation of observations is retained, as described in Geer et al. (2022). This means that the
183±3GHz channel of GMI is active over sea ice but it uses the existing dynamic emissivity retrieval approach (Geer
et al., 2014; Baordo and Geer, 2016), and it does not contribute to (or benefit from) the new sea ice approach. The
6 and 7 GHz channels of AMSR2 could contribute useful sea ice information in future but they are not yet included
because the 40 km superobbing strategy is not appropriate to their relatively large fields of view.

Due to relatively largemean changes in the atmospheric analysis observed in early trials, particularly in theWeddel
sea in Antarctic summer, an additional treatment for ‘summer scattering’ surfaces was added. In these situations,
the sea ice emissivity model was failing to fit the observations, primarily in the 89GHz channels. The 89v channel
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was showing analysis departures of around +20K during the day and -20K during the night. During the night in
these situations the real observations exhibited deep brightness temperature depressions, down to 200K at 89v,
with model-estimated skin temperatures around 270 - 272K, suggesting a frozen surface (or at least a crust) that was
generating strong scattering. During the day the observations were up to around 260K at 89v, with skin temperatures
of around 274 - 275K, suggesting a strongly absorbing and wet surface snowpack. It is speculated that the offline-
trained empirical model (Geer, 2023) was not able to capture this behaviour because it was restricted to estimating
daily mean empirical surface properties and surface emissivity, and because the problematic areas seem to occur most
clearly where the diurnal cycle is strong.

To partly deal with this ‘freeze-thaw’ issue in 4D-Var, the observation error was inflated beyond the Table 2 values
in areas with skin temperatures greater than 269.0K and with positive scattering indexes based on the difference in
observed brightness temperatures between 19v and 89v channels,T19v −T89v . Note that this scattering index targets
the re-frozen, strongly scattering surfaces rather than the thawed surfaces, since due to the observed sign of the
mean changes in the analysis, it was the re-frozen surfaces that appeared to cause the main problem. The inflation
was applied as a multiplicative scaling as a function of the scattering index, namely:

σf i nal = σi ce

(
1 + T19v − T89v

30.0

)
; (T19v − T89v ) > 0 (3)

where σf i nal was the final observation error standard deviation in any channel and σi ce being the sea ice observation
error from Table 2. When the scattering index is zero or negative, there is no change to the observation error. The
scaling factor of 30.0K in the denominator means that the observation error is doubled when the scattering index
reaches 30.0K. By downweighting the observations in these difficult summer situations with strong diurnal cycles, the
rapid prototyping phase showed this was effective at removing the most obvious mean changes in the atmospheric
analysis, though some issues remain (Sec. 3.2).

Variational bias correction (VarBC Dee, 2005) is used to remove systematic biases between the model and the
observations, using a multiple linear bias model that is a function of various predictors. The usual set of bias predictors
for surface-sensitive microwave imager channels is: a constant; skin temperature; total column water vapour; 4-order
polynomial in scan position; surface wind speed. These predictors are by default global and estimated separately for
each channel. The sea ice addition required the surface wind speed predictor to be changed so that it is effective
only over open ocean, and not over sea ice or land. This had extremely minor side-effects for the bias correction of
already-used AMSR2 and GMI data over land surfaces, but due to the very small size and location of these changes, it
is clear they do not affect the main results of the study. Also, for AMSR2 only, the SIC is added as a further predictor,
allowing a separation in the bias correction between open ocean and sea ice, to deal with known scene-temperature
dependent biases that are seen for AMSR2 but not GMI (Geer et al., 2022; Berg et al., 2016). Channels 37v and 89v are
assimilated over land surfaces too (Geer et al., 2022) and these channels have additional predictors for land-surface
mask and skin temperature times land-surface mask (Geer et al., 2022).

In terms of thinning, it is not possible to assimilate every 40 km resolution superob for the atmosphere, due
to suspected observation error correlations (Bormann et al., 2011). For atmospheric purposes, and following the
standard approach over other surfaces, the observations are thinned to leave 1 in every 8 superobs for assimilation,
using a pattern that leaves a roughly 100 km spacing between the observations that are active for atmospheric data
assimilation. However, the surface analysis would benefit from the full 40 km resolution of the superobs, so in the
sea ice pathway, all observations are active in data assimilation for the observation-space control variables, but only
1 in 8 observations are active for the atmosphere. This is achieved by artificially zeroing the gradients of the 4D-Var
cost function with respect to atmospheric variables for the other 7 in 8 sea ice observations; these are referred to
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F IGURE 2 Number of observations per day per 10,000 km2 during the period 1st - 5th June 2022, from AMSR2
channel 37v, in the control configuration (a,c) and the sea ice experiment (b,d). This shows the observations that are
active for the atmosphere and not the ‘surface only’ observations. Dashed lines are every 10 degrees latitude and
every 45 degrees longitude.

as ‘surface only’ observations: they benefit from the improvements to the atmospheric state during data assimilation,
but they do not directly influence them.

