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ABSTRACT: Climate change projections show amplified warming associated with dry conditions

over tropical land. We compare two perspectives explaining this amplified warming: one based on

tropical atmospheric dynamics, and the other focusing on soil moisture and surface fluxes. We first

compare the full spatiotemporal distribution of changes in key variables in the two perspectives

under a quadrupling of CO2 using daily output from the CMIP6 simulations. Both perspectives

center around the partitioning of the total energy/energy flux into the temperature and humidity

components. We examine the contribution of this temperature/humidity partitioning in the base

climate and its change under warming to rising temperatures by deriving a diagnostic linearized

perturbation model that relates the magnitude of warming to (1) changes in the total energy/energy

flux, (2) the base-climate temperature/humidity partitioning, and (3) changes in the partitioning

under warming. Using CMIP6 output, we show that the spatiotemporal structure of warming is

well predicted by the inverse of the base-climate partition factor, which we term the base-climate

sensitivity: conditions that are drier in the base climate have a higher base-climate sensitivity

and experience more warming. On top of this relationship, changes in the partition factor under

intermediate (between wet and dry) surface conditions further enhance or dampen the warming.

We discuss the mechanistic link between the two perspectives by illustrating the strong relationships

between lower tropospheric temperature lapse rates, a key variable for the atmospheric perspective,

and surfaces fluxes, a key component of the land surface perspective.
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SIGNIFICANCE STATEMENT: Understanding what conditions give rise to the largest magni-28

tude of warming in response to rising CO2 concentrations is not only scientifically important but29

also critical from a climate impacts standpoint. Two main perspectives, one focusing on atmo-30

spheric dynamics and the other focusing on land surface processes, have been proposed to explain31

the stronger warming associated with drier conditions in the tropics. Here, we compare and contrast32

these two perspectives. Using climate model output, we demonstrate that amplified warming can33

largely be predicted from base-climate dryness alone in both perspectives, but is further modified34

based on changes in the partitioning of energy between temperature and moisture. We highlight the35

spatiotemporal conditions where assumptions in the two perspectives hold and where deviations36

occur.37

1. Introduction38

The manner in which temperatures are expected to change regionally with global warming is39

not only an important scientific question, but also a critical issues for climate change impacts and40

adaptation. Previous studies using climate models have shown that land warms more than the41

ocean (e.g., Sutton et al. 2007; Joshi et al. 2008, 2013; Byrne and O′Gorman 2013, 2018) and,42

over tropical land, days at high temperature percentiles warm more than the average, resulting in43

an elongated upper tail and exacerbated hot extremes (e.g., Duan et al. 2020; Byrne 2021). This44

“amplified” warming over land seems to be associated with drier conditions: land is drier than the45

ocean, and those days at the high percentiles of the temperature distribution are days with dry soils46

and low relative humidity.47

Two main perspectives have been proposed to explain this drier–warmer relationship. One51

perspective is based on tropical atmospheric dynamics (Joshi et al. 2013; Byrne and O′Gorman52

2013, 2018). Weak temperature gradients in the tropical upper troposphere (WTG; Sobel and53

Bretherton 2000) lead to approximately spatially-uniform temperatures. Below, the uniform free54

tropospheric temperatures are connected to the surface by a temperature lapse rate closer to a moist55

adiabat over a moist surface such as the ocean and closer to a dry adiabat over a drier surface56

such as the land. The larger lapse rate over the drier surface corresponds to higher surface air57

temperature. Upon warming, the moist adiabatic lapse rate reduces, while the dry adiabatic lapse58

rate does not change; this, combined with the lack of temperature gradients in the free troposphere,59
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enhances the base-climate temperature gradient across land and ocean and leads to a land-ocean60

warming contrast (Joshi et al. 2013, the schematics are reproduced in Fig. 1a).
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Fig. 1. (a, b) Schematics of cited studies that explain the amplified warming over land with the atmospheric

dynamics perspective. In (a) and (b), lines with faint colors show temperature profiles in the base climate; and

lines with bright colors show temperature profiles in the warm climate.
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Building upon this argument, Byrne and O′Gorman (2013) made the arguments of Joshi et al.62

(2013) more quantitative by using the concept of quasi-equilibrium (QE; Arakawa and Schubert63

1974; Emanuel et al. 1994; Neelin and Zeng 2000). QE together with WTG suggests that the64

temperature profile in the free tropical troposphere approximately follows the moist adiabat with65

minimal horizontal gradients. Below the cloud base in the boundary layer, the temperature profile66

follows a dry adiabat (schematics shown in Fig. 1b). The higher the cloud base, the longer path in67

the lower troposphere where temperature follows the dry adiabat, the warmer the surface.68

With the theoretical bases of QE and WTG, this framework (the “QE–WTG” framework here-69

after) can be expressed into mathematical forms by making two assumptions: (1) an atmospheric70

dynamics constraint that the increase of the boundary layer moist static energy (MSE) across land71

and ocean is uniform, and (2) a moisture constraint that the change of 𝑞 over land is a fraction (𝛾) of72

that over ocean. This fraction 𝛾 comes from the base-climate ratio of 𝑞 over land to 𝑞 over ocean,73

and is assumed to remain constant with climate change. Because the base-climate humidity ratio74

𝛾 is on average less than 1, land moistens less and warms more than the ocean. This “QE–WTG”75

framework was initially applied to explain the mean warming contrast over land and ocean (Byrne76
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and O′Gorman 2013, 2018), and has since been adjusted to explain the amplified warming of the77

hot tail of the temperature distribution over tropical land (Byrne 2021).78

In contrast to the atmospheric dynamics based perspective is a land surface based perspective.79

The surface perspective instead emphasizes changes in the partitioning between sensible and80

latent heat fluxes in response to moisture availability and/or changes in plants’ physiology (e.g.,81

Seneviratne et al. 2010; Berg et al. 2014; Donat et al. 2017; Vogel et al. 2017; Duan et al. 2020;82

Dirmeyer et al. 2021). When sufficient water is available for evapotranspiration, a greater portion of83

the net radiation at the surface (𝑅𝑛) is released as latent heat (LH), which does not directly increase84

the surface air temperature (schematic in Fig. 1c). When the soil gets sufficiently dry and/or plants’85

stomata close, the ratio of 𝑅𝑛 that can be released through LH reduces. Consequently, the surface86

warms more and sensible heat (SH) fluxes increases, which warms the near-surface air. In this87

surface perspective, soil moisture, or the Bowen ratio (the ratio of SH to LH) critically controls the88

warming magnitude.89

Although both perspectives involve a partition of the total energy between moistening and90

warming, there is a gap between the perspectives. The atmospheric perspective is used primarily91

by the atmospheric dynamics community, and its reasoning relies on constraints that are end92

products of atmospheric variables in an equilibrium state without explicit links to the changes in93

soil moisture or vegetation dynamics that the surface perspective emphasizes. In fact, the moisture94

constraint in the QE-WTG framework is derived from an “ocean influence model” (Chadwick95

et al. 2016; Byrne and O′Gorman 2016, 2018). The surface perspective is familiar to the land-96

atmosphere interaction community, and is process-based, but the physical constraints are based97

on the local surface energy balance and there is a lack of connection to atmospheric processes98

and to the global constraints offered by the atmospheric dynamics perspective. Furthermore, the99

atmospheric perspective has mainly been invoked to explain large-scale (e.g. averaged across100

zonal bands and/or over land and ocean) and time-mean changes (only recently applied to daily101

time scales; Byrne 2021); whereas the surface perspective has widely been used for local extreme102

days (e.g., Donat et al. 2017; Vogel et al. 2017; Duan et al. 2020; Dirmeyer et al. 2021).103

In addition, there is a nuanced question regarding whether the climatological dryness, or the104

change in dryness in response to increased CO2, is more important for amplified warming (dryness105

is measured by specific humidity in the atmospheric perspective and soil moisture in the surface106
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perspective). In the QE–WTG framework, the moisture constraint parameter 𝛾 is calculated based107

on the base-climate specific humidity alone, i.e., the amplified warming can be predicted for regions108

that are climatologically dry (base-climate 𝛾 smaller than one), whereas the surface perspective109

often emphasizes changes in the soil moisture or surface flux partition with climate change. This110

difference can cause confusion especially when the decrease of relative humidity (RH) or the111

increase of climate aridity (measured by P/PET in the cited work) are discussed together with the112

amplified warming (Sherwood and Fu 2014; Fu and Feng 2014; Byrne and O′Gorman 2018): one113

may wonder whether more drying leads to more warming, or more warming leads to more drying.114

