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Abstract

Neural networks (NNs) are increasingly used for data-driven subgrid-scale parameterization in weather and climate models.

While NNs are powerful tools for learning complex nonlinear relationships from data, there are several challenges in using

them for parameterizations. Three of these challenges are 1) data imbalance related to learning rare (often large-amplitude)

samples; 2) uncertainty quantification (UQ) of the predictions to provide an accuracy indicator; and 3) generalization to other

climates, e.g., those with higher radiative forcing. Here, we examine the performance of methods for addressing these challenges

using NN-based emulators of the Whole Atmosphere Community Climate Model (WACCM) physics-based gravity wave (GW)

parameterizations as the test case. WACCM has complex, state-of-the-art parameterizations for orography-, convection- and

frontal-driven GWs. Convection- and orography-driven GWs have significant data imbalance due to the absence of convection

or orography in many grid points. We address data imbalance using resampling and/or weighted loss functions, enabling

the successful emulation of parameterizations for all three sources. We demonstrate that three UQ methods (Bayesian NNs,

variational auto-encoders, and dropouts) provide ensemble spreads that correspond to accuracy during testing, offering criteria

on when a NN gives inaccurate predictions. Finally, we show that the accuracy of these NNs decreases for a warmer climate

(4XCO2). However, the generalization accuracy is significantly improved by applying transfer learning, e.g., re-training only

one layer using ˜1% new data from the warmer climate. The findings of this study offer insights for developing reliable and

generalizable data-driven parameterizations for various processes, including (but not limited) to GWs.
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Abstract20

Neural networks (NNs) are increasingly used for data-driven subgrid-scale parameteriza-21

tion in weather and climate models. While NNs are powerful tools for learning complex22

nonlinear relationships from data, there are several challenges in using them for parame-23

terizations. Three of these challenges are 1) data imbalance related to learning rare (often24

large-amplitude) samples; 2) uncertainty quantification (UQ) of the predictions to provide25

an accuracy indicator; and 3) generalization to other climates, e.g., those with higher ra-26

diative forcing. Here, we examine performance of methods for addressing these challenges27

using NN-based emulators of the Whole Atmosphere Community Climate Model (WACCM)28

physics-based gravity wave (GW) parameterizations as the test case. WACCM has com-29

plex, state-of-the-art parameterizations for orography-, convection- and frontal-driven GWs.30

Convection- and orography-driven GWs have significant data imbalance due to the absence31

of convection or orography in many grid points. We address data imbalance using resam-32

pling and/or weighted loss functions, enabling the successful emulation of parameterizations33

for all three sources. We demonstrate that three UQ methods (Bayesian NNs, variational34

auto-encoders, and dropouts) provide ensemble spreads that correspond to accuracy during35

testing, offering criteria on when a NN gives inaccurate predictions. Finally, we show that36

accuracy of these NNs decreases for a warmer climate (4×CO2). However, the generaliza-37

tion accuracy is significantly improved by applying transfer learning, e.g., re-training only38

one layer using ∼ 1% new data from the warmer climate. The findings of this study offer39

insights for developing reliable and generalizable data-driven parameterizations for various40

processes, including (but not limited) to GWs.41

Plain Language Summary42

Scientists are increasingly using machine learning methods, especially neural networks43

(NNs), to improve weather and climate models. However, it can be challenging for a NN44

to learn rare, large-amplitude events, because they are infrequent in training data. Also,45

NNs need to express their confidence (certainty) about a prediction and work effectively46

across different climates, e.g., warmer climates due to increased CO2. Traditional NNs47

often struggle with these challenges. Here, we share insights gained from emulating the48

complex physics-based parameterization schemes for gravity waves in a state-of-the-art cli-49

mate model. We propose specific strategies for addressing imbalanced data, uncertainty50

quantification (UQ), and making accurate predictions across various climates. For instance,51

to manage data balance, one such strategy involves amplifying the impact of infrequent52

events in the training data. We also demonstrate that several UQ methods could be use-53

ful in determining the accuracy of predictions. Furthermore, we show that NNs trained54

on simulations of the historical period do not perform as well in warmer climates. How-55

ever, we improve the NNs’ performance by employing transfer learning using limited data56

from warmer climates. This study provides lessons for developing robust and generalizable57

approaches for using NNs to improve models in the future.58
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1 Introduction59

Small-scale processes such as moist convection, gravity waves, and turbulence are key60

players in the variability of the climate system and its response to increased greenhouse61

gases. However, as these processes cannot be resolved, entirely or partially, by the coarse-62

resolution general circulation models (GCMs), they need to be represented as functions of63

the resolved dynamics via subgrid-scale (SGS) parameterization schemes (e.g., Kim et al.,64

2003; Stensrud, 2007; Prein et al., 2015). Many of these parameterization schemes are based65

on heuristic approximations and simplifications, introducing large parametric and epistemic66

uncertainties in GCMs (Schneider et al., 2017; Hourdin et al., 2017; Palmer, 2019).67

Recently, there has been a growing interest in developing data-driven SGS parameter-68

izations for different complex processes in the Earth system using machine learning (ML)69

techniques, particularly deep neural networks (NNs). Promising results have been demon-70

strated in a wide range of idealized applications, including prototype systems (Maulik et al.,71

2019; Gagne et al., 2020; Rasp, 2020; Chattopadhyay, Subel, & Hassanzadeh, 2020; Frezat72

et al., 2022; Guan et al., 2022; Pahlavan et al., 2023), ocean turbulent processes (Bolton73

& Zanna, 2019; C. Zhang et al., 2023), moist convection in the atmosphere (O’Gorman &74

Dwyer, 2018; Brenowitz & Bretherton, 2019; Yuval & O’Gorman, 2020; Beucler et al., 2021;75

Iglesias-Suarez et al., 2023), radiation (Krasnopolsky et al., 2005; Belochitski & Krasnopol-76

sky, 2021; Song & Roh, 2021), and microphysics (Seifert & Rasp, 2020; Gettelman et al.,77

2021). The ultimate promise of data-driven parameterizations, learned from observation-78

derived data and/or high-fidelity high-resolution simulations, is that they might have smaller79

parametric/structural errors, thus reducing the biases of GCMs and producing more reliable80

climate change projections (e.g., Schneider et al., 2017; Reichstein et al., 2019; Schneider et81

al., 2021).82

However, there are major challenges in developing trustworthy, interpretable, stable,83

and generalizable data-driven parameterizations that can be used for such climate change84

projection efforts. Discussing and even listing all of these challenges is well beyond the85

scope of this paper. Well-known challenges such as interpretability and stability have been86

extensively discussed in a number of recent studies (e.g., McGovern et al., 2019; Beck et al.,87

2019; Brenowitz et al., 2020; Balaji, 2021; Clare et al., 2022; Mamalakis et al., 2022; Guan88

et al., 2022; Subel et al., 2023; Pahlavan et al., 2023). Here, we focus on three other key89

issues:90

1. Data imbalance, and related to that, learning rare/extreme events,91

2. Uncertainty quantification (UQ) of the NN-based SGS parameterization outputs,92

3. Out-of-distribution (OOD) generalization (e.g., extrapolation to climates with higher93

radiative forcings).94

Below we briefly discuss the importance of 1-3 and the current state-of-the-art methods95

in addressing them in the climate and ML literature. Data imbalance is a well-known prob-96

lem in the ML literature, especially in the context of classification tasks (e.g., Japkowicz &97
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Stephen, 2002; G. Wu & Chang, 2003; Chawla et al., 2004; Sun et al., 2009; Huang et al.,98

2016; Ando & Huang, 2017; Buda et al., 2018; Johnson & Khoshgoftaar, 2019). The prob-99

lem becomes particularly significant when one aims to learn rare/extreme events (Maalouf100

& Trafalis, 2011; Maalouf & Siddiqi, 2014; Baldi et al., 2014; Liu et al., 2016; O’Gorman &101

Dwyer, 2018; Qi & Majda, 2020; Chattopadhyay, Nabizadeh, & Hassanzadeh, 2020; Milo-102

shevich et al., 2023; Finkel et al., 2023; Shamekh et al., 2023). For example, suppose we103

aim to learn the binary classification of the 99 percentile of temperature anomalies using a104

NN. In this case, label 0 (no extreme) will constitute 99% of the training (or testing) set105

while label 1 (extreme) will be just 1%. With many common loss functions such as mean106

squared error (MSE) or root-mean squared-error (RMSE), training a NN will result in one107

that predicts 0 for any sample (extreme or no extreme) while having a seemingly high ac-108

curacy of 99% (of course, other metrics such as precision/recall will show the shortcoming,109

see Chattopadhyay, Nabizadeh, & Hassanzadeh (2020)). The most common remedy to this110

problem for classification tasks is resampling. An example is down-sampling non-extreme111

cases by a factor of 100, which effectively balances the dataset.112

In addition to classification tasks, Data imbalance also presents a significant challenge113

in regression tasks required for parameterization schemes in climate models. As highlighted114

by Chantry et al. (2021), such imbalances contributed to the unsuccessful emulation of115

their orographic gravity wave parameterization (GWP) scheme, largely because orography116

affects the gravity wave (GW) drag in only a fraction of the grid columns. This challenge also117

persists in emulating GWP for non-orographic GWs, especially when GWs are intricately118

linked to their sources. For instance, the presence of zero convective GW drag at numerous119

grid points due to the absence of convection creates a notably imbalanced dataset. This120

issue will be explored further in the results section. In regression tasks, data imbalance121

may also manifest in the form of difficulty in learning large-amplitude (extreme) outputs,122

which are rare and constitute only a small fraction of the training set. In the case of GWs,123

Observations have shown that gravity wave amplitudes are highly intermittent such that124

the largest 10% events alone can contribute more than 50% of the total momentum flux125