3 | RESULTS
3.1 | Data utilisation
Figure 2 shows the benefit of the new sea ice pathway in terms of the number of observations available for atmo-
spheric data assimilation in the AMSR2 37v channel. The selected period is in June, so the additional coverage in the
Arctic is limited to a relatively small area. However, in the Antarctic, the control has few observations poleward of 60
degrees and the activation of sea ice observations fills this gap up to the edge of the Antarctic landmass. One note-
worthy aspect of the figure is the way the coverage in polar regions is as much as 6 times higher than in the tropics and
midlatitudes, due to the polar sun-synchronous orbit of the GCOM-W satellite. This illustrates the particular value in
using polar-orbiting satellite observations in polar regions, and their potential to fill the winter data gap observed by
Lawrence et al. (2019), once it is possible to use surface-sensitive radiances over sea ice and snow surfaces.

Figure 3 examines the impact on GMI numbers. GMI is in an inclined orbit which does not travel over the poles,
but only reaches as high as approximately 70◦ latitude. This means it can also benefit significantly from activation over
sea ice and possible sea ice areas, particularly in the southern hemisphere. Indeed, the addition of sea ice assimilation
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F IGURE 3 As Fig. 2 but from GMI channel 37v.

fills in the zone between approximately 60◦S and 70◦S with around 3 – 4 observations per day per 10,000 km2.
Figure 4 shows the context of the sea ice pathway within the wider use of microwave imager data, based on all

available superobs including those that are rejected for data assimilation, and looking at AMSR2 channel 19v. This
figure is based on 12h of data so the gaps between the satellite swaths are visible at lower latitudes, and at higher
latitudes multiple orbits overlap. Background departures over sea ice in the control run are shown in panel a. The
departure d is defined as the difference between observations Tobs and model simulations Tsim including the VarBC
bias correction b :

d = Tobs − b − Tsim (4)
These departures, based on simulations from the background state, reach +40K to +50K in the control run due to
the use of a fixed sea ice surface emissivity of 0.8 for all channels and locations (Geer et al., 2022). Conversely, over
the Antarctic continent, a fixed land surface emissivity of 0.95 used, which is far too high in many places, resulting
in departures down to around -50K. Panel b shows the observed brightness temperatures, with a strong contrast
between ocean and sea ice surfaces, but also strong variability within these areas, coming from atmospheric effects
(water vapour, cloud and precipitation) and surface effects (variable surface emissivity and skin temperature).

Figure 4c shows that after implementing the new sea ice emissivity model, the background departures from the
sea ice regions are mostly within ±10K except in multi-year ice locations that will be discussed in the next section. The
difference from the control departures is striking, and though it may seem that the control results could have been
improved by using a more appropriate fixed channel-dependent surface emissivity in each channel, such a solution
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F IGURE 4 Utilisation of the 19v channel of AMSR2 in the 12h assimilation window around 00 UTC 5th June
2022: a) background departure in the control experiment; b) Observed brightness temperature (TB); c) Background
departure in the sea ice experiment; d) Background departure after thinning and screening; e) Observation error; f)
Bias correction. All units are in Kelvin brightness temperature; multiple orbits run over each other in the polar
regions, with the latest observation taking precedence in the plotting; all available superobs are shown
(superpositions excepted) except in panel d.
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did not exist in the IFS and would have been practically hard to achieve. As mentioned, there is strong dependence
of sea ice emissivity on sea ice state, especially at higher frequencies and in horizontal polarisations, but even at 19v
(e.g. Lee et al., 2017, their table 4). Therefore the difference between panels a and c is a reasonably fair illustration of
the improvements available from the new model, compared to existing approaches in weather forecasting.

This work does not yet address snow and ice over land, so the departures over the Antarctic continent remain
large. Figure 4d shows the observations selected for active use in data assimilation. Land areas are rejected completely
in this channel. Over open ocean, only every 1 in 8 observations are used, leaving a rough diamond pattern of active
data that is just visible at the resolution of the figure. In contrast, all observations are used in the sea ice pathway,
at least for estimating surface properties, and this is indicated by the zone with denser observation coverage. The
boundary of this zone follows the 277.0K contour of SST. Some observations in the sea ice pathway have been lost
to quality control in the region with background departures greater than around -20K.

Figure 4e illustrates the observation error, which is variable dependent on the cloud amount in the open ocean
areas. In the sea ice pathway the observation error is constant at 11K in channel 19v (Table 2) except for a few areas
where it reaches 15 - 25K where relatively warm surface temperatures have led to ’summer scattering’ observation
error inflation (Eq. 3). It is also clear that the observation error in the sea ice pathway is almost always much larger
than what is used over open ocean, which can be as low as 2.0K in cloud-free areas. Note that the Antarctic land
observation errors are not set to reasonable values as these areas are not used.

Figure 4f shows the bias correction, which is around +5K over ocean areas and +8K over sea ice, which follows
the addition of the sea ice fraction as a bias predictor for AMSR2. This reflects known scene-dependent biases in the
AMSR2 data (Geer et al., 2022; Berg et al., 2016). Bias variability over the ice is relatively small, but is larger over open
ocean where it is mainly driven by variations in the skin temperature, wind speed and total column water vapour bias
predictors. Note that the Antarctic land biases are not physically meaningful as the observations are not used there.

3.2 | Fitting the observations
For the active sea ice data from Fig. 4, Fig. 5 illustrates the ability of 4D-Var to fit the observations using the new sea
ice approach. Bear in mind that the SIC has been retrieved prior to data assimilation using the 10v channel (Eq. 2), so
any sea ice displacement errors have already been removed in the background departures. Had the OCEAN5 analysis
been used as the background, there would have been errors as large as ±70K around the ice edge, reflecting the TB
contrast between ocean and sea ice in this channel. As illustrated in a worst case scenario in Geer (2023) there can
be errors of up to 1000 km in the position of the ice edge in OCEAN5. This is why the simple retrieval had to be used
to provide a background SIC.

