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Abstract

Forecasting hydroclimatic extremes holds significant importance considering the increasing trends in natural cascading climate-

induced hazards such as wildfires, floods, and droughts. This study evaluates the performance of five Copernicus Climate

Change Service (C3S) seasonal forecast models (i.e., CMCC, DWD, ECCC, UK-Met, and Météo-France) in predicting extreme

precipitation events from 1993 to 2016 using 28 extreme precipitation indices reflecting timing and intensity of precipitation in

a seasonal timescale. We design indices using various precipitation thresholds to reflect model skill in capturing the distribution

and intensity of precipitation over a season. We use percentage bias, the Kendall Tau rank correlation, and ROC scores for skill

evaluation. We introduce an impact-based framework to evaluate model skill in capturing extreme events over regions prone to

natural disasters such as floods and wildfires. The performance of models varies across regions and seasons. The model skill is

highlighted primarily in the tropical and inter-tropical regions, while skill in extra-tropical regions is markedly lower. Elevated

precipitation thresholds correlate with heightened model bias, revealing deficiencies in modelling severe precipitation events.

The impact-based framework analysis highlights the superior predictive capabilities of the UK-Met and Météo-France models

for extreme event forecasting across many regions and seasons. In contrast, other models exhibit strong performance in specific

regions and seasons. These results advance our understanding of an impact-based framework in capturing a broad spectrum

of extreme climatic events through the strategic amalgamation of diverse models across different regions and seasons, offering

valuable insights for disaster management and risk analysis.
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Abstract 15 

Forecasting hydroclimatic extremes holds significant importance considering the increasing 16 

trends in natural cascading climate-induced hazards such as wildfires, floods, and droughts. 17 

This study evaluates the performance of five Copernicus Climate Change Service (C3S) 18 

seasonal forecast models (i.e., CMCC, DWD, ECCC, UK-Met, and Météo-France) in 19 

predicting extreme precipitation events from 1993 to 2016 using 28 extreme precipitation 20 

indices reflecting timing and intensity of precipitation in a seasonal timescale. We design 21 

indices using various precipitation thresholds to reflect model skill in capturing the 22 

distribution and intensity of precipitation over a season. We use percentage bias, the Kendall 23 

Tau rank correlation, and ROC scores for skill evaluation. We introduce an impact-based 24 

framework to evaluate model skill in capturing extreme events over regions prone to natural 25 

disasters such as floods and wildfires. The performance of models varies across regions and 26 

seasons. The model skill is highlighted primarily in the tropical and inter-tropical regions, 27 

while skill in extra-tropical regions is markedly lower. Elevated precipitation thresholds 28 

correlate with heightened model bias, revealing deficiencies in modelling severe precipitation 29 

events. The impact-based framework analysis highlights the superior predictive capabilities 30 

of the UK-Met and Météo-France models for extreme event forecasting across many regions 31 

and seasons. In contrast, other models exhibit strong performance in specific regions and 32 

seasons. These results advance our understanding of an impact-based framework in capturing 33 

a broad spectrum of extreme climatic events through the strategic amalgamation of diverse 34 

models across different regions and seasons, offering valuable insights for disaster 35 

management and risk analysis. 36 

Key Points 37 

• The C3S models’ skill in predicting precipitation variability across seasons is 38 

highlighted in the tropical and inter-tropical regions. 39 

 40 

 41 

• UK-Met and Météo-France consistently outperform other models, demonstrating 42 

better accuracy and reliability, aligning with findings from previous studies. 43 

 44 
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• An Impact-Based framework offers valuable insights for targeted risk assessments, 45 

particularly in regions prone to wildfire and floods. 46 

 47 

Plain Language Summary 48 

 49 

This study looks at how well five seasonal forecast models can predict extreme precipitation 50 

and related events such as floods and droughts. We assess the performance of  models by 51 

looking at 28 different extreme precipitation indices that show when and how much it rains 52 

during different seasons. The results show that some models do better in certain areas and 53 

seasons. The study also introduces a new way of assessing model skill by looking at the 54 

impact of extreme events in areas prone to disasters such as floods and wildfires. We find that 55 

two models, UK-Met and Météo-France, are particularly good at predicting extreme events in 56 

various places and seasons. This information is important for better managing and 57 

understanding the risks of natural disasters. 58 

 59 

 60 

1. Introduction 61 

  62 

Precipitation plays a crucial role in momentum flux exchange at the ocean– atmosphere-land 63 

interface (Xue et al., 2020), and as such, is one of the primary outputs of weather and climate 64 

models (Tapiador et al., 2019). Numerous international initiatives such as the North 65 

American Multi-Model Ensemble (NMME)
1
 and Copernicus Climate Change Service (C3S)

2
 66 

multi-system seasonal forecast predict precipitation, and other Météorological factors, at 67 

various spatiotemporal scales. Such forecasts are used for a variety of purposes, including 68 

extreme event early warning. Forecast models rely on the sources of atmospheric 69 

predictability, such as modes of variability including El Niño–Southern Oscillation (ENSO), 70 

Madden–Julian oscillation (MJO), Quasi-Biennial Oscillation (QBO), and Indian Ocean 71 

Dipole (IOD). Other sources of predictability include anomalies in the initial state of an Earth 72 

system component with a persistence time that aligns with the projected forecast duration 73 

(i.e., large-scale anomalies in upper ocean heat content, sea ice, snowpack, soil moisture), and 74 

external forcing (Assessment of Intraseasonal to Interannual Climate Prediction and 75 

Predictability, 2010; Baldwin et al., 2003; Committee on Developing a U.S. Research 76 

Agenda to Advance Subseasonal to Seasonal Forecasting et al., 2016; Lau & Waliser, 2012; 77 

Shukla et al., 2000; Zhang et al., 1997). Despite the  significance of precipitation, numerical 78 

weather models face difficulties in predicting its spatial patterns, timing and intensity 79 

(Tapiador et al., 2019; Mallakpour et al. 2022).  This is because the predictive capabilities of 80 

seasonal forecast models are constrained by the uncertainty in initial and boundary 81 

conditions, climate change-induced modifications of teleconnection patterns, imperfect 82 

parameterization schemes, and the variability in parameters (Villarini et al., 2011; Xu et al., 83 

2021). 84 

                                                 
1  https://www.cpc.ncep.no aa.gov/products /NMME/ 
2 https://cds.climate .copernicus.eu/ 
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 85 

Accurate precipitation predictions are of great importance in the formulation of mitigation 86 

and adaptation measures for climate and hydrological extreme events as well as minimizing 87 

impacts from their  cascading hazards such as flood, drought, and wildfire (Gebrechorkos et 88 

al., 2022; Vitart & Robertson, 2018). Recently several environmental and Climate 89 

Forecasting Systems such as the hydrological forecasting system, the Canadian Forest Fire 90 

Weather Index System
3
 , and the  global drought forecasting system 

4
 have been developed, 91 

which use seasonal forecasts as input with the purpose of weather extremes risk assessment 92 

and response (Alfieri et al., 2013; Arheimer et al., 2020; Samaniego et al., 2019; Thielen et 93 

al., 2009). The accuracy and trustworthiness of such systems is highly dependent on the 94 

process representation and parametric accuracy of the weather forecast models that provide 95 

the forcing for risk assessment (Gebrechorkos et al., 2022; Wanders & Wood, 2016). The 96 

skill of seasonal forecast systems has a substantial spatial variability which could be due to 97 

factors like quality of observation systems, model biases, and inherent properties of the 98 

climate system (Kumar & Zhu, 2018). Also, seasonal forecast performance can vary spatially 99 

across regions due to the complex and region-specific interactions between climate drivers 100 

and local environmental factors (Hao et al., 2018). Therefore, it is essential to assess the 101 

performance of different forecasting models across diverse global regions, and specific to the 102 

impacts that forecast errors may induce to identify most the effective and reliable models.  103 

 104 

While studies have evaluated the skill of seasonal forecast models in predicting total 105 

precipitation at the sub seasonal to seasonal scales (Becker et al., 2014; Gebrechorkos et al., 106 

2022; Nobakht et al., 2021; Roy et al., 2020), there is a need for an alternative impact-based 107 

assessment of forecast models that can inform their applicability for specific target extremes 108 

(e.g., flood, wildfire). Traditional forecast model performance assessments conduct a top-109 

down hazard information approach by mainly investigating the model’s skill in capturing 110 

weather patterns in comparison to the reference datasets (De Andrade et al., 2019; Moron & 111 

Robertson, 2020; Vitart & Robertson, 2018). The shift towards impact-based assessment 112 

framework reflects the evolving landscape of climate science and its increasing relevance in 113 

the face of a changing climate (Rad et al. 2022). It emphasizes the importance of moving 114 

beyond traditional evaluation methods and towards a comprehensive understanding of how 115 

weather forecasts directly influence society, ecosystems, and infrastructure resilience 116 

(AghaKouchak et al., 2018; Khorshidi et al., 2020; Mallakpour et al., 2022; Modaresi Rad et 117 

al., 2022; Sadegh et al., 2018). Such a framework considers the vulnerability of the local 118 

environment to specific weather events and warns of the associated impacts. An instance of 119 

such an influence might involve a chain reaction of hazards, like flooding due to repeated 120 

heavy rainfall events (Sadegh et al. 2018) or wildfires resulting from consecutive days of no 121 

precipitation and increased temperature, which can create conditions conducive to ignition 122 

