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Abstract

The biological carbon pump is a key controller of how much carbon is stored within the global ocean. This pathway is influenced

by food web interactions between zooplankton and their prey. In global biogeochemical models, Holling Type functional

responses are frequently used to represent grazing interactions. How these responses are parameterised greatly influences

biomass and subsequent carbon export estimates. The half-saturation constant, or k value, is central to the Holling functional

response. Empirical studies show k can vary over three orders of magnitude, however, this variation is poorly represented

in global models. This study derives zooplankton grazing dynamics from remote sensing products of phytoplankton biomass,

resulting in global distribution maps of the grazing parameter k. The impact of these spatially varying k values on model

skill and carbon export flux estimates is then considered. This study finds large spatial variation in k values across the global

ocean, with distinct distributions for micro- and mesozooplankton. High half-saturation constants, which drive slower grazing,

are generally associated with areas of high productivity. Grazing rate parameterisation is found to be critical in reproducing

satellite-derived distributions of nanophytoplankton biomass, highlighting the importance of top-down drivers for this size class.

Spatially varying grazing dynamics decrease mean total carbon export by >17% compared to globally homogeneous dynamics,

with increases in faecal pellet export and decreases in export from algal aggregates. This study highlights the importance of

grazing dynamics to both community structure and carbon export, with implications for modelling marine carbon sequestration

under future climate scenarios.
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• Inverse modelling predicts strong spatial variability in global grazing dynamics for10
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• Locally-tuned zooplankton grazing dynamics improve the model’s ability to reproduce12
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• Locally-tuned zooplankton grazing dynamics can decrease mean carbon flux by 17%14

and modify the routing of carbon export.15
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Abstract16

The biological carbon pump is a key controller of how much carbon is stored within17

the global ocean. This pathway is influenced by food web interactions between zooplankton18

and their prey. In global biogeochemical models, Holling Type functional responses are19

frequently used to represent grazing interactions. How these responses are parameterised20

greatly influences biomass and subsequent carbon export estimates. The half-saturation21

constant, or k value, is central to the Holling functional response. Empirical studies show22

k can vary over three orders of magnitude, however, this variation is poorly represented23

in global models. This study derives zooplankton grazing dynamics from remote sensing24

products of phytoplankton biomass, resulting in global distribution maps of the grazing25

parameter k. The impact of these spatially varying k values on model skill and carbon26

export flux estimates is then considered. This study finds large spatial variation in k values27

across the global ocean, with distinct distributions for micro- and mesozooplankton. High28

half-saturation constants, which drive slower grazing, are generally associated with areas29

of high productivity. Grazing rate parameterisation is found to be critical in reproducing30

satellite-derived distributions of nanophytoplankton biomass, highlighting the importance31

of top-down drivers for this size class. Spatially varying grazing dynamics decrease mean32

total carbon export by >17% compared to globally homogeneous dynamics, with increases33

in faecal pellet export and decreases in export from algal aggregates. This study highlights34

the importance of grazing dynamics to both community structure and carbon export, with35

implications for modelling marine carbon sequestration under future climate scenarios.36

1 Introduction37

The ocean plays a major role in mitigating the impact of climate change (Hoegh-38

Guldberg & Bruno, 2010). It is thought that over 20% of anthropogenic carbon dioxide39

emissions are stored within the global ocean (Friedlingstein et al., 2022). The biological40

carbon pump describes a suite of processes which can transport organic carbon from the41

surface ocean, to depths of over 1000m (Turner, 2015). This pathway is responsible for42

approximately 10% of the ocean’s carbon inventory (DeVries, 2022). As carbon dioxide43

emissions are predicted to increase over the 21st Century, it is essential to fully understand44

the processes underlying carbon sequestration via the biological pump and predict how they45

will change in the future (Siegel et al., 2022).46

Organic carbon is exported out of the surface ocean as the faecal pellets of consumers or47

as aggregates of phytoplankton (Siegel et al., 2022). The rate that these forms of particulate48

carbon are exported via the biological carbon pump is directly influenced by zooplankton49

grazing. Grazing rates impact the biomass of both predator and prey (Rohr et al., 2023b)50

and consequently the production of algal aggregates and faecal pellets. Slower grazing rates,51

for example, reduce the amount of fecal pellets produced by consumers, which decreases the52

contribution of this pathway to carbon export.53

Biogeochemical (BGC) models can estimate particulate carbon using a combination54

of grazing rates and mortalities (e.g. Aumont et al. (2015)). In BGC models, grazing55

dynamics between predator and prey can be described by a food limited functional response56

(Gentleman & Neuheimer, 2008; Anderson et al., 2010; Vallina et al., 2014). This dictates57

how ingestion rates change with prey density (Gentleman & Neuheimer, 2008). The choice58

and parameterisation of grazing functional responses can impact estimates of carbon export59

(Anderson et al., 2010). Holling Type II or Type III (Holling, 1959) grazing formulations60

are commonly used (Kearney et al., 2021; Rohr et al., 2022). These formulations require two61

parameters: the maximum grazing rate, g, and the half-saturation constant, k. The half-62

saturation constant represents the concentration of prey at which half the maximum grazing63

rate is reached (Gentleman & Neuheimer, 2008). Together these two parameters describe64

the shape and magnitude of the functional response. Ecologically, they represent the time65

taken to capture and consume prey (Rohr et al., 2022) – characteristics that vary with66
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species physiology (Hansen et al., 1997; Hirst & Bunker, 2003). Although the functional67

response is described by both parameters, population dynamics are most sensitive to change68

in the k value (Rohr et al., 2022), which is the focus of this study.69

Laboratory measurements of k values (Hansen et al., 1997; Hirst & Bunker, 2003)70

show a large range in k values, spanning 0.96-6000 mgC m3. Laboratory (Hansen et al.,71

1997), ecological (Barton et al., 2013) and modelling (Rohr et al., 2023b) studies also point72

towards strong spatial variability in k values. However, even the most complex BGC models73

have fixed, globally homogenous, k values. These models can simulate spatial variability74

in grazing dynamics through the competition of multiple plankton functional types, but75

this likely does not capture the full physiological variability. Some models use mechanisms76

such as multi-prey responses (e.g. Anderson et al. (2010, 2015)) and prey preferences (e.g.77

Aumont et al. (2015)) to further emulate this variability, but these mechanisms are limited78

and there is little observational data to confirm what emergent grazing dynamics should be79

(Rohr et al., 2023b). Furthermore, there is uncertainty around the impact of zooplankton80

grazing on carbon flux, which contributes to the large variability in global estimates of81

carbon export (Siegel et al., 2014; Boyd, 2015; Rohr et al., 2023b).82

We address these gaps by using an inverse modelling approach to estimate spatial83

variation in zooplankton k values. We find large variations with notable implications for84

carbon export. We first describe our approach, then our findings and then the implications85

of these for our overall understanding of zooplankton and carbon export.86

2 Methodology87

2.1 Overview88

This study builds on the work of Siegel et al. (2014) which used satellite-derived es-89

timates of Net Primary Productivity (NPP) and phytoplankton biomass to predict global90

grazing rates and subsequent estimates of carbon export. The work by Siegel et al. (2014)91

was extended by Archibald et al. (2019) to include diel vertical migrations (DVM) by zoo-92

plankton, allowing organic particulate to be exported via both passive sinking and the93

vertical movements of organisms. We modified the model by Archibald et al. (2019) to94

include explicit grazing and zooplankton biomass pools.95

Here, we use a 0-D BGC box model to infer the optimal k parameters for both micro-96

zooplankton and mesozooplankton, within each grid cell of a 1x1 degree global domain. We97

force this model with observed bottom-up controls (phytoplankton cell division rates) but al-98

low it to prognostically compute Net Primary Productivity (NPP), phytoplankton biomass,99

zooplankton biomass and carbon export. Phytoplankton and zooplankton biomass pools100

are divided into two functional groups each (2P2Z). We then run a suite of simulations to101

determine what combination of k values is required to best match satellite derived phyto-102

plankton biomass and thus infer the spatial distribution of grazing dynamics. Finally, to103

understand how more realistic zooplankton behavioural diversity influences marine carbon104

cycling, we compare global prognostic ecosystem biomass and carbon export from three105

model scenarios: a run using non-optimised, globally homogenous k values derived from lit-106

erature (Baseline scenario); a run using optimised, globally homogenous k values (Global-k107

scenario) and a run using optimised, locally tuned k values (Local-k scenario). The model108

inputs (§2.2), the ecosystem sub-model (§2.3), the approach to determine optimised k values109