Since the SIC retrieval largely eliminates the ice edge displacement errors in the background departures, the
remaining errors in Fig. 5 a and c largely come from an incorrect sea ice emissivity at background. The background
values of the sea ice empirical state variables are all set to zero, so the sea ice surface emissivity starts out at the
baseline value, which is roughly equivalent to an annual and global mean. Given these background departures, 4D-
Var has the option of modifying the atmosphere, SIC or sea ice surface emissivity (through the empirical variables) in
order to better fit the observations.

In the areas where 19v observations show background departures larger than -20K (Fig. 5a), the analysis de-
partures are typically within ±5K (Fig. 5b). The improved fit to observations comes mainly by decreasing the sea ice
surface emissivity (not shown). Figure 6 shows how the sea ice control variables at observation locations have adapted
to help achieve this, by adjusting the empirical sea ice state variables 1 and 2 away from their initial values of zero
and towards positive values (panels b and c). Following Geer (2023) these areas with strong negative departures are
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F IGURE 5 Background and analysis departure in Kelvin for AMSR2 channels 19v and 89v in the sea ice path in
the 12h assimilation window around 00 UTC 5th June 2022.

likely areas of longer-lived sea ice that will be described here as multi-year ice (MYI) though the exact age of the ice is
unknown. In these areas, the sea ice generates strong scattering at microwave frequencies from air pockets within the
ice (e.g. Warren, 2019). As further discussed in Geer (2023), the new sea ice emissivity model is not always fully able
to fit the relatively low surface emissivity in MYI, meaning that sea ice concentrations can be pulled down incorrectly
in order to fit the observations. As shown in panel a, there has also been a reduction in sea ice concentration by
around 0.15. This is one of the main known problems of the new sea ice emissivity model and it means the SIC can
be underestimated in winter MYI situations. Sec. 3.3 investigates further and proposes a correction strategy.

4D-Var is also able to fit the 89v observations in the Antarctic winter (Fig. 5c and d). While the 89v departures
also show similar features in the MYI areas to the 19v observations, much of the sea ice area has positive background
departures of up to around 30K (panel c). These are likely areas of new ice where surface emissivities are relatively
high at 89 GHz, due to the relative newness of the ice: for example it contains brine pockets rather than air bubbles, or
it is physically smoother, and as well it is likely lacking any snow cover. In these areas, the empirical sea ice parameters
are reduced to fit the observations, primarily the first parameter (Fig. 6b) as is expected in areas of new ice (Geer,
2023).

The summer months bring different challenges, as illustrated for the same day but in the Arctic in Fig. 7. Here, the
background departures in the 19v channel are mostly well within ±10K, suggesting the ’baseline’ surface emissivity
values are reasonably good already, and the analysis departures reduce further, towithinmostly around±5K. However,
at 89v, although some areas of positive background departures are better fit in the analysis, analysis departures remain
larger than -20K in many places. These are ‘summer scattering’ locations where the observation error has been
boosted as high as 70K to prevent these observations having much weight in the assimilation (not shown, see Eq. 3).
These areas are down-weighted to prevent the quality of the atmospheric analysis being negatively affected, as was
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F IGURE 6 Increments in the observation-space control variables for AMSR2 observations in the sea ice path in
the 12h assimilation window around 00 UTC 5th June 2022.

seen in earlier trials. Additional investigations have shown that later in the Arctic summer, the problem is less well
corrected due to relatively large observed brightness temperature depressions even at 19GHz, which means the 19v-
89v scattering index used to boost the observation error is less effective. This issue results in minor degradations in
the Arctic late summer in the atmospheric forecast scores close to the north pole, but these degradations are localised
in time and space, so that they do not show up in the annual statistics presented in Sec. 3.4.

3.3 | Sea ice quality
3.3.1 | Initial comparison to OCEAN5
Figure 8 concentrates on the SIC and its difference from the pre-existing OCEAN5 analysis (Zuo et al., 2019) inter-
polated to the observation locations. The differences between OCEAN5 and the AMSR2 background and analysis in
4D-Var are similar to what was already seen in the external machine learning study (Geer, 2023). The AMSR2 sea ice
edge is much more sharply defined and shows smaller-scale features than OCEAN5 analysis. The precise location of
the ice edge is also different by several hundred km, as illustrated in the difference plots (panels e and f). For example
in the Bellingshausen and Amundsen seas (around 90◦W) the AMSR2-based analysis showsmore complete and exten-
sive sea ice coverage, with the ice edge about 200 km further out than in OCEAN5. Around the Greenwich meridian,
over a distance of about 500 km, OCEAN5 shows a much more gradual gradient in the SIC than in the AMSR2-based
analysis. Around much of the rest of Antarctica, for example 90◦E to 135◦W, there are smaller disagreements in the
location of the ice edge, with agreement within around 100 km.

Figure 8 also helps further illustrate some problemswith the newSIC analysis, aswas also found in the offlinework
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F IGURE 7 Background and analysis departure in Kelvin for AMSR2 channels 19v and 89v in the sea ice path in
the 12h assimilation window around 00 UTC 5th June 2022.