(Khorshidi et al. 2020). Impact-based assessment of seasonal precipitation forecasts involve 123 

assessing the effectiveness of models by considering the real-world impact of extreme 124 

                                                 
3 http://cwfis.cfs.nrcan .gc.ca/en_CA/background/summary/fdr 
4 http://iridl. ldeo.columbia.edu/maproom/Global/Drought/Global/CPC_GOB/MME_pt_Persist.html 
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precipitation on various sectors and systems. It goes beyond assessing the mere accuracy of 125 

forecasted precipitation and aims to understand how well the forecasts translate into 126 

meaningful information for decision-making and risk management (AghaKouchak et al., 127 

2023).  128 

 129 

Our main objective in this study is to evaluate the skill of the five state-of-the-art seasonal 130 

prediction systems from the Copernicus Climate Change Service (C3S) multi-model at a 131 

global scale in predicting particular features of extreme events which could lead to cascading 132 

hazards. These indices are defined by the Expert Team on Climate Change Detection and 133 

Indices (ETCCDI) and have been investigated in other studies (Chervenkov et al., 2019; 134 

Chervenkov & Slavov, 2019). These indices were designed to capture different aspects of 135 

precipitation such as timing and intensity and are useful in diagnosing the variability of 136 

precipitation at various timescales posing them as proper metrics for impact-based 137 

assessment. We refined these indices to capture weather patterns that could cause climate-138 

induced hazards such as flood and wildfire. We conduct an evaluation of forecast models to 139 

assess their capability in discerning situations that result in the occurrence of a specific event 140 

from those that lead to its non-occurrence. As a related task, we perform a targeted analysis 141 

of model performance in regions with high risk of wildfires and floods. The following 142 

questions are answered in this study: Do seasonal forecast models have the capability to 143 

represent the variability of precipitation throughout the season? Is there a potential for 144 

combining various models to be an effective strategy for predicting extreme events, 145 

considering the variability of model performance across seasons and regions? 146 

 147 

2. Methodology 148 

This study examines the effectiveness of precipitation forecasts of five seasonal forecasting 149 

models from C3S project including the Centro Euro-Mediterraneo sui Cambiamenti Climatici 150 

(CMCC: version 35), Deutscher Wetterdienst (DWD: version 21), Environment and Climate 151 

Change Canada (ECCC: version 3), Météo France (Météo-France: version 8), and UK Met 152 

Office (UK-Met: version 601) models in accurately predicting extreme precipitation indices 153 

during the hindcast period spanning 1993 to 2016 (refer to Table S1). Validation was carried 154 

out using the fifth generation ECMWF reanalysis (ERA5) precipitation product. 155 

 156 

2.1 Data Preparation 157 

For our evaluation, we employed eight distinct climate extreme indices, following Expert 158 

Team on Climate Change Detection and Indices (ETCDDI)
5
 definitions, to encompass 159 

different aspects of precipitation extremes, such as event duration, intensity, and frequency. 160 

We used 1mm, 10mm, and 20mm precipitation thresholds (representing wet days, heavy 161 

precipitation days, and very heavy precipitation days, respectively) for the calculation of 162 

climate extreme indices. We also used 75
th

 and 95
th

 percentiles of each grid in the reference 163 

datasets as a secondary constraint in calculating indices to be more representative of the local 164 

environmental conditions. Combination of metrics and thresholds resulted in generating a 165 

                                                 
5 https://www.wcrp-climate.org/data-etccdi 
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comprehensive set of 28 climate extreme indices (refer to Table 1). These indices were 166 

specifically designed to offer insights into the potential changes observed in precipitation 167 

extremes over time and their impacts on various aspects of Earth system processes (Dunn et 168 

al., 2022). The assessment of seasonal skill for the models was carried out using forecast 169 

initializations on the first day of February, May, August, and November with a 1-month lead 170 

time (i.e., March-May (MAM), June-August (JJA), September-November (SON), and 171 

December-February (DJF) seasons respectively). 172 

 173 

Table 1. List of climate extreme indices extracted and used to conduct this study. 174 
abbreviation Index abbreviation Index 

cdd1 maximum consecutive dry days 1mm nwd20q95 number of wet days 20mm and 95th percentile 

cdd10 maximum consecutive dry days 10mm fr1q75 fraction of precipitation over 1mm and 75th percentile 

cdd20 maximum consecutive dry days 20mm fr1q95 fraction of precipitation over 1mm and 95th percentile 

cwd1 maximum consecutive wet days 1mm fr10q75 fraction of precipitation over 10mm and 75th percentile 

cwd10 maximum consecutive wet days 10mm fr10q95 fraction of precipitation over 10mm and 95th percentile 

cwd20 maximum consecutive wet days 20mm fr20q75 fraction of precipitation over 20mm and 75th percentile 

int1 daily pr intensity 1mm fr20q95 fraction of precipitation over 20mm and 95th percentile 

int10 daily pr intensity 10mm hpd Heavy precipitation days 

int20 daily pr intensity 20mm vhpd very Heavy precipitation days 

nwd1q75 number of wet days 1mm and 75th percentile h1dp Highest 1-day precipitation amount 

nwd1q95 number of wet days 1mm and 95th percentile h5dp Highest 5-day precipitation amount 

nwd10q75 number of wet days 10mm and 75th percentile propd1 Proportion of days with precipitation at or above 1mm 

nwd10q95 number of wet days 10mm and 95th percentile propd10 Proportion of days with precipitation at or above 10mm 

nwd20q75 number of wet days 20mm and 75th percentile propd20 Proportion of days with precipitation at or above 20mm 

 175 

 176 

The analysis was conducted on the ensemble mean for each model. All forecast models and 177 

reference data were re-gridded to a consistent one-degree resolution.  For spatial aggregation, 178 

we conducted our analysis over the Intergovernmental Panel on Climate Change (IPCC) 179 

regions shown in Table S2 (Iturbide et al., 2020). The IPCC divides the world into major 180 

regions, each of which includes a group of countries or territories that share similar climate 181 

characteristics, geographic features, and socio-economic factors. The IPCC regions, also 182 

known as the "IPCC Regional Reporting", are a set of geographical regions used by the IPCC 183 

as a framework for understanding how climate change affects different parts of the world and 184 

to facilitate the assessment of climate change impact, vulnerability, and adaptation strategies 185 

at the regional level.  186 

 187 

2.2 Model Evaluation 188 

For evaluation and comparison of forecast models against reference data, we employed 189 

percentage bias with an optimal value of zero. Here, zero signifies a perfect alignment 190 

between model predictions and observed data, and positive-bias/negative-bias signifies over-191 

estimation/under-estimation (Eq.1). 192 

 193 

𝑃𝐵𝐼𝐴𝑆 = 100
∑ (𝑆𝑖−𝑂𝑖)
𝑁
𝑖=1

∑ 𝑂𝑖
𝑁
𝑖=1

     
Eq.1 

 194 

where 𝑆𝑖 is the model simulation and 𝑂𝑖 is the observed value at time 𝑖.  195 

 196 

We also conducted a discriminant analysis to determine if the forecast skill varied in different 197 

sections of the precipitation distribution. To achieve this, we categorized the outcomes into 198 
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three distinct groups using upper and lower terciles: one-third representing below-normal 199 

conditions (lower tercile), another third representing above-normal conditions (upper tercile), 200 

and the remaining third representing conditions falling between the lower and upper tercile. 201 

Utilizing a random forest classification, we conducted a classification based on 75 percent of 202 

the available datasets (training sets). Subsequently, we computed the area under the ROC 203 

curve which is often used as a summary measure of forecast discrimination for the test data. 204 

ROC score is an efficient way to analyze the overall discriminatory power of the forecasts. It 205 

takes values between 0 to1. Here we categorized the ROC score to level of discrimination 206 

(i.e., in our case ability to discriminate extreme events from non-extreme events). The values 207 

of ROC score between 0.0 to 0.6 is considered no discrimination, 0.6 to 0.7 is considered 208 

satisfactory discrimination, 0.7 to 0.8 is considered good discrimination, 0.8 to 0.9 is 209 

considered very good discrimination, and 0.9 to 1.0 is considered excellent discrimination 210 

(Mandrekar, 2010). Also, we conducted Kendall's Tau rank correlation analysis to measure 211 

the strength of the relationship between climatic indices extracted from forecast models and 212 

reference data aggregated over each IPCC regions (Sen, 1968). These metrics were utilized to 213 

assess the skill of the forecast models in capturing extreme events and their associated 214 

accuracy. 215 

 216 

2.3 Impact based framework  217 

The IPCC regions which were vulnerable to wildfire and flooding were identified by 218 

categorizing them based on the proportion of farmland (Friedl & Sulla-Menashe, 2022), 219 

proportion of burned areas (Chuvieco et al., 2018; Lizundia-Loiola et al., 2020), percentage 220 

of flood-affected zones (Tellman et al., 2021), proportion of built-up regions (Gong et al., 221 