In order to understand the equivalency, or lack thereof, between the two perspectives, we examine115

the following questions in the context of climate models:116

(1) Do the key variables in the two perspectives correspond to each other?117

(2) How do the dryness measures between the two perspectives relate to each other?118

(3) How do climatological dryness versus changes in dryness contribute to amplified warming119

in each perspective?120

Motivated by these questions, we first compare the full spatiotemporal distribution of key vari-121

ables and their changes in the two perspectives using a process-based phase space of daily soil122

moisture and the climatological aridity index, which captures both the temporal variability and the123

climatological spatial variations in dryness (Duan et al. 2023). In the phase space, we can visualize124

how each perspective manifests both across climatologically dry and wet regions as measured by125

the climatological aridity index (AI), and across temporal variability in dryness and wetness within126

locations that have similar AIs. The data and frameworks we use are introduced in Section 2. We127

discuss the applicability of the QE-WTG framework to explaining the spatiotemporal distribution128

of warming and examine the moisture constraint’s connection with the land surface in Section 3.129

We then use a diagnostic linearized perturbation model (see also Zeppetello et al. 2020; Chan130

et al. 2022, for applications in land-atmosphere interactions) to discuss the relative roles of the131

base-climate dryness versus the change in dryness for the magnitude of warming in Section 4.132

This linearized perturbation model also offers an alternative way to view the connection of the two133

perspectives. We briefly comment on the mechanistic connection of the two perspectives via the134

association of the lower tropospheric temperature lapse rate to surface flux partition in Section 5135

and provide a final summary in Section 6.136
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2. Data and Methods137

Data138

We analyze simulations submitted to the Coupled Model Intercomparison Project139

Phase 6 (CMIP6; Eyring et al. 2016). We take the first 30 years (1850–1879) in the histori-140

cal experiment as the control (base) climate state, and years 121–150 in the abrupt-4×CO2 (4×CO2141

for short) experiment as the perturbed climate state. Climate changes in variables are charac-142

terized by subtracting the base state from the perturbed climate state. We use the outputs from143

nine models that have reported daily values of near-surface (2 m) air temperature (𝑇), specific144

humidity (𝑞), relative humidity (RH), surface soil moisture (SM, moisture in the top 10 cm soil145

layer), surface latent heat flux (LH), surface sensible heat flux (SH), and upwelling and down-146

welling shortwave and longwave radiative fluxes from which we calculate the net radiation at147

the surface (𝑅𝑛, downward positive), for both the historical and 4×CO2 experiments. The nine148

models are: CanESM5, CMCC-ESM2, GFDL-CM4, MIROC6, IPSL-CM6A-LR, INM-CM5-0,149

MPI-ESM-1-2-HAM, MPI-ESM1-2-HR, and MRI-ESM2-0. The limitation to these specific nine150

models mainly comes from the availability of surface soil moisture and surface flux outputs at151

daily frequency in the 4×CO2 experiment (e.g., daily SM is not available for CESM2, and daily152

surface and radiative fluxes are not available for the ACCESS and EC-Earth models). Besides the153

limitation due to the data availability, we only include one model from each modeling institution154

even if outputs from the different versions of that model are available. In this case, we consider the155

more recent version, or the higher resolution version that has the more complete set of variables156

available. NorESM2-MM, FGOALS-g3, TaiESM1 have also reported daily surface soil moisture,157

but a large amount of the soil moisture values are invalid and therefore they are not included.158

In addition to the variables listed above, precipitation 𝑃 in the historical experiment is used in159

order to calculate the climatological Aridity Index (AI). AI is defined as AI = 0.8𝑅𝑛/(𝐿𝑣𝑃). Arid160

regions have larger AI under this definition, and the constant 0.8 is set empirically to account for161

the fact that not all available energy goes into evapotranspiration even if soil moisture is abundant162

(Milly and Dunne 2016; Koster and Mahanama 2012). To calculate the near surface air moist static163

energy (MSE, MSE = 𝑐𝑝𝑇 + 𝐿𝑣𝑞 + 𝑔𝑧, where 𝑐𝑝 is the specific heat of dry air, 𝑇 is the surface air164

temperature, 𝐿𝑣 is the latent heat of vaporization, 𝑞 is the surface air specific humidity, 𝑔 is the165
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gravitational acceleration, and 𝑧 is the height above sea level), we also use the orographic height166

variable. Since the orographic height will not change with climate change, we only need this 𝑔𝑧167

term when calculating MSE in one climate state. Temperature and geopotential height on pressure168

levels (variable 𝑡𝑎 and 𝑧𝑔) during 1850–1879 in the historical experiment are used to calculate169

the temperature lapse rate between 700 hPa and the surface. Since MRI-ESM2-0 only reports170

daily 3D variable after 1950, and daily 3D 𝑧𝑔 from CMCC-ESM2 is not available, we use only171

the remaining seven models for temperature lapse rates and profiles. We use the grid-cell land172

area fraction variable to select land grid cells as those with a land area fraction ≥ 99%. Since173

we are interested in situations where we expect a strong land surface control on temperature, we174

focus on the warm season, which we define as the 150 days centered on July 15 for the Northern175

Hemisphere, and the 150 days centered on Jan 15 for the Southern Hemisphere.176

The daily soil moisture/climatological aridity index (SM/AI) phase space177

The land surface is highly heterogeneous: it ranges from very arid regions such as the Sahara178

desert to very moist regions such as the Amazon forest. For a given location, temporal variability179

of dryness/wetness can substantially affect the surface latent heat flux: LH that is more than180

150 W/m2 during average days can reduce to only a few tens of W/m2 when the soil is dry (see181

Fig. A1g). Furthermore, when considering changes of these hydroclimatic variables under climate182

change, more complexity comes into play due to the non-linear relationship between LH and soil183

moisture. In particular, for a fixed amount of net radiation at the surface, LH increases with SM184

in the transitional regime but is not sensitive to SM in the dry and wet regimes (e.g., Seneviratne185

et al. 2010) and decreases with SM in the active-rain regime (Duan et al. 2023). As a result,186

when soil dries under climate change, LH decreases in the transitional regime while increases in187

the wet regime due to increases in net radiation (Duan et al. 2023). These different changes in188

LH can lead to different responses in surface air temperature: warming will be magnified in the189

transitional regime due to reductions in latent cooling, in contrast to the behavior in the wet regime.190

Since places with different climatological dryness have different percentages of days in each of191

the LH–SM regimes, averaging over time that contains both local wet and dry days, or averaging192

over locations with different local soil moisture distributions can lead to substantial canceling of193

signals and result in an averaged behavior that is hard to interpret. Moreover, models represent194
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the spatiotemporal distribution of soil moisture and the evapotranspiration–soil moisture functions195

differently, resulting in further uncertainty.196

Duan et al. (2023) presented a process-based phase space constructed using daily soil moisture197

and the climatological aridity index and showed that, when organizing the highly heterogeneous198

land hydroclimatic variables in this phase space, one can acquire coherent patterns of changes across199

models and across variables. The coherent patterns in this SM/AI phase space are in contrast to200

the highly uncertain results in the geographical map view (Fig. S3 of Duan et al. (2023)). Here201

we adopt this method, and process the model fields that have dimensions of calendar days and202

geographical locations into phase-space grids consisting of 50 temporal bins and 50 spatial bins.203