(Geer, 2023). The SIC in the AMSR2 analysis in the multi-year ice zones of the Bellingshausen sea and Weddel sea is
around 0.1 to 0.2 lower than OCEAN5, due to the previously-mentioned problem with fitting the surface emissivity
in these MYI regions. The background SIC is closer to OCEAN5 here, since the 10v channel is mostly unaffected by
the issue. This fact is used as part of a correction strategy in the next section.

Another problem is the creation of areas of unphysical low SIC far beyond the main ice edge. These areas are
obviously unphysical because sea ice, as opposed to icebergs, should quickly melt as it moves into warmer waters.
The most extensive example is around 30◦E, where a large area of the southern ocean is shown with SIC around 0.1 in
both the background and the analysis. Similar features are seen at 100◦Wand 180◦W. These areas are associatedwith
the known problem of representing cold air outbreaks in the IFS (Lonitz and Geer, 2015; Forbes et al., 2016). These
CAOs are airmasses moving equatorwards from the poles which typically combine strong winds, very low column
water vapour, and boundary layer instability due to the relatively warm ocean surface. In reality this situation often
generates supercooled liquid water cloud and rain but the IFS (in common with most models) is almost incapable of
representing this. These areas are screened out in the usual ocean assimilation path but have been allowed in the sea
ice path (Table 1). It is notable, however, that the spurious sea ice feature is similar in the background SIC and the
analysis SIC. Since the background SIC is based only on the 10GHz channel, which is thought to be mostly insensitive
to atmospheric cloud and precipitation, this suggests that the problem is more than just the lack of supercooled liquid
water in the forecast model, but also an issue of the ocean water surface emissivity modelling at low frequencies. This
issue is under investigation and will be reported separately later.
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F IGURE 8 Sea ice concentration (SIC) at the AMSR2 observation locations in the sea ice path in the 12h
assimilation window around 00 UTC 5th June 2022: a) OCEAN5 analysis interpolated to AMSR2 locations; b)
Background SIC in 4D-Var, retrieved from 10v channel; c) Analysis SIC in 4D-Var; d) As c but with zoomed-in scale
for low SIC observations; e) Difference between background and OCEAN5; f) Difference between analysis and
OCEAN5.
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F IGURE 9 Mean difference in SIC between the corrected sea ice retrievals from AMSR2 and the OCEAN5
analysis at the same locations.

3.3.2 | Corrected sea ice concentration
Given the known issues with the new SIC retrievals produced by 4D-Var, some simple corrections are proposed to
create an improved SIC product that would be suitable for assimilation into the ocean components at ECMWF (Zuo
et al., 2019; Browne et al., 2019). The first issue to deal with is the underestimation of SIC in multi-year ice situations.
As noted, in these locations the simple SIC retrieval which is used as the background, referred to here as Ci ce,b (Eq. 2),
gives better results than the 4D-Var analysis, Ci ce,a . Hence the following blending strategy is proposed, based on the
value of the first empirical sea ice state variable, x1, of which positive values typically indicate multi-year ice:

w = x1/0.2; 0 ≤ w ≤ 1 (5)

Ci ce,cor r ect ed = (1 − w )Ci ce,a +wCi ce,b (6)
This ensures that zero or negative values of x1 use the 4D-Var analysis Ci ce,a and values over 0.2 use entirely the
background Ci ce,b , with a smooth linear weighting in between. Following this blending, any SICs greater than 1 are
reset to 1. Any SICs lower than 0.25 are reset to zero, since these are most likely spurious ice caused by unrepresented
supercooled liquid cloud and rain in the model.

Using the corrected SIC, Fig. 9 shows the mean difference between the retrievals at AMSR2 locations and the
OCEAN5 values interpolated to those locations, over the 2021 - 2022 testing period. Panel a shows that the MYI
correction strategy has almost eliminated any mean discrepancies between the two SIC estimates in the Arctic, im-
proving on the pure analysis product or the offline machine learning estimates (see Fig. 8 or Geer, 2023). The main
discrepancies appear to be associated with the location of the ice edge, as would be expected. In the Antarctic, the
new sea ice analysis shows slightly higher values than OCEAN5, but the main discrepancies are similar to those seen
in the earlier work, with up to 0.1 higher SIC near the Antarctic continent. As examined in Geer (2023) this appears
to be due to underestimation of the SIC in the OCEAN5 analysis in the Antarctic late summer.

As with the previous work Geer (2023) the primary advantage of the new sea ice analysis compared to OCEAN5
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F IGURE 10 Extracts from the time series of AMSR2 superobs at 110◦W, 80◦N: a) late winter 2022; b) late
summer 2022. All dates in UTC. Black dots show the 4D-Var analysis of empirical sea ice state variable 1 at the
AMSR2 locations and red dots the 2m temperature at those locations estimated by the IFS model. The red dashed
line indicates 273.15K

is its timeliness, with OCEAN5 developing similar SIC patterns to the new analysis after a delay of approximately 48 h
to 72h. The drawbacks are the biases, mainly in MYI areas, and where cloud has been aliased as low concentration
spurious sea ice, but these can be corrected as discussed here. Therefore the new sea ice analysis is expected to be
overall substantially better than OCEAN5. However, it is not possible to find global high-quality validation data to
assess that independently. Full validation of the new sea ice will come when it is used in cycling data assimilation
experiments in place of the OSTIA sea ice analysis, where improved sea ice concentration should generate improved
atmospheric and ocean forecasts.