2020), and population density (Schiavina et al., 2023) (see Figure S1). We specifically 222 

focused on regions that not only had an elevated risk of wildfire (flood) exposure, but also 223 

had a significant built-up area and population density (substantial agricultural presence and 224 

population density). These selected regions were earmarked for additional analysis.  225 

 226 

We carefully selected relevant extreme indices pertinent to the corresponding climate-227 

induced hazard in each region. For the regions with wildfire as a prominent natural hazard we 228 

selected maximum consecutive dry days 1mm (cdd1), and proportion of days with 229 

precipitation at or above 1mm (propd1) indices as the relevant indicators of a weather 230 

condition conducive to wildfire. For regions with a high risk of flooding, we selected number 231 

of wet days with 10mm precipitation and 75th percentile of the reference data (nwd10q75) 232 

and heavy precipitation days (hpd) indices as the relevant indicators. We also determined the 233 

season with the highest occurrence rate for each specific hazard and regions. In every region, 234 

we identified the top-performing model in terms of predictive accuracy using the following 235 

selection criteria. Initially, we prioritized models with a combination of higher correlation 236 

(statistically significant) and lower bias. If multiple models demonstrated similar high 237 

performance compared to the others, we utilized a Taylor diagram to select models that 238 

aligned more closely with the reference data across various performance metrics. Our 239 

evaluation then focused on assessing the models’ forecast skill with respect to relevant 240 

indices in the identified hazard-prone seasons for each region. By adopting this impact-based 241 
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approach, we aimed to pinpoint the most suitable models and indices for each climate-242 

induced hazard, enabling more effective and tailored climate risk assessments. 243 

 244 

 245 

 246 

3. Results 247 

3.1 Global Analysis of Model Bias 248 

The analysis of percentage bias at a global scale across the four seasons reveals a consistent 249 

tendency of underestimation in all forecast models with respect to reference data for most of 250 

the extreme wet and extreme dry precipitation indices (Figure 1 shows UK-Met model as an 251 

example, and Figures S2-S5 show other models). The cdd1 index, which measures the 252 

maximum consecutive dry days at 1mm threshold, shows negative bias for most but not all 253 

regions, implying that the models predict a lower number of dry days than observed. In the 254 

case of the cwd1 and propd1 indices, which measures the maximum consecutive wet days at 255 

1mm threshold and proportion of days with at least 1mm precipitation, all models exhibit a 256 

positive bias, suggesting that they predict a higher number of wet days than observed data.  257 

 258 

For wet indices, all models underestimate cwd10 and cwd20 indices (10- and 20-mm 259 

precipitation threshold, respectively) across the four seasons and most of the IPCC regions. 260 

The models exhibit lower bias for extreme indices that are defined based on a 10mm 261 

precipitation threshold. As the threshold increases, so does the bias. This pattern is consistent 262 

with the findings of regional C3S assessment studies, for example in Africa (Gebrechorkos et 263 

al., 2022). These observations underscore the limitations in forecast capabilities for 264 

accurately modelling persistent wet and dry periods. By introducing secondary constraints 265 

(i.e., 75th, and 95th percentiles of the reference data) to the indices, the bias increases 266 

signifying the models’ limitation in capturing more severe extreme events. 267 

 268 

Figure 1 and Figures S2-S5 show that the CMCC, DWD, and ECCC models demonstrate 269 

relatively lower ability to capture extreme rainfall events within the extratropical IPCC 270 

regions compared to the UK-Met and Météo-France models, particularly when 95
th

 271 

percentiles of the reference dataset are introduced as thresholds to the index. This observation 272 

is consistent across all four seasons. However, in the tropical and subtropical regions, all 273 

models (especially UK-Met and Météo-France models) exhibit relatively better performance 274 

(lower bias) in capturing extreme events, compared to extratropical regions, when 75
th

 and 275 

95
th

 percentile thresholds were used in the indices as additional constraints. This is attributed 276 

to the model’s predictive skill in grasping large-scale teleconnection patterns (Giuntoli et al., 277 

2022). 278 

 279 

Figure 2 shows the standardized precipitation anomalies of the five models across the four 280 

seasons. Standardized anomalies offer invaluable insights about the localized anomalies 281 

through the number of standard deviation departure of forecasts from observations. We 282 

normalized the precipitation anomalies against the climatological standard deviation in each 283 

grid. A notable tendency to produce a double Intertropical Convergence Zone with significant 284 

anomalies over tropical pacific is observed in all models (García-Franco et al., 2023). The 285 
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pattern of anomalies differs substantially across seasons for all model with MAM, JJA, and 286 

DJF seasons showing larger anomalies in the tropical, subtropical, and equatorial regions, 287 

while SON season show lower levels of anomaly. In the northern hemisphere's extratropical 288 

land regions, seasonal forecasts reveal a larger negative anomaly in summer and larger 289 

positive anomalies in winter compared to spring and autumn respectively, which is likely due 290 

to the increased influence of local factors on summertime and wintertime precipitation. 291 

Uncertainties in these forecasts are largely attributed to model parameterization, including 292 

elements such as  vegetation cover and cloud physics, which can significantly impact 293 

precipitation predictions (Borovikov et al., 2019).  294 

 295 

a 

 

B 

 
c 

 

d 

 
Figure 1. Percentage bias of UK-Met model for a) MAM, b) JJA, c) SON, and d) DJF 296 

seasons. Grids indicated in gray circles shows the regions where reference data indicated the 297 

existence of extreme events while the forecast models couldn’t capture any events satisfying 298 

the index requirements. Grids with no values reflect regions that both reference data and 299 

forecasts did not capture any events satisfying the index requirements. The color bar is 300 

limited to the range of -100 to 100 for visualization purposes. This range was chosen to 301 

enhance visibility of variations in regions with small bias, which is of particular significance 302 

in this context. It should be noted that the actual values occasionally exceed this range but 303 

were truncated to facilitate better visual interpretation. 304 

 305 

 306 
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Overall, the precipitation anomalies are markedly larger in equatorial regions, and it 307 

decreases toward the northern and southern extra-tropical regions. Conversely, when 308 

assessing the percentage bias for climatic indices, we observe a higher bias in the extra-309 

tropical regions and a lower bias in equatorial regions. In the extra-tropical regions, forecast 310 

models demonstrate a reasonable ability to predict total precipitation three months in advance 311 

but face challenges when estimating seasonal precipitation patterns and variation throughout 312 

the four seasons (for example estimating number of consecutive wet days/dry days). 313 

Although, in equatorial regions, the elevated levels of precipitation contribute to a higher 314 

anomaly in total precipitation, the models exhibit greater skill in predicting seasonal rainfall 315 

patterns, and consequently climatic indices, with a three-month lead time. This is partially 316 

attributable to more uniform precipitation patterns throughout the year in equatorial regions. 317 

For indices measured in terms of the number of days, we observe larger bias compared to 318 

those representing total rainfall, indicating the models' limited ability to accurately replicate 319 

the variation of precipitation throughout the season (Figure 1). Indices that represent 320 

magnitude and intensity of precipitation (i.e., precipitation intensity, fraction of precipitation, 321 

highest 1-day precipitation amount, and highest 5-day precipitation amount) exhibit lower 322 

biases, suggesting that the model’s skill in simulating total seasonal precipitation. The UK-323 

Met and Météo-France models exhibit higher capacity in capturing extreme events, 324 

demonstrating favorable performance across various regions when considering 75
th

 and 95
th

 325 

percentile threshold levels. Moreover, even for indices not explicitly based on local 326 

thresholds, the biases for the UK-Met and Météo-France models remain lower compared to 327 

other models across the globe. 328 

 329 

 330 
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Figure 2. Standardized precipitation anomalies for CMCC (row 1), DWD (row 2), ECCC 331 

(row 3), UK-Met (row 4), and Météo-France (row 5) and during MAM (column 1), JJA 332 

(column 2), SON (column 3), and DJF (column 4). Anomalies are shown in terms of number 333 

of standard deviation departure of forecasts from observations in each grid.  334 

 335 

3.2 Global Analysis of ROC Scores 336 

 337 

While bias analysis assesses the systematic errors that exist in the forecasts, discrimination 338 

analysis is a useful to measure on how well the year-to-year variations in the forecasted 339 

values match those in the observations. Measurements of ROC score in Figure 3 and Figures 340 

S6-S9 show higher performance of forecast models in the intertropical regions located in 341 

Atlantic, Indian ocean, and west Pacific regions (Guimarães et al., 2021; Jie et al., 2017). The 342 

skill level varies across different models and seasons across Africa (refer to Table S2 for the 343 

complete names of IPCC regions). Notably, the Météo-France and UK-Met models exhibit 344 

superior performance during the SON and DJF seasons (i.e., indices with satisfactory, good, 345 

very good, and excellent discriminations are more frequent for these models). The 346 

exceptional performance of the Météo-France model in African regions has been the subject 347 

of discussion in prior studies (Gebrechorkos et al., 2022). Furthermore, when considering the 348 

ROC scores, the UK-Met model demonstrates a higher level of skill compared to the other 349 

four models in predicting extreme events in several Australian regions. This elevated skill of 350 

the UK-Met model is particularly pronounced during the MAM season whereas in JJA, SON, 351 

and DJF the skill drops dramatically. The lower performance of ACCESS-S1 forecast model 352 