(§2.4), the carbon export sub-model (§2.5) and results analysis (§2.6) are discussed below.110

2.2 Input Data111

The model is forced by satellite-derived phytoplankton community mean growth rates,112

µ. The use of µ ensures coupling between NPP and grazing dynamics. Without this cou-113

pling, the top-down influence of grazing dynamics would be removed. This would make114
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overgrazing of phytoplankton an impossibility, as there would always be NPP regardless of115

what the free-running biomass population is. µ was selected as an input over the explicit116

representation of nutrients to ensure observational forcing remained.117

In the Carbon-based Productivity Model (CbPMv2) (Westberry et al., 2008), µ is118

computed from satellite derived chlorophyll-to-carbon ratios (Behrenfeld et al., 2005). Net119

Primary Productivity (NPP) can then be derived using the relationship between µ and120

satellite-derived estimates of phytoplankton carbon biomass (Pobs), where121

NPP = µPobs (1)

In CbPMv2, µ is computed for the bulk phytoplankton population; however, in this122

study we needed to differentiate the growth rates of two phytoplankton classes, to force123

our 2P2Z model. The distribution of particle backscatter can partition phytoplankton car-124

bon biomass across size classes, but not their respective growth rates. To estimate the125

partitioning of growth rates into two size classes (µi) we assume a fixed allometric ratio,126

then determine the values required to produce bulk NPP from the two biomass pools. The127

following three equations are satisfied at each time step and location:128

Pobs = PSobs + PLobs (2)

NPP = µPS PSobs + µPL PLobs (3)

µPL

µPS
= (

MPL

MPS
)−0.25 (4)

Both NPP and Pobs are derived from monthly climatologies presented in detail in Siegel129

et al. (2014). These climatologies are then interpolated to produce daily data. NPP values130

come from the Carbon-based Productivity Model (CbPMv2) (Westberry et al., 2008), which131

uses observations made by the Sea-viewing Wide-Field-of-view (SeaWiFS) satellite ocean132

colour mission between 1997 and 2008 (McClain, 2009; Siegel et al., 2014, 2013). Phyto-133

plankton biomass values (Pobs) are estimated using particulate backscattering coefficient134

data (Behrenfeld et al., 2005; Westberry et al., 2008; Kostadinov et al., 2010; Siegel et al.,135

2013). Pobs is partitioned into two size classes (PS&PL) using the slope of the particle136

size spectrum (Kostadinov et al., 2010; Siegel et al., 2014). Mi represents body size for137

the two size classes which has an allometric scaling constant of −0.25 applied in accordance138

with metabolic theory (e.g. West et al. (1997)). This ensures the growth rate of nanophy-139

toplankton is always faster than microphytoplankton. For Mi, the same lower size limit140

implemented to partition Pobs is used, i.e. 20µm and 0.5 µm for PL and PS respectively141

(Kostadinov et al., 2010; Siegel et al., 2014). A maximum value for µi is set at 2 d−1 to142

correspond with the CbPMv2 data (Westberry et al., 2008). Observed minimum growth143

rates are approximately 0.1 d−1, however the CbPMv2 model extrapolates this towards 0144

(Westberry et al., 2008). In our study we use a minimum growth rate within the range of145

these two values (0.01 d−1).146

In the CbPMv2, all properties are assumed to be constant and distributed evenly within147

the mixed layer (Westberry et al., 2008). Within this study, phytoplankton biomass is148

assumed to be homogeneous across the mixed layer and negligible below the mixed layer149

depth as in Siegel et al. (2014). Integrated NPP is assumed constant across the euphotic150

depth as per Siegel et al. (2014). To enable the calculation of µ, depth integrated NPP is151

divided by the greater of euphotic zone depth (Zeu) or mixed layer depth (Zml). Depth data152

is interpolated from monthly climatologies also presented in detail in Siegel et al. (2014).153
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2.3 Ecosystem Sub-Model154

A simple Phytoplankton-Zooplankton (2P2Z) model is constructed (Table 1). To run155

the ecosystem model, the global ocean is divided into a 1 degree latitude/longitude grid. The156

model is only run in grid cells with remote sensing products for a minimum of 10 out of 12157

months. This limits the model to roughly between 50 and −50oN , covering approximately158

2.93 ×108km2 of the global ocean or just over 80% of its total surface area. This avoids159

estimation bias in polar regions due to seasonal ice and cloud cover. The model is run with160

a daily time step and spun up until quasi-equilibrium is reached. Results are taken from161

the last year of the model run.162

The rate of change, per day, in biomass within the mixed layer (Zml) for each size class163

is given by164

dPS

dt
= µPSPS – GZS − aggPSPS2 −mP (PS − PS0)−

PS

Zml

dzml

dt
H(

dzml

dt
) (5)

dPL

dt
= µPLPL−GZL,PL − aggPLPL2 −mP (PL− PL0)−

PL

Zml

dzml

dt
H(

dzml

dt
) (6)

dZS

dt
= bZSGZS −mZS(ZS − ZS0)−GZL,ZS (7)

dZL

dt
= bZL(GZL,PL +GZL,ZS)−mZL(ZL− ZL0)− pZLZL2 (8)

where PS, PL,ZS, and ZL represent biomass of nanophytoplankton (2-20µm), microphy-165

toplankton (20-200µm), microzooplankton (20-200µm) and mesozooplankton (>200µm) re-166

spectively (Moriarty & O’Brien, 2013; Calbet & Calbet, 2008; Sieburth et al., 1978). The167

model does not resolve vertical or horizontal movement, therefore, biomass represents the168

mean concentration within the mixed layer, with the assumption of even distribution. Nat-169

ural mortality (mi) terms have a lower threshold applied of 0.2 for phytoplankton (Aumont170

et al., 2015) and 1.0 for zooplankton (Archibald et al., 2019) for model stability. Algal ag-171

gregates are represented as quadratic mortality terms (aggi) of plankton biomass (Aumont172

et al., 2015). This enables changes in biomass to be reflected in algal export. The influence173

of shear on aggregate formation (Aumont et al., 2015) is not represented due to the lack of174

vertical movement and other physical dynamics within the model. The last term in Equa-175

tions 5 and 6 describes the dilution of biomass as the depth of the mixed layer increases176

(Archibald et al., 2019; Siegel et al., 2014). H=1 if the change in mixed layer depth is177

less than or equal to zero, or H=0 otherwise (Archibald et al., 2019; Siegel et al., 2014;178

Evans & Parslow, 1985). The sub-model is closed by a quadratic mortality term (pZL) for179

mesozooplankton, which represents grazing by higher trophic levels.180

Zooplankton growth is the product of gross growth efficiency (bi) and grazing (Anderson181

et al., 2015). Grazing rates (Gi) are based on Holling Type III (Holling, 1959) functional182

responses, where183

GZS =
gZS PS2

k20 + PS2
ZS (9)

GZL,PL =
gZL PL2

k21 + PL2
ZL (10)

–5–
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Table 1. Model variables, parameters and forcing fields.