(Hertzog et al., 2012), so the extreme events will contribute an outsized fraction of the126

total drag. Nonetheless, poorly learning these large-amplitude outputs, like drag forces,127

can result in instabilities (e.g., Guan et al., 2022). Addressing data imbalance in climate128

applications has received relatively limited attention. In this study, we propose several129

remedies based on resampling techniques and weighted loss functions, demonstrating their130

advantages in enabling successful emulations of all GWP schemes and improving the learning131

of rare/extreme events.132

Quantifying the uncertainties in outputs from NN-based parameterization schemes is133

essential when employing these schemes, particularly for high-stakes decision-making tasks134

such as climate change projections. Crucially, during testing when we are unable to di-135

rectly determine a prediction’s accuracy, we need a UQ method that can provide a credible136

confidence level for each prediction, serving as a reliable indicator of its accuracy. During137

inference, the output of an NN can be inaccurate for various reasons, including poor approx-138

imation (e.g., due to poor NN architecture), poor within-distribution generalization (e.g.,139
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for inputs that are rare events), or poor optimization (collectively referred to as epistemic140

uncertainty), as well as because of OOD generalization errors due to input samples from141

a distribution different from that of the training set (Abdar et al., 2021; Lu et al., 2021;142

Krueger et al., 2021; Miller et al., 2021; Shen et al., 2021; D. Wu et al., 2021; Ye et al., 2021;143

D. Zhang et al., 2021; Subel et al., 2023). Quantifying the level of uncertainty would then144

allow us to avoid using a data-driven parameterization scheme when it is inaccurate due to145

one of the aforementioned reasons (Maddox et al., 2019; Zhu et al., 2019; Li et al., 2022;146

Psaros et al., 2023). In the context of data-driven parameterization in climate modeling,147

the two most challenging sources of uncertainty are rare/extreme events and OOD gener-148

alization errors. The latter is a concern, particularly when the GCM is used for climate149

change studies (see below for more discussions).150

Developing UQ methods for NNs is an active area of research in the ML community,151

and there is not a generally applicable rigorous method yet. For instance, techniques like152

Markov-Chain Monte Carlo can be prohibitively expensive, especially when dealing with153

high-dimensional systems (Oh et al., 2005; Ballnus et al., 2017; Chen & Majda, 2019). For a154

comprehensive review in the context of scientific ML, refer to Psaros et al. (2023). The topic155

has also started to increasingly gain attention in the climate literature (Guillaumin & Zanna,156

2021; Gordon & Barnes, 2022; Haynes et al., 2023; Barnes et al., 2023). In this study, we will157

assess the performance of three common UQ methods (Bayesian, dropout, and variational158

NNs) by analyzing the relationships between uncertainty and accuracy during inference159

testing. We will also consider scenarios involving OOD generalization errors resulting from160

global warming.161

As already mentioned above, OOD generalization (extrapolation to a test data distri-162

bution different from that of the training set) is a major challenge for applications involving163

non-stationarity, like a changing climate. Studies have already shown that the lack of OOD164

generalization in data-driven parameterizations leads to inaccurate and unstable simula-165

tion (Rasp et al., 2018; O’Gorman & Dwyer, 2018; Chattopadhyay, Subel, & Hassanzadeh,166

2020; Guan et al., 2022; Nagarajan et al., 2020). A general and powerful method for im-167

proving the OOD generalization capability of NNs is transfer learning (TL), which involves168

re-training a few or all of the layers of a NN using a small amount of data from the new169

system (Yosinski et al., 2014). This approach has already shown remarkable success in170

enabling data-driven parameterization schemes to extrapolate across the parameter space171

(e.g., to 100× higher Reynolds number) in canonical test cases (Chattopadhyay, Subel, &172

Hassanzadeh, 2020; Subel et al., 2021; Guan et al., 2023; Subel et al., 2023; C. Zhang et al.,173

2023). In particular, Subel et al. (2023) introduced SpArK (Spectral Analysis of Regression174

Kernels and Activations) showing that re-training even one layer can lead to successful OOD175

generalization, although this optimal layer, unlike the rule of thumb in the ML literature,176

may not be the deepest but the shallowest hidden layer. Here, we further leverage these177

studies and show how TL can enable OOD generalization of data-driven parameterization178

schemes in state-of-the-art GCMs.179
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The methods used in this study and the learned lessons apply to a broad range of180

processes and applications in climate modeling. However, the results are presented for a181

single test case, that is based on the emulation of complex physics-based GWP schemes in182

version 6 of the Whole Atmosphere Community Climate Model (WACCM), a state-of-the-183

art GCM (Gettelman et al., 2019). Here, we use the emulations of current physics-based184

parameterization schemes as a stepping stone towards learning data-driven parameteriza-185

tions from observations and high-fidelity simulations by testing ideas for addressing items186

1-3 listed earlier. Furthermore, developing better representations of un- and under-resolved187

GWs in GCMs is an important problem on its own (Kim et al., 2003; Alexander et al., 2010;188

Achatz, 2022). A number of recent studies have taken the first steps in learning data-driven189

GWP from observations and high-resolution simulations (Matsuoka et al., 2020; Amiramjadi190

et al., 2022; Sun et al., 2023; Dong et al., 2023), though careful and time-consuming steps191

are needed in producing, analyzing, and using such data. Furthermore, two recent stud-192

ies focused on emulators of simpler GWP schemes in a forecast model and idealized GCM193

have readily shown the usefulness of lessons learned from emulators (Chantry et al., 2021;194

Espinosa et al., 2022; Hardiman et al., 2023). This further motivates the focus on using195

emulators for testing ideas for addressing data imbalance, UQ, and OOD generalization.196

This paper is structured as follows. Section 2 introduces the WACCM simulations and197

the NN architectures used in this study. The findings, detailed in Section 3, emphasize198

the insights gained in addressing data imbalance and UQ, alongside OOD generalization of199

the emulators under warmer climate conditions. Consistent with Chantry et al. (2021), we200

find that using an NN to emulate the parameterization of orographic GWs is significantly201

more challenging than non-orographic GWs. This necessitated additional steps to achieve202

reasonable offline performance, as detailed in Section 4. To the best of our knowledge, this203

stands as the first NN-based emulation of orographic GWs to address the challenges in204

Chantry et al. (2021). Finally, we provide a concluding summary in Section 5.205

2 Data and Methods206

2.1 The Whole Atmosphere Community Climate Model (WACCM)207

The NCAR’s WACCM version 6 introduced in Gettelman et al. (2019) is used in this208

study. WACCM has state-of-the-art GWP schemes for GWs from three different sources:209

orography (OGWs), convection (CGWs), and fronts (FGWs). These complex sources make210

the emulation of the GWP schemes in WACCM a challenging task. This is, therefore, a211

suitable test case to investigate ideas for learning rare events, UQ, and OOD generalization to212

benefit the future efforts for the much more complex task, that is learning data-driven GWP213

schemes from observations and/or high-resolution GW-resolving simulations (Amiramjadi214

et al., 2022; Sun et al., 2023).215

The configuration of the WACCM used in this study is identical to the public version in216

Gettelman et al. (2019), with a horizontal resolution of 0.95◦ × 1.25◦ and 70 vertical levels.217

The two non-orographic GWP schemes in WACCM both follow Richter et al. (2010), yet218
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allow separate specifications of FGW and CGW sources. For OGWs, WACCM uses an up-219

dated planetary boundary layer form drag scheme from Beljaars et al. (2004), near-surface220

nonlinear drag processes following Scinocca & McFarlane (2000), and a ridge-finding algo-221

rithm to define orographic sources based on Bacmeister et al. (1994). A full documentation222

of WACCM OGWs can also be found in Kruse et al. (2022).223

We conduct two sets of simulations: A 10-year pre-industrial “control” run, and a224

10-year pseudo-global-warming “future” run with 4×CO2 and uniform +4 K sea-surface225

temperature increases. In each run, we save, on the native grid, all the inputs and outputs226

for each of the three GWPs every 3 hours to capture the diurnal cycle. A complete list of227

these inputs/outputs, which are used in the training of the NN-based emulators, is presented228

in Appendix A.229

We train separate NNs for emulating the three GWP schemes that have different230

sources. We use the first 6 years of the control run for training and the last 4 years for231

validation (years 7 and 8) and testing (years 9 and 10). With a grid resolution of ∼1◦,232

there are 55,296 columns for each time snapshot, resulting in approximately 960 million233

input/output columns during the 6-year training period. Given the strong temporal cor-234

relation between the 3-hourly samples, we perform sub-sampling on both the training and235

validation data to reduce the dataset size. To accomplish this, we begin by shuffling all236

the input/output column pairs in time at each latitude/longitude grid point. Then, we237

randomly select 2,000 input/output pairs at each location for training and 500 pairs for238

validation.239

To give the readers a general idea of the parameterized GWs and large-scale circulation240

in WACCM, Figure 1 shows the zonal-mean climatology for zonal GW drag/forcing, here-241

inafter referred to as GWD, arises from the divergence of gravity wave momentum transport242

(fluxes), from all three sources, computed from the 6-year training period in the control run.243

The zonal-mean zonal wind climatology is also shown. Seasonal dependency for both the244

GWD and the circulation is observed in the simulations. At levels below 100 hPa, the ten-245

dencies of non-orographic GW are relatively small compared to those from OGWs; however,246

their amplitudes increase significantly at higher altitudes. While the parameterized effect of247

GWs is generally to decelerate the zonal flow, there are exceptions, notably in regions like248

the equatorward flanks of the stratospheric polar night jets, where FGWs can accelerate the249

flow. For more information on the GWP schemes and circulations in WACCM, see Garcia250

et al. (2017) and Gettelman et al. (2019).251

2.2 The NNs and UQ252

2.2.1 The Deterministic Fully Connected NN253

Here we briefly describe the general structure of the NN-based regression models trained254

as emulators for GWP schemes. For the deterministic artificial NN, denoted as ANN in this255

study, we use multilayer perceptrons (MLP). MLPs, which are feedforward fully connected256

NNs, take inputs through successive layers of linear transformation and non-linear activation257

–7–
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Figure 1. Climatology of zonal-mean GWD during summers (JJA) and winters (DJF) from

all 3 sources in the control (pre-industrial) WACCM simulations. Top: CGWs; middle: FGWs;

bottom: OGWs. The climatology of the zonal-mean zonal wind is also shown (grey lines), with an

interval of 20 m/s. Dashed lines indicate negative values. Zero lines are omitted.

functions to produce an output, so as to learn a functional relationship between the input258

and output (Figure 2a). Deep MLPs have multiple layers of weights, which are optimized259

over many samples of input-output data pairs. Such MLPs are thus very powerful in terms260

of learning complicated functional relationships. Generally, we can write the governing261

equations of an MLP as262

zℓ = σ
(
W ℓzℓ−1 + bℓ

)
, (1)

where zℓ is the activation (output) of layer ℓ, W ℓ is the weight matrix connecting layers ℓ263

and ℓ− 1, and bℓ is the bias at layer ℓ, which allows the network to fit the data even when264

all input features are equal to 0. σ is the non-linear activation function.265
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In this study, we employ the same NN structure while training three distinct NNs, each

for GWP originating from one of the three unique GW sources. The input layer contains the

same input variables (see Appendix A) used by the WACCM GWPs across all vertical levels.