(which is the same model used in UK-Met but with different ensemble generation scheme, 353 

ensemble size and the configuration of the system for operational forecasting) over Australia 354 

during southern hemisphere summer (DJF) is also concluded in other studies (King et al., 355 

2020).  356 

 357 

The prevalence of grids with no discrimination ROC categories is more pronounced in 358 

extratropical regions, possibly due to the inherent unpredictability of extratropical variations 359 

and limitations within the models when it comes to representing interactions between tropical 360 

and extratropical regions, as well as land surface processes (De Andrade et al., 2019).  361 

Notably, the CMCC, DWD, and ECCC models are associated with many regions where the 362 

models fail to detect any extreme event, as indicated by the absence of discrimination 363 

categories in Figures S6-S8. This disparity in extratropical regions is particularly conspicuous 364 

when compared to the UK-Met and Météo-France models. Specifically, the divergence is 365 

most apparent for wet day indices corresponding to the 75th and 95th percentiles of the 366 

reference data. This suggests that the CMCC, DWD, and ECCC models encounter challenges 367 

in accurately simulating extreme precipitation events exceeding the 75th and 95th percentiles 368 

of the reference dataset across a larger portion of the IPCC regions.  369 
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 370 

In certain tropical regions, there is a notably higher occurrence of indices falling within at 371 

least the satisfactory discrimination category when compared to other regions across all five 372 

models. Based on bias and ROC score analysis, the skill of C3S models vary markedly across 373 

regions. Hence, it is imperative to establish an impact-based framework for targeted selection 374 

of models tailored to address specific climate-related hazards in each region. This approach is 375 

crucial in ensuring effective and accurate responses to extreme weather events.   376 

 377 

 378 

a 

 

b 

 
c 

 

d 

 
Figure 3. Discrimination levels using categorized ROC score for UK-Met model for a) 379 

MAM, b) JJA, c) SON, and d) DJF seasons. Grids that are shaded in white represent regions 380 

that either or both reference data and model did not capture any events satisfying the index 381 

requirements. 382 

 383 

 384 

3.3 Global Analysis of Wildfire-related Indices 385 

Many scientific investigations have underscored the notable influence of climatic patterns on 386 

the initiation of wildfires (Sharma et al., 2022; Turco et al., 2023). Extended periods 387 

characterized by elevated temperatures devoid of precipitation events establish an 388 

environment conducive to fire ignition and propagation, intensifying the combustibility of 389 
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vegetative layers (Alizadeh et al., 2021, 2023). As the duration of consecutive dry days (days 390 

without rainfall or with rainfall below a specific threshold) extends, the moisture content of 391 

fuel diminishes, increasing its susceptibility to ignition (Abatzoglou & Williams, 2016). In 392 

this section, we investigate the cdd1 and propd1 indices to assess the predictive skill of 393 

models on a global scale and then within the IPCC region, where wildfires emerge a 394 

prominent natural hazard.  395 

 396 

The evaluation results reveal that the performance of the models varies across different 397 

regions. This regional variation highlights the unique strengths and adaptability of each 398 

model, as they excel in response to the specific challenges and requirements posed by distinct 399 

geographic areas.  The examination of global Kendall's Tau correlation scores based on the 400 

cdd1 index reveals that the models' predictive abilities are most pronounced in the 401 

intertropical and subtropical zones (Figure 4). While model performance varies notably 402 

across different seasons, at least one model displays a notable correlation with the reference 403 

datasets within each season and region. Same rule applies to the IPCC regions located in 404 

southern parts of Africa and Oceania continents. The predictive skill of the models is also 405 

pronounced in the West Central Asia (WCA), East Central Asia (ECA), Tibetan Plateau 406 

(TIB), and regions located in Australia and southern America.  407 

 408 

Percentage bias results show that most of the models generally underestimate cdd1 across all 409 

seasons except for northern regions near the pole during the MAM and DJF seasons which 410 

show overestimation (Figure 5). The considerable bias in the southern hemisphere during the 411 

DJF season is particularly noteworthy, which can be linked to the shortfall in predictive 412 

accuracy of the forecast models in extratropical areas. In contrast, the reduced bias levels, and 413 

the significant correlation of models and observations such as south and southeast Asia, 414 

particularly during dry seasons, can be attributed to the influence of soil moisture memory on 415 

the predictive capabilities of the forecast models in this region (Zhou et al., 2021).  416 

 417 

 418 

a 

 

b 

 
c d 
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Figure 4. Kendall's Tau coefficients for the cdd1 index in IPCC regions during a) MAM, b) 419 

JJA, c) SON, and d) DJF. Models with a significant correlation coefficient at the 0.05 level 420 

are marked with a plus sign. 421 

 422 

 423 

 424 

 425 

 426 

a 

 

b 

 
c 

 

d 

 
Figure 5. Percent bias for cdd1 index in IPCC regions during a) MAM, b) JJA, c) SON, and 427 

d) DJF. 428 

 429 

 430 

In the southern hemisphere, and in the JJA, SON, and DJF seasons, the correlation coefficient 431 

for almost all models on the propd1 index is highly significant, apart from southern Africa 432 

where the models show notable skill only in the DJF season (refer to Figure S10).  Notably, 433 

the bias values for these southern hemisphere regions are both positive and large. This 434 

indicates that while the models can accurately represent the seasonal variations, they 435 

consistently overestimate the duration of wet days throughout the seasons (refer to Figure 436 

S13). In North American regions, the correlation coefficient of models fluctuates seasonally, 437 

with noteworthy performance during the JJA and SON seasons. In contrast, for areas across 438 

Asia, the models perform significantly well only in the winter season (i.e., DJF).  All Models   439 
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demonstrate strong predictive power throughout all seasons in the WCA region. It's important 440 

to note that although the bias is generally large and positive in most northern hemisphere 441 

regions, the bias is significantly lower in Asian regions during the DJF season compared to 442 

North America and Europe (refer to Figure S10-S11). 443 

 444 

3.4 Wildfire-prone Regions: Targeted Forecast Performance Analysis 445 

We now focus on the four regions where the wildfire is a prominent natural hazard: NAU, 446 

SEAF, Western North America (WNA), and NSA regions. Within each region, a particular 447 

season characterized by an elevated likelihood of wildfire incidence has been designated for 448 

subsequent analysis and processing. 449 

 450 

In northern Australia, the peak period for wildfire aligns with the dry SON season. From 451 

August to December, many regions of Southern Africa experience the onset of their wildfire 452 

season therefore we selected the SON season for further analysis. In the United States, 453 

wildfire activity is a year-round concern, but the most severe wildfires arise during the 454 

summer months (JJA season), particularly in the western regions. In Latin America, the fire 455 

season typically commences at the end of January and extends through April (DJF season).   456 

 457 

In Figure 6a, it is evident that all models except for CMCC demonstrate a notable correlation 458 

with the reference data for the maximum number of consecutive dry days in the NAU region. 459 

Notably, Météo-France and ECCC models exhibit the strongest correlation, positioning them 460 

as prominent contenders. Furthermore, in Figure 6b both Météo-France and ECCC display 461 

lower bias, demonstrating their predictive potential. However, in the Taylor diagram 462 

presented in Figure 6c, the ECCC model establishes its supremacy over Météo-France by 463 

exhibiting a standard deviation that is more closely aligned with the reference data. The 464 

overestimation of precipitation (and consequently underestimation of dry days) in CMCC and 465 

UK-Met models over NAU region is visible in Figure 7 where they exceed the 1mm 466 

threshold earlier and with steeper slope compared to other models resulting in the 467 

underestimation of cdd1 index. 468 

 469 

 470 

 471 

a 

 

b 
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c 

 

d 

 

e 

 

f 

 

Figure 6. Performance metrics for the maximum consecutive dry days index with 1mm 472 

precipitation threshold (cdd1): a) Kendall's Tau coefficient, b) Percentage bias, and Taylor 473 

diagram for c) NAU, d) SEAF, e) WNA, and f) NSA regions respectively.  474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

a 

 

b 

 
c 

 

d 

 
Figure 7. Annual climatology time series of the precipitation for five C3S models and the 483 

ERA5 datasets over NAU, SEAF, WNA, and NSA region. 484 

 485 

 486 

This model selection framework is extended for other three region and the main findings 487 

reveal distinct model performance variations in different regions. The ECCC model is 488 

particularly strong in forecasting consecutive dry days in the NAU region and closely tracks 489 

reference data. In contrast, the DWD model emerges as the top performer in the SEAF and 490 
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NSA regions, exhibiting the highest correlation, lower bias, and lower root mean square error 491 

in these areas. The UK-Met model excels in the WNA region, demonstrating a close match 492 

with the reference dataset's standard deviation. These variations in model performance are 493 

attributed to their abilities to simulate significant large-scale climate variabilities such as 494 

ENSO, IOD, and north Australian SSTs, which play a crucial role in enhancing prediction 495 

skill during the SON season over Australia. 496 

 497 

In the domain of predicting the proportion of wet days featuring precipitation exceeding 1mm 498 