Parameters

Symbol Description Value Unit Refs.

dt Model time step 1 day -
k0 Microzooplankton half-saturation constant - mgC m−3 -
k1 Mesozooplankton half-saturation constant - mgC m−3 -
bZS Microzooplankton gross growth efficiency 0.3 - (1)
bZL Mesozooplankton gross growth efficiency 0.5 - (2)(3)
gZS Maximum grazing rate of microzooplankton 2 d−1 (4)
gZL Maximum grazing rate of mesozooplankton 2 d−1 (4)
mP Phytoplankton mortality 0.1 d−1 (2)(5)
mZS Natural mortality microzooplankton 0.05 d−1 (1)(6)
mZL Natural mortality mesozooplankton 0.005 d−1 (1)
PS0/PL0 Phytoplankton mortality refuge 0.2 mgC m−3 (1)
ZS0/ZL0 Zooplankton mortality refuge 1 mgC m−3 (2)(7)
pZL Quadratic mortality mesozooplankton 0.02 m3mgC−1d−1 (1)(8)
bact Bacterial reminerlisation rate 0.025 d−1 (1)
aggi Phytoplankton aggregation term 0.01/0.03 m3mgC−1d−1 (9)(10)
pdvm Proportion of mesozooplankton that migrate 0.5 - (2)
mfec Fraction of grazing going into fecal flux 0.3 - (2)(5)
fmet Fraction of absorbed carbon metabolized 0.5 - (2)(11)

Forcing Fields

Symbol Description Unit Refs.

Zml Mixed layer depth m (2)(5)
Zeu Depth of euphotic layer m (2)(5)
µ Phytoplankton Growth Rate d−1 (12-14)

Prognostic Variables

Symbol Description Unit

NPP Net Primary Productivity mgC m−2d−1

PS Nanophytoplankton biomass mgC m−3

PL Microphytoplankton biomass mgC m−3

ZS Microzooplankton biomass mgC m−3

ZL Mesozooplankton biomass mgC m−3

GZS Microzooplankton grazing rate on Nanophytoplankton mgC m−3d−1

GZL,PL Mesozooplankton grazing rate on Microphytoplankton mgC m−3d−1

GZL,ZS Mesozooplankton grazing rate on Microzooplankton mgC m−3d−1

GZL Mesozooplankton combined grazing rate mgC m−3d−1

Feu Total POC flux out of the euphotic zone mgC m−2d−1

Falg Flux of algal aggregates out of the euphotic zone mgC m−2d−1

Ffec Flux of fecal pellets out of the euphotic zone mgC m−2d−1

Jdvm DVM-mediated export flux mgC m−2d−1

Jmet Respired DIC produced in twilight zone by migrating ZL mgC m−2d−1

Jfec Faecal pellets produced in twilight zone by migrating ZL mgC m−2d−1

ER Export Ratio -
DER DVM Export Ratio -
DRR Respiration Ratio -
RD Weighted depth of respiration -
ffec Fraction of fecal pellets in the euphotic zone -
pmet Fraction of metabolism in the twilight zone -

(1) Aumont et al. (2015) (2) Archibald et al. (2019) (3) Anderson et al. (2010) (4) Rohr et al. (2022) (5)

Siegel et al. (2014) (6) Walker et al. (2019) (7) Stock and Dunne (2010) (8) Anderson et al. (2015) (9)

Stock et al. (2020) (10) (Bisson et al., 2020) (11) Steinberg and Landry (2016) (12) Behrenfeld et al.

(2005) (13) Westberry et al. (2008) (14) Kostadinov et al. (2010)
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GZL,ZS =
gZL ZS2

k21 + ZS2
ZL (11)

k0 and k1 are half-saturation constants and gi are maximum grazing rates. There is no184

prey preference (Aumont et al., 2015) for mesozooplankton grazing and no multiple prey185

feeding response (Anderson et al., 2010, 2015) as this fundamentally changes the relationship186

between k and the prey distribution (Gentleman et al., 2003; Rohr et al., 2022; Anderson187

et al., 2015). The grazing terms allow for two-way coupling between zooplankton and their188

prey, so that grazing rates are influenced by both predator and prey biomass. A Type III189

functional response is chosen due to increased stability, its suitability to coarse resolution190

global model and improved reproduction of seasonal population dynamics compared to Type191

II (Rohr et al., 2023b, 2022).192

2.4 Optimisation of Grazing Dynamics193

This study aims to assess the impact of locally-tuned grazing dynamics on outputs194

from a coupled ecosystem-carbon export model. To do this three scenarios are considered195

(§2.1). The same ecosystem-carbon export model and bottom-up forcing is used for all three196

scenarios and all parameters except k are kept constant. For the Baseline and Global-k197

scenarios, the same pair of k values is used for every grid cell location (i.e. they are globally198

homogeneous). For the Baseline scenario, the median k values from 40 models reviewed199

by Rohr et al. (2022) are used. These are 40 and 80 mgC m−3 for microzooplankton and200

mesozooplankton, respectively. For the Global-k scenario, a single pair of globally optimised201

values are used. For the Local-k scenario, k values are locally tuned, at every grid cell202

location. The optimisation process for both the globally optimised pair, and locally-tuned203

values is detailed below.204

For each model grid point, the optimum half saturation constant for both microzoo-205

plankton (k0) and mesozooplankton (k1) grazing is assessed using an inverse modelling206

approach. Multiple simulations of the model are run, each with a different set of k0 and207

k1 values. The output of the model is then compared to the climatological seasonal cycle208

of phytoplankton biomass (Behrenfeld et al., 2005; Westberry et al., 2008; Siegel et al.,209

2013, 2014). The k values that most closely reproduce these satellite-derived biomass values210

are then selected as the ‘optimum’ k values. To find the optimum values, a cost function211

is used. Several different cost functions were analysed which produced consistent results212

(Figures S1 & S2). The cost function presented here (Equation 12) is the sum of the nor-213

malised absolute average error (nAAE) (Stow et al., 2009) for both nanophytoplankton and214

microphytoplankton, computed across the full seasonal cycle. This represents the degree of215

agreement in the size and alignment of the seasonal cycle between model and observations.216

Here, the term ‘observations’ refers to the satellite-derived phytoplankton biomass. A value217

of zero indicates a perfect match and alignment with observations.218

Cost = nAAEPS + nAAEPL (12)

where,219

nAAEP (i) =
AAEP (i)

σo
(13)

AAEP (i) =
∑ |P (i)obs − P (i)mod|

n
(14)

σo is the standard deviation of the observed data, which represents observed temporal vari-220

ance in the seasonal cycle; n is the total number of observations across the climatological221

–7–
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year; i is the size class and P (i)obs and P (i)mod are observation and model values of phyto-222

plankton respectively. The absolute average error is normalised by the standard deviation223

of the observed climatology, to enable comparisons of relative errors in high and low produc-224

tivity regions. Due to the uncertainty in zooplankton observational estimates (Strömberg225

et al., 2009) a zooplankton term was not included in the cost function.226

To maximise computational efficiency, two routines of k optimisation are carried out.227

The first coarse resolution routine uses 15 log spaced values of k0 and k1 (mgC m−3): 16,228