3.3.3 | Sub-daily sea ice variability
The use of an observation space control variable in this work allows investigation of the sub-daily variability of the
analysed SIC and the sea ice empirical properties. For a location in the Arctic multi-year ice at 110◦W, 80◦N, Fig. 10
shows time series of empirical variable 1 along with the 2m temperature, which seems to link with variations in the
empirical sea ice properties (skin temperature, although it has a diurnal cycle, this is more static from day to day
and does not seem to correlate as much). AMSR2’s orbit means that latitudes polewards of around 75◦ degrees are
observed up to around 7 times a day in a block of around 11 hours in duration, leading to a dense coverage of one
part of the daily cycle followed by a large gap.

Fig. 10a shows a 20 day period at the end of winter, where air temperatures are around 245 - 255K and the
empirical state variable ranges from roughly 0.15 to 0.40. In this period, the empirical state is often quite stable
within a day, and from day to day. The largest change is seen on 15th March, where the empirical variable was around
0.3 - 0.35 for many days and then suddenly dropped to around 0.2, followed by a gradual increase afterwards. The
rise in temperature of 10K between 14th and 15th March indicates a strong change in the weather and perhaps a
wind event or a snow event that has changed the microstructural properties of the snow cover on top of the sea ice.
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F IGURE 11 Sea ice in the Antarctic summer and the long-lived giant iceberg A68A at 12 UTC on 4th December
2020: (a): Current IFS sea ice fraction from the OCEAN5 analysis; (b) sea ice fraction at AMSR2 locations retrieved
using the sea ice sink variable approach intended for 49R1; (c) OLCI visible radiances from channel 10 (681 nm)
confirming the location of the giant iceberg. Grid lines are shown every 1◦ latitude and 2◦ longitude, along with the
islands of South Georgia (top right) and one of the South Orkney group (centre left).

However, there is little apparent link betwee the empirical state variable and the atmospheric temperature otherwise.
Figure 10b shows a late summer example at the same location, where variations in the 2m atmospheric temper-

ature are more closely linked to the state variable. The AMSR2 observations capture a period during the night and
morning as air temperatures fall then rise. The value of the empirical state variable often reduces as the air temper-
ature rises, particularly evident on 1 - 3 August and 17 - 19 August. There are also periods of air temperatures 1
to 2K above freezing during 5 - 6 August and 12 - 14 August, and these seem to be associated with more stable
values of the empirical state variable around -0.05, both within and between days. It could be speculated that this
corresponds to wet snow on the sea ice, so that higher values of the empirical variable correspond to times when the
snow re-freezes. The apparently strong within-day variability of the sea ice and snowmicrophysical properties, mainly
in summer, shows that it is not sufficient to use daily average values. Hence this confirms the benefit of using the
observation-space empirical control variables, until such time as models of the snow pack and sea ice can represent
these changes in a physical way and with sufficient detail to be able to match the observations.

3.3.4 | Giant icebergs
To illustrate the quality of the sea ice concentration analysis on the 40 km (or ‘pixel’) scale of the AMSR2 superobs, Fig-
ure 11 focuses on December 2020, when the giant iceberg A68A1 travelled from the Weddel Sea and past the island
of South Georgia (Braakmann-Folgmann et al., 2022). This trajectory is well captured in the new sea ice concentration
analyses for this period (not shown). The iceberg touched the sea bed close to South Georgia around December 17th

1Antarctic icebergs are numbered by the US National Ice Centre with the first letter indicating the region of origin and the any trailing letter used to identify
fragments of an original iceberg.
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and broke up completely over the following months (Huth et al., 2022). On December 5th it was described as oriented
roughly NW-SE and was of order 100 km long and 60 km wide, parameters that fit closely with the analysed sea ice
map (panel b) and visible imagery at the same time from Ocean and Land Colour Imager (OLCI, panel c). The OCEAN5
sea ice analysis (panel a) does not show any trace of A68A, though this is unsurprising given that long-lasting berg ice
is not represented in the sea ice model in OCEAN5, let alone more generally in climate models, as discussed by Huth
et al. (2022).

The representation of the main summer Antarctic ice pack is also captured in Fig. 11, towards the bottom of the
domain. As seen also in Fig. 8, the new analysis appears sharper than OCEAN5, although many of the features are
in common. Although the OLCI visible picture is heavily contaminated by cloud, it is possible to see some of the sea
ice features below it, such as pancake-shaped bright spots on the scale of around 20 - 50 km (fractions of a grid box).
The locations of these ice pancakes and also the dark areas without cloud or sea ice in the OCLI picture are, at least
visually, often consistent with the AMSR2 sea ice analysis. There is also an an area of sea ice concentrations less
than 0.5 that is seen in the AMSR2 analysis and not in OCEAN5, in the grid box NE of the one containing the South
Orkney island. This appears to be colocated with a complex-shaped bright area in the OLCI data at the same location,
which could be sea ice due to its distinctly different appearance compared to the cloud features elsewhere. It looks a
lot like a streamer of high SIC less than around 10 km wide that has been separated from the main ice pack and has
been deformed by ocean eddies on a similar scale. Similar qualitative agreement in the small-scale features of sea ice
between OLCI and the AMSR2 analyses has been seen in other scenes with less cloud cover (not shown).