(propd1), the Météo-France model exhibits superior overall performance in the NAU region, 499 

with high correlation values. Additionally, Météo-France demonstrates notably lower bias 500 

values, as shown in Figure S12a and S12b. Although Figure S12c's Taylor diagram reveals 501 

that Météo-France has a standard deviation that is slightly worse than other models, the bias 502 

metric indicates the superiority of the Météo-France model. In the SEAF region Météo-503 

France and DWD model exhibit superior overall performance over other models according to 504 

correlation and bias values in Figure S12 and S12b. Based on the Taylor diagram, Météo-505 

France has a standard deviation closer to the reference data. The substantial correlation 506 

difference and standard deviation indicates the superiority of Météo-France model. The 507 

overestimation of the propd1 index in Météo-France model compared to DWD model can be 508 

concluded from Figure 7b where the time series of precipitation of Météo-France is 509 

overestimating that of reference datasets during SON season.  510 

 511 

For the WNA region, the ECCC model exhibits a higher correlation score but notably high 512 

bias values. The absence of substantial correlation values in other models results in the choice 513 

of the ECCC model as the most favorable option. In the NSA region, it's evident that the 514 

DWD model stands out as the top-performing model. It boasts a high correlation score, the 515 

smallest bias when compared to other models, and a standard deviation that closely aligns 516 

with the reference data (Figure S12a and S12b and S12f).  517 

 518 

3.5 Global Analysis of Flood-related Indices 519 

Consecutive occurrences of extreme precipitation over successive days can significantly 520 

elevate the probability of widespread flooding. Many investigations have documented 521 

instances of substantial flooding due to consecutive multi-day extreme precipitation incidents 522 

(Ávila et al., 2016; Du et al., 2022; Rivoire et al., 2023). To assess the capabilities of the C3S 523 

models across IPCC regions, where flooding is a predominant natural hazard, we employed 524 

the heavy precipitation days index (hpd) and number of wet days with 10mm precipitation 525 

threshold index exceeding the 75th percentiles of the reference dataset (nwd10q75). 526 

 527 

According to Figure S13, the correlation of all models with the reference data, as assessed by 528 

the hpd index, is most evident in Central and South America, particularly during the JJA and 529 

SON seasons. Also, regions in central Africa shows noticeable predictive abilities in the DJF 530 

season over CMCC, and Météo-France, and for regions in Australia the CMCC model 531 

demonstrate noticeable results throughout the year, excluding the winter season (JJA). 532 

Percent bias values are large and negative for all models and across all seasons in northern 533 

hemisphere extratropical regions suggesting the inadequacy of models in capturing heavy 534 



17 

 

precipitation days in these areas. In the tropical and sub-tropical regions bias values are 535 

markedly smaller especially during MAM, JJA and SON seasons. For the regions located in 536 

Australia across all seasons the model bias is large and negative. While the bias for north 537 

African regions is relatively smaller in DJF season, for other seasons the bias values are large 538 

and negative. The bias values in south American regions in extratropic is relatively lower 539 

than those of Africa and Australia across MAM, and DJF the seasons.  540 

 541 

In Central and Northern Europe, ECCC, and DWD models show significant predictive 542 

abilities during the winter season (DJF). For Europe, the predictive skill of models for 543 

extreme precipitation events is higher in DJF; for the other seasons, predictive skill is poor as 544 

reported in other studies (Rivoire et al., 2023). The models are generally weak in their 545 

predictions for IPCC regions in Asia, apart from the southern and southeastern areas, 546 

including WCA, TIB, SAS, and East Asia, where CMCC, UK-Met and Météo-France models 547 

exhibit noteworthy predictive skill except for the JJA season. In North America, the models' 548 

predictive capacities are lacking across all seasons. Meanwhile, there is a noticeable negative 549 

bias in the predictive skill of all models, especially in extratropical regions of both the 550 

Southern and Northern Hemispheres as shown in Figure S14. These biases are comparatively 551 

smaller in the Western Pacific and Atlantic equatorial regions.  552 

 553 

Regarding the nwd10q75 index, its characteristics mirror those of the hpd index, apart from 554 

the 75th percentile constraint in the reference data (as seen in Figures S15 and S16). In 555 

essence, the patterns of different models across various seasons and regions are nearly 556 

identical to those observed for the hpd index. Models that have some, albeit weak, predictive 557 

abilities based on the hpd index generally lose their predictive strength when evaluated using 558 

the nwd10q75 index. 559 

 560 

3.6 Flood-prone Regions: Targeted Forecast Performance Analysis 561 

In the South-East Asia (SEA) monsoon region during JJA (flood season), the UK-Met 562 

demonstrates a superior performance compared to other models, exhibiting notably high 563 

correlation and lower bias values (Figure 8.a and 8b). Although, the Taylor diagram indicates 564 

that UK-Met exhibits a larger standard deviation value compared to other models but the 565 

markedly lower bias values make this model the optimal choice here (Figure 8c). This is also 566 

evident in the Figure 9a where Météo-France shows overestimation of precipitation, ECCC 567 

shows underestimation, while UK-Met, DWD, and CMCC follow the reference precipitation 568 

very closely. Overall, in this region the prediction skill is  mostly highlighted in the pre-569 

monsoon (April–May) and post-monsoon (October–November), while during monsoon 570 

seasons (JJA) skill is poorer because of the monsoon influences on precipitation predictability 571 

(Wanthanaporn et al., 2023). 572 

 573 

Based on Figure 8, in the Western and Central Europe (WCE) region during the DJF flooding 574 

season, the ECCC model exhibits higher significant correlation values compared to other 575 

models. However, all models struggle to adequately capture reference data variations, as 576 

indicated by high RMSE values and low correlation coefficients. In the South Asia (SAS) 577 

region during the JJA season, the UK-Met and CMCC models demonstrate higher correlation 578 
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values, with the UK-Met model showing positive but statistically insignificant correlation. 579 

The UK-Met model outperforms others by exhibiting smaller bias, particularly in comparison 580 

to the CMCC model. Therefore, the UK-Met model is favored for the SAS region. In the 581 

Central North America (CNA) region during the JJA season, both the UK-Met and Météo-582 

France models exhibit significant correlation coefficients, while all models display large bias 583 

values. Once again, the UK-Met model stands out due to its lower bias compared to the other 584 

models. 585 

 586 

Upon eliminating the constraint associated with the 75th percentile of the reference data in 587 

predicting heavy precipitation days, there is an observable reduction in bias values across 588 

SEA and SAS regions for the hpd index (Figure S17 and S17b). The correlation values are 589 

almost like those of nwd10q75 index. Simultaneously, the standard deviation values become 590 

more aligned with the reference data (Figure S17c and S17f). However, it is important to note 591 

that despite these changes, the hierarchy of model selection remains consistent. This 592 

highlights that the models are relatively less effective at capturing anomalies linked to an 593 

increase in the impact of local factors. 594 

 595 

 596 

 597 

a 

 

b 

 
c 

 

d 

 

e 

 

f 

 
Figure 8. Model performance with respect to the number of heavy precipitation days 598 

exceeding 10 mm and the 75th percentiles of the reference dataset (nwd10q75): a) Kendall's 599 

Tau coefficient, b) Percentage bias, and Taylor diagram for c) SEA, d) WCE, e) SAS, and f) 600 

CNA regions, respectively.  601 

a b 
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d 

 
Figure 9. Annual climatology time series of the precipitation for five C3S the ERA5 datasets 602 

over a) SEA, b) WCE, c) SAS, and d) CNA region.  603 

 604 

 605 

3.7 Model Effectiveness Across Seasons and Regions 606 

Analysis of forecasts of extreme precipitation indices over all five models reveals that with 607 

increase in the precipitation threshold the model’s bias increases, suggesting a lack of skill in 608 

modelling severe precipitation events. Correlation scores are lower in extratropical regions as 609 

compared to the tropical regions, Likely due to the inherent unpredictability of extratropical 610 

variability and model limitations in replicating land surface processes and tropical-611 

extratropical interactions, including the Pacific-South American (PSA) pattern and the 612 

Pacific-North American (PNA) pattern, both of which can be influenced by ENSO and the 613 

MJO (De Andrade et al., 2019). This is illustrated in Figure 10 where in the extratropical 614 

regions models were unable to meet the selection criteria (i.e., having statistically significant 615 

correlation while showing low bias) for most of the indices. This figure highlights the 616 

superiority of UK-Met and Météo-France for all the four seasons. In the MAM, and JJA 617 

season ECCC model has been selected frequently in some regions. The CMCC model is also 618 

an effective model after UK-Met and Météo-France by showing higher skill than the rest of 619 

models for a considerable number of indices and regions. The frequency of selecting each 620 

model at each region and over the 28 climate indices is illustrated in the Figure S18. As an 621 

example, in the MAM season at the SEA region for 10 of the indices Météo-France model is 622 

selected as a superior model (i.e., having significant correlation while a lower bias compared 623 

to other models). For the SON season UK-Met model is the superior model over most of the 624 

indices. Another noteworthy example would be NSA region where combination of UK-Met 625 

and CMCC models are skilful in predicting extreme events. In MAM season UK-Met meets 626 

the selection criteria for 13 of the indices and CMCC pass the selection criteria for 9 of the 627 
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indices. In the JJA season UK-Met model meets the selection criteria for 13 of the indices 628 

while during DJF season the CMCC meets the selection criteria for 12 of the indices.  629 