20, 26, 33, 43, 54, 70, 89, 114, 146, 187, 239, 306, 392 and 501. These are within the range229

of empirical and model estimates presented in Rohr et al. (2022). The model is run for each230

possible pair of half-saturation constants, at every grid cell (i.e. a total of 225 (15x15) runs231

at each grid cell). The pair of half-saturation constants that produces the lowest cost are232

then selected as the optimal values at that location. The result is a distribution of optimal233

k values across the global ocean.234

To improve the resolution of our optimisation, a second optimisation routine is then235

carried out. At each location, the sampling input of k values is calculated by first taking236

the optimum k values from the coarse optimisation run. Next, an upper and lower limit for237

input values is calculated by ±10 % in each direction from the optimised values. Numbers238

are rounded to the nearest integer. The model is then run for every pairing of integers239

between these two limits at that location. The cost function is then reevaluated at each grid240

cell location and a new optimised pairing of k values selected. For example, if the coarse241

optimisation identifies k0 = 20 & k1 = 26 as optimal, we then rerun the simulation for all242

integer values (and pairings) of 18 <= k0 <= 22 and 23 <= k1 <= 29.243

For the Global-k scenario, the globally homogenous pair of k values are estimated by244

globally integrating the cost function for each k pairing. The pair that produce the lowest245

cost value from this global integration are selected for the Global-k scenario. The results246

from the coarse resolution optimisation routine are used for this integration. For the Local-247

k scenario, the optimum pair of k values estimated for every grid cell (from the second248

optimisation routine) are used.249

2.5 Carbon Export Sub-Model250

The Archibald et al. (2019) carbon export model is used to examine the impact of251

grazing parametrisation in this study. The carbon export model consists of two modules:252

the euphotic and twilight zone modules. In this study, the twilight zone component has253

remained unchanged from its description in Archibald et al. (2019). However, a few changes254

have been made to the euphotic zone module to reflect the use of fully-coupled grazing terms255

and the use of µ as an input instead of NPP. These changes are described below.256

Carbon export out of the euphotic zone (Total Export Flux) is the sum of the passive257

sinking flux (Feu) and DVM-mediated flux (Jdvm).258

Total Export Flux = Feu + Jdvm (15)

Feu = Falg + Ffec (16)

Feu is the sum of microphytoplankton algal aggregates (Falg) and faecal pellets pro-259

duced by mesozooplankton grazing (Ffec). Sinking algal aggregates from the euphotic layer260

(Falg) are estimated as261

Falg = Zeu (1− bact) (aggZL PL2 + 0.5 mP PL) (17)

–8–
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where the microphytoplankton aggregation term and 50 % of microphytoplankton linear262

mortality contributes to sinking aggregates (Aumont et al., 2015). As in Aumont et al.263

(2015), the remaining 50 % of the linear mortality term is classed as small POC, which264

is retained in the euphotic zone. bact is the proportion lost to bacterial remineralisation265

(Aumont et al., 2015). Nanophytoplankton does not contribute to algal export in the model,266

as its smaller cell size means aggregates are assumed to contribute to the microbial web in267

the euphotic zone, rather than sinking export flux (Archibald et al., 2019; Calbet & Landry,268

2004).269

Euphotic zone sinking faecal pellets (Ffec) and faecal pellets produced in the twilight270

(Jfec) are estimated as271

Ffec = (pdvm ffec + (1− pdvm)) (mfec GZL) Zeu (18)

Jfec = pdvm (1− ffec) (mfec GZL) Zeu (19)

where GZL is the combined grazing rate for mesozooplankton on both prey types (GZL,PL+272

GZL,ZS), pdvm is the proportion of mesozooplankton that participate in DVM, mfec is the273

fraction of grazed carbon expelled as faecal pellets and ffec is the proportion of faecal274

pellets expelled in the euphotic zone. DVM is treated as a single event and particulate275

organic carbon (POC) is a single pool of carbon that decays exponentially (Archibald et276

al., 2019). All carbon export parameter values (Table 1) were kept consistent with those277

detailed in Archibald et al. (2019). In this study, microzooplankton do not vertically migrate278

and their faecal pellets do not contribute to export flux as their smaller pellet size means279

they are assumed to be consumed by the microbial loop in the euphotic zone (Archibald et280

al., 2019; Calbet & Landry, 2004).281

Finally, the production of respired dissolved inorganic carbon (DIC) in the twilight zone282

(Jmet) is estimated as283

Jmet = pmet pdvm fmet (GZL −mfec GZL) Zeu (20)

where pmet is the fraction of total metabolism that occurs in the twilight zone and fmet284

is the fraction of absorbed carbon that is metabolised. The contribution of both Jmet and285

Jfec to DVM-mediated flux (Jdvm) is then described by286

Jdvm = Jmet + Jfec (21)

2.6 Analysis287

To analyse the output data from the optimisation of grazing dynamics and the ecosystem-288

carbon export model, several additional metrics are considered.289

2.6.1 Grazing Dynamics290

The biomass-weighted k value (BW-k) combines both k0 and k1 values. It considers291

the optimal k value for each zooplankton class and their relative abundance at every grid292

cell location (BW-k = (k0 ZS + k1 ZL)/Z). This reflects the emergent grazing dynamics of293

the entire zooplankton community. The half-saturation constant and maximum grazing rate294

can be related to the prey capture efficiency, ε. The prey capture efficiency is calculated by295

dividing the maximum grazing rate (See Table 2) by the half-saturation constant for each296

grid cell (Rohr et al., 2022) (ε = g / k2). To understand the relationship between k and297

both NPP and prey biomass, a linear regression is fitted to log-normalised data.298
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2.6.2 Carbon Export299

The export ratio represents the proportion of NPP exported as carbon from the euphotic300

zone. DVM export ratio (DER) is DVM-mediated export as a fraction of total carbon301

exported from the euphotic zone. The DVM respiration ratio (DRR) is the amount of302

respiration carried out by migrating zooplankton as a fraction of the integrated respiration303

from the twilight zone (Zeu – 1000m). The weighted depth of respiration (RD) is the increase304

in depth of dissolved inorganic carbon (DIC) production and oxygen utilisation, as a result305

of zooplankton vertical migrations. Carbon export metrics are described in further detail306

in Archibald et al. (2019).307

3 Results308

3.1 Distribution of Locally Tuned Grazing Dynamics309

Local tuning of k values results in high variability in inferred grazing dynamics (Figure310

1 & S1-4). k values span a range of 537 mgC m−3 (Table 2). High k values are generally311

associated with highly productive regions (Figure 1c). Lower values are generally associated312

with the less productive subtropical oligotrophic gyres, with the exception of the eastern313

South Pacific, where maximum k values (551 mgC m−3) are estimated for microzooplankton.314

Maximum k values are also found in the high latitudes of the southern hemisphere.315

Zooplankton functional groups are characterised by different grazing dynamics. Micro-316

zooplankton k values estimated from local optimisation are, on average, lower than meso-317

zooplankton (median k values are 18 mgC m−3 and 27 mgC m−3 respectively), suggesting318

faster grazing for the smaller size class (Table 2 & S1). In addition, the globally optimised319

pair of k values (estimated for the Global-k scenario - see §2.4) are 33 mgC m−3 and 392320

mgC m−3 for micro- and mesozooplankton respectively. Microzooplankton are generally321

characterised by more efficient grazing than mesozooplankton, with the exception of the322

oligotrophic gyres (Figure S5).323

The distribution of grazing dynamics also differs between zooplankton size classes. This324

is particularly evident in equatorial upwelling regions, where microzooplankton and meso-325

zooplankton communities are characterised by low and high k values respectively (Figure326

1a, b). These differences result in divergent relationships between k values, NPP and prey327

biomass for the two size classes. High k0 values are associated with low NPP and prey328

biomass, whilst high k1 values are associated with high NPP and prey biomass (Figure S6).329

Table 2. Locally-tuned microzooplankton (k0) and mesozooplankton (k1) half-saturation con-

stants estimated using the cost function. Half-saturation constant values are in mgC m−3. Global-k

and Baseline scenario k values are included below for comparison (NB: average statistics cannot be

provided for these two scenarios due to the same value being used for every grid cell in the model

domain).

Local-k k0 k1

Median 18 27
Geometric Mean 27 38

Biomass-weighted Mean 31 49
Range 14-551 14-551
IQR 17(14-31) 38(14-52)

Global-k 33 392
Baseline 40 80
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Figure 1. Locally-tuned k values. (a) Microzooplankton half-saturation constants (k0) esti-

mated using the cost function (Equation 12). b) Mesozooplankton half-saturation constants (k1)

estimated using the cost function. k values are in mgC m−3. c) Biomass-weighted k values (BW-k)

which considers the optimal k value for each zooplankton size class and their relative abundance.