There are 10 hidden layers in total (Figure 2a), and there are 500 neurons in each hidden

layer. In the output layer, both zonal and meridional GWD are predicted. The activation

function in each layer, σ, is chosen to be swish (Ramachandran et al., 2017), except for the

output layer, where it is linear. During training, W ℓ and bℓ are randomly initialized and

learned by minimizing a loss function using an ADAM optimizer, with a fixed learning rate

of α = 0.0001. One of the loss functions used here is the common MSE, i.e.,

L(Θ) =
1

n

n∑
i=1

∥∥∥NN (xi,Θ)− yi

∥∥∥2
2

(2)

Here, n is the number of training samples and ∥.∥2 is the L2 norm. For training sample266

i, vector xi contains all the inputs to the NN (Appendix A), vector yi contains the true267

zonal and meridional GWD at each vertical level, and Θ = {θj}j=1···p denotes the trainable268

parameters, i.e., the weights (p ≈ 3× 106).269

2.2.2 The UQ Methods and Metrics270

Although deterministic NNs are powerfully expressive and can exhibit high out-of-271

sample predictive skills, they do not provide estimates of the uncertainty associated with272

their predictions. As mentioned earlier, currently there is no rigorous method to estimate273

the uncertainty of an NN prediction. That said, a variety of techniques have been developed274

for UQ in NNs, though the validity and usefulness of the estimated uncertainty for scientific275

applications remain subjects of ongoing investigations (e.g., Psaros et al., 2023; Haynes et276

al., 2023). In this paper, we use three different and widely used approaches to perform UQ277

from the ML literature: Bayesian neural network (BNN), dropout neural network (DNN),278

and variational auto-encoder (VAE). A brief overview of these approaches is provided below.279

Bayesian neural network (BNN): A BNN combines the deterministic NN described280

earlier and in Figure 2a with Bayesian inference (Blundell et al., 2015). Simply speaking, a281

BNN estimates distributions of the weights, rather than point values (as in a deterministic282

NN). The posterior distributions in the BNN (i.e., the distributions of the weights and283

biases) are calculated using the Bayes rule. In this study, we follow the standard practice284

and assume that all variational forms of the posterior are normal distributions. Furthermore,285

to accelerate the training process, we use the normal distribution N (µ, 1) for all the priors in286

the BNN (where µ is obtained from parameters of the trained deterministic NN). Note that287

while we are assuming normal distributions for the trainable parameters, the predictions288

generated by BNN can fit different distributions due to the use of nonlinear activation289

functions. The resulting distribution of the predictions during inference gives an estimate290

of their uncertainty.291

Dropout neural network (DNN): A DNN is developed by randomly eliminating all out-292

going connections from some of the nodes (Figure 2a) in each hidden layer of a deterministic293
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NN during the training and the inference (Srivastava et al., 2014). The fraction of nodes294

“dropped” on average in each layer is called the dropout ratio. Mathematically, Equation (1)295

can be reformulated for a DNN as:296

zℓ = σ
(
DℓW ℓzℓ−1 + bℓ

)
, (3)

where the dropout matrix Dℓ is a square diagonal binary matrix of integers 0 or 1. The297

diagonal elements of Dℓ follow a Bernoulli distribution where the probability of zero is the298

dropout ratio.299

Dropout was initially developed as a regularization technique to prevent over-fitting in300

NNs. However, Gal & Ghahramani (2016) showed that training a NN with the dropout301

technique approximates a Bayesian NN. In this study, we use a dropout rate of 0.1, which302

is incorporated in all hidden layers, but we also investigate the sensitivity of the DNN to303

different dropout rates, as later shown in Appendix B. Note that the random dropping out304

is also used during inference, leading to a distribution for each prediction.305

Variational auto-encoder (VAE): A typical VAE (Kingma & Welling, 2014) consists306

of two NNs (Figure 2b): an encoder that transforms the input into a lower-dimensional307

latent space, parameterized by a normal probability distribution, and a decoder that inverts308

this transformation and produces the original input. The difference between the decoder’s309

output and the original input drives the learning process of the encoder and decoder, while310

the parameterized lower-dimensional latent space provides the uncertainty of this transfor-311

mation. The VAE was developed for generative reconstructions of data by simply drawing312

samples from the latent space. The VAE is basically a dimension-reduction method. Many313

variants, however, have been proposed for more specific purposes. In this study, following314

Foster et al. (2021), we add a third NN, as illustrated in Figure 2b, that randomly draws315

samples from the parameterized latent space as inputs, and predicts the zonal and merid-316

ional GWDs as outputs. The difference between the predicted GWDs and the true GWDs317

drives the learning of the third NN. Consequently, the loss for the entire network consists318

of three components: the loss between the reconstructed input and the original input, the319

Kullback–Leibler (KL) divergence between the distribution of the latent space and a nor-320

mal distribution, and the loss between the predicted GWDs by the third NN and the true321

GWDs.322

For a specific input, each of these three UQ methods discussed above can be run multiple323

times, generating an ensemble of predictions with different realizations of the weights by324

drawing from the trained distribution. This is in contrast to the deterministic NN that325

provides just a single-valued prediction for a given input. These ensembles can then be used326

to quantify the uncertainty associated with that prediction. We expect that the RMSE of327

the ensemble mean should exhibit approximately a 1-1 relationship with the ensemble spread328

(i.e., the standard deviation of the ensemble members). To investigate this relationship, we329

use the spread-skill plot (Delle Monache et al., 2013). Detailed calculations behind the330

spread-skill plot can be found in Appendix C, where we also introduce two metrics: spread-331
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Figure 2. Schematics of the NN-based emulators and different training/re-training strategies

used in this study. (a) Schematic for the MLP and DNN. The inputs of the NN are connected

through successive layers of neurons (blue circles) to the output (GWDs). A fully connected MLP

NN is trained from randomly initialized weights and biases in all layers. A DNN is the same but

some connections are randomly eliminated during training and inference (black crosses). In TL,

only some of the layers of a previously trained MLP are re-trained using new data. (b) Schematic

for the VAE. A low-dimensional latent space is constructed and then used as the input for the

additional fully connected NNs, which is similar to the one in (a).

skill reliability (SSREL) and overall spread-skill ratio (SSRAT), both of which summarize332

the information presented in the spread-skill plot.333

2.3 Transfer Learning334

Transfer learning refers to leveraging/reusing information (weights) from an already335

well-trained base NN to effectively build a new NN for a different system from which only a336

small amount of training data is available (Yosinski et al., 2014; Tan et al., 2018; Chattopad-337

hyay, Subel, & Hassanzadeh, 2020). For our purpose, which is improving OOD generalization338

to the warmer climate, the TL procedure is as follows. For any of the NNs described earlier339

(e.g., the one in Figure 2a), we train them from randomly initialized weights and biases340

with data from the control simulations. The NN will work well during inference for test341
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samples from the control but not from future (warmer climate) simulations (as shown in342

the Results section). To address this, TL is applied wherein most of the NN’s weights are343

kept constant, and only one or two hidden layers are re-trained using a limited dataset from344

the future simulation. Although this small dataset is insufficient for training an entire NN345

from random initialization, careful and correct selection of hidden layers for re-training, as346

discussed in Subel et al. (2023), allows the development of an NN that accurately adapts to347

the new system, i.e., the future climate conditions.348

Here, we re-train the NN-based emulator that was initially trained on the control data349

with new data from only 1 month (30 consecutive days) of integration (1.4% of 6 years350

simulation for the initial training) of WACCM model under future forcing (4×CO2). We351

have explored different choices of layers to re-train with the same amount of new data and352

found that re-training the first hidden layer yields the best results, consistent with Subel et353

al. (2023). Therefore, the results with only re-training the first hidden layer are shown in354

Section 3 unless stated otherwise.355

3 Results356

3.1 Data Imbalance357

As discussed earlier, the physics-based GWP schemes in WACCM are directly linked to358

their sources. This means they only produce non-zero values when their respective sources359

are active. For example, in a specific grid box, CGWs only register non-zero values when360

there is active convection within that box. The heterogeneous and sometimes intermittent361

nature of these sources leads to a dataset that is significantly imbalanced. Figure 3 shows362

global maps of the occurrence frequency of non-zero GWD for CGWs and FGWs. On363

average, only 7.6% of all GCM columns yield non-zero CGWs, primarily located in the364

tropics. Similarly, for FGWs, only 8.5% of all columns have non-zero outputs, but unlike365

CGWs, the majority of these are located in mid-to-high latitudes, particularly along the366

storm track region. For the OGWs in WACCM, data imbalance presents a greater challenge,367

to be discussed in a later section. While it is possible to simply separate zero and non-zero368

columns for emulation work where we know the truth, this approach falls short with real-369

world data, which is the main purpose of this study.370

In addition to their sources, several other factors specific to GWD data exacerbate371

the data imbalance problem. In the case of each GCM column with non-zero GW activity,372

momentum fluxes are generally concentrated at a few critical height levels rather than being373

smoothly distributed throughout the entire column. This further restricts the effective374

occurrence frequency of non-zero values. Moreover, GWs exhibit significant intermittency,375

where a small portion of large-amplitude GWs often dominates the morphology of the376

observed global GW momentum flux distribution (Hertzog et al., 2012; Geller et al., 2013).377

Therefore, it is crucial for NNs to not only accurately identify the columns that produce378

GWDs but also to effectively learn and recognize rare and extreme GWDs.379
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Figure 3. Distribution of occurrence frequency for CGWs (top) and FGWs (bottom) in the

WACCM pre-industrial control simulations, based on the average of the 6-year training dataset.