The horizontal axis of the phase space is formed by the temporal bins, and calculated by sorting204

the original data according to the daily SM and placing 2% of the 4500 days in each bin. These205

temporal bins represent local dry days to wet days. The vertical axis of the phase space is formed by206

the spatial bins, and calculated by sorting the original grid cells (for both the base and the 4×CO2207

climate states) according to the base-climate warm-season mean AI and placing 2% of the tropical208

land area (30◦S–30◦N) in each bin. These spatial bins represent the climatologically moist regions209

to climatologically arid regions. We then take the area-weighted average of data in each bin and210

plot the bin-average values as shadings. Fig. A1 and Fig. 3 show a number of variables and their211

changes displayed in this SM/AI phase space. We refer to the average in each of the 50×50 bins as212

data “under a certain spatial-temporal condition”. We normalize changes in variables in the phase213

space by the tropical mean ocean warming [𝑇]𝑜 in each model before averaging over models to214

accounts for the different climate sensitivities across models.215

The diagnostic linearized model for the magnitude of warming216

Both perspectives consider a partitioning of a total energy (MSE) or energy flux (𝑅𝑛) between a217

temperature component (𝑐𝑝𝑇 or SH) and a humidity component (𝐿𝑣𝑞 or LH). Here we reduce the218

variables in the balance relations and rearrange them to relate the temperature component to the219

total energy/energy flux by a partition factor. When considering climate change, we decompose220

changes in the total energy/energy flux into a component with an unchanged base-state partition221

factor and a component representing the contribution from changes in this partition factor. This222

method of decomposition helps us compare the partitioning in the two perspectives, and diagnose223
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the relative importance of the base-climate dryness versus the change in dryness under climate224

change in contributing to the amplified warming over tropical land. Distinguishing between the225

role of the base climate state and changes to that state is important, because information about the226

base climate state is also available from observations, and can be used to make predictions and227

constrain climate change projections. We derive the relations below.228

In the surface flux perspective, the total net energy flux received by the surface is the net radiation229

𝑅𝑛. 𝑅𝑛 is largely balanced through the surface sensible heat flux (SH) and the surface latent heat230

flux (LH), with a small component 𝐺 going into the ground. In general, the surface energy231

balance 𝑅𝑛−𝐺 = SH+LH, can be approximated as 𝑅𝑛 ≈ SH+LH. The Bowen ratio, 𝐵 = SH/LH,232

summarizes the relative partitioning between SH and LH. When the Bowen ratio is higher, more of233

the incoming heat goes into SH, which warms the near-surface air. Using 𝐵, we can write SH+LH234

as (𝐵+1)𝐵−1SH, and then have235

𝑅𝑛 ≈ SH+LH =
𝐵+1
𝐵

SH = ΨSH (1)

where Ψ = (𝐵 + 1)/𝐵 ≈ 𝑅𝑛/SH. In this way, we associate the total energy flux to SH through a236

ratio Ψ. Below, we link SH to temperature. The inverse, 1/Ψ, is the fraction of 𝑅𝑛 balanced by237

SH, and is strongly related to the dryness of the surface (i.e., soil moisture).238

While the surface flux perspective is based on partitioning of the net radiative flux, the atmo-239

spheric dynamics perspective is based on partitioning of the total energy MSE, which is assumed240

to be uniform across the tropics in QE-WTG theory. Leaving aside the 𝑔𝑧 term in MSE that will not241

change under warming, the moist enthalpy (ME = 𝑐𝑝𝑇 + 𝐿𝑣𝑞) consists of a temperature component242

𝑐𝑝𝑇 (the dry specific enthalpy), and a moisture component 𝐿𝑣𝑞. By a similar approach to that used243

above for surface fluxes, we can use the ratio between these two components as 𝑏 = (𝑐𝑝𝑇)/(𝐿𝑣𝑞)244

to write ME as245

ME = MSE−𝑔𝑧 = 𝑐𝑝𝑇 + 𝐿𝑣𝑞 =
𝑏 +1
𝑏

𝑐𝑝𝑇 = 𝜓𝑐𝑝𝑇 , (2)

where 𝜓 = (𝑏 + 1)/𝑏 = ME/(𝑐𝑝𝑇). In this way, we associate the total energy to surface air246

temperature, through a ratio 𝜓. The inverse, 1/𝜓, is the fractional contribution of the temperature247

component in the total ME. Thus, the surface energy and atmospheric dynamic views can be248
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written in somewhat comparable forms (see Table 1), and we will compare these parameters and249

their changes in the remainder of the paper.250

Under climate change, the variables in Eqs. 1 and 2 can be expressed as a base state combined251

with a perturbation (Δ). By dropping the non-linear interaction terms between the perturbations252

(residuals of the linearization are shown in Fig. B1ab in Appendix B), the equations that govern253

the atmospheric and land perspectives can be written as,254

ΔMSE = ΔME ≈ 𝜓𝑐𝑝Δ𝑇 + 𝑐𝑝𝑇Δ𝜓 , (3)

and255

Δ𝑅𝑛 ≈ ΨΔSH+SHΔΨ (4)

≈ Ψ𝜅Δ𝑇 +SHΔΨ (5)

In Eq. 5, we have assumed that ΔSH = 𝜅Δ𝑇 where 𝜅 is a constant i.e., the sensible heat flux256

anomalies can be linearly related to the temperature anomalies using a proportionality constant,257

following the concepts in Vargas Zeppetello and Battisti (2020); Chan et al. (2022); Kong et al.258

(2023). This allows the land perspective to be written in terms of a dependence on Δ𝑇 , analogous to259

the atmosphere perspective. We examine this assumption in more detail and discuss its limitations260

in Appendix C. It is important to note that MSE is an energy that directly contains the𝑇 component,261

while 𝑅𝑛 is a flux balanced by two fluxes that affect and are affected by 𝑇 and 𝑞. This leads to a262

more exact relationship between Δ𝑇 and ΔME in Eq. (3) while a more approximate relationship263

that relies on an additional parameter, 𝜅, in Eq. (5).264

From here, we can write the temperature change in association with either a change in MSE or265

𝑅𝑛 as:266

Δ𝑇 =
ΔMSE− 𝑐𝑝𝑇Δ𝜓

𝑐𝑝𝜓
, (6)

and267

Δ𝑇 =
Δ𝑅𝑛−SHΔΨ

𝜅Ψ
. (7)

In Eq. 6 and Eq. 7, ΔMSE and Δ𝑅𝑛—change of the total energy or energy flux—can be regarded268

as analogs of the “forcing” used in studies of climate sensitivity and feedbacks (Roe 2009; Held269
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and Shell 2012; Zelinka et al. 2020). Because we analyze the changes between two climate270

states approximately in equilibrium, the “forcing” terms include changes in climate that lead to271

equilibration, such as increases in upwelling longwave radiation. Therefore, they are a combination272

of forcing and response, but we can understand these responses of the total energy and energy flux273

as relatively externally constrained (external to the temperature response), and we analyze the274

temperature response given these changes in the total energy/energy flux (the forcing analog).275

The terms (𝑐𝑝𝜓)−1 in Eq. 6 and (𝜅Ψ)−1 in Eq. 7 can be understood as the sensitivity of the276

temperature response to the forcing analog (the total energy/energy flux). The specific heat of dry277

air, 𝑐𝑝, is a physical constant. For simplicity, we also consider 𝜅 to be a constant as discussed above.278

Therefore, in the following sections, we take 𝜓−1 and Ψ−1 as the sensitivities in each framework,279

which are solely determined by the base-climate state.280

The terms −𝑐𝑝𝑇Δ𝜓 and −SHΔΨ are the contribution of the change in the partition factor (𝜓281

and Ψ, the inverse of which is the sensitivity discussed above) to the magnitude of warming, and282

we refer to them as the “repartition” terms. Specifically, the terms summarize the changes in283

the partitioning of MSE into 𝑇 and 𝑞 for the atmospheric framework, or the partitioning of 𝑅𝑛284

into SH and LH for the surface energy balance framework. The sign of the repartition terms is285

consistent with their effect on the temperature response: positive values indicate that the balance286

is repartitioning in a way that will increase the temperature response, and decrease the moisture287

response.288

A summary of the balance relations, their linearized perturbation equations and relevant terms289

for the two perspectives are listed in Table 1.290

3. Comparing the two perspectives across the spatiotemporal distribution293

Previous results based on the QE-WTG framework (Byrne and O′Gorman 2013, 2018; Byrne294

2021) are often displayed in terms of zonal averages, and results from the surface perspectives295

(e.g., Donat et al. 2017; Vogel et al. 2017) are often reported as a temporal maxima (or the highest296

percentiles). Here we compare the full spatiotemporal distribution of key variables in the two297

perspectives. To do so, we employ the SM/AI phase space as described in Section 2. Recall that in298

this phase space, the horizontal axis captures temporal variability as measured by local daily soil299

moisture (SM) percentiles , and the vertical axis captures spatial variability as measured by the300
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Table 1. A summary of the equations and terms considered for the base-climate physics and climate change

perturbations in the atmospheric-dynamics and the surface-flux perspectives.