BW-k reflects the overall grazing dynamics of the entire zooplankton community. The maximum

and minimum values on the colourbar represent the maximum/minimum k values sampled in the

optimisation.

3.2 Impact of Locally Tuned Grazing Dynamics on Model Skill330

Locally-tuned k values improve model skill in comparison to globally homogenous k331

values (Figure 2). Mean cost (Equation 12) is reduced by 43% in the Local-k scenario,332

compared to the Global-k scenario. Therefore, the use of locally tuned k values improves333
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Figure 2. Cost values representing the difference between observations of phytoplankton biomass

and the model phytoplankton biomass (Equation 12). a) Cost values from the Baseline model

scenario (non-optimised k values). b) Percentage change in cost values in the Global-k scenario

compared to the Baseline scenario. c) Percentage change in cost values in the Local-k scenario

compared to the Baseline.

the model’s ability to reproduce satellite-derived phytoplankton biomass (Figure 3). In334

comparison, the use of optimised globally homogenous k values (Global-k) has a limited335

ability (-14%) in reducing model cost from the Baseline scenario. Reduction in cost values336

due to local tuning is most evident in the tropics and subtropics, particularly productive337

upwelling regions (Figure 2). Despite improvements, microphytoplankton biomass estimates338

are the greatest source of error (78%) in the Local-k cost function (Figure S7-8; Table S3).339
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3.3 Ecosystem Impact340

The reproduction of the remotely sensed nanophytoplankton biomass distribution is341

greatly improved with the implementation of locally tuned k values (Figure 3 & Figure 4a-d).342

The use of optimised globally homogenous k values (Global-k) improves the reproduction of343

observed nanophytoplankton but shows little of the regional variability found in observations344

(Figure 4a & c). This regional variability is only reproduced when locally tuned grazing345

dynamics are implemented (Figure 4d) highlighting the importance of top-down drivers for346

this size class. The Local-k model does a good job in estimating global nanophytoplankton347

biomass with an annual mean (± S.D.) of 9.40±3 mgC m−3, in comparison to 11.89±6 mgC348

m−3 from satellite-derived estimates (Siegel et al., 2014) (Figure 4a). NPP is 52 and 43 Gt349

C yr−1 for the Local-k and Global-k runs respectively, compared to 87 Gt C yr−1 for the350

non-optimised baseline run (Figure S9).351

Microphytoplankton observational distributions are reproduced well in all three model352

versions showing little difference when locally tuned grazing dynamics are applied (Figure 4e-353

h), suggesting the distribution for this functional group is determined primarily by realistic354

bottom-up drivers. However, all three models overestimate biomass in equatorial upwelling355

areas (Figure 3). In the Local-k model, microphytoplankton has a global mean (± S.D.) of356

3.05±3 mgC m−3, compared to 2.62±5 mgC m−3, from satellite-derived estimates (Siegel357

et al., 2014) (Figure 4e). In the subtropical oligotrophic gyres, microphytoplankton biomass358

estimates appear to closely emulate observations, despite higher cost values in this region.359

This is due to the low biomass in the region, which results in small changes producing large360

error values with normalisation.361

Local-tuning of k values improves zooplankton biomass estimates in comparison to362

observations (Figure 4i-l & Figure S10). When only optimised homogenous global values are363

used, global mesozooplankton biomass is underestimated, with a mean (± S.D.) of 1.72±0.81364

mgC m−3 compared to 5.52±9 mgC m−3 from (Strömberg et al., 2009) (Figure 4i). This is as365

a result of the very high k value for mesozooplankton (392 mgC m−3), resulting in very low366

grazing and therefore biomass. In contrast, mean (± S.D.) mesozooplankton biomass from367

the Local-k model is 5.07±3 mgC m−3. All model versions underestimate mesozooplankton368

biomass in the higher latitudes of the northern hemisphere. Mean microzooplankton biomass369

estimates are greatly reduced with the implementation of locally-tuned grazing dynamics,370

from 29.09±23 mgC m−3 in the Global-k run to 8.85±11 mgC m−3 in the Local-k run371

(Table 3).372

3.4 Impact on Carbon Export373

Local tuning of k values decreases mean total carbon export by >17% (Table 3). The374

magnitude of change depends on the homogenous k values used for comparison (-35.64% in375

comparison to the Baseline and -17.07% in comparison to the Global-k scenario). Export376

values are generally high, with a total export flux of 7.19 PgC yr−1 for the Local-k scenario377

and 8.16 Pg C yr−1 and 10.94 Pg C yr−1 for the Global-k and Baseline scenarios respectively.378

The routing of carbon is impacted by the implementation of locally-tuned grazing dy-379

namics (Figure 5). In the Local-k scenario, more carbon is exported as faecal pellets and380

less as algal aggregates, compared to the Global-k scenario (Table 3). When k values are381

locally tuned, carbon exported from pellets and aggregates are more similar in magnitude382

(annual mean of 36.91 and 20.52 mgC m−2d−1 respectively) compared to model runs with383

homogenous k values. In contrast, in both the Baseline and Global-k model runs carbon384

export is dominated by algal aggregates. Local-tuning of k values also results in increased385

export (>21%) via vertically migrating zooplankton compared to the Global-k model run386

(Figure 5, Table 3).387

Productive upwelling regions, that are characterised by high carbon export rates, are388

the regions of greatest change from the local tuning of k values (Figure 5). These patterns389
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Figure 3. Absolute bias in modelled nanophytoplankton (PS) and microphytoplankton (PL)

biomass in comparison to satellite derived biomass (P(i)mod - P(i)obs). Three model scenarios

are shown: Baseline (non-optimised k values), Global-k (globally optimised k value) and Local-k

(locally tuned k values. Observational phytoplankton biomass values were calculated as per Siegel

et al. (2014), using particulate backscattering coefficient data (Behrenfeld et al., 2005; Westberry

et al., 2008; Kostadinov et al., 2010; Siegel et al., 2013).

mirror zooplankton grazing rates, for example, changes in fecal export from the euphotic390

zone (Ffec) and DVM-mediated export flux (Jdvm) are inversely proportional to those of391

mesozooplankton grazing. Mesozooplankton grazing on microzooplankton is a greater con-392

tributor to carbon flux than grazing on microphytoplankton. In the Local-k model, 80% of393

mesozooplankton grazing constitutes grazing on microzooplankton (GZL,ZS), however this394

is decreased from 91% (Baseline-k) and 99% (Global-k) with homogenous k values.395

4 Discussion396

One of the largest sources of uncertainty in the marine carbon cycle is zooplankton397

grazing (Rohr et al., 2023a). In this study we used an inverse modelling approach to398

estimate spatial variation in zooplankton grazing dynamics and explored the subsequent399
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Figure 4. Nanophytoplankton (PS), microphytoplankton (PL) and mesozooplankton (ZL)

biomass distributions estimated by the three model scenarios: Baseline, Global-k and Local-k.