Given the complexity of the GWD dataset, different normalization methods are con-380

sidered in this study. The first method, dubbed “NORM1”, is the typical normalization381

used in ML practices, which calculates elemental means and standard deviations for each382

feature (i.e., input variable at a given model level) and normalizes both inputs and outputs383

by these values (e.g., Espinosa et al. (2022)). With this approach, the same relative changes384

in wind at each level are treated equally in the input. The loss function in Equation (2) also385

penalizes the same relative error in GWD at each level equally. The second method, referred386

to as “NORM2“, is designed with the physics of GWD in mind. For the velocity inputs387

(u, v) and the tendency outputs (GWD), each column is normalized by one single value,388

which is the largest standard deviation from all model levels. Additionally, the mean values389

for these variables, are retained (e.g., unorm2(x, y, z, t) = u(x, y, z, t)/max(std(u)) ). Un-390

like NORM1, the original wind profile’s structure is preserved in NORM2, and large GWD391

values at certain heights maintain a relatively larger value after this normalization. For all392

other input variables, NORM2 is identical to NORM1. Compared to NORM1, NORM2393

places more emphasis on large GWD values and penalizes the NN more for missing these394

significant tendencies. These two normalization methods are also employed in Chantry et al.395

(2021), who found similar performance from these methods with the non-orographic GWPs.396

Figure 4 shows the performance of the emulations for CGWs with the two normal-397

ization methods. When employing NORM1, the conventional approach seen in prior ML398

practices, and also our initial attempts, the emulator’s performance is poor. Although the399

NN demonstrates some skill, its predictions tend to cluster around zero. However, when the400

second normalization method (NORM2) is employed, the emulation results show significant401
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Figure 4. Data imbalance for GWD due to CGWs and the emulation results with two different

normalization methods. a) A 2D histogram displaying the emulated GWD due to CGWs and the

truth, with the training dataset normalized using NORM1; b) Distribution of the original convective

GWD (black line) and the predicted values (blue line) with NORM2. The scatter plot in the corner

represents the tail part only, including points with the top 0.1% amplitudes; c) Similar to a), but

for NORM2; d) Similar to b), but for NORM2. The R2 uncertainty range is estimated by dividing

the test data into 10 segments, calculating the metric for each segment, and then computing the

standard deviation (STD).

improvement, in contrast to the findings of Chantry et al. (2021). We attribute this improve-402

ment to the more pronounced data imbalance in our dataset, and it is likely a consequence403

of NORM2’s emphasis on modeling the large GWD values. Nonetheless, emulating the tail404

of the probability density function (PDF) (rare events) remains poor, as evidenced by the405

tails in Figure 4c, primarily due to the predominance of zero GWD columns in the training406

dataset. To more effectively address the data imbalance issue in these regression tasks, we407

further propose two approaches here:408

1. Resampling the data (ReSAM): In this approach, we limit the number of training409

sample pairs with zero GWD to be equal to the number of samples with non-zero410

GWD. This significantly reduces the number of columns with zero GWD, thus mit-411

igating the data imbalance issue. Additionally, this sub-sampling reduces the total412

size of the training dataset, which, in turn, enhances the training speed (approxi-413

mately sevenfold). While resampling methods have been well-established in the ML414
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literature, they have mainly been used for classification problems. Their application415

to regression problems in climate research has not been extensively explored.416

2. Weighted loss function (WeLoss): Instead of assigning the same weight to all sample417

pairs in the loss function, we modify the weight for each column based on the PDF418

of its maximum GWD amplitude. This adjustment allows us to re-formulate the loss419

function defined in Equation (2) as420

L(Θ) =
1

n

n∑
i=1

∥∥∥Wi

{
NN (xi,Θ)− yi

}∥∥∥2
2

(4)

where

Wi =
1

PDF (max(|yi(z)|))
(5)

Note that, in practice, we lack knowledge of the precise PDF for the maximum GWD421

within each column. Therefore, we employ a histogram with 20 bins as an alterna-422

tive. Given the fact that large-amplitude GW events are rare, the WeLoss approach423

incentivizes the NN to prioritize these significant events.424

When we apply the ReSAM approach to balance the training dataset (after normal-425

ization with NORM1 or NORM2), the emulation results significantly improve, as shown in426

Figure 5. In fact, when considering the R-squared value between the NN prediction and the427

ground truth, the ReSAM approach with NORM2 yields the best results. However, as the428

training dataset is still predominantly composed of zeros and small GWD values due to the429

intermittence of the GWs, examining the emulation results for only large amplitude GW430

events (e.g., the top 0.1% in Figure 5d) reveals less satisfactory performance (R2 = 0.72).431

Regarding the WeLoss approach, it has a more limited impact on improving the R-squared432

value of the emulation (as shown in Figure 5e). However, it proves valuable in capturing433

the tails of the PDF and, thus, rare events (as depicted in Figure 5f). Moreover, as ReSAM434

and WeLoss represent distinct operations, they can be effectively combined when construct-435

ing a NN. The result of this combined approach for emulating the CGWs can be found in436

Figures 5g and 5h. While the R-squared value for the entire distribution only marginally437

changes (0.925 vs. 0.931 with ReSAM only), the performance of the emulation for the tail438

part has been improved (R2 increased to 0.77).439

Similarly, Figure 6 presents the offline emulation results for the FGWs. The conclusions440

drawn for CGWs generally hold true. However, data imbalance in FGWs is less pronounced441

compared to CGWs, which simplifies the task of emulating FGWs. Even without any442

resampling or changes to the normalization or (see Figure 6a), we achieve reasonable emu-443

lation results (R2 = 0.9). One contributing factor is the wider spatial distribution of FGWs444

compared to CGWs (refer to Figure 3). Additionally, the source of FGWs (frontogenesis445

function) in WACCM exhibits a much more continuous nature compared to precipitation446

and diabatic heating. As the data imbalance issue is less severe for FGWs, the performance447

with different normalization methods becomes more similar, echoing findings from Chantry448

et al. (2021) who emulated non-orographic GWs (including convective and frontal GWs)449

together.450
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Figure 5. Similar to Figure 4, but for CGWs with the proposed ReSAM andWeLoss methods. a)

A 2D histogram for the emulation with resampled data (ReSAM) after using Norm1; b) Distribution

of the emulated GWD due to CGWs similar to Figure 4b, but with ReSAM applied; c) Similar

to a), with training data normalized using Norm2; d) Similar to b), with training data normalized

using Norm2; e) Similar to a), but with the WeLoss approach; f) Similar to b), but with the WeLoss

approach; g) Similar to c), after applying both ReSAM and WeLoss methods together; h) Similar

to d), after applying both ReSAM and WeLoss methods.
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Figure 6. Similar to Figure 5, except for FGWs. a) A 2D histogram for the emulation using

Norm1, without ReSAM or WeLoss; b) Distribution of the GWD due to FGWs with NORM1,

similar to Figure 4b; c) Similar to a), with training data normalized using Norm2; d) Similar to

b), with training data normalized using Norm2; e) Similar to c), but with the ReSAM approach;

f) Similar to d), but with the ReSAM approach; g) Similar to Figure 5g, applying both ReSAM

and WeLoss methods to the FGWs; h) Similar to Figure 5h, applying both ReSAM and WeLoss

methods to the FGWs.
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In summary, data imbalance can pose challenges when learning from data that closely451

resembles real-world data (further discussed in the subsequent section on emulating OGWs).452

Proper resampling techniques can significantly enhance the NNs’ performance by improving453

dataset balance. Furthermore, modifying the loss function to penalize the NNs more for454

missing extreme values can further improve performance at the tails of the PDF. For the455

remainder of the paper, unless otherwise specified, we continue to employ the ReSAM456

approach and the standard loss function with NORM2 unless stated otherwise.457

3.2 Uncertainty Quantification458

As outlined in subsection 2.2.2, we employ three different methods (i.e., BNN, DNN,459

and VAE) to quantify the uncertainty of predictions during inference (testing). For this460

purpose, an ensemble of 1000 members is generated by running each UQ-equipped NN 1000461

times for each input from the testing set. Figure 7 presents sample profiles of zonal GWD462

derived from the deterministic NN (ANN) and the three UQ-equipped NNs, alongside the463

true GWD profiles from WACCM. Note that these examples have not been used in the464

training or validation process. It is evident from the figure that all three UQ-equipped465

NNs show reasonable skill in predicting the complex profiles of GWD due to CGWs and466

FGWs (also reflected in R-squared in Table 1), albeit with a slight decrease in accuracy467

compared to ANN. As discussed earlier, a valuable uncertainty estimate should correspond468

closely with the NN’s test accuracy, providing insights into when to trust the NN’s pre-469

diction during inference. Such a relationship can be seen in a few randomly chosen GWD470

profiles that’s shown in Figure 7. In each pair of CGW and FGW profiles, the left column471

shows the estimated uncertainty is also low when the prediction error is low, indicating the472