During the main test period in September and October 2022, another giant iceberg, A76A, was drifting clear of
the sea ice in the Drake Passage. The US national ice centre (USNIC) estimated its size at 135 km by 26 km in May
2021 (https://usicecenter.gov/PressRelease/IcebergA76A_B_C) with a nearly rectangular shape giving approxi-
mately a 3510 km2 surface area. The newAMSR2 analysis illustrates A76A being exposed by retreating sea ice around
10 September 2022 when it was on the edge of the Weddel Sea (no figure shown). Figure 12 shows the evolution
of A76A over 24 days in October after it started to drift slowly northwards into the Drake Passage. The locations
are consistent with those estimated by scatterometer and visible imagery recorded in the Antarctic iceberg tracking
database (Budge and Long, 2018). The shape is long and narrow, occupying approximately 1 by 4 pixels or superobs,
and is therefore consistent with the USNIC estimated dimensions. Between 11 and 30 October the AMSR2 anal-
ysis shows A76A rotating nearly 180 degrees clockwise, with a highly consistent shape throughout, accepting the
pixellated nature of the analysis.

The area of iceberg A76A can be estimated roughly from the daily SIC figure by assuming each pixel or superob
occupies 40 km by 40 km and then summing over a region of 90 pixels around the centre of the figure. The resulting
estimate is shown as a timeseries at the bottom of Fig. 12 and is consistently close to 4000 km2 except on 30 October,
where an area of spurious sea ice appears, likely associated with a cold air outbreak. The slight overestimate compared
to the USNIC measurements likely comes from contamination by low-concentration sea ice in areas of missing cloud,
as discussed before. These calculations are based on the analysed SICs with values less than 0.1 treated as zero,
slightly different to the usual recommendation of a 0.25 lower threshold, to preserve coverage of the iceberg, but at
greater risk of being affect by spurious cloud. This aside, the day-to-day consistency of the shape and area of the
iceberg should again give strong confidence in the pixel-level details shown in the new SIC analysis, as well as the
ability of the all-sky radiance assimilation technique to provide continuous and reliable results despite frequent cloud
cover.

The iceberg timeseries shown in Fig. 12 is highly novel, in that it is generated from passive microwave, rather
than the visible imagery, scatterometer or SAR observations used more typically in this area (Budge and Long, 2018;
Braakmann-Folgmann et al., 2022; Huth et al., 2022). The potential of the passive microwave for iceberg tracking
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F IGURE 12 Daily maps of long-lived giant iceberg A76A during October 2022, based on the AMSR2 overpasses
between 03 UTC and 05 UTC, and at the bottom, the estimated sea ice area for each overpass. Where multiple
overpasses exist in the time window, the most recent measurement has been selected. Grid lines are shown every
1◦ latitude and 2◦ longitude and the projection is centred on 59.25◦S 50◦W. The analysed SIC is used in this plot
with SIC values less than 0.1 reset to 0.0.

has long been clear, and there were early studies on the subject using hand analysis of the images (e.g. Phillips and
Laxon, 1995) but it has not been developed further. The published A68A iceberg analyses (e.g Braakmann-Folgmann
et al., 2022; Huth et al., 2022) mainly use visible imagery that nominally provides coverage every 1 – 2 days and sub-
km resolution. However, high latitude locations are often cloudy, so visible imagery is not usable every day, and the
reliance on daylightmeans that coveragemay be entirely absent during the polarwinter. Synthetic aperture radar (SAR)
as used in e.g. Huth et al. (2022) is all-weather but is typically limited to a few overpasses per month. Scatterometers
are sometimes used in order to provide more frequent coverage that is unaffected by cloud or sunlight conditions,
and still with relatively good spatial resolution (e.g. around 5 km, Budge and Long, 2018). The new microwave-
based analyses are available multiple times per day as illustrated in Figs. 2 and 3, with further advantages being
their derivation through a quantitative and physical retrieval approach, as well as the relatively small effect of cloud.
Although the current resolution is 40 km, which is worse than scatterometer analyses, the technique could be further
developed to use the maximum resolution available in the AMSR2 data, also around 5 km in the 89 GHz channels (see
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F IGURE 13 Change in RMS temperature forecast error between sea ice experiment and control, normalised by
the RMS error of the control, over the 12 month testing period. Verification is against each experiment’s own
analysis. Cross hatching indicates statistical significance at the 95% confidence level, assuming each panel contains
20 independent tests. The notation "T+N" indicates the length of the forecast in hours, N.

e.g. Okuyama and Imaoka, 2015). Therefore the new sea ice technique for passive microwave could provide a useful
new way of tracking giant icebergs. More generally, the focus on icebergs helps illustrate the high quality of the new
analyses at the pixel level. This high quality likely carries over to all forms of sea ice.

3.4 | Forecast quality
Forecast quality is evaluated based on the year of experimentation between 1st November 2021 and 31st October
2022. Figure 13 shows the normalised change in RMS error in temperature when the sea ice assimilation is activated.
Themain beneficial impacts are at latitudes around 50 - 70◦S and between the surface and around 500hPa, lasting out
to around day 4 of the forecast. Forecast quality is barely affected in theNH. The impact is clearest on the temperature
field but other variables such as wind, humidity and geopotential height show similar impacts (not shown). The impact
in the SH is strong enough to cause a statistically significant change in the southern hemisphere scores (20 to 90◦S)
of around 0.3% over the first 4 days of the forecast, strongest at 850hPa (not shown).