Satellite-derived biomass distributions are included for reference. a & e are calculated as per Siegel

et al. (2014), using particulate backscattering coefficient data (Behrenfeld et al., 2005; Westberry

et al., 2008; Kostadinov et al., 2010; Siegel et al., 2013). Satellite-derived mesozooplankton biomass

(i) is from Strömberg et al. (2009).

impact of these dynamics on modelling marine ecosystems and carbon export. The focus of400

this study was the grazing parameter k, which is frequently used in global biogeochemical401

(BGC) models. We found that local tuning of k results in high variability of inferred402

grazing dynamics. The local-tuning of k values improved the model’s ability to reproduce403

satellite-derived phytoplankton biomass. Consequently, estimates of mean total carbon404

export decreased by >17% compared to global tuning, with a greater proportion of export405

as faecal pellets and less as algal aggregates.406

4.1 High Variability of Inferred Grazing Dynamics407

Local optimisation suggested high k values were generally associated with eutrophic408

ocean regions. This is consistent with a study in review (Rohr et al., 2023b) which used an409

inverse modelling approach to infer high community k values for a single zooplankton group410

(combining k0 and k1) in equatorial upwelling regions and higher latitudes. In equatorial411

upwelling regions, communities are dominated by suspension-feeding copepods (Steinberg &412

Landry, 2016), whose slower grazing rates enable diatom blooms to form (Rohr et al., 2023b).413

In the higher latitudes, higher half-saturation constants reduce grazing pressure on nutrient-414

limited phytoplankton stocks with slow growth rates, which prevents prey stocks from being415

fully depleted (Schmoker et al., 2013). Here, higher k values could characterise prey switch-416

ing events or increased handling time. Christaki et al. (2021) found mesozooplankton in the417

Southern Ocean preferentially graze on microzooplankton over phytoplankton, due to slow418

growth rates of the latter.419

Generally low k values were estimated in the subtropical oligotrophic gyres, where420

communities are dominated by faster grazing microzooplankton, in particular pico- and421

nano-sized flagellates (Calbet & Calbet, 2008). Anomalous high k0 values inferred in the422

hyper-oligotrophic South Pacific gyre (Ras et al., 2007) are in disagreement to the study423

by Rohr et al. (2023b) and coincide with an underestimation of NPP, nanophytoplankton424
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Table 3. Comparison of mean global carbon export estimates from the three model scenarios.

NPP = Net Primary Productivity. Falg = Euphotic export flux of algal aggregates. Ffec = Eu-

photic export flux of faecal pellets. Jdvm = DVM-mediated export flux. GZL = Mesozooplankton

grazing rate on all prey types. GZS = Microzooplankton grazing rate on all prey types. GZL,PL

= Mesozooplankton grazing on microphytoplankton. GZL,ZS = Mesozooplankton grazing on mi-

crozooplankton. PS = Nanophytoplankton biomass. PL = Microphytoplankton biomass. ZS =

Microzooplankton biomass. ZL = Mesozooplankton biomass. DER = DVM export ratio. DRR =

DVM respiration ratio.

Baseline Global-k Local-k

Mean S.D. Mean S.D. Mean S.D.

Export Flux (mgC m−2d−1) 93.48 127.46 69.44 107.14 61.74 88.32
NPP (mgC m−2d−1) 752.18 715.79 379.36 283.08 459.04 291.66

Export Ratio 0.09 0.05 0.12 0.10 0.10 0.08
PS (mgC m−3) 13.95 6.39 6.65 1.49 9.40 2.86
PL (mgC m−3) 4.04 3.52 4.38 4.03 3.05 3.32
ZS (mgC m−3) 16.69 11.59 29.09 29.91 8.85 11.21
ZL (mgC m−3) 4.66 3.62 1.72 0.81 5.07 2.70

GZS (mgC m−3d−1) 6.33 8.08 3.00 2.63 3.73 3.38
GZL (mgC m−3d−1) 4.66 3.62 1.72 0.81 5.07 2.70

GZL,PL (mgC m−3d−1) 0.11 0.25 1.7x10−3 4.1x10−3 0.21 0.31
GZL,ZS (mgC m−3d−1) 1.12 1.91 0.06 0.12 0.88 0.84
Falg (mgC m−2d−1) 68.54 88.19 68.28 104.98 36.91 72.32
Ffec (mgC m−2d−1) 20.70 33.14 0.97 1.84 20.52 18.76
Jdvm (mgC m−2d−1) 4.24 6.53 0.20 0.36 4.31 3.65

DER 0.03 0.02 3.2x10−3 2.3x10−3 0.10 0.06
DRR 0.03 0.02 2.7x10−3 2.0x10−3 0.11 0.06

biomass and near-zero growth rates. This suggests that in this region, nanophytoplankton425

growth rates used to force the model may be too low. Growth rates are derived from observed426

NPP, which is divided by the greater of euphotic and mixed layer depth. The South Pacific427

gyre is characterised by a deep euphotic layer, which may have produced unrealistically428

low growth rates and anomalous k values for this size class. In addition, the lack of explicit429

representation of temperature within the model may affect growth and grazing rates in these430

extreme environments. The 1P1Z 3D model in Rohr et al. (2023b) uses modelled rather431

than observationally derived bottom-up controls which may negate these issues.432

In this study, mesozooplankton showed on average, higher k values, and therefore slower433

prey capture times. This is consistent with ecological understanding (Barton et al., 2013).434

As the maximum grazing rate, g, was held constant across the model domain, variation in435

the k value represents variation in the prey capture rate, rather than consumption (Rohr436

et al., 2022). For both size classes, average half-saturation constants were in the lower437

quartile of empirical values (Rohr et al., 2022; Hansen et al., 1997; Hirst & Bunker, 2003).438

However, empirical estimates are from laboratory measurements of samples collected from439

a very narrow range of locations, with the majority from coastal regions in the northern440

hemisphere (e.g. fjords in Norway, coastal USA and UK, Japan) and none representing the441

open ocean (Hansen et al., 1997; Hirst & Bunker, 2003). These are also of individual species442

and are unlikely to be representative of the community mean values estimated here for each443

1 degree grid cell (Rohr et al., 2022).444
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Figure 5. Changes in carbon export due to grazing parameterisation. Three model runs are

presented: Baseline, Global-k and Local-k. The outputs from the Baseline run are presented in

plots a-f. Plots g-l show the absolute change when changing the model input from the baseline run

(non-optimised k values) to the Global-k run (globally optimised k values). Plots m-r show the

absolute change when changing the model input from the Global-k run (globally optimised k values)

to the Local-k run (locally tuned k values). Falg = Euphotic export flux of algal aggregates. Ffec =

Euphotic export flux of faecal pellets. Jdvm = DVM-mediated export flux. GZL =Mesozooplankton

grazing rate on all prey types. GZS = Microzooplankton grazing rate on all prey types.

Locally-tuned k values produced global distributions of grazing rates (Gi) that are445

consistent with other studies (Siegel et al., 2014; Archibald et al., 2019). Archibald et al.446

(2019) used satellite-derived estimates of Net Primary Productivity (NPP) and phytoplank-447

ton biomass to predict global grazing rates. Mean GZS was 4.17 mgC m−3d−1 and mean448

GZL,PL was 0.98 mgCm−3d−1 in Archibald et al. (2019). These represent grazing mortali-449

ties from satellite observations on phytoplankton, so include grazing losses by other groups450

not considered here (e.g. mesozooplankton grazing on nanophytoplankton). However, the451

Local-k model improves the reproduction of these observationally derived grazing rates in452

comparison to globally homogenous k values (Table 3), with the potential to help address453

the uncertainty in global zooplankton grazing dynamics.454
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4.2 Implications of Improved Model Skill for Future Studies455