 630 

Over the SON season, UK-Met meet the selection criteria for 12 indices and CMCC for 7 of 631 

the remaining indices. It is evident that using these two models over NSA region provides the 632 

ability to capture large portion of extreme events. These results highlight the effectiveness of 633 

our impact-based framework in capturing variety of extreme climatic events by combination 634 

of different models in different season. 635 

 636 

 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 
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                  c                           d 
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Figure 10. Heat map of the selected models based on statistically significant Kendall's Tau at 651 

0.05 level and percentage bias over IPCC regions and across 28 climate extreme indices for 652 

a) MAM, b) JJA, c) SON, and d) DJF seasons. 653 

 654 

 655 

4. Summary and Discussion 656 

This study's primary objective is to assess the performance of five C3S seasonal forecast 657 

models in predicting extreme precipitation events spanning the period from 1993 to 2016. To 658 

achieve this, the study involves the extraction of 28 extreme precipitation indices, as defined 659 

by the ETCCDI group. These indices are established based on specific precipitation 660 

thresholds of 1mm, 10mm, and 20mm, as well as the 75th and 95th percentiles of reference 661 

data.  662 

 663 

Furthermore, the study employs performance metrics, including Percent Bias and the Kendall 664 

Tau Rank Correlation Score, to gauge the models' accuracy in predicting extreme weather 665 

events. Also, we evaluate the discrimination capacity of models in discerning extreme events 666 

from non-events. To provide a more comprehensive assessment, the research introduces an 667 

impact-based framework. This framework is designed to evaluate the models' effectiveness in 668 

predicting extreme weather events that have the potential to instigate hazardous conditions 669 

such as floods and wildfires. The ERA5 reanalysis precipitation dataset is used as reference. 670 

The goal is to identify the most reliable models for targeted impact-based precipitation risk 671 

assessments. 672 

 673 

A key finding is the consistent underestimation of bias across most extreme climate indices 674 

for all models, particularly evident when thresholds for precipitation are high. Notably,  the  675 

UK-Met and Météo-France models are found to perform better, which has been reported in 676 

other studies (De Andrade et al., 2019; McAdam et al., 2022). Despite the prevalent bias, 677 

statistically significant correlation are found in tropical and subtropical regions, indicating 678 

that the models can reasonably capture the variability of events even if they miss the actual 679 

magnitude of the extremes (Vitart et al., 2017). 680 

 681 
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We develop an impact-based framework to assess the abilities of climate models in detecting 682 

extreme events in regions susceptible to cascading natural disasters like wildfires and floods. 683 

To evaluate performance in areas prone to wildfires, we employed indices such as cdd1, and 684 

propd1. For flood-prone zones, we used nwd10q75 and hpd as primary indices.  685 

 686 

In the context of wildfire risk analysis, notable differences in predictive capacities are 687 

observed, with specific models showcasing their powers in different regions and for different 688 

extreme precipitation indices. In the Northern Australia region (NAU), Météo-France and 689 

ECCC models display robust performance in predicting consecutive dry days. In the Southern 690 

Africa region (SEAF), the DWD model emerged as a frontrunner for predicting extreme 691 

precipitation events. The UK-Met model shows promising results for Western North America 692 

(WNA). Lastly, the DWD model shows good performance for the North South America 693 

(NSA) region. The analysis reveals models' relative strengths and weaknesses in predicting 694 

various precipitation characteristics, providing valuable insights for wildfire-related risk 695 

assessments. 696 

 697 

For flood-prone regions, the UK-Met model demonstrates superior predictive capabilities in 698 

the South-East Asia (SEA) monsoon season (JJA), marked by high correlation and low bias. 699 

In Western and Central Europe during the flood season (DJF), the ECCC model excel with 700 

notable correlation and comparable bias, despite challenges in capturing reference data 701 

variations. In South Asia (SAS) during the JJA season, the UK-Met and CMCC models 702 

excel, with the UK-Met showing favourable correlation and low bias.  703 

 704 

Our analysis of extreme precipitation indices across multiple models reveals that higher 705 

precipitation thresholds correspond to increased model bias, indicating a lack of skill in 706 

modelling severe precipitation events. Lower correlation scores in extratropical regions can 707 

be attributed to the inherent unpredictability of extratropical variability and the errors 708 

stemming from model deficiencies in representing teleconnections (De Andrade et al., 2019). 709 

The superiority of UK-Met and Météo-France models throughout all four seasons is 710 

emphasized, with ECCC also performing well in specific regions. The ECCC and CMCC 711 

models demonstrate effectiveness, following UK-Met and Météo-France, across specific 712 

indices and regions. The combined use of models emerges as a successful approach for 713 

predicting extreme events across different seasons. These findings underscore the efficacy of 714 

the impact-based framework in comprehensively capturing a wide range of extreme climatic 715 

events through a strategic combination of diverse models across different seasons. 716 

 717 

 718 

Data Availability Statement 719 

 720 

The data used in this study were obtained from the European Centre for Medium-Range 721 

Weather Forecasts (ECMWF) Copernicus Climate Change Service, specifically from the 722 

ERA5 reanalysis dataset and C3S seasonal forecasts. These datasets are publicly available 723 

through the Copernicus Climate Data Store (CDS) at https://cds.climate.copernicus.eu under 724 

an Open Data Commons Attribution 4.0 International (ODC-BY 4.0) license. To access the 725 

https://cds.climate.copernicus.eu/
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data, users can register for a free account on the Copernicus Climate Data Store platform and 726 

follow the provided guidelines for data retrieval. The specific seasonal model version 727 

numbers used in this study are detailed in the Section 2 of the paper. 728 

 729 

References 730 

Abatzoglou, J. T., & Williams, A. P. (2016). Impact of anthropogenic climate change on 731 

wildfire across western US forests. Proceedings of the National Academy of Sciences, 732 

113(42), 11770–11775. https://doi.org/10.1073/pnas.1607171113 733 

AghaKouchak, A., Huning, L. S., Chiang, F., Sadegh, M., Vahedifard, F., Mazdiyasni, O., 734 

Moftakhari, H., & Mallakpour, I. (2018). How do natural hazards cascade to cause 735 

disasters? Nature, 561(7724), 458–460. https://doi.org/10.1038/d41586-018-06783-6 736 

AghaKouchak, A., Huning, L. S., Sadegh, M., Qin, Y., Markonis, Y., Vahedifard, F., Love, 737 

C. A., Mishra, A., Mehran, A., Obringer, R., Hjelmstad, A., Pallickara, S., Jiwa, S., 738 

Hanel, M., Zhao, Y., Pendergrass, A. G., Arabi, M., Davis, S. J., Ward, P. J., … 739 

Kreibich, H. (2023). Toward impact-based monitoring of drought and its cascading 740 

hazards. Nature Reviews Earth & Environment, 4(8), 582–595. 741 

https://doi.org/10.1038/s43017-023-00457-2 742 

Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., & Pappenberger, F. 743 

(2013). GloFAS – global ensemble streamflow forecasting and flood early warning. 744 

Hydrology and Earth System Sciences, 17(3), 1161–1175. 745 

https://doi.org/10.5194/hess-17-1161-2013 746 

Alizadeh, M. R., Abatzoglou, J. T., Adamowski, J., Modaresi Rad, A., AghaKouchak, A., 747 

Pausata, F. S. R., & Sadegh, M. (2023). Elevation-dependent intensification of fire 748 

danger in the western United States. Nature Communications, 14(1), 1773. 749 

https://doi.org/10.1038/s41467-023-37311-4 750 

Alizadeh, M. R., Abatzoglou, J. T., Luce, C. H., Adamowski, J. F., Farid, A., & Sadegh, M. 751 

(2021). Warming enabled upslope advance in western US forest fires. Proceedings of 752 



24 

 

the National Academy of Sciences, 118(22), e2009717118. 753 

https://doi.org/10.1073/pnas.2009717118 754 

Arheimer, B., Pimentel, R., Isberg, K., Crochemore, L., Andersson, J. C. M., Hasan, A., & 755 

Pineda, L. (2020). Global catchment modelling using World-Wide HYPE (WWH), 756 

open data, and stepwise parameter estimation. Hydrology and Earth System Sciences, 757 

24(2), 535–559. https://doi.org/10.5194/hess-24-535-2020 758 

Assessment of Intraseasonal to Interannual Climate Prediction and Predictability (p. 12878). 759 

(2010). National Academies Press. https://doi.org/10.17226/12878 760 

Ávila, A., Justino, F., Wilson, A., Bromwich, D., & Amorim, M. (2016). Recent precipitation 761 

trends, flash floods and landslides in southern Brazil. Environmental Research 762 

Letters, 11(11), 114029. https://doi.org/10.1088/1748-9326/11/11/114029 763 

Baldwin, M. P., Stephenson, D. B., Thompson, D. W. J., Dunkerton, T. J., Charlton, A. J., & 764 

O’Neill, A. (2003). Stratospheric Memory and Skill of Extended-Range Weather 765 

Forecasts. Science, 301(5633), 636–640. https://doi.org/10.1126/science.1087143 766 

Becker, E., Den Dool, H. V., & Zhang, Q. (2014). Predictability and Forecast Skill in 767 