The reduction in forecast errors is found mainly outside the areas directly affected by sea-ice, as indicated in
Fig 14. Instead, the main reductions are centred around 55◦S to 60◦S, at the edge of the area where significant new
data is being added from AMSR2 and GMI in areas that are mainly ice free (Figs. 2 and 3). Although the impact at 12
hours into the forecast could have propagated some distance from the original source in the analysis (by as much as
hundreds of km) most likely the impact is coming from observations assimilated over ocean in the proximity of sea ice,
rather than over the sea ice itself. This makes sense as the main storm tracks, which are typically the most sensitive
locations for making forecast improvements (e.g. Rabier et al., 1996) tend to run over open ocean and not sea ice.

The impact on the background forecast fit to other observations could provide an alternative measure of the
changes in forecast quality, but these are not investigated deelpy here. The changes aremostly non-significant, though
with some rare statistically significant changes in quality within +0.2% and -0.2%, giving a broadly neutral effect on
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F IGURE 14 Normalised change in RMS temperature forecast error, as in Fig. 13, over the 12 months testing, but
at 1000hPa for the 12h forecast (T+12). No statistical significance test is performed. The dashed line indicates the
maximum sea ice extent based on a contour of SIC=0.5 in the September 2022 monthly mean.

these fits overall (not shown). This is probably to be expected, since the strongest impact on analysis-based forecast
scores is in an area where there is little other coverage from satellite or ground-based observations.

4 | CONCLUSION
This study implements the empirical sea ice surface emissivity model from Geer (2023) within the atmospheric data
assimilation system of ECMWF. The SIC and three empirical state variables are estimated at AMSR2 andGMI locations
on a 40 km standardised (superobs) resolution. This allows the assimilation of microwave imager observations over
sea ice areas for the first time, based on two principles:

• Accurate estimation of sea ice concentration in the footprint of the observation. This compares to the possible
use of the SIC from the OCEAN5 analysis, which has errors in the location of the ice edge up to 200 km typically
and in exceptional circumstances up to 1000 km, mainly due to being 48h to 72h behind reality (Geer, 2023).

• An ability to determine the sea ice emissivity across different frequencies and polarisations, despite the fact that
the emissivity depends on poorly known surface properties such as the microphysical properties of the ice and
overlying snow.

The ocean – sea ice contrast can lead to 150K differences in brightness temperature in some channels, and the
variation of surface emissivity can cause differences as large as 100K. Hence the ability to simultaneously infer both
the sea ice concentration and the surface emissivity is what makes the assimilation over sea ice possible. In the worst
case with the new approach, in summertime freeze-thaw contexts at 89GHz, the analysis departures can be as large
as 20K. But in most other contexts and channels, it is possible to fit the observations over sea ice within ±5K at
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analysis, which when compared to possible errors of ±150K in the case of misplaced sea ice or natural variability in
the sea ice emissivity, illustrates the power of the new technique.

The addition of new microwave imager observations at high latitudes improves the quality of atmospheric fore-
casts in the southern ocean, with statistical significance out to day 4. This comes in practice from filling observation
gaps in areas of open ocean in the proximity of sea ice, rather than over the sea ice itself. The impact likely comes
equally from AMSR2 and GMI, given the similar amount of new data being added at 55◦S to 70◦S, where the biggest
forecast impacts are found.

The addition of observations at 55◦S to 70◦S is partly because the new sea ice framework allows microwave
imager observations to be used in cold air outbreak (CAO) regions for the first time. In these regions, the forecast
model struggles to represent supercooled liquid water clouds (Lonitz and Geer, 2015; Forbes et al., 2016), leading to
the possibility of the assimilation not converging. By allowing the possibility of creating spurious low concentration
sea ice (typically SICs around 0.1) the new approach acts as a pragmatic, if non-physical, safety valve in these areas.
This highlights the importance of the CAO regions to forecast quality, which should justify the substantial future work
required to improve the moist physics of the forecast model, along with improvements to the data assimilation system
to create a more physically correct cloud and precipitation analysis in these areas. As well as adding CAO areas, the
new framework more generally allows observations to be used confidently in places where sea ice might be found,
where previously large numbers of observations would have been removed due to the risk of encountering sea ice.

The new sea ice assimilation will be used operationally in cycle 49r1 of the ECMWF weather forecasting system,
which will go live in mid 2024. The SIC estimates from the atmospheric DA component will then be available for
onward assimilation within the ocean component of the ECMWF system. This coupled data assimilation approach is
already in testing and will be reported separately. When complete, we will be one step closer to eliminating the use
of external sea ice retrieval products, with benefits to timeliness, robustness and quality of the sea ice analysis, as
well as hopefully gaining further improvements in forecast quality through the coupling process (Browne et al., 2019;
McNally et al., 2022).

The sea ice concentration analysis has some problems, including an underestimation of up to 0.15 in multi-year
ice areas, as well as the aforementioned aliasing of missing supercooled liquid water cloud into the sea ice analysis.
However, the first issue can be corrected by reverting to a simpler SIC retrieval based only on the 10v channel, and
the latter issue can be corrected by treating all SICs less than 0.25 as open ocean. With these corrections applied,
the mean SIC analysis agrees well with OCEAN5, except in the Antarctic summer where it appears the new analyses
are better, and the OCEAN5 analysis has too little sea ice. The new analysis is valid at the observation time and
location, and it shows much sharper features than OCEAN5. The sharpness differences are both on large scales (in
one example OCEAN5 showed a shallow 500 km gradient in SIC where actually the sea ice edge was quite abrupt)
and on the scales of the superobs used in the analysis, at 40 km.