With potential to improve model skill, the local optimisation of grazing dynamics could456

be advisable in future BGC modelling studies. This study shows that the competition gen-457

erated by two zooplankton functional types isn’t sufficient to emulate the global variability458

in grazing suggested by the locally tuning k values. Other models currently emulate this dy-459

namical variability using different methods, such as increased numbers of plankton functional460

groups (PFTs) (e.g. Dutkiewicz et al. (2021), prey switching (e.g. Anderson et al. (2010)),461

or prey preferences (e.g. Aumont et al. (2015) ). In this study, four PFTs were used, in462

line with several modelling studies (e.g. Siegel et al. (2014)), however, this groups together463

species with different functional traits, with different geographic distributions (Barton et464

al., 2013). Gelatinous salps, for example, graze preferentially on nanophytoplankton, which465

leads to their prevalence in subtropical oligotrophic gyres (Barton et al., 2013). By explicitly466

representing more PFTs and their prey preferences, some of the impact of locally-tuning k467

values may be reduced. A study by Le Quéré et al. (2016) showed that the explicit repre-468

sentation of krill in the Southern Ocean improved model skill in reproducing zooplankton469

dynamics. However, increasing the number of PFTs is computationally costly and unlikely470

to encompass the full extent of physiological and behavioural diversity found within the471

plankton community The global distributions of the grazing parameter k, produced in this472

study, could provide a platform for varying zooplankton grazing parameters in larger, more473

complicated BGC models, with environmental conditions. If the variability in local tuned k474

values correlates with key environmental variables, then grazing dynamics could be imple-475

mented as a function of covariates. This could improve model skill in comparison to the use476

of globally homogenous k values, whilst remaining computationally effective. This work is477

beyond the scope of this study but is an area for further work.478

4.3 Reducing Uncertainty in Modelling Zooplankton479

Large uncertainty exists in quantifying zooplankton biomass (Petrik et al., 2022), how-480

ever the use of locally tuned k values improves the models ability to reproduce observational481

estimates. The observed mean (±S.D.) biomass of mesozooplankton is estimated as 5.9±10.6482

mgC m−3 by Buitenhuis et al. (2013); Moriarty and O’Brien (2013), which compares to 5.07483

±2.7 mgC m−3 in the Local-k model scenario. In contrast, optimised globally homogenous484

k values worsen the model’s ability to reproduce observational mesozooplankton biomass485

in comparison to the Baseline scenario (Table 3). This highlights a potential limitation of486

global optimisation of grazing dynamics when only two zooplankton functional groups are487

used. This also suggests a possible reason why several BGC models underestimate mean488

global mesozooplankton biomass by a similar magnitude (Figure S10) (Aumont et al., 2015;489

Lovato et al., 2022). In addition, mean global microzooplankton estimates from the Global-k490

scenario are much greater than observations by Buitenhuis et al. (2013), where biomass is491

estimated to have a mean of 9.3±17.1 mgC m−3 and a median of 3.1 mgC m−3. These lim-492

itations occur despite improved model skill at reproducing the magnitude and distribution493

of satellite-derived phytoplankton. Local-k mean global biomass for microphytoplankton is494

within the range of estimates by Buitenhuis et al. (2013)(Table 3).495

4.4 Implications for Predicting Carbon Export under a Changing Climate496

This study shows large variability in carbon export estimates driven by inferred grazing497

dynamics. There is a high degree of uncertainty in global export flux estimates, which vary498

between 5-12 PgC yr−1 (Siegel et al., 2022). Locally tuning grazing dynamics modifies499

carbon export estimates by >17% to coincide with this range (7.19 PgC yr−1). The Global-500

k scenario estimates high carbon export, despite underestimating mesozooplankton biomass501

and therefore fecal export. This is due to a large proportion of algal aggregates. The502

substantial influence of this one model component on carbon export highlights one possible503

cause for uncertainty in carbon sequestration estimates (Laufkötter et al., 2016). It is vital504

to reduce this uncertainty when modelling under different climate scenarios.505
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Algal and fecal estimates were closer to contributing equally to carbon export (as found506

within previous studies (Stock et al., 2014; Steinberg & Landry, 2016)) when grazing dy-507

namics were locally optimised. The relationship between algal aggregates and faecal export508

highlights the balance between natural and grazing mortalities within BGC models, as the509

amount of biomass available for aggregates from mortality rates is impacted by grazing. The510

proportion of faecal versus algal export is determined by the zooplankton species present511

and their grazing dynamics (Steinberg & Landry, 2016). Local tuning of grazing dynamics512

therefore has important consequences for climate models as the impact of climate change on513

plankton communities differs between species, trophic levels and geographic location (Cael514

et al., 2021), further influencing these two routes of carbon export.515

The modelled distribution of carbon export corresponds to estimates by Stock et al.516

(2020), with coastal upwelling areas experiencing the greatest change from the local tuning517

of k. These areas produce the highest export rates due to more efficient diatom-copepod food518

chains (Schmoker et al., 2013). However, the fast growth rates of diatoms makes them more519

susceptible to abrupt changes over the 21st Century in response to climate change (Cael520

et al., 2021). It is therefore vital to decrease uncertainty in grazing and export estimates521

in these areas. The subtropical oligotrophic gyres and the Southern Ocean are areas of522

lower carbon export due to the presence of smaller phytoplankton species which are lighter,523

sinking less carbon into the ocean interior (Murphy et al., 2021; Schmoker et al., 2013;524

Calbet & Landry, 2004). The highest flux estimates in the Southern Ocean occur closer525

to the Antarctic shelf edge, predominantly during summer months (Stock et al., 2020).526

However the polar extremes are out of the scope of this study due to the limitations of527

satellite observations in these areas (Siegel et al., 2014), which is a common issue with many528

plankton models (Cael et al., 2021; Dutkiewicz et al., 2021).529

4.5 Limitations530

There are several limitations of this modelling study. Firstly, non-k parameters are531

held constant across the model domain, when in reality they are likely to vary in space532

and time. If these other parameters were tuned, the non-optimised (Baseline scenario)533

estimate of NPP may be reduced to coincide with the observed range (45-60 GtC yr−1)534

(Westberry et al., 2008; Le Quéré et al., 2016) alongside the two optimised model scenar-535

ios. GZl,PL and GZl,ZS also use the same k value, which obscures whether changes in k1536

are biased to improve microphytoplankton estimates or nanophytoplankton estimates (via537

microzooplankton) during the cost analysis. This may contribute to the overestimation of538

microphytoplankton in all model runs. Secondly, grazing formulas are based on the Holling539

Type III functional response, however there is a lack of consensus within the modelling com-540

munity about the most suitable functional response. Anderson et al. (2010) found that the541

use of different grazing formulations caused large variations in biomass, with diatoms most542

greatly affected. This resulted in carbon export predictions varying by as much as 25%.543

Thirdly, within the centre of the oligotrophic gyres, microzooplankton were characterised544

by less efficient prey capture rates compared to mesozooplankton (Figure S5), however prey545

capture efficiency should decline with size (Rohr et al., 2022; Hansen et al., 1997). This546

highlights a possible limitation of the model, potentially the functional groups used or model547

parameters. In this study, the same maximum grazing rate was used for both size classes,548

so prey capture efficiency is dominated by the half-saturation constant, or capture rate. In549

oligotrophic regions, smaller plankton dominate, so prey capture efficiencies for microzoo-550

plankton are more likely to be driven by consumption rather than capture rates, suggesting551

higher maximum grazing rates are needed to represent realistic capture efficiencies in these552

environments. Fourthly, CbPMv2 was selected as the NPP forcing variable for consistency553

with Archibald et al. (2019), however other NPP models such as the The Carbon, Absorp-554

tion, and Fluorescence Euphotic-resolving (CAFE) (Silsbe et al., 2016) have been found to555

be more realistic, with consequences for carbon export (Bisson et al., 2018). Finally, the556

carbon export model does have several limitations which are discussed in detail in Archibald557

et al. (2019). In particular, the model is very sensitive to three parameters – ffec, fmet558
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and pdvm, however these parameters remain unchanged to enable comparisons. The model559

also doesn’t include small fecal pellets produced by microzooplankton in carbon export es-560

timates as they are assumed to be retained in the euphotic zone. However, some studies561

suggest fecal export by this size class could contribute a significant portion of export flux,562

particularly in the subtropical oligotrophic gyres Bisson et al. (2020).563

4.6 Future Considerations564

The simplification of the coupled ecosystem-carbon export model means the results of565

this study should be considered as an example of an ecosystem model with and without566

spatially varying k values. Here, we have shown that highly spatially heterogeneous grazing567

dynamics are required to reproduced observed biomass when forced with observed bottom-568

up controls. This heterogeneity exceeds what is achievable from the explicit competition569

between two zooplankton functional types and has profound implications for the routing and570

magnitude of carbon export. Future models, particularly those concerned with ecosystem571

dynamics, high trophic levels and carbon export must reconcile with the possibility that even572

two zooplankton groups are insufficient to capture the true variability in top-down controls573

across the globe. More realistic representation of the global variability in zooplankton574

grazing dynamics may help shed light on the uncertainty in carbon export estimates under575

future climate scenarios.576

5 Open Research577

Climatologies used here are presented in detail in Siegel et al. (2014). CbPMv2 (Westberry578

et al., 2008) Net Primary Productivity, particulate backscatter (used to derive phytoplank-579

ton carbon biomass) and mixed layer depth data can be sourced from: http://orca.science.580

oregonstate.edu/npp products.php. World Ocean Atlas temperature and oxygen data used581

in the Archibald et al. (2019) carbon export model can be found at: (https://coastwatch.pfeg.582

noaa.gov/erddap/index.html).583
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Figure S1. Locally-tuned microzooplankton half-saturation constant (k0) estimated using

alternate cost functions. a) MWAAE = Absolute average error (Stow et al., 2009) normalised

using the observational mean instead of the standard deviation (as per the main article). b)