291

292

Constraint Balance Partition factor Derived relation

MSE (ME) ME = MSE−𝑔𝑧 = 𝑐𝑝𝑇 + 𝐿𝑣𝑞 𝑏 =
𝑐𝑝𝑇

𝐿𝑣𝑞
, 𝜓 = 𝑏+1

𝑏
ME = 𝜓𝑐𝑝𝑇

𝑅𝑛 (𝑅) 𝑅 = 𝑅𝑛−𝐺 = SH+LH 𝐵 = SH
LH , Ψ = 𝐵+1

𝐵
𝑅 = ΨSH

Linearized perturbation
relation 𝑇 response Sensitivity Change of

the total
Repartition

term

ΔMSE ≈ 𝜓𝑐𝑝Δ𝑇 + 𝑐𝑝𝑇Δ𝜓 Δ𝑇 ≈ ΔMSE−𝑐𝑝𝑇Δ𝜓
𝑐𝑝𝜓

1
𝑐𝑝𝜓

ΔMSE −𝑐𝑝𝑇Δ𝜓

Δ𝑅𝑛 ≈ Ψ𝜅Δ𝑇 +SHΔΨ Δ𝑇 ≈ Δ𝑅𝑛−SHΔΨ

𝜅Ψ
1
𝜅Ψ

Δ𝑅𝑛 −SHΔΨ

climatological Aridity Index (AI) percentiles. The isoline of a surface soil moisture value of 20301

kg/m2 is shown as a black contour (solid for the base climate and dashed for the 4×CO2 climate).302

This line roughly indicates the critical soil moisture, SMcrit, that marks the transitional regime in303

the Budyko curve where soil moisture limits evapotranspiration and the soil moisture-temperature304

feedback is the strongest. While its specific value can vary across models, time, and region, this305

value can be used as a rough indicator in CMIP6 models (Duan et al. 2023). To the lower-right306

of this line are wetter conditions, both spatially and temporally, and to the upper-left are drier307

conditions.308

a. The atmospheric perspective309

In the atmospheric perspective, change of the total energy (ΔMSE, Fig. 2a) is split, by definition,322

between warming (𝑐𝑝Δ𝑇 , Fig. 2b) and moistening (𝐿𝑣Δ𝑞, Fig. 2c). ΔMSE (Fig. 2a) shows an323

increase across all 50 × 50 temporal and spatial bins with a value ranging from 3.3 to more than324

4.2 kJ/kg per degree of mean tropical ocean warming. The warming magnitude (Δ𝑇 , Fig. 2b) is325

smaller in moist conditions (lower right) while it is larger in dry conditions (upper left), maximizing326

over the desert regions. Warming around the critical soil moisture contours in moist regions is327

also strong, and this amplified warming center around SMcrit is more evident in changes of the328
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The atmospheric perspective

Fig. 2. Changes in the surface air (a) moist static energy (MSE), (b) temperature converted to energy units

(𝑐𝑝𝑇), (c) specific humidity converted to energy units (𝐿𝑣𝑞), between the 4×CO2 climate state and the base

climate state displayed in the phase space of daily soil moisture percentiles (horizontal axis), and climatological

Aridity Index percentiles (vertical axis). (d) Deviation of the moist static energy (MSE) over land from the

corresponding (corresponding day and latitude) zonal mean values over the ocean ([MSE]𝑜) in the base climate;

(e) deviation of the MSE over land from the corresponding precipitation-weighted zonal mean values over the

ocean ([MSE]𝑃𝑜 ) in the base climate, (f) changes of the deviation of the land MSE from [MSE]𝑃𝑜 between the

4×CO2 climate state and the base climate state. Changes of variables are normalized by the mean tropical ocean

warming [Δ𝑇]𝑜 in each model before averaging over the models. The black contours (solid for the base climate

and dashed for the 4×CO2 climate) are the isolines of the surface soil moisture value of 20 kg/m2 which roughly

marks the conditions in the transitional regime of the Budyko curve. The green contour is the isoline of the daily

mean precipitation rate of 0.5 mm/day. See text for more details.
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314
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321

daily-maximum temperature (not shown). Specific humidity 𝑞 increases under all conditions, and329

the magnitude is generally contrary to that of Δ𝑇 , i.e., wetter conditions moisten more and warm330

less, while drier conditions moisten less and warm more.331
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Mathematically, the QE–WTG framework (Byrne and O′Gorman 2013, 2018; Byrne 2021)332

predicts warming over land as:333

Δ𝑇 𝐿 = (ΔMSE𝐿 − 𝐿𝑣Δ𝑞
𝐿)/𝑐𝑝 = (ΔMSE𝑂 −𝛾𝐿𝑣Δ𝑞

𝑂)/𝑐𝑝

= Δ𝑇𝑂 + (1−𝛾) 𝐿𝑣

𝑐𝑝
Δ𝑞𝑂 (8)

In this equation, the super-script 𝐿 and 𝑂 denote land and ocean, as in the original work. 𝛾, as334

mentioned in the Introduction, is the ratio of 𝑞𝐿 to its corresponding zonal mean value over the335

ocean in the base climate (𝛾 = 𝑞𝐿/𝑞𝑂). 𝛾 is assumed to be constant with climate change and336

therefore Δ𝑞𝐿 = 𝛾Δ𝑞𝑂 .337

In the QE–WTG framework, ΔMSE is generally assumed to be uniform across various divisions338

of the tropics. For example, Byrne and O′Gorman (2013, 2018) assumed uniform annual-mean339

changes across land and ocean for a given latitude, and Byrne (2021) showed uniform changes in340

CMIP6 models for the upper 50 MSE percentiles across time and locations over land and ocean.341

With this assumption, amplified warming is then predicted in conditions with less moistening. The342

general “less moistening–more warming” correspondence we see in Fig. 2b and Fig. 2c seem to be343

consistent with the theory of this QE-WTG framework. However, it is interesting to note that we344

also see the less moistening-more warming relationship over the desert, despite the fact that there345

is almost no moist convection over the desert, so the region is not expected to be in convective346

quasi-equilibrium as required by the theory. Indeed, as we can see in Fig. 2a, the change in MSE is347

noticeably smaller in deserts than other regions, since there is a lack of coupling between the desert348

boundary layer and other regions that are dominated by moist convection. Thus, the assumption of349

equal change in MSE that has been applied previously to other groupings of regions in the tropics350

appears to break down in the phase space we consider, particularly in the drier days and regions351

that warm the most.352

To further test the QE–WTG framework regarding the assumption about the uniform MSE in the353

AI/SM phase space, we compare the MSE at a certain spatiotemporal condition over land to the354

corresponding day and latitude zonal mean values over ocean in the base climate in Fig. 2d. If all355

conditions satisfy QE and WTG (especially QE, since WTG holds relatively well across locations in356

the tropics, see Fig. 6c), the values in Fig. 2d should be approximately zero, indicating that MSE over357
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land roughly equals the corresponding value over the ocean. However, Fig. 2d shows greater-than-358

zero values for wet conditions and less-than-zero values for dry conditions. Zhang and Fueglistaler359

(2020) showed that this equal-MSE assumption holds better when conditioned on precipitating360

situations (we refer to this as the revised equal-MSE assumption below). Following their approach,361

Fig. 2e shows the MSE at each location over land with the corresponding precipitation-weighted362

zonal mean values over ocean ([MSE]𝑃𝑜 ) subtracted. We can see that most of the moist conditions363

(to the right of the black line of the SMcrit, or the green isoline of the precipitation rate 0.5 mm/day)364

approximately satisfy the revised equal-MSE assumption. For dry conditions, land MSE still365

deviates from [MSE]𝑃𝑜 by more than 10 kJ/kg. This deviation is expected because, as mentioned366

above, these very dry conditions do not satisfy the QE assumption that relies on active moist367

convection.368

QE-WTG suggests equal MSE over land and ocean in each of the base and the warm climate369

states, from which the equal change of MSE over land and ocean is derived. Fig. 2f shows changes370

of the MSE deviation from the precipitation-weighted ocean zonal mean value over land between371

the warm and the base climate states, i.e., Δ(MSE−[MSE]𝑃𝑜 ). Note that even in the moist conditions372

where the difference between land and ocean is close to 0 in the base climate (to the lower right373

of the black line in Fig. 2e), the MSE increase over land with climate change is still larger than374

the increase over the precipitating ocean. The magnitude of this deviation (difference between375