NMME. Journal of Climate, 27(15), 5891–5906. https://doi.org/10.1175/JCLI-D-13-768 

00597.1 769 

Borovikov, A., Cullather, R., Kovach, R., Marshak, J., Vernieres, G., Vikhliaev, Y., Zhao, B., 770 

& Li, Z. (2019). GEOS-5 seasonal forecast system. Climate Dynamics, 53(12), 7335–771 

7361. https://doi.org/10.1007/s00382-017-3835-2 772 

Chervenkov, H., & Slavov, K. (2019). STARDEX and ETCCDI Climate Indices Based on E-773 

OBS and CARPATCLIM: Part Two: ClimData in Use. In G. Nikolov, N. Kolkovska, 774 

& K. Georgiev (Eds.), Numerical Methods and Applications (Vol. 11189, pp. 368–775 

374). Springer International Publishing. https://doi.org/10.1007/978-3-030-10692-776 

8_41 777 



25 

 

Chervenkov, H., Slavov, K., & Ivanov, V. (2019). STARDEX and ETCCDI Climate Indices 778 

Based on E-OBS and CARPATCLIM: Part One: General Description. In G. Nikolov, 779 

N. Kolkovska, & K. Georgiev (Eds.), Numerical Methods and Applications (Vol. 780 

11189, pp. 360–367). Springer International Publishing. https://doi.org/10.1007/978-781 

3-030-10692-8_40 782 

Chuvieco, E., Pettinari, M. L., Lizundia-Loiola, J., Storm, T., & Padilla Parellada, M. (2018). 783 

ESA Fire Climate Change Initiative (Fire_cci): MODIS Fire_cci Burned Area Pixel 784 

product, version 5.1 (3.1) [Application/xml]. Centre for Environmental Data Analysis 785 

(CEDA). https://doi.org/10.5285/58F00D8814064B79A0C49662AD3AF537 786 

Committee on Developing a U.S. Research Agenda to Advance Subseasonal to Seasonal 787 

Forecasting, Board on Atmospheric Sciences and Climate, Ocean Studies Board, 788 

Division on Earth and Life Studies, & National Academies of Sciences, Engineering, 789 

and Medicine. (2016). Next Generation Earth System Prediction: Strategies for 790 

Subseasonal to Seasonal Forecasts (p. 21873). National Academies Press. 791 

https://doi.org/10.17226/21873 792 

De Andrade, F. M., Coelho, C. A. S., & Cavalcanti, I. F. A. (2019). Global precipitation 793 

hindcast quality assessment of the Subseasonal to Seasonal (S2S) prediction project 794 

models. Climate Dynamics, 52(9–10), 5451–5475. https://doi.org/10.1007/s00382-795 

018-4457-z 796 

Du, H., Donat, M. G., Zong, S., Alexander, L. V., Manzanas, R., Kruger, A., Choi, G., 797 

Salinger, J., He, H. S., Li, M.-H., Fujibe, F., Nandintsetseg, B., Rehman, S., Abbas, 798 

F., Rusticucci, M., Srivastava, A., Zhai, P., Lippmann, T., Yabi, I., … Wu, Z. (2022). 799 

Extreme Precipitation on Consecutive Days Occurs More Often in a Warming 800 

Climate. Bulletin of the American Meteorological Society, 103(4), E1130–E1145. 801 

https://doi.org/10.1175/BAMS-D-21-0140.1 802 



26 

 

Dunn, R. J. H., Donat, M. G., & Alexander, L. V. (2022). Comparing extremes indices in 803 

recent observational and reanalysis products. Frontiers in Climate, 4, 989505. 804 

https://doi.org/10.3389/fclim.2022.989505 805 

Friedl, M., & Sulla-Menashe, D. (2022). MODIS/Terra+Aqua Land Cover Type Yearly L3 806 

Global 500m SIN Grid V061 [dataset]. NASA EOSDIS Land Processes Distributed 807 

Active Archive Center. https://doi.org/10.5067/MODIS/MCD12Q1.061 808 

García-Franco, J. L., Lee, C.-Y., Camargo, S. J., Tippett, M. K., Kim, D., Molod, A., & Lim, 809 

Y.-K. (2023). Climatology of tropical cyclone precipitation in the S2S models. 810 

Weather and Forecasting. https://doi.org/10.1175/WAF-D-23-0029.1 811 

Gebrechorkos, S. H., Pan, M., Beck, H. E., & Sheffield, J. (2022). Performance of State‐of‐812 

the‐Art C3S European Seasonal Climate Forecast Models for Mean and Extreme 813 

Precipitation Over Africa. Water Resources Research, 58(3). 814 

https://doi.org/10.1029/2021WR031480 815 

Giuntoli, I., Fabiano, F., & Corti, S. (2022). Seasonal predictability of Mediterranean weather 816 

regimes in the Copernicus C3S systems. Climate Dynamics, 58(7–8), 2131–2147. 817 

https://doi.org/10.1007/s00382-021-05681-4 818 

Gong, P., Li, X., Wang, J., Bai, Y., Chen, B., Hu, T., Liu, X., Xu, B., Yang, J., Zhang, W., & 819 

Zhou, Y. (2020). Annual maps of global artificial impervious area (GAIA) between 820 

1985 and 2018. Remote Sensing of Environment, 236, 111510. 821 

https://doi.org/10.1016/j.rse.2019.111510 822 

Guimarães, B. D. S., Coelho, C. A. D. S., Woolnough, S. J., Kubota, P. Y., Bastarz, C. F., 823 

Figueroa, S. N., Bonatti, J. P., & De Souza, D. C. (2021). An inter-comparison 824 

performance assessment of a Brazilian global sub-seasonal prediction model against 825 

four sub-seasonal to seasonal (S2S) prediction project models. Climate Dynamics, 826 

56(7–8), 2359–2375. https://doi.org/10.1007/s00382-020-05589-5 827 



27 

 

Hao, Z., Singh, V. P., & Xia, Y. (2018). Seasonal Drought Prediction: Advances, Challenges, 828 

and Future Prospects. Reviews of Geophysics, 56(1), 108–141. 829 

https://doi.org/10.1002/2016RG000549 830 

Iturbide, M., Gutiérrez, J. M., Alves, L. M., Bedia, J., Cerezo-Mota, R., Cimadevilla, E., 831 

Cofiño, A. S., Di Luca, A., Faria, S. H., Gorodetskaya, I. V., Hauser, M., Herrera, S., 832 

Hennessy, K., Hewitt, H. T., Jones, R. G., Krakovska, S., Manzanas, R., Martínez-833 

Castro, D., Narisma, G. T., … Vera, C. S. (2020). An update of IPCC climate 834 

reference regions for subcontinental analysis of climate model data: Definition and 835 

aggregated datasets. Earth System Science Data, 12(4), 2959–2970. 836 

https://doi.org/10.5194/essd-12-2959-2020 837 

Jie, W., Vitart, F., Wu, T., & Liu, X. (2017). Simulations of the Asian summer monsoon in 838 

the sub-seasonal to seasonal prediction project (S2S) database: Simulations of Asian 839 

Summer Monsoon in the S2S Database. Quarterly Journal of the Royal 840 

Meteorological Society, 143(706), 2282–2295. https://doi.org/10.1002/qj.3085 841 

Khorshidi, M. S., Dennison, P. E., Nikoo, M. R., AghaKouchak, A., Luce, C. H., & Sadegh, 842 

M. (2020). Increasing concurrence of wildfire drivers tripled megafire critical danger 843 

days in Southern California between1982 and 2018. Environmental Research Letters, 844 

15(10), 104002. https://doi.org/10.1088/1748-9326/abae9e 845 

King, A. D., Hudson, D., Lim, E., Marshall, A. G., Hendon, H. H., Lane, T. P., & Alves, O. 846 

(2020). Sub‐seasonal to seasonal prediction of rainfall extremes in Australia. 847 

Quarterly Journal of the Royal Meteorological Society, 146(730), 2228–2249. 848 

https://doi.org/10.1002/qj.3789 849 

Kumar, A., & Zhu, J. (2018). Spatial Variability in Seasonal Prediction Skill of SSTs: 850 

Inherent Predictability or Forecast Errors? Journal of Climate, 31(2), 613–621. 851 

https://doi.org/10.1175/JCLI-D-17-0279.1 852 



28 

 

Lau, W. K.-M., & Waliser, D. E. (2012). Intraseasonal Variability in the Atmosphere-Ocean 853 

Climate System. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-854 

13914-7 855 

Lizundia-Loiola, J., Otón, G., Ramo, R., & Chuvieco, E. (2020). A spatio-temporal active-856 

fire clustering approach for global burned area mapping at 250 m from MODIS data. 857 

Remote Sensing of Environment, 236, 111493. 858 

https://doi.org/10.1016/j.rse.2019.111493 859 

Mallakpour, I., Sadeghi, M., Mosaffa, H., Akbari Asanjan, A., Sadegh, M., Nguyen, P., 860 

Sorooshian, S., & AghaKouchak, A. (2022). Discrepancies in changes in precipitation 861 

characteristics over the contiguous United States based on six daily gridded 862 

precipitation datasets. Weather and Climate Extremes, 36, 100433. 863 

https://doi.org/10.1016/j.wace.2022.100433 864 

Mandrekar, J. N. (2010). Receiver Operating Characteristic Curve in Diagnostic Test 865 