In case studies of giant icebergs A68A and A76A, the new SIC analysis appears mostly correct at the pixel (40 km)
resolution. The ability to track giant icebergs with passive microwave using a physically-based retrieval is novel. Al-
though the spatial resolution is currently worse than existing techniques, this could be improved, and the ability to
track icebergs automatically and reliably in all weather conditions, at daily or even more frequent time resolution,
could provide genuinely new and useful information for maritime applications.

The analysed empirical sea ice state variables show the intended strong links with micro and macrostructural
variability of sea ice and its snow cover. For example new ice and multi-year ice have distinct signatures (see also
Geer, 2023). The sea ice state is strongly variable, particularly in the summer where variations often seem to follow
the daily variations in near-surface air temperature, but also strongly variable from day to day with some apparent
dependence on theweather. These changes likely drive (or are associatedwith) changes in snowpackmoisture content
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and crystalline structure. In order to move from an empirical to a physical description of the sea ice state when
assimilating microwave radiance observations, a physical sea ice and snow model will need to be able to accurately
simulate all of these characteristics, down to the microstructural details of the sea ice and its snow cover, as well as
their temporal variability down to at least the hourly timescale.

The empirical sea ice surface emissivity model of Geer (2023) has been tested outside its training dataset for the
first time in this work. The new testing uses a different time period, along with a different IFS model cycle from the
one used in training, with one important difference being the use of a different ocean surface emissivity model. That
the model worked without too many issues suggests that the empirical model is reasonably robust to interannual
variability in sea ice conditions, as well as to changes in the surrounding model environment, and should not need
retraining too often. However, the model does have problems, both in fitting multi-year ice conditions in winter, and
in fitting strong scattering (or reflective) surfaces in summer, likely during daily freeze-thaw cycles. The model may
be struggling to represent re-frozen snow situations. This latter issue may have arisen because the empirical model
was trained on a daily average sea ice state, which could not represent the full sub-daily variability of summer sea ice
surfaces.

Beyond the sea ice example, this work is the first demonstration of an approach that can be used to allow complete
all-surface assimilation of satellite radiances. The new approach uses both empirical state variables and empirical
model components, alongside physical models where they are accurate enough. This recognises that neither the
surface state, nor themodels that link that state to the observed radiances (observation operators), are yet represented
well enough using purely physical approaches. The complex daily and sub-daily variability of the sea ice state suggests
that it will be extremely challenging to do this with physical models. However, the semi-empirical approach can be
easily and gradually adjusted to include more physical constraints as the relevant models get better.

The plan of future work extends in many of these directions:

• The representation of the surface radiative transfer as a skin temperature and surface emissivity is known to be
problematic (e.g. Bormann et al., 2017), so the aim is to move away from this as soon as possible. The hope
is to be able to represent the sub-surface radiative transfer more physically, following more advanced surface
radiative transfer models (e.g. Picard et al., 2018; Sandells et al., 2023). However, it will likely be necessary to
retain empirical modelling for the link between the state of the surface media and its optical properties.

• It is hoped to extend the empirical surface radiative transfer model to more surface types in its next retraining.
The current approach should be relatively easy to extend over snow-covered land surfaces, given that the snow
representation should be similar.

• The current validity range of the empirical model is frequencies between 10 and 89GHz and zenith angles around
53◦. To allow all microwave instruments to use empirical surface radiative transfer, this will need to be extended
to higher frequencies (e.g. 183GHz) and to allow a generalised angular dependence. This will be achieved by train-
ing against a wider range of microwave observations, but it likely also requires the more sophisticated radiative
transfer physics to properly represent the angular (zenith angle) dependences.

• The current approach uses observation space augmented control variables, but it would be better to be able
to directly share the high quality sea ice information obtained from microwave imagers with other sensors in
the atmospheric analysis. This would be necessary so that, for example, microwave sounders can benefit from
an improved surface description. This will likely require the use of model-space auxiliary control variable in the
atmospheric 4D-Var following Massart et al. (2021) but it will be challenging to deal with the strong sub-daily
variability of sea ice properties in that framework.

• The current framework does not retain sea ice state information from one analysis to the next, but it could be
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beneficial to retain it. This again is more easily done with a model-space auxiliary control variable. Among many
possible benefits, this could help extract more atmospheric information over sea ice. It could be done using a
persistence model, by training an empirical prognostic model in the offline framework, or in the best case by
using a physical sea ice model.

• Work is already in progress to assimilate the sea ice concentration in the ocean analysis by coupling the atmo-
spheric data assimilation with the ocean (e.g. Browne et al., 2019) following existing work on assimilating skin
temperature retrievals (McNally et al., 2022). This work aims to achieve the long term goal of replacing the use of
externally-derived sea ice concentration products in the ocean analyses, hopefully improving the quality of the
sea ice analysis and subsequently improving ocean and atmosphere forecast quality.

It is hoped that by rapidly improving the new all-sky all-surface assimilation framework following these principles,
many of the existing problems can be addressed, and many new areas can be opened up, especially land surface
applications.
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