MSE increases over land and ocean) can be as large as 0.3–0.5 kJ/kg (0.3–0.5 K in temperature376

units) for each degree of tropical mean ocean warming. Thus, while these assumptions are377

necessary to form the over-arching theory of QE–WTG, and have been used to successfully explain378

the behavior of climatological averages over large domains (e.g. land and ocean averages), their379

accuracy diminishes when considering the spatiotemporal distribution in this manner. In applying380

the QE-WTG framework to extreme temperature at the daily time scale, Byrne (2021) added a term381

(Δℎ) to address the smaller changes in MSE during hot days over land that are evident in our phase382

space (Fig. 2f).383

b. The surface perspective384

For the surface flux perspective, changes in the total energy flux, i.e., the net radiation at the393

surface (𝑅𝑛; Fig. 3a) are partitioned between changes in the surface sensible heat flux (ΔSH, Fig. 3b)394
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The surface perspective

Fig. 3. Changes in the surface air (a) surface net radiation (𝑅𝑛), (b) surface sensible heat flux (SH), (c) surface

latent heat flux (LH), and (d) soil moisture (SM), (e) SH plus upwelling longwave radiation (SH + LWup), and (f)

relative humidity (RH) between the 4×CO2 climate state and the base climate state, displayed in the phase space

of daily soil moisture percentiles (horizontal axis), and climatological Aridity Index percentiles (vertical axis).

Changes in these variables are normalized by the mean tropical ocean warming [Δ𝑇]𝑜 in each model before

averaging over the models. The black contours (solid for the base climate and dashed for the 4×CO2 climate) are

the isolines of the surface soil moisture value of 20 kg/m2 which roughly marks the conditions in the transitional

regime. See text for more details.

385

386

387

388

389

390

391

392

and changes in the surface latent heat flux (ΔLH, Fig. 3c), with a negligible change in ground heat395

fluxes (not shown). 𝑅𝑛 increases under all spatiotemporal conditions of dryness and wetness,396

with the maximum increase in wet conditions (around 3 W/m2 per degree of ocean warming) and397

smallest increase over the desert (around 1 W/m2 per degree of ocean warming). The pattern398

of Δ𝑅𝑛 across the spatiotemporal states is highly similar to the pattern of ΔMSE (Fig. 2a); their399

correlation across the 2500 bins in the phase space is 0.85. This close correspondence between400

the changes in the total energy in the surface air and changes in the total energy flux at the surface401
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may be explained by the following two possibilities: one is that increases in 𝑅𝑛 drive the increases402

in MSE; the other is that increases in 𝑞 (Fig. 2c), which is the dominant component in ΔMSE403

(Fig. 2a), result in increases in 𝑅𝑛 through the increased radiative emissivity of moister air.404

Except for the very dry conditions where changes in LH are near-zero, and the transitional405

conditions around SMcrit where LH decreases and SH increases, changes in 𝑅𝑛 are predominantly406

balanced by increases in LH. In particular, in the wet conditions (those to the right of SMcrit), LH407

increases by about 2–3 W/m2 per degree of mean ocean warming, while SH changes much less408

(or even decreases), by ±1 W/m2 per degree of mean ocean warming. Recall that, in these same409

moist locations and times, increases in specific humidity also dominate the increases in MSE, and410

the warming magnitude is similar to that over ocean (Fig. 2b).411

For the transitional conditions around SMcrit, decreases in LH are substantial (Fig. 3c). The412

decrease in LH is driven by drying of SM (Fig. 3d, also indicated by shift of the SMcrit isoline to413

higher percentiles), and is compensated by strong increases in SH. The increase in SH and decrease414

in LH in the transitional conditions correspond to amplified warming in these conditions (Fig. 2b),415

reflecting the role of surface flux repartitioning in exacerbating the warming. It is interesting to416

note, however, that even though LH decreases in these transitional conditions, specific humidity417

increases (Fig. 2c). This reflects the role of other sources and sinks of surface air specific humidity418

besides the local land surface evapotranspiration. Meanwhile, RH decreases (Fig. 3f), suggesting419

that specific humidity has not increased enough to match the increase in the saturation specific420

humidity. RH is often taken as a reflection of the atmospheric dryness; the decrease of RH421

along SMcrit despite the increase of the specific humidity indicates that soil moisture–temperature422

feedback is an important contributor to the decrease of RH over land.423

In arid regions (upper quarter of the phase space), in the base climate state, LH is small (deserts424

are dry) and 𝑅𝑛 is predominantly balanced by SH. With climate change, changes in LH will be425

small (deserts remain deserts) and we might expect large increases in SH, corresponding to the426

pronounced warming (Fig. 2a). However, we see here that changes in SH in these arid regions are427

also small. This is because both the surface and near surface air warm substantially, and the increase428

of long wave radiation (which scales with 𝑇4) is faster than the increase of SH (which scales with429

𝑇); i.e., upwelling long wave radiation (LWup) is partly playing the role in the energy balance that430

is played by SH in other regions. Adding changes in LWup, Fig. 3e reproduces the pronounced431
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increases in the arid regions. Nevertheless, increases in 𝑅𝑛 in these arid regions are small and the432

surface energy balance (𝑅𝑛 ≈ SH+LH) is still obeyed. The comparisons in Fig. 3abce here are433

consistent with and supplement the discussion of surface flux changes under different regimes of434

the temperature distribution change in Duan et al. (2020).435

c. A discussion on the moisture constraint436
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Fig. 4. (a) the land–ocean specific humidity ratio (the 𝛾 in Byrne and O′Gorman (2013, 2018), calculated as

the specific humidity 𝑞 at each land grid cell divided by the corresponding ocean zonal mean specific humidity

[𝑞]𝑜), (b) fractional changes in 𝛾 normalized by [Δ𝑇]𝑜, displayed in the phase space of daily soil moisture

percentiles (horizontal axis), and climatological Aridity Index percentiles (vertical axis). The black contour is

the isoline of the surface soil moisture value of 20 kg/m2. (c) RH and the Bowen ratio 𝐵. Each dot represents

one bin among the 50×50 spatial-temporal bins in the AI/SM phase space as in Fig. 3 and 5, and is color-coded

by its SM value in the base climate. The blue/red dots in panel (c) show the theoretical scaling by the Surface

Flux Equilibrium, red using RH to calculate 𝐵 and blue using 𝐵 to calculate RH. See text for more details.

437

438

439

440

441

442

443

444

As mentioned in Sections 1 and 3a, the stronger warming predicted over land in the QE–WTG445

framework emerges from the moisture constraint that Δ𝑞𝐿 = 𝛾Δ𝑞𝑂 , which is derived based on446

the transport of atmospheric moisture from the ocean (Byrne and O′Gorman 2016; Chadwick447

et al. 2016). While the derivation of this moisture constraint emphasizes ocean control – specific448

humidity over land is assumed to follow specific humidity over ocean, which increases with449

warming approximately at the rate of the Clausius-Claperon scaling – land specific humidity is450

also affected by land-atmosphere exchanges (e.g. Van der Ent et al. 2010). A drier land surface451

will tend to result in lower evapotranspiration and, for a given amount of moisture convergence452

(although the two do not operate independently), a smaller 𝛾. When the moisture constraint is453
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applied to climate model simulations, the value of 𝛾 is calculated as the local climatological 𝑞𝐿454

at each land grid cell divided by the corresponding zonal mean 𝑞𝑂 (Byrne and O′Gorman 2016,455

2018), and is spatially-variable. Therefore, the moisture constraint (atmospheric perspective)456

contains information of the spatially-variable surface dryness (surface perspective). Note that the457

results in Byrne and O′Gorman (2016, 2018) were presented as averages over latitudinal bands or458

the entire 40◦S–40◦N domain, which is an average across the underlying variability of 𝛾.459

We use the same method as in Byrne and O′Gorman (2016, 2018) to calculate 𝛾 on each day,460

and present its spatiotemporal distribution in the SM/AI phase space in Fig. 4a. Examining across461

the spatiotemporal distribution, 𝛾 ranges from less than 0.2 in the very arid regions to about 1.2 in462

the wettest days (high local SM percentiles) in semi-arid and semi-moist regions. The lowest row463

(the lowest AI percentile bin) contains many grid cells in the upwind slope of the Tibetan Plateau464

where it rains heavily from the orographic lifting; therefore AI is small (AI ∝ 𝑅𝑛/𝑃) but the specific465

humidity (and 𝛾) is not necessarily high (since temperature is low at high orographic altitude).466