Assessment. Journal of Thoracic Oncology, 5(9), 1315–1316. 866 

https://doi.org/10.1097/JTO.0b013e3181ec173d 867 

McAdam, R., Masina, S., Balmaseda, M., Gualdi, S., Senan, R., & Mayer, M. (2022). 868 

Seasonal forecast skill of upper-ocean heat content in coupled high-resolution 869 

systems. Climate Dynamics, 58(11–12), 3335–3350. https://doi.org/10.1007/s00382-870 

021-06101-3 871 

Modaresi Rad, A., Kreitler, J., Abatzoglou, J. T., Fallon, K., Roche, K. R., & Sadegh, M. 872 

(2022). Anthropogenic stressors compound climate impacts on inland lake dynamics: 873 

The case of Hamun Lakes. Science of The Total Environment, 829, 154419. 874 

https://doi.org/10.1016/j.scitotenv.2022.154419 875 



29 

 

Moron, V., & Robertson, A. W. (2020). Tropical rainfall subseasonal-to-seasonal 876 

predictability types. Npj Climate and Atmospheric Science, 3(1), 4. 877 

https://doi.org/10.1038/s41612-020-0107-3 878 

Nobakht, M., Saghafian, B., & Aminyavari, S. (2021). Skill Assessment of Copernicus 879 

Climate Change Service Seasonal Ensemble Precipitation Forecasts over Iran. 880 

Advances in Atmospheric Sciences, 38(3), 504–521. https://doi.org/10.1007/s00376-881 

020-0025-7 882 

Rivoire, P., Martius, O., Naveau, P., & Tuel, A. (2023). Assessment of subseasonal-to-883 

seasonal (S2S) ensemble extreme precipitation forecast skill over Europe. Natural 884 

Hazards and Earth System Sciences, 23(8), 2857–2871. https://doi.org/10.5194/nhess-885 

23-2857-2023 886 

Roy, T., He, X., Lin, P., Beck, H. E., Castro, C., & Wood, E. F. (2020). Global Evaluation of 887 

Seasonal Precipitation and Temperature Forecasts from NMME. Journal of 888 

Hydrometeorology, 21(11), 2473–2486. https://doi.org/10.1175/JHM-D-19-0095.1 889 

Sadegh, M., Moftakhari, H., Gupta, H. V., Ragno, E., Mazdiyasni, O., Sanders, B., Matthew, 890 

R., & AghaKouchak, A. (2018). Multihazard Scenarios for Analysis of Compound 891 

Extreme Events. Geophysical Research Letters, 45(11), 5470–5480. 892 

https://doi.org/10.1029/2018GL077317 893 

Samaniego, L., Thober, S., Wanders, N., Pan, M., Rakovec, O., Sheffield, J., Wood, E. F., 894 

Prudhomme, C., Rees, G., Houghton-Carr, H., Fry, M., Smith, K., Watts, G., Hisdal, 895 

H., Estrela, T., Buontempo, C., Marx, A., & Kumar, R. (2019). Hydrological 896 

Forecasts and Projections for Improved Decision-Making in the Water Sector in 897 

Europe. Bulletin of the American Meteorological Society, 100(12), 2451–2472. 898 

https://doi.org/10.1175/BAMS-D-17-0274.1 899 



30 

 

Schiavina, M., Freire, S., & MacManus, K. (2023). GHS-POP R2023A - GHS population 900 

grid multitemporal (1975-2030) [dataset]. European Commission, Joint Research 901 

Centre (JRC). https://doi.org/10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE 902 

Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal 903 

of the American Statistical Association, 63(324), 1379–1389. 904 

https://doi.org/10.1080/01621459.1968.10480934 905 

Sharma, A. R., Jain, P., Abatzoglou, J. T., & Flannigan, M. (2022). Persistent Positive 906 

Anomalies in Geopotential Heights Promote Wildfires in Western North America. 907 

Journal of Climate, 35(19), 6469–6486. https://doi.org/10.1175/JCLI-D-21-0926.1 908 

Shukla, J., Marx, L., Paolino, D., Straus, D., Anderson, J., Ploshay, J., Baumhefner, D., 909 

Tribbia, J., Brankovic, C., Palmer, T., Chang, Y., Schubert, S., Suarez, M., & Kalnay, 910 

E. (2000). Dynamical Seasonal Prediction. Bulletin of the American Meteorological 911 

Society, 81(11), 2593–2606. https://doi.org/10.1175/1520-912 

0477(2000)081<2593:DSP>2.3.CO;2 913 

Tapiador, F. J., Roca, R., Del Genio, A., Dewitte, B., Petersen, W., & Zhang, F. (2019). Is 914 

Precipitation a Good Metric for Model Performance? Bulletin of the American 915 

Meteorological Society, 100(2), 223–233. https://doi.org/10.1175/BAMS-D-17-916 

0218.1 917 

Tellman, B., Sullivan, J. A., Kuhn, C., Kettner, A. J., Doyle, C. S., Brakenridge, G. R., 918 

Erickson, T. A., & Slayback, D. A. (2021). Satellite imaging reveals increased 919 

proportion of population exposed to floods. Nature, 596(7870), 80–86. 920 

https://doi.org/10.1038/s41586-021-03695-w 921 

Thielen, J., Bartholmes, J., Ramos, M.-H., & De Roo, A. (2009). The European Flood Alert 922 

System – Part 1: Concept and development. Hydrology and Earth System Sciences, 923 

13(2), 125–140. https://doi.org/10.5194/hess-13-125-2009 924 



31 

 

Turco, M., Abatzoglou, J. T., Herrera, S., Zhuang, Y., Jerez, S., Lucas, D. D., AghaKouchak, 925 

A., & Cvijanovic, I. (2023). Anthropogenic climate change impacts exacerbate 926 

summer forest fires in California. Proceedings of the National Academy of Sciences, 927 

120(25), e2213815120. https://doi.org/10.1073/pnas.2213815120 928 

Villarini, G., Vecchi, G. A., Knutson, T. R., Zhao, M., & Smith, J. A. (2011). North Atlantic 929 

Tropical Storm Frequency Response to Anthropogenic Forcing: Projections and 930 

Sources of Uncertainty. Journal of Climate, 24(13), 3224–3238. 931 

https://doi.org/10.1175/2011JCLI3853.1 932 

Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C., Déqué, M., 933 

Ferranti, L., Fucile, E., Fuentes, M., Hendon, H., Hodgson, J., Kang, H.-S., Kumar, 934 

A., Lin, H., Liu, G., Liu, X., Malguzzi, P., Mallas, I., … Zhang, L. (2017). The 935 

Subseasonal to Seasonal (S2S) Prediction Project Database. Bulletin of the American 936 

Meteorological Society, 98(1), 163–173. https://doi.org/10.1175/BAMS-D-16-0017.1 937 

Vitart, F., & Robertson, A. W. (2018). The sub-seasonal to seasonal prediction project (S2S) 938 

and the prediction of extreme events. Npj Climate and Atmospheric Science, 1(1), 3. 939 

https://doi.org/10.1038/s41612-018-0013-0 940 

Wanders, N., & Wood, E. F. (2016). Improved sub-seasonal meteorological forecast skill 941 

using weighted multi-model ensemble simulations. Environmental Research Letters, 942 

11(9), 094007. https://doi.org/10.1088/1748-9326/11/9/094007 943 

Wanthanaporn, U., Supit, I., Van Hove, B., & Hutjes, R. W. A. (2023). Analysis of seasonal 944 

climate and streamflow forecasts performance for Mainland Southeast Asia 945 

[Preprint]. Water Resources Management/Modelling approaches. 946 

https://doi.org/10.5194/hess-2023-56 947 



32 

 

Xu, L., Chen, N., Chen, Z., Zhang, C., & Yu, H. (2021). Spatiotemporal forecasting in earth 948 

system science: Methods, uncertainties, predictability and future directions. Earth-949 

Science Reviews, 222, 103828. https://doi.org/10.1016/j.earscirev.2021.103828 950 

Xue, P., Malanotte‐Rizzoli, P., Wei, J., & Eltahir, E. A. B. (2020). Coupled Ocean‐951 

Atmosphere Modeling Over the Maritime Continent: A Review. Journal of 952 

Geophysical Research: Oceans, 125(6). https://doi.org/10.1029/2019JC014978 953 

Zhang, Y., Wallace, J. M., & Battisti, D. S. (1997). ENSO-like Interdecadal Variability: 954 

1900–93. Journal of Climate, 10(5), 1004–1020. https://doi.org/10.1175/1520-955 

0442(1997)010<1004:ELIV>2.0.CO;2 956 

Zhou, Y., Zaitchik, B. F., Kumar, S. V., Arsenault, K. R., Matin, M. A., Qamer, F. M., 957 

Zamora, R. A., & Shakya, K. (2021). Developing a hydrological monitoring and sub-958 

seasonal to seasonal forecasting system for South and Southeast Asian river basins. 959 

Hydrology and Earth System Sciences, 25(1), 41–61. https://doi.org/10.5194/hess-25-960 

41-2021 961 

 962 

 963 