RMSE = the Root Mean Squared Error (Stow et al., 2009), normalised by standard deviation

of observations. c) Bias = Average Error or Bias (Stow et al., 2009), normalised by standard

deviation of observations. Plots show very similar results are produced, no matter the cost

function used.
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Figure S2. Locally-tuned mesozooplankton half-saturation constant (k1) estimated using

alternate cost functions. a) MWAAE = Absolute average error (Stow et al., 2009) normalised

using the observational mean instead of the standard deviation (as per the main article). b)

RMSE = the Root Mean Squared Error (Stow et al., 2009), normalised by standard deviation

of observations. c) Bias = Average Error or Bias (Stow et al., 2009), normalised by standard

deviation of observations. Plots show very similar results are produced, no matter the cost

function used.
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Table S1. Average locally-tuned microzooplankton (k0) and mesozooplaknton (k1) half-

saturation constants estimated using alternate cost functions. Units are in mgC m−3. MWAAE

= absolute average error (Stow et al., 2009), normalised using the mean of observations. RMSE

= the Root Mean Squared Error (Stow et al., 2009), normalised using the standard deviation of

observations. Bias = annual average Error or Bias (Stow et al., 2009), normalised using standard

deviation of observations.
Cost function k0 k1

Median Mean Median Mean
MWAAE 18 71 25 95
RMSE 18 72 29 95
Bias 18 73 28 93

Figure S3. Locally-tuned microzooplankton half-saturation constant (k0) estimated using

nAAE cost function (Equation 12) from a) December-February, b) March-May, e) June-August

and f) September-November. Figures show consistency across seasons.
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Figure S4. Locally-tuned mesozooplankton half-saturation constant (k1) estimated using

nAAE cost function (Equation 12) from a) December-February, b) March-May, e) June-August

and f) September-November. Figures show consistency across seasons.

Figure S5. Prey capture efficiencies. Values represent the log ratio of prey capture efficiencies

for micro- and mesozooplankton, or ε0 and ε1, respectively. The prey capture efficiency is cal-

culated by dividing the maximum grazing rate (See Table 1) by the half-saturation constant for

each grid cell (Rohr et al., 2022)
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Table S2. Seasonal averages of locally-tuned microzooplankton (k0) and mesozooplankton

(k1) half-saturation constants estimated using nAAE cost function (Equation 12). Units are

in mgC m−3.DJF= December-February, MMA=March-May, JJA = June-August and SON =

September-November.

Season k0 k1
Median Mean Median Mean

DJF 18 72 29 94
MMA 18 71 29 95
JJA 18 72 29 93
SON 18 72 290 95

Table S3. Breakdown of mean cost estimates form the Local-k model run into its constituent

parts (Equations 12-14). Cost consist of normalised Absolute Average Error values (nAAE) for

each size class. Cost indicates model fit against satellite observations of phytoplankton biomass.

A value of zero indicates a perfect match with satellite observations. DJF=December-February,

MAM=March-May, JJA=June-August, SON= September-November, PS=nanophytoplankton,

PL= microphytoplankton.

Time Period AAE nAAE Cost
PS PL PS PL

Annual 3.44 2.75 2.05 7.18 9.23
DJF 4.28 2.79 7.37 37.75 -
MAM 3.43 2.78 4.78 18.57 -
JJA 3.78 2.66 6.66 23.74 -
SON 4.18 2.76 4.02 18.95 -
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Figure S6. Comparison of half-saturation constant values from local optimisation with vari-

ables a) Microzooplankton half-saturation constant (k0) and model-derived NPP from nanophy-

otplankton (NPPn), b) Mesozooplankton half-saturation constant (k1) and model-derived NPP

from microphytoplankton (NPPm), c) Microzooplankton half-saturation constant (k0) and

Nanophytoplankton Biomass (PS), d) Mesozooplankton half-saturation constant (k1) and Mi-

crophytoplankton Biomass (PL). All values are log-transformed. Units are mgC m−3 for biomass

and k values, and mgC m−2d−1 for NPP. Red line = linear regression.
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Figure S7. Cost values from the Local-k model are the sum of the a) Normalised Absolute

Average Error for nanophytoplankton biomass, and the b) Normalised Absolute Average Error

for microphytoplankton biomass.
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Figure S8. Normalised Absolute Average Error (nAAE) values for observations and model phy-

toplankton biomass estimates for each season. DJF = December-February. MAM=March-May).

JJA = June-August. SON = September-November. Estimates are for both nanophytoplankton

(a,c,e,g) and microphytoplankton biomass (b,d,f,h).
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Figure S9. a) Local-k model Net Primary Productivity (NPP), b) Satellite-derived NPP from

Westberry et al. (2008).
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Figure S10. Global mean mesozooplankton (Z) estimates from this study, compared with

other model and empirical values. Blue indicates estimates derived from observations. Green

indicates model based estimates. Purple indicates estimates from this study from three dif-

ferent scenarios: Baseline scenario with non-otimised globally homogenous k values; Global-k

scenario with globally optimised homogenous k value for each size class; Local-k scenario with

locally optimised k values. Sources of data are: STROM= Strömberg et al. (2009); MARE=

Buitenhuis et al. (2013); GLMM= Heneghan et al. (2020); CPOD=Moriarty and O’Brien (2013);

CMCC= BFMv5.2 (Lovato et al., 2022); IPSL = PISCES2.0 model (Aumont et al., 2015), UK =

MEDUSA2.1 model (Yool et al., 2013, 2021), GFDL = COBALTv2 model (Stock et al., 2020).

See Petrik et al. (2022) for description of zooplankton estimates from other model and empircial

estimates.
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Figure S11. a) Local-k model nanophytoplankton growth rate, b) Local-k model microphyto-

plankton growth rate, c) Zeu, depth of the euphotic layer, d) Zml, mixed layer depth. Note the

different scales for the growth rate figures.
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Figure S12. Changes in carbon export due to grazing parameterisation. Three model runs

are presented: Baseline, Global-k and Local-k. The outputs from the Baseline run are presented

in the left-hand column. Plots in the middle column show the absolute change when changing

the model input from the baseline run (non-optimised k values) to the Global-k run (globally

optimised k values). Plots in the righ column show the absolute change when changing the

model input from the Global-k run (globally optimised k values) to the Local-k run (locally

tuned k values). fEu = Total euphotic zone export flux as a fraction of NPP. fDVM = DVM-

mediated export flux as a fraction of NPP. NPP = Net primary Productivity, ER= export ratio,

DER=DVM export ratio, DRR= DVM respiration ratio. RD = Respiration Depression.
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Figure S13. Microzooplankton biomass estimated by the model under three scenarios: Base-

line, Global-k and Local-k.
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