Under climate change, the moisture constraint assumes that the ratio 𝛾 remains constant, but467

this may not hold if evapotranspiration changes are substantial and not compensated by changes in468

moisture convergence. The change in 𝛾 is shown in Fig. 4b. We first draw the readers’ eye to the469

decrease of 𝛾 aligning along the critical soil moisture lines where changes in surface conditions470

are the strongest as emphasized by the surface perspective (see Section 3b). In Fig. 4b, for each471

degree warming, 𝛾 decreases by about 1% in the water-limited transitional regime for the CMIP6472

multi-model mean. This suggests that, when 𝑞𝑂 increases by 7%/K, 𝑞𝐿 in these conditions, due473

to the decrease of 𝛾, will increase by 6%/K (taking the log and then taking the climate change474

difference on both sides of 𝑞𝐿 = 𝛾𝑞𝑂 yields Δ𝑞𝐿/𝑞𝐿 = Δ𝑞𝑂/𝑞𝑂 + Δ𝛾/𝛾). For 𝑞𝐿 ≈ 16 g/kg475

(𝐿𝑣𝑞
𝐿 ≈ 40 kJ/kg, see Fig. A1c), the 1% change in 𝛾 will produce a deviation of about 0.4 kJ/kg476

in 𝐿𝑣Δ𝑞
𝐿 (which, assuming an accurate constraint of ΔMSE by QE and WTG, leads to a 0.4 K477

deviation in the prediction of Δ𝑇 𝐿), for each degree of ocean mean warming. In applying the478

QE-WTG framework to predict the magnitude of land warming, this deviation brought by the479

moisture constraint assumption will partly compensate the deviation brought by the equal MSE480

assumption (the MSE increase in these conditions is smaller, see Fig. 2a and f). Note that in these481

transitional conditions where 𝛾 decreases, LH also decreases (Fig. 3c). While we do not perform482

a moisture budget analysis here, this correspondence suggests the role of changing land-sourced483
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moisture in controlling changes in 𝛾. In Byrne (2021) which applies the QE-WTG framework to484

discuss warming of the upper temperature percentiles, both the drier base-climate 𝑞 and a decrease485

of RH on those high temperature percentile days contribute to the amplified warming, and both of486

these have connections to the land surface.487

Another domain in the phase space in Fig. 4b that shows perceptible changes in 𝛾 is over the488

arid land regions: 𝛾 increases by a much larger fractional rate. The driving mechanism for this489

increase is not yet clear: at the top soil moisture percentiles in these arid regions, both rainfall and490

LH (see Fig. 3c) increase; the overall increase in 𝛾 and the moistening at the top soil moisture491

percentiles in these arid regions can result from both changes in the transport of moisture and local492

evapotranspiration.493

While the atmospheric community conceptually emphasize the ocean control on 𝛾 as discussed494

above, the land community emphasizes the land control. In particular, the theory of “Surface Flux495

Equilibrium” (SFE) from the land community (McColl et al. 2019; McColl and Rigden 2020)496

derived that497

RH =
𝑐𝑝

𝐿𝑣𝜙

1
𝐵

(9)

where 𝜙 is the derivative of saturation specific humidity 𝑞∗(𝑇) with respect to temperature (𝜙 =498

𝜕𝑞∗

𝜕𝑇
|𝑇𝐵𝐿

=
𝐿𝑣𝑞

∗

𝑅𝑣𝑇
2
𝐵𝐿

). This SFE is derived with the assumption that the boundary-layer RH is in499

equilibrium at and beyond daily timescales and the surface heating from SH balances surface500

moistening from LH (i.e., other sources and sinks for the BL heat and moisture budgets are501

neglected). The implication of SFE (Eq. 9) is that, if we know the Bowen ratio, we can know the502

boundary layer RH, and vice versa.503

Boundary layer RH in the base climate can be effectively regarded as an key indicator for the504

warming/moistening partition in the atmospheric perspective, similar to 𝛾: while 𝛾 is the key505

parameter in the mathematical form of the QE–WTG framework, the physical intuition for the506

importance of base climate moisture in controlling warming magnitude draws upon the cloud-base507

height above which the temperature lapse rate shifts to follow a moist adiabat from a dry adiabat508

(see Fig. 1b). The cloud-base height is tightly related to the boundary-layer RH (Betts 2009),509

and therefore the base climate state of both can be regarded as the key control for the warming510

magnitude under the atmospheric perspective. In fact, when Byrne and O′Gorman (2013) first511

formed the QE-WTG framework based on equal equivalent potential temperature 𝜃𝑒 over land and512
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ocean, the decomposition for the land/ocean warming ratio was based on RH. Altogether, the SFE513

relation in Eq. 9 that directly associates RH with the Bowen ratio, is directly relating the key control514

in the atmospheric perspective to the key control in the surface perspective.515

Fig. 4c shows the relationship between RH and the Bowen ratio 𝐵 for each box in the SM/AI516

phase space, with the color indicating the soil moisture. RH shows an inverse relationship with517

𝐵, as expected. This inverse relationship suggest a strong land surface origin for the boundary518

layer RH: the surface influences RH through both controlling the source of water vapor through519

evapotranspiration and affecting temperature. The red and blue dots in Fig. 4c show the results520

when assuming SFE (Eq. 9; red dots use RH to calculate 𝐵 and blue dots use 𝐵 to calculate521

RH). SFE qualitatively captures the inverse relationship between RH and 𝐵, but there are notable522

deviations from what is simulated by the climate models, which likely result from the assumptions523

made in the derivations of SFE, although uncertainties of model parameterization of surface fluxes524

may have also contributed. For example, in wet conditions (green dots in Fig. 4c), SFE-based RH525

is higher than the actual RH, since moisture would likely be transported out of the boundary layer.526

In dry conditions (brown dots in Fig. 4c) SFE-based RH is lower than the actual RH because water527

vapor can be transported into dry regions. Contributions from these non-surface processes would528

moderate the atmospheric RH for a given Bowen ratio. While some of these correspondences may529

seem intuitive, we make them explicit because soil moisture and its changes do not appear directly530

in the QE-WTG framework, while studies based on the surface flux perspective do not typically531

rely on the behavior of the large-scale transport of moisture.532

4. Base-climate sensitivity and changes in partition in the two perspectives533

To what extent can the two perspectives explain the spatiotemporal warming pattern over land541

in climate models? Recall that in Section 2, we derived a relationship between the magnitude of542

warming in each perspective and three components: changes of the total energy/energy flux, the543

base-climate partition between the temperature and the moisture component (the inverse of which544

is termed the base-climate sensitivity), and the changes in this base-climate partition (Eqns. (6),545

(7)). The comparison of various relations for the two perspectives is listed in Table 1. In the546

following we examine the spatiotemporal distribution of the base-climate partition and its changes547

under warming, and the contribution of the base-state partition versus its changes to the warming548
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Fig. 5. (a, d) the base-climate sensitivity (1/Ψ and 1/𝜓), (b, e) the repartition term ( −SHΔΨ and −𝑐𝑝𝑇Δ𝜓;

a positive sign corresponds to a repartition towards enhancing warming), and (c, f) the relationship between

the magnitude of warming Δ𝑇 (normalized by mean tropical ocean warming [Δ𝑇]𝑜) and the base climate

sensitivity in the surface (c) and the atmospheric (f) perspectives. Small dots in (c) and (f) represent the 50×50

spatiotemporal bins, and are color-coded by the repartition terms as shown in (b) and (e); large dots in (c) and (f)

are the temporally-averaged values of warming and base-climate sensitivity for the 50 spatial bins, color-coded

by percentiles of the aridity index (AI).