NN’s confidence in its accurate predictions. In contrast, the right column, which generally473

represents more complex profiles, exhibits the NN’s less accurate predictions, and increased474

uncertainty, highlighted by the wider confidence intervals.475

While Figure 7 demonstrates the performance of the UQ methods for just a few GWD476

profiles, the spread-skill plots shown in Figure 8 offer a broader perspective based on 60,000477

profiles, following the calculations detailed in Appendix C. It is evident from the plots478

that all three UQ methods produce reasonably informative uncertainty estimates, as their479

curves closely align with the 1-to-1 line. In the case of CGWs, all data points are above480

the 1:1 line, indicating a slight overconfidence (underdispersiveness) across all three UQ481

methods, with the DNN being slightly closer to the 1-to-1 line. For the FGWs, the DNN482

demonstrates slightly better performance, although it marginally drops below the 1-to-1483

line in the first few bins, indicating a slight underconfidence. Notably, it can be seen from484

the spread frequency inset that the vast majority of the data points are within the first few485

bins, for which both spread and skill values are small, and they are generally closer to the486

1-to-1 line.487

It should also be noted that for the large values of model spread (SD), there is only a488

very limited number of data points, as is evident from the inset histograms. Consequently,489
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CGWs FGWs

ANN ANN ANN ANN

Figure 7. Sample profiles of zonal GWD as predicted by various NNs, as indicated. The true

profile is shown by the black line, while the blue solid line represents the mean of 1000 ensemble

members. The shaded region indicates the 95% confidence interval. In each pair of CGWs and

FGWs profiles, the left column provides examples with low estimated uncertainty, corresponding

to instances of low error. Conversely, the right column illustrates cases with high uncertainty when

the error is high.
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Figure 8. Spread-skill plot for GWD due to (left) CGWs, and (right) FGWs. The diagonal 1:1

line represents the perfect spread-skill line. Points above (below) this line correspond to spread

values where the model is overconfident (underconfident). The inset histogram shows how often

each spread value occurs. See Appendix C for a detailed discussion on the calculations of the

spread-skill plot.

the standard deviation (STD) can become a misleading measure of spread because of the490

non-normal distributions.491

To summarize the quality of the spread-skill plots for the three UQ methods, we explore492

the metrics introduced in subsection 2.2.2 and Appendix C (see Table 1). The R-squared493

value for the ensemble mean prediction is also given to show the accuracy of each UQ494

method. Based on SSREL, whose ideal value is zero, BNN shows the best performance for495

both CGWs and FGWs. However, if we check SSRAT, where 1 is the optimal number, DNN496

is the best among these three methods. This discrepancy can be explained by a closer look497

at the Equations (C2) and (C3). SSREL, which is a bin-weighted average difference, is most498

sensitive to the performance of the NN in the first bin, where the vast majority of the data499

points are located (see the inset histograms in Figure 8), while SSRAT is more influenced by500

larger values of spread and skill. Accordingly, the VAE shows the highest values of SSREL,501

which is indicative of its sub-optimal performance in the first bin, where there are small502

values of spread and skill.503

In the results presented in Figure 8 and Table 1, each height level of a GWD profile is504

considered as an individual sample. A zonal GWD profile, with its 70 vertical levels, thus505

constitutes 70 distinct samples. While analyzing these samples offers insights into the NN’s506

overall performance by averaging statistics across numerous profiles, our primary interest is507

often in the uncertainty associated with an individual GWD profile. This uncertainty can508

then aid in determining whether to trust/use the NN’s prediction for that particular GWD509
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profile. Therefore, we use Equation (C4) to assess the relationship between uncertainty and510

test accuracy for each GWD profile. Furthermore, to estimate uncertainty, here we use the511

interquartile range (IQR) to reduce the influence of outliers.512

Figure 9 shows the Gaussian kernel density of spread against RMSE for all 60,000513

profiles, as indicated by the color shading. The x-axis represents the IQR of each GWD514

profile, while the y-axis denotes its corresponding RMSE. A strong correlation between515

the two is observed across all three UQ methods. Consequently, GWD profiles with larger516

uncertainties often coincide with larger errors. Figure 9 also shows a close similarity between517

BNN and DNN. In contrast, VAE tends to provide marginally larger uncertainties, especially518

for FGWs. This is consistent with VAE’s slightly reduced accuracy as indicated in Table519

1. Overall, given the monotonic relationship between the uncertainty and test error, these520

results show that all three UQ methods provide useful and informative uncertainty for with-521

distribution test samples. A user can set a threshold on uncertainty based on their tolerance522

for error (RMSE) and decide whether they trust the NN for a given input sample.523

The results presented so far show the performance of the UQ methods based on the524

testing data, i.e., data from the current climate. However, the effective performance of UQ525

methods can also be tested (perhaps more meaningfully) on OOD data, e.g., data from a526

warmer climate. This is particularly relevant for climate change studies. Accordingly, we527

evaluate the performance of these trained NNs with input data from the future climate, as528

depicted by the black lines in Figure 9. For FGWs, the spread-skill relationship remains529

largely similar, especially for BNN and DNN. This suggests that, based on their uncer-530

tainties, we can still reliably estimate the error in the NN predictions for FGWs for the531

warming climate. A similar pattern is observed for the VAE, though it exhibits increased532

uncertainties and higher errors with OOD data. As shown in a later section, for FGWs, the533

NNs generalize to the warmer climate without any further effort.534

In contrast, for CGWs, given the same level of uncertainty, the error in NN predictions535

increases significantly for the OOD data compared to that from the current climate, which536

means the spread-skill relationship, especially for the BNN and DNN, fails to generalize to537

the OOD data. From this perspective, VAE performs better, showing that for the same538

level of uncertainty, the increase in error is not as substantial as in BNN and DNN. The539

VAE also yields considerably higher uncertainty estimates for future climate, which may aid540

in the detection of OOD data. The observed discrepancies in the performance of the NNs541

for CGWs and FGWs hint at different levels of their generalizability, a topic we will delve542

into more deeply in the following subsection.543

In summary, while the three UQ methods provide credible and valuable uncertainty544

estimates for the current climate, the BNN and DNN are confidently wrong in estimating545

CGWs in a warmer climate although VAE shows some promising results. This problem is546

common among various UQ techniques as pointed out in the ML literature: they frequently547

show overconfidence when assessed with OOD data (e.g., Ovadia et al., 2019). The optimal548

UQ method selection depends on the specific metric of interest and the intended application.549

While BNN is more broadly used in the literature and gives the best accuracy, DNN could550
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Table 1. Evaluation scores for the three UQ methods. See Section 2 for more details.

CGWs FGWs

BNN DNN VAE BNN DNN VAE

SSREL (1e-4) 1.29 1.48 2.14 1.20 1.69 5.21
SSRAT 0.73 0.82 0.72 0.69 0.93 0.69
R-squared 0.90 0.86 0.87 0.94 0.92 0.89

achieve similar performance and is often more practical given its simplicity. On the other551

hand, VAE seems to perform better when applied to OOD data, at least in the one test case552

here. These observations warrant further research in the future using multiple test cases553

and climate-relevant applications. We also note here that each method has multiple tuning554

hyperparameters to optimize its uncertainty quantification. Consequently, the discrepancies555

among the three methods could potentially be mitigated with proper hyperparameter tuning556

(as discussed in Appendix B).557
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3.3 Out-of-distribution (OOD) Generalization via Transfer Learning558

As previously discussed, the GWP schemes in WACCM are coupled to their sources,559

which might change in a warmer climate. Specifically, under 4×CO2 forcing, we expect560

changes in both the amplitude and the phase speed distribution of GWs, in particular for561

the CGWs, due to their built-in sensitivities to changes in the convection. Consequently, the562

physics scheme in WACCM produces slightly stronger GWD for CGWs, especially in the563

tail of the distribution. This intensified GWD results in a shorter quasi-biennial oscillation564

(QBO) period in WACCM. However, it is important to recognize that the response of the565

QBO to climate change differs across various general circulation models (Richter et al.,566

2022).567

The intensification of the CGWs in future climate simulations presents an opportunity568

to study how NNs handle the OOD data. Our findings in the UQ section already suggest569

increased prediction errors when testing NNs with OOD data, which raises concerns about570

their applicability in climate change studies. To more thoroughly investigate this issue,571

we conduct additional evaluations on our ANNs, by applying them to data samples from572

future climate simulations, as illustrated in Figure 10. It is clear that the ANN for the573

CGWs does not generalize well, evidenced by a decrease in R2 from 0.93 to 0.79. The574

ANN particularly struggles to capture the increase in GWD in the tail, with R2 for the tails575

decreasing from 0.72 to 0.36. As a result, it seems unlikely that this emulator will accurately576

reproduce changes in the circulation under different climate conditions, such as the shorter577

QBO period resulting from future warming in WACCM.578

In contrast to CGWs, the amplitude of FGWs shows a less marked increase in the future579

climate, and their PDF distribution closely resembles that of the control simulations. As580

a result, the ANN demonstrates better generalizability for FGWs when it is tested against581

future climate data, as seen in Figure 10d. There is only a slight decrease in the ANN’s582

performance, with R2 dropping from 0.97 to 0.95.583

Two factors can contribute to the considerable OOD generalization errors in an NN584

when applied across two distinct systems. First, the input-output relationship might vary585

between the two systems. Second, the input variables in the new system could originate586

from a distribution different from that of the original system (regardless of whether the587

input-output relationship remains the same or changes). The former is hard to quantify in a588

high-dimensional dataset. The latter can be quantified using similarity distances. To help us589

better understand these differences between the OOD generalizability of CGWs and FGWs,590

we assess the similarity between their input and output data distributions from control and591

future climate simulations using the Mahalanobis distance (D). The Mahalanobis distance592

is a measure of the distance between a data point and a distribution (Ling & Templeton,593

2015). Specifically, it is a multi-dimensional generalization of the idea of measuring how594

many standard deviations away a point is from the mean of the distribution. The application595

of Mahalanobis distance in understanding the source of OOD generalization errors in data-596

driven parameterization was previously demonstrated in Guan et al. (2022) for a simple597

turbulent system.598
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Table 2. Change of Mahalanobis distance based on the ratio of the average distance of the points

that are more than 3 standard deviations away from the mean. The choice of the variables here is

based on Appendix A, showing u, v, T, and source function contain most of the information needed

for the NN.