534

535

536

537

538

539

540

magnitude. This alternative way of decomposition provides us a complementary view of the two549

perspectives.550

Figures 5a and d show the spatiotemporal distribution of the base-climate sensitivity. For551

both the surface (Fig. 5a) and the atmospheric (Fig. 5d) perspectives, the base-climate sensitivity552

is larger for drier conditions (upper-left) and smaller for wetter conditions (lower-right). Recall553

that in the surface perspective, base-climate sensitivity Ψ−1 = SH/𝑅 ≈ SH/𝑅𝑛 is the ratio of554

the surface sensible heat flux to the total net radiation; and in the atmospheric perspective, base-555

climate sensitivity 𝜓−1 = 𝑐𝑝𝑇/ME is the ratio of the temperature component of energy (dry specific556

enthalpy) to the total moist enthalpy. Both reflect the dryness in the base climate, because they557

indicate how much of the available energy/energy flux is partitioned into temperature/heating rather558
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than moisture/evapotranspiration. The correlation between the atmospheric and surface sensitivity559

is high (0.99, see also Fig. 6a), reflecting the tight connection of the two perspectives in the base560

climate.561

The surface sensitivity 1/Ψ (Fig. 5a) ranges from 0 to 1: values over the desert are close to562

1, indicating that 𝑅𝑛 at the surface is almost entirely balanced by SH; values in very high SM563

percentiles over moist and semi-moist regions are close to 0, indicating that 𝑅𝑛 is almost entirely564

balanced by LH. The atmospheric sensitivity 1/𝜓 (Fig. 5d), however, has a smaller range and is565

generally higher than the surface sensitivity (ranges from 0.88 for moist regions to 0.96 for arid566

regions). This indicates that in one climate state, for a given location, the near surface dry specific567

enthalpy (𝑐𝑝𝑇 around 300 kJ/kg, see Fig. A1b in Appendix A) dominates the total moist static568

energy (around 325 in arid regions to 345 kJ/kg in moist regions, see Fig. A1a). This is in contrast569

to the variability across the spatiotemporal distribution, and the climate change values, for which570

the latent energy (𝐿𝑣𝑞) values dominate those in surface air MSE.571

Fig. 5b and e show the repartition term in Eq. 6 and Eq. 7. The repartition term captures the572

contribution of changes in the partition factor (𝜓 and Ψ) to warming. The patterns of the repartition573

terms −𝑐𝑝𝑇Δ𝜓 and −SHΔΨ are dominated by the patterns of changes in the partition factor −ΔΨ574

and −Δ𝜓 (compare Fig. 5be with Fig. B1dc in Appendix B). In the surface perspective, the surface575

flux partitions towards higher latent heat flux under wet conditions (blue shadings in Fig. 5b) and576

towards higher sensible heat flux under intermediate (transitional and some wet) conditions (red577

shadings in Fig. 5b). Under dry conditions, changes in the partition factor are small, as are changes578

in SH and LH, except at the high soil moisture percentiles associated with rainy conditions.579

The behavior of the repartition term in the atmospheric perspective contrasts with its behavior580

in the surface perspective: the atmospheric partition factor changes towards moistening under all581

conditions, although the magnitude of the repartition towards moisture is smallest in dry conditions582

in correspondence with the surface flux perspective (Fig. 5e). The inconsistency of the pattern in583

Fig. 5e compared to that in Fig. 5b reflects that, the atmosphere is responding to changes in land584

surface ET, but is generally getting moister under the influence of ocean as the globe warms. There585

is also a possible contribution from changes in the evaporation of precipitation, since it is a source586

of boundary layer specific humidity.587
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Having established the spatiotemporal structure of the key terms in our diagnostic equations, we588

test their relationship to the warming magnitude. Fig. 5c and f shows the warming magnitude in589

each of the 50× 50 bins as a function of the base-climate sensitivity, with the small dots color590

coded by the repartition term. This clearly demonstrates the relationship between the warming591

magnitude and the base-climate sensitivity in both perspectives: higher base-climate sensitivity592

(drier base-climate conditions) leads to a larger magnitude of warming. The larger dots show593

the temporally-averaged values of warming and base-climate sensitivity across the 50 AI bins,594

color-coded by the percentile of AI in each spatial bin. Here, we also see that climatologically arid595

regions warm the most and climatologically moist regions warm the least.596

Eq. 6 and Eq. 7 suggest that if Δ𝑅𝑛 and ΔMSE are relatively uniform, and the repartition term597

is close to zero, the warming magnitude will scale linearly with the base-climate sensitivity. In598

Fig. 5c and f, we indeed see the general linear increase of Δ𝑇 with 1/Ψ and 1/𝜓. However,599

during the intermediate conditions between the very wet and dry (those with a surface sensitivity600

of 0.2 ≤ 1/Ψ ≤ 0.8, and an atmospheric sensitivity of 0.88 ≤ 1/𝜓 ≤ 0.93), there is a spread in Δ𝑇 at601

a given base climate sensitivity. This spread is consistent with the repartition terms (color shading602

of the dots). In these intermediate conditions, when surface flux partitions towards SH (red dots603

in Fig. 5c), the warming magnitude is amplified. Conversely, when surface flux partitions towards604

the LH (blue dots in Fig. 5c), the warming magnitude is dampened.605

The similar and quasi-linear relationship (especially for the time-mean; the large dots in Fig. 5cf)606

between the warming magnitude and the base-climate sensitivity in both perspectives indicates607

that in climate models, the climatological dryness, both for the surface and the atmosphere, largely608

explains the spatial pattern of the warming magnitude. This is to say, we do not need drying of soil609

to explain the approximate spatial distribution of the mean warming. However, drying of soil and610

changes in the surface flux partition is important to explain the variability of warming at shorter611

time scales, especially during intermediate conditions between wet and dry.612

5. Discussion: the lower tropospheric temperature lapse rate and the surface fluxes613

The atmospheric perspective is top-down: starting from the same temperature in the free tropo-614

sphere constrained by WTG and moving downward, a larger mean lapse rate has to be associated615

with a higher surface air temperature, as well as a larger magnitude of surface air warming for a616
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given change in free tropospheric temperatures. Fig. 6c shows the temperature profiles over a few617

regions of different surface aridity in CMIP6 models for the base climate. They are, from moist618

to arid: the ocean averaged over the tropics (blue), the Amazon forest (green), the land averaged619

over the tropics (black), and the Sahara desert (orange). In the free troposphere (above roughly620

3 km), the temperature over the different regions is relatively uniform, and approximately follows621

the moist adiabat (the dashed pink line), as assumed in both Joshi et al. (2013) and the QE–WTG622

framework. In the lower troposphere, the temperature lapse is indeed closer to a dry adiabat for623

more arid regions, and closer to a moist adiabat for more moist regions, although in all cases624

the simulated lapse rate falls between these two edge cases. Note that the QE–WTG schematic625

(Fig. 1b; Byrne and O′Gorman 2013) is comparable to the lapse rate schematic (Fig. 1a; Joshi et al.626

2013) and the CMIP6-based lapse rates (Fig. 6c) because the higher the cloud base, the longer path627

in the lower troposphere where temperature follows the dry adiabat, the larger the mean lapse rate628

in the lower troposphere. In this context, the lower tropospheric lapse rate, the cloud base height,629

and the boundary layer RH are closely related, and variously act as the key control for the warming630

magnitude in the atmospheric perspective.631

The surface perspective is bottom-up: temperature increases more when SH is higher for a given632

change in 𝑅𝑛. Fig. 6b shows a strong positive relationship between the mean temperature lapse633

rate in the lower troposphere and the ratio of SH to total turbulent flux 𝑅 (SH/𝑅, our base-climate634

sensitivity), where 𝑅 = 𝑅𝑛−𝐺 = SH+LH ≈ 𝑅𝑛. The outliers in the figure are the 50 temporal bins635

in the first AI bin, which are located at the edge of the Tibetan Plateau around Nepal. As mentioned636

in the context of Fig. 4a, this region has a very small AI due to a large amount of orographic637

precipitation, but the high orographic altitude makes the temperature lapse rate between 700 hPa638

and the surface small, since the level of 700 hPa is within the boundary layer. We can qualitatively639

understand the connection between the lapse rate and SH/𝑅 as follows: in drier regions, SH is a640

higher fraction of 𝑅, so the energy received by the surface is turbulently diffused into the boundary641

layer rather than (potentially) transported out as water vapor. In addition, drier regions also have642

less horizontal moisture convergence in the lower troposphere, which is associated with less rain.643

Higher SH and lack of rain at the surface result in a warmer surface air relative to aloft; combined644

with WTG in the free troposphere, the warmer surface air over drier regions yields a larger mean645

temperature lapse rate in the lower troposphere.646

26



0.0 0.2 0.4 0.6 0.8 1.0
1/  (=SH/R)

0.88

0.90

0.92

0.94

0.96

1/
 (=

c p
T/

M
E)

a)

5

10

15

20

25

30

35

40

SM
 [k

g/
m

2 ]