Variables u v T
Source

(diabatic heating for CGWs,
frontogenesis for FGWs)

Zonal drag Meridional drag

Distance (Convection) 1.03 1.00 1.19 3.62 1.42 1.44
Distance (Front) 1.03 0.96 1.50 1.10 1.00 1.00

To use the Mahalanobis distance, we first calculate the mean and covariance matrix of599

the training data from the control run. We then analyze the distribution of Mahalanobis600

distances in this training data, setting a baseline value, referred to as Dctrl. This baseline is601

the average distance for data points that deviate by more than 3 standard deviations from602

the mean. This choice aims to focus on outliers for which extrapolation is more challenging.603

Following this, we apply the same process to the data points in the future climate dataset,604

denoted as Dwarm. Table 2 presents the ratio of Dwarm for the warming scenario to Dctrl605

for the control scenario for selected variables. When this ratio is close to 1.0, it suggests606

minimal changes in this variable’s distribution under a warming scenario. Note that the607

NNs trained based only on these variables demonstrate performance comparable to NNs608

trained on all variables (not shown), which is why we only focus on these few key variables.609

The results reveal that among the various variables significantly contributing to the610

emulation of CGWs, diabatic heating (source of CGWs) is the sole variable that exhibits611

substantial changes from the control to the warming scenario. Conversely, changes in vari-612

ables used to emulate FGWs are considerably smaller. This outcome suggests that the likely613

reason for the better generalizability of FGWs is that the input distribution remains almost614

unchanged (and the input-output relationship, which is the physics scheme, remains the615

same too).616

To improve the generalizability of the emulator for CGWs, we explore TL, a technique617

introduced earlier and proven to be a powerful tool for improving the OOD generalizability618

of data-driven parameterization in canonical turbulent flows (e.g., Guan et al., 2022; Subel619

et al., 2023). Rather than re-training the entire NN for future climate scenarios, we only re-620

train, follwoing Subel et al. (2023), just a portion of the NN, thereby requiring only a small621

fraction of the data. Figure 10e showcases the emulation results after only re-training the622

first hidden layer of ANN using data from the first month of the WACCM simulation in the623

4×CO2 scenario, which amounts to approximately 1% of the original training dataset. After624

applying TL, the performance of the emulator in the warming scenario significantly improves,625

with R2 rising from 0.79 to 0.91, nearly matching its performance in the control simulations626

(R2 = 0.93). However, the improvement in the PDF tails is less pronounced, showing627

only a modest increase in R2 from 0.36 to 0.51. This is likely due to the limited number628

of large-amplitude GW events within the one-month period. Instead of using more data629

–25–



manuscript submitted to JAMES

Figure 10. NN performance for pre-industrial and warming scenarios for different sources

(a,c,e,f: CGWs ; b,d: FGWs). a) PDF of GWD due to CGWs in WACCM simulation and

the predicted CGWs using NN emulator, scatter plot shows points for the tail part only. b) same

as (a), but for FGWs. c) same as (a), but for the warming scenario, d) same as (b) but for the

warming scenario. e) same as (c) but after applying transfer learning to the first hidden layer of

the NN with 1-month WACCM simulation data under warming scenario (∼ 1% of the size of the

training data) f) same as (e) but with the weighted loss function used when we conduct transfer

learning (WeLoss).
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from the future climate (which is challenging to obtain in a realistic situation), we leverage630

the WeLoss approach, described earlier, during re-training. This modification results in a631

significant improvement in the tail, with R2 increasing from 0.51 to 0.68. Note that this632

improvement in the tail is critical, as inadequate learning of these rare but large-amplitude633

GWDs can result in significant errors and instabilities.634

We would like to point out that during the TL experiments, we have examined the635

effects of re-training each individual hidden layer of the NN. Our findings indicate that636

re-training the first layer yields the best results, which aligns with the findings in Subel et637

al. (2023). Re-training the last layer only brings marginal improvements to the NN (not638

shown). Notably, our experiments involving re-training the first two layers did not result639

in further performance enhancements, suggesting that the number of neurons is not the640

primary factor contributing to the varied performance observed when re-training different641

layers.642

Similar results regarding TL are also observed with other NNs used in this study. For643

instance, Figure 11 presents the same plot as Figure 10, but for the BNN. It is evident that644

BNN also struggles with generalization to OOD data, as could also be interpreted based645

on the results presented in section 3.2. It is also the case for DNN and VAE (not shown).646

Overall, when these NNs are tested against the 4×CO2 future climate data, their accuracy647

is not better than the deterministic ANN. However, methods with UQ, especially the VAE648

(see Figure 9), could potentially indicate the increased uncertainty when testing with input649

data from the 4×CO2 integration. These results underscore the necessity of re-training the650

NNs using TL.651

4 Emulation of Orographic GWs (OGWs)652

Similar to Chantry et al. (2021), our initial attempts to emulate OGWs did not succeed,653

primarily due to the presence of a pronounced data imbalance. Notably, the physics-based654

scheme responsible for OGW generation operates exclusively over terrestrial regions. How-655

ever, it is surprising that the issue of data imbalance continues to persist, even when we656

limit our NN training and testing exclusively to columns located over land (Figure 12a).657

Still, the emulated OGW drag often remains close to zero and completely fails to predict658

the rare events (Figure 12b), which poses a considerable hurdle for the emulator’s perfor-659

mance. Further investigations reveal that the key to this problem lies in the highly localized660

nature of orographic GWD, where significant drag is observed only at a handful of specific661

locations. Furthermore, even within these limited regions, GWD exhibits a significant in-662

termittent behavior. To help our understanding, we also conducted a K-means clustering663

analysis, categorizing GWD data for all land-based columns (Table 3). Among the 6 clus-664

ters, cluster 4 accounts for a staggering 97.51% of the dataset. Remarkably, all samples665

within this cluster exhibit exceptionally weak orographic GWD, as evidenced by the cluster666

center’s maximum GWD amplitude, which is two orders of magnitude smaller than that of667

other clusters.668
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Figure 11. Panels (a) to (e) are the same as those in Figure 10 but for BNN. Panel (f) shows

emulation for FGWs under warming scenario after applying transfer learning to the first hidden

layer of the NN.

–28–



manuscript submitted to JAMES

Table 3. Clustering analysis for OGWs. Analysis is done for all columns over land in the training

data.

Cluster
Frequency (%) in the

training data
Maximum GWD amplitude

of cluster center

c1 0.18 8.7 e-3 m/s2

c2 0.13 4.4 e-3 m/s2

c3 0.93 3.6 e-3 m/s2

c4 97.51 2.8 e-5 m/s2

c5 0.15 2.1 e-3 m/s2

c6 1.10 4.3 e-3 m/s2

To overcome this persistent data imbalance in the OGWs, we first separate all columns669

over land into large-drag columns (with column maximum greater than one STD of all670

GWD from OGWs) and small-drag columns. We then perform subsampling on the latter671

group only to create a more balanced dataset. To improve NN training, we also include all672

columns from the 6-year simulation to augment the sample size of the large-drag columns.673

Figures 12c and 12d illustrate the performance after re-balancing the dataset. Notably, the674

result represents a substantial improvement, evidenced by an R2 increase from 0.29 to 0.80,675

and also a significant improvement in the accuracy for rare events. While we acknowledge676

that this skill remains lower than what is achieved for CGWs and FGWs, it already signifies a677

reasonable NN. Furthermore, we posit that by incorporating additional training data (either678

by extending the WACCM model integration or simply augmenting the data with OGWs679

scheme only), we can further improve our emulation results. The possibility of achieving680

superior emulation outcomes through the adoption of an alternative NN architecture is also681

possible, although such exploration is beyond the scope of this paper.682

5 Summary and Discussion683

Through the emulation of complex GWPs in a state-of-the-art atmospheric model684

(WACCM), we have elucidated and explored solutions for three critical challenges in the685

development of ML-based data-driven SGS schemes for climate applications: data imbal-686

ance, UQ, and OOD generalizability under different climates. A brief summary is provided687

below:688

1. In the presence of non-stationary, and highly imbalanced datasets, such as those en-689

countered in WACCM, specialized approaches (e.g., resampling and weighted loss690

function) are essential to enhance the performance of data-driven models. Through691

resampling, we have successfully trained a robust NN emulator for OGWs, a challeng-692

ing task as demonstrated in Chantry et al. (2021). The effectiveness of the trained693

emulator is also significantly influenced by the choice of the loss function used dur-694

ing training. In our case, while a weighted loss function (WeLoss) does not improve695

the overall R2 score, it yields significant improvements in the emulation results for696
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Figure 12. Performance of the emulator for OGWs when trained with all columns over land

(panel a) & panel b)) and balanced training data with a balanced number of large-drag columns

(column maximum > 1 STD of all GWD from OGWs) and small-drag columns (panel c) & panel

d).

the PDF tails of the GWD. This finding aligns with those in Lopez-Gomez et al.697

(2022), where their custom loss function, tailored to emphasize extreme events, led698

to substantial improvements in predicting heatwaves.699

2. All three UQ methods employed in this study provide reasonable uncertainty esti-700

mates for GWD prediction for the current climate. The spread-skill plots (refer to701

Figures 8 and 9) indicate that greater uncertainty corresponds to a larger prediction702

error. Yet, the reliability of UQ methods diminishes when they are challenged with703

OOD data. Both BNN and DNN used in this study tend to be overconfident in es-704

timating CGWs in a warmer climate, thereby struggling to identify OOD samples.705

The VAE, on the other hand, yields rather promising results in providing useful UQ706

for OOD data. Given the variations in different methods, the metrics selected to707

assess the SGS model will play a significant role in determining the choice for the UQ708

methods. We also note that further optimization of tunable parameters within each709

UQ method could affect their performance (refer to Appendix C).710

3. Our findings illustrate the challenges SGS schemes face in generalizing to OOD data711

and extrapolating to new climates. Nonetheless, the TL approach has proven highly712

effective in aiding an NN to extrapolate to different climates. For CGWs in WACCM,713

the physics-based scheme exhibits larger GWD under 4×CO2 forcing, primarily due714

to an increase in diabatic heating from convection. With only one month of sim-715
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ulation data from this future warming scenario (representing approximately 1% of716

the original training dataset), we successfully reduce its OOD generalization error717

through re-training the first layer of the NN, following the findings of Subel et al.718

(2023). Additionally, we have illustrated the value of metrics like the Mahalanobis719

distance in assessing the potential OOD generalizability of NNs.720

We would like to emphasize that these challenges are often intertwined. For instance,721

addressing data imbalance in CGWs is a prerequisite for obtaining an accurate NN model,722

which, in turn, impacts UQ and OOD generalizability assessments. Moreover, there exists723

a strong link between UQ and OOD generalizability evaluations: if the NN struggles with724

OOD generalization, performing poorly with OOD data, the reliability of UQ for such data725

(e.g., data from a warmer climate) also becomes questionable. This presents a substantial726

challenge for UQ methods, especially for climate change research where reliable UQ methods727

are crucial.728

This study has primarily focused on offline skill assessment. We acknowledge that good729

offline performance (at least in terms of common metrics such as R2) is not necessarily an730

indicator of stable and accurate online (coupled to climate model) performance (Ross et731

al., 2022; Guan et al., 2022), though more strict metrics such as R2 of the PDF tails might732

better connect the offline and online performance (Pahlavan et al., 2023). However, for733

the purpose of this study, which is to provide a testbed to test ideas for data imbalance,734

UQ, and OOD generalization with transfer learning, the offline tests, particularly using735

the several metrics we have used, suffice. That said, the main reason that we have not736

provided online results is that coupling various complex NNs, with the same framework, to737

complex climate models (e.g., WACCM) without slowing down the model is a challenging738

and time-consuming task (Espinosa et al., 2022), and this is work in progress.739

Emulating complex GWPs within the WACCM provided a unique opportunity to ad-740

dress three critical challenges in developing ML-based, data-driven SGS schemes for climate741

science applications. However, it is crucial to acknowledge that such emulated schemes742

essentially adopt the limitations inherent in the physics-based schemes. Addressing these743

limitations, the next step is to harness high-resolution data from GW-resolving simula-744

tions, which are carefully validated against observational data. A library of such high-745

resolution simulations, notably of convectively generated GWs using the Weather Research746

and Forecasting (WRF) model, is now established (Sun et al., 2023), alongside additional747

global high-resolution simulations (Wedi et al., 2020; Polichtchouk et al., 2023; Köhler et al.,748

2023). The next phase involves integrating the approaches outlined in this study with the749

data from these GW-resolving simulations to develop a stable, trustworthy, and generaliz-750

able data-driven GWP scheme. This scheme is then expected to overcome the limitations of751

physics-based GWPs and potentially incorporate features like the transient effect (Bölöni et752

al., 2021; Kim et al., 2021) and lateral propagation of GWs (e.g., Sato et al., 2009)—marking753

a significant advancement towards next-generation GWP schemes.754
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Appendix A Input/output variables for the physics-based GWP schemes755

and their emulators756

We use the exact same inputs as those of each GWP scheme in the WACCM for the757

training of the NN-based emulator of that scheme. These inputs are listed in Table A1. As758

for the outputs, we only consider the zonal and meridional drag forcings. The GWPs in759

WACCM also estimate additional effects of the GWs that result in changes of temperature760

profile and vertical diffusion. These outputs are not considered in our emulations.761

Table A1. List of the input and output variables for the NNs trained as emulators of the GWP

schemes in WACCM. The numbers in parentheses in front of each variable are the number of

vertical levels for that variable. Note that each input and output is a 1D column at a given

latitude/longitude grid point. Diabatic heating in WACCM is provided by the cumulus scheme.

The topography variables listed in the table are mxdis (height estimates for ridges), hwdth (width

of ridges), clngt (length of ridges), angll (orientation of ridges), and anixy (anisotropy of ridges).

GWP
Input

Output
pressure levels surface level forcing

CGWs u(70),
v(70),
T (70),
z(70),
ρ(71),

Brunt–Väisälä frequency N (70),
dry static energy DSE (70)

lat (1),
lon (1),

Psurface (1),

diabatic heating (70) zonal drag
GWDx (70),

meridional drag
GWDy (70),

FGWs
frontogenesis
function (70)

OGWs

mxdis (16),
hwdth (16),
clngt (16),
angll (16),
anixy (16),

From Table A1, one can guess that some input variables are correlated with each762

other. Consequently, it is plausible that the trained NNs may have spurious connections.763

Preliminary tests further support this notion, indicating that employing only u, v, T, and764

the forcing function as inputs yields comparable offline skill (results not presented here).765

Appendix B Tuning UQ-equipped NNs766

In addition to the hyperparameters of the deterministic NNs, designing an architecture767

for UQ often demands additional hyperparameter optimization. For instance, for the DNN,768

decisions need to be made regarding the number of neurons to drop out (dropout rate).769

While less common, one can also choose whether to apply dropout to all hidden layers or770

only selected ones. Variations in the dropout rate and the layers to which dropout is applied771

can influence the final configuration and performance of the DNN. Figure B1 illustrates these772

effects. As we increase the number of dropped neurons (whether through a higher dropout773

rate or by subjecting more layers to dropout), the uncertainty in the DNN predictions774

tends to rise. Yet, there is a persistent pattern in the relationship between spread (IQR)775

and RMSE across the various plots in Figure B1. Specifically, as spread increases, RMSE776

concurrently grows, consistent with the insights highlighted in Figure 9.777
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Figure B1. Similar to Figure 9 but for DNN only with different dropout rates, which are applied

to different numbers of hidden layers.

In the case of BNN or VAE, even though there is no dropout rate, there are distinct778

tuning opportunities available. For instance, with the VAE, one might consider applying779

dropout to the NN emulator. Moreover, given that the loss function in VAE comprises three780

components, decisions can be made regarding which component to penalize more heavily,781

allowing for nuanced adjustments to its performance.782

Appendix C The UQ metrics783

Each point in the spread-skill plot corresponds to one specific bin of ensemble spread784

(SDk), which is defined as the average standard deviation of the ensemble members. We785

first separate the spread using a pre-selected number of bins (a subjective choice of 15 is786

used here). Then for the kth bin:787


RMSEk =

[
1
Nk

∑Nk

i=1 (ŷi − yi)
2
] 1

2

SDk = 1
Nk

∑Nk

i=1

[
1

M−1

∑M
j=1 (yi − yij)

2
] 1

2

yi =
1
M

∑M
j=1 yij

(C1)

ŷi is the observed value for the ith example, yi is the mean prediction for the ith example, yij788

is the jth prediction for the ith example, Nk is the total number of examples in the kth bin,789

and M is the ensemble size. Following Haynes et al. (2023), we summarize the quality of the790
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spread-skill plot by two measures: spread-skill reliability (SSREL) and overall spread-skill791

ratio (SSRAT). SSREL is the bin-weighted mean distance from the 1-to-1 line:792

SSREL =

K∑
k=1

Nk

N
|RMSEk − SDk| (C2)

where N is the total number of examples, K is the total number of bins, and other variables793

are as in Equation C1. SSREL varies from [0,∞), and the ideal value is 0. On the other794

hand, SSRAT is averaged over the whole dataset:795

SSRAT =
SD

RMSE
(C3)

SSRAT also varies from [0,∞), and the ideal value is 1. SSRAT > 1 indicates the model is796

under-confident on average, while SSRAT < 1 indicates that the model is overconfident on797

average.798

In Equation (C1), each level of a GWD profile is considered as an individual sample.799

As discussed earlier, while these samples help assess the model’s overall performance, our800

main interest is often the uncertainty of individual GWD profiles. Such uncertainty informs801

the trustworthiness of the model’s prediction for that specific profile. Accordingly, for each802

profile, we can compute:803


RMSEprofile =

[
1
Nz

∑Nz

z=1 (ŷz − yz)
2
] 1

2

profile

IQRprofile =
[

1
Nz

∑Nz

z=1 (yz,75th − yz,25th)
2
] 1

2

profile

yz =
[

1
M

∑M
j=1 yzj

]
profile

(C4)

where Nz is the number of vertical levels for each profile, and IQRprofile is its interquartile804

range: yz,25th corresponds with the 25th percentile, and yz,75th corresponds with the 75th805

percentile.806

Open Research807

The data for all the analyses in the main text are available at https://doi.org/10808

.5281/zenodo.10019987. The emulator code is available at https://github.com/yqsun91/809

WACCM-Emulation. All the raw WACCM output data are available on request from authors.810
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Abstract20

Neural networks (NNs) are increasingly used for data-driven subgrid-scale parameteriza-21

tion in weather and climate models. While NNs are powerful tools for learning complex22

nonlinear relationships from data, there are several challenges in using them for parame-23

terizations. Three of these challenges are 1) data imbalance related to learning rare (often24

large-amplitude) samples; 2) uncertainty quantification (UQ) of the predictions to provide25

an accuracy indicator; and 3) generalization to other climates, e.g., those with higher ra-26

diative forcing. Here, we examine performance of methods for addressing these challenges27

using NN-based emulators of the Whole Atmosphere Community Climate Model (WACCM)28

physics-based gravity wave (GW) parameterizations as the test case. WACCM has com-29

plex, state-of-the-art parameterizations for orography-, convection- and frontal-driven GWs.30

Convection- and orography-driven GWs have significant data imbalance due to the absence31

of convection or orography in many grid points. We address data imbalance using resam-32

pling and/or weighted loss functions, enabling the successful emulation of parameterizations33

for all three sources. We demonstrate that three UQ methods (Bayesian NNs, variational34

auto-encoders, and dropouts) provide ensemble spreads that correspond to accuracy during35

testing, offering criteria on when a NN gives inaccurate predictions. Finally, we show that36

accuracy of these NNs decreases for a warmer climate (4×CO2). However, the generaliza-37

tion accuracy is significantly improved by applying transfer learning, e.g., re-training only38

one layer using ∼ 1% new data from the warmer climate. The findings of this study offer39

insights for developing reliable and generalizable data-driven parameterizations for various40

processes, including (but not limited) to GWs.41

Plain Language Summary42

Scientists are increasingly using machine learning methods, especially neural networks43

(NNs), to improve weather and climate models. However, it can be challenging for a NN44

to learn rare, large-amplitude events, because they are infrequent in training data. Also,45

NNs need to express their confidence (certainty) about a prediction and work effectively46

across different climates, e.g., warmer climates due to increased CO2. Traditional NNs47

often struggle with these challenges. Here, we share insights gained from emulating the48

complex physics-based parameterization schemes for gravity waves in a state-of-the-art cli-49

mate model. We propose specific strategies for addressing imbalanced data, uncertainty50

quantification (UQ), and making accurate predictions across various climates. For instance,51

to manage data balance, one such strategy involves amplifying the impact of infrequent52

events in the training data. We also demonstrate that several UQ methods could be use-53

ful in determining the accuracy of predictions. Furthermore, we show that NNs trained54

on simulations of the historical period do not perform as well in warmer climates. How-55

ever, we improve the NNs’ performance by employing transfer learning using limited data56

from warmer climates. This study provides lessons for developing robust and generalizable57

approaches for using NNs to improve models in the future.58
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1 Introduction59

Small-scale processes such as moist convection, gravity waves, and turbulence are key60

players in the variability of the climate system and its response to increased greenhouse61

gases. However, as these processes cannot be resolved, entirely or partially, by the coarse-62

resolution general circulation models (GCMs), they need to be represented as functions of63

the resolved dynamics via subgrid-scale (SGS) parameterization schemes (e.g., Kim et al.,64

2003; Stensrud, 2007; Prein et al., 2015). Many of these parameterization schemes are based65

on heuristic approximations and simplifications, introducing large parametric and epistemic66

uncertainties in GCMs (Schneider et al., 2017; Hourdin et al., 2017; Palmer, 2019).67

Recently, there has been a growing interest in developing data-driven SGS parameter-68

izations for different complex processes in the Earth system using machine learning (ML)69

techniques, particularly deep neural networks (NNs). Promising results have been demon-70

strated in a wide range of idealized applications, including prototype systems (Maulik et al.,71

2019; Gagne et al., 2020; Rasp, 2020; Chattopadhyay, Subel, & Hassanzadeh, 2020; Frezat72

et al., 2022; Guan et al., 2022; Pahlavan et al., 2023), ocean turbulent processes (Bolton73

& Zanna, 2019; C. Zhang et al., 2023), moist convection in the atmosphere (O’Gorman &74

Dwyer, 2018; Brenowitz & Bretherton, 2019; Yuval & O’Gorman, 2020; Beucler et al., 2021;75

Iglesias-Suarez et al., 2023), radiation (Krasnopolsky et al., 2005; Belochitski & Krasnopol-76

sky, 2021; Song & Roh, 2021), and microphysics (Seifert & Rasp, 2020; Gettelman et al.,77

2021). The ultimate promise of data-driven parameterizations, learned from observation-78

derived data and/or high-fidelity high-resolution simulations, is that they might have smaller79

parametric/structural errors, thus reducing the biases of GCMs and producing more reliable80

climate change projections (e.g., Schneider et al., 2017; Reichstein et al., 2019; Schneider et81

al., 2021).82

However, there are major challenges in developing trustworthy, interpretable, stable,83

and generalizable data-driven parameterizations that can be used for such climate change84

projection efforts. Discussing and even listing all of these challenges is well beyond the85

scope of this paper. Well-known challenges such as interpretability and stability have been86

extensively discussed in a number of recent studies (e.g., McGovern et al., 2019; Beck et al.,87

2019; Brenowitz et al., 2020; Balaji, 2021; Clare et al., 2022; Mamalakis et al., 2022; Guan88

et al., 2022; Subel et al., 2023; Pahlavan et al., 2023). Here, we focus on three other key89

issues:90

1. Data imbalance, and related to that, learning rare/extreme events,91

2. Uncertainty quantification (UQ) of the NN-based SGS parameterization outputs,92

3. Out-of-distribution (OOD) generalization (e.g., extrapolation to climates with higher93

radiative forcings).94

Below we briefly discuss the importance of 1-3 and the current state-of-the-art methods95

in addressing them in the climate and ML literature. Data imbalance is a well-known prob-96

lem in the ML literature, especially in the context of classification tasks (e.g., Japkowicz &97
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Stephen, 2002; G. Wu & Chang, 2003; Chawla et al., 2004; Sun et al., 2009; Huang et al.,98

2016; Ando & Huang, 2017; Buda et al., 2018; Johnson & Khoshgoftaar, 2019). The prob-99

lem becomes particularly significant when one aims to learn rare/extreme events (Maalouf100

& Trafalis, 2011; Maalouf & Siddiqi, 2014; Baldi et al., 2014; Liu et al., 2016; O’Gorman &101

Dwyer, 2018; Qi & Majda, 2020; Chattopadhyay, Nabizadeh, & Hassanzadeh, 2020; Milo-102

shevich et al., 2023; Finkel et al., 2023; Shamekh et al., 2023). For example, suppose we103

aim to learn the binary classification of the 99 percentile of temperature anomalies using a104

NN. In this case, label 0 (no extreme) will constitute 99% of the training (or testing) set105

while label 1 (extreme) will be just 1%. With many common loss functions such as mean106

squared error (MSE) or root-mean squared-error (RMSE), training a NN will result in one107

that predicts 0 for any sample (extreme or no extreme) while having a seemingly high ac-108

curacy of 99% (of course, other metrics such as precision/recall will show the shortcoming,109

see Chattopadhyay, Nabizadeh, & Hassanzadeh (2020)). The most common remedy to this110

problem for classification tasks is resampling. An example is down-sampling non-extreme111

cases by a factor of 100, which effectively balances the dataset.112

In addition to classification tasks, Data imbalance also presents a significant challenge113

in regression tasks required for parameterization schemes in climate models. As highlighted114

by Chantry et al. (2021), such imbalances contributed to the unsuccessful emulation of115

their orographic gravity wave parameterization (GWP) scheme, largely because orography116

affects the gravity wave (GW) drag in only a fraction of the grid columns. This challenge also117

persists in emulating GWP for non-orographic GWs, especially when GWs are intricately118

linked to their sources. For instance, the presence of zero convective GW drag at numerous119

grid points due to the absence of convection creates a notably imbalanced dataset. This120

issue will be explored further in the results section. In regression tasks, data imbalance121

may also manifest in the form of difficulty in learning large-amplitude (extreme) outputs,122

which are rare and constitute only a small fraction of the training set. In the case of GWs,123

Observations have shown that gravity wave amplitudes are highly intermittent such that124

the largest 10% events alone can contribute more than 50% of the total momentum flux125

(Hertzog et al., 2012), so the extreme events will contribute an outsized fraction of the126

total drag. Nonetheless, poorly learning these large-amplitude outputs, like drag forces,127

can result in instabilities (e.g., Guan et al., 2022). Addressing data imbalance in climate128

applications has received relatively limited attention. In this study, we propose several129

remedies based on resampling techniques and weighted loss functions, demonstrating their130

advantages in enabling successful emulations of all GWP schemes and improving the learning131

of rare/extreme events.132

Quantifying the uncertainties in outputs from NN-based parameterization schemes is133

essential when employing these schemes, particularly for high-stakes decision-making tasks134

such as climate change projections. Crucially, during testing when we are unable to di-135

rectly determine a prediction’s accuracy, we need a UQ method that can provide a credible136

confidence level for each prediction, serving as a reliable indicator of its accuracy. During137

inference, the output of an NN can be inaccurate for various reasons, including poor approx-138

imation (e.g., due to poor NN architecture), poor within-distribution generalization (e.g.,139
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for inputs that are rare events), or poor optimization (collectively referred to as epistemic140

uncertainty), as well as because of OOD generalization errors due to input samples from141

a distribution different from that of the training set (Abdar et al., 2021; Lu et al., 2021;142

Krueger et al., 2021; Miller et al., 2021; Shen et al., 2021; D. Wu et al., 2021; Ye et al., 2021;143

D. Zhang et al., 2021; Subel et al., 2023). Quantifying the level of uncertainty would then144

allow us to avoid using a data-driven parameterization scheme when it is inaccurate due to145

one of the aforementioned reasons (Maddox et al., 2019; Zhu et al., 2019; Li et al., 2022;146

Psaros et al., 2023). In the context of data-driven parameterization in climate modeling,147

the two most challenging sources of uncertainty are rare/extreme events and OOD gener-148

alization errors. The latter is a concern, particularly when the GCM is used for climate149

change studies (see below for more discussions).150

Developing UQ methods for NNs is an active area of research in the ML community,151

and there is not a generally applicable rigorous method yet. For instance, techniques like152

Markov-Chain Monte Carlo can be prohibitively expensive, especially when dealing with153

high-dimensional systems (Oh et al., 2005; Ballnus et al., 2017; Chen & Majda, 2019). For a154

comprehensive review in the context of scientific ML, refer to Psaros et al. (2023). The topic155

has also started to increasingly gain attention in the climate literature (Guillaumin & Zanna,156

2021; Gordon & Barnes, 2022; Haynes et al