0.0 0.2 0.4 0.6 0.8 1.0
1/  (=SH/R)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

dT
/d

z [
K/

km
]

b)

5

10

15

20

25

30

35

40

SM
 [k

g/
m

2 ]

260 270 280 290 300 310
T [K]

0

1

2

3

4

5

6

Z 
[k

m
]

500hPa

700hPamoist adiabat

from T Ocean
500hPa

dry adiabat

from T Sahara
700hPa

c)

Ocean
Land
Amazon
Sahara

Fig. 6. The relationship between the base-climate (a) atmospheric sensitivity 1/𝜓 and surface sensitivity 1/Ψ,

(b) temperature lapse rate between the 700 hPa level and the near surface level (−𝑑𝑇/𝑑𝑧) and surface sensitivity

1/Ψ (the fraction of SH in the total enthalpy flux 𝑅), and (c) warm season mean temperature profiles during

1850–1879 from CMIP6 models (see Section 2 for details), averaged over tropical (30S–30N) ocean (blue),

tropical land (black), Amazon forest (15◦S-0◦, 70◦W-55◦W; green) and Sahara desert (20◦N-30◦N, 10◦E-30◦E,

orange). The two pink dashed lines in panel c illustrate the temperature profile below 700 hPa if following the

dry adiabat (right side, starting with temperature at 700 hPa over the Sahara desert and integrating downward),

and the temperature profile below 500 hPa if following the moist adiabat (left side, starting with temperature at

500 hPa averaged over the tropical ocean and integrating downward).
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6. Summary and outlook656

Motivated to better understand the amplified warming over tropical land and its association with657

dry conditions, we compare the two existing perspectives in the field that aim to explain the “drier–658

warmer” phenomenon. One is based on the atmospheric dynamics of the tropical troposphere (the659

atmospheric dynamics perspective), and the other focuses on land surface processes (the surface660

flux perspective). The atmospheric dynamics perspective uses moist static energy as a constrained661

quantity, and derives the amplified warming from lower (base-climate) specific humidity. The662

surface flux perspective uses the net radiation at the surface as a constrained total, and centers its663

argument on reduced water availability due to soil drying and/or plant-moderated reductions in664

transpiration, which results in a change in the partitioning between the sensible and the latent heat665

fluxes.666

Based on climate model outputs, we first present a comparison of the full spatiotemporal distri-667

bution of the relevant variables in the two perspectives in the AI/SM phase space (Fig. 2 and 3) and668
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discuss the applicability of the equal MSE assumption in the QE-WTG framework in explaining the669

spatiotemporal variability. By comparing the full spatiotemporal distribution, we address the first670

question we raise in the beginning on how key variables in the two perspectives correspond to each671

other. We also examine the connection of the moisture constraint in the atmospheric perspective672

to surface conditions, where we show how the neglect of changes in local evapotranspiration in673

the atmospheric perspective and the neglect of atmospheric processes in the surface perspective674

may lead to deviations (Fig. 4). From here, we can better understand the second question we675

raise, how the dryness measures between the two perspectives relate to each other. We then use a676

diagnostic linearized perturbation framework to relate the temperature response to a base-climate677

sensitivity, changes in the MSE or 𝑅𝑛, and changes in the warming versus moistening partition678

factor. We show that the base climate sensitivity largely explains the warming magnitude across679

spatiotemporal conditions: drier base-climate conditions have a larger base-climate sensitivity and680

experience a larger magnitude of warming. This relationship between the warming magnitude681

and the base-climate sensitivity holds particularly well for the time mean, and the surface and the682

atmospheric perspectives correspond well in terms of this role of the base-climate sensitivity. On683

top of the quasi-linear relationship between the warming magnitude and the base-climate sensitiv-684

ity, changes in the partition factor between warming and moistening for intermediate (between wet685

and dry) conditions further enhance or dampen the warming magnitude (Fig. 5). This informs us686

on the third question we raise, how climatological dryness versus changes in dryness contribute to687

amplified warming in each perspective. Lastly, through linking the lower tropospheric lapse rate688

with the surface fluxes (Fig. 6), we provide mechanistic insights on how the top-down atmospheric689

perspective connects with the bottom-up surface perspective. The comparison of the two perspec-690

tives in our study reveals how key arguments of the two perspectives hold across the spatiotemporal691

conditions and advances our understanding of the drier-warmer relationship. Our analyses are692

based on CMIP6 model output and are largely diagnostic; comparisons with observations and693

further quantifying the contribution from specific land surface and atmospheric processes can be694

informative.695
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Spatiotemporal distribution of relevant variables in the base climate state711
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Fig. A1. The spatiotemporal distribution of the base-climate surface air (a) moist static energy (MSE), (b)

temperature converted to energy units (𝑐𝑝𝑇), (c) specific humidity converted to energy units (𝐿𝑣𝑞), (d) relative

humidity (RH), and the surface (e) net radiation (𝑅𝑛), (f) sensible heat flux (SH), (g) latent heat flux (LH), (h)

soil moisture (SM) in the phase space of daily soil moisture percentile and climatological aridity index (AI)

percentile. The black contour shows the critical SM of 20 kgm−2.
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Fig. B1. (a) The residuals from the linearization in Eq. 3; (b) the residuals from the linearization in Eq. 4;

(c) changes in the atmospheric partition factor −Δ𝜓; (d) changes in the surface partition factor −ΔΨ. The fact

that the patterns in (c) and (d) are similar to patterns in Fig. 5be indicates that the spatiotemporal distribution

of changes in the partition factor (−Δ𝜓 and −ΔΨ) dominates the spatiotemporal distribution of the repartition

terms (−𝑐𝑝𝑇Δ𝜓 and −SHΔΨ).
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APPENDIX C724

The relationship between perturbations in the surface sensible heat flux and perturbations725

in temperature726
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Fig. C1. The relationship between (a) the base-climate surface sensible heat flux (SH) and surface air

temperature (𝑇); (b) the base-climate temporal anomalies in SH and 𝑇 , with the local temporal-mean value

removed, (c) the local temporal-mean SH and 𝑇 ; (d) the climate changes in SH and 𝑇 ; (e) the temporal anomalies

of changes in SH and 𝑇 with the local temporal-mean change removed; (f) the local temporal-mean changes in

SH and 𝑇 . All scatters are color-coded by the percentile of the aridity index (AI). In panels a, b, d, and e, each

scatter represents one of the 50× 50 spatio-temporal bins, and in panels c and f, each scatter represents one of

the 50 spatial bin, with the temporal dimension averaged out.
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In the perturbation relation we use for the surface energy balance (Eq. 5), we have linearized734

the perturbation in the surface sensible heat flux (SH) as a coefficient 𝜅 times the temperature735

perturbation. Fig. C1 examines to what extent this linearization is justifiable.736

The first row shows the relationships between SH and 𝑇 in the base climate. Panel b informs737

us that temporal perturbations in SH and 𝑇 relate to each other linearly by a similar coefficient738

(approximately 15–20 W/m2/K) across locations, except in the very dry locations. Panel c informs739

us that spatial anomalies of the mean SH and 𝑇 also relates to each other linearly except the very740

moist and very dry locations.741

The second row shows the relationships between changes in SH and 𝑇 under climate change.742

For our particular application of the linearized perturbation relation Eq. 5, panel (d) is the most743

relevant. It shows us that for moist and semi-moist conditions, ΔSH and Δ𝑇 have relatively good744
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linear relationship, while the relationship for dry regions is weaker. If we remove the mean at each745

location and only focus on the temporal anomalies, then all locations show a linear relationship746

(panel e), with the regression coefficient, i.e., 𝜅, being approximately 5 W/m2/K for dry locations747

and 10 W/m2/K for moist locations. There is no linear relationship between the time-mean change748

in SH and 𝑇 across locations (panel f).749

Since in our analysis, the data we use retains the temporal variability and we emphasize the750

qualitative understanding, we accept simply linearizing ΔSH as 𝜅Δ𝑇 . With this linearization we751

can derive Eq. 7, and we have the surface sensitivity as 1/(𝜅Ψ). We assume 𝜅 is the same constant752

across spatiotemporal conditions and focus on the sensitivity factor 1/Ψ. The non-uniformity of 𝜅753

will make quantitative predictions of the warming magnitude more complicated; although here we754

see that it may be approached by separating dry and moist conditions.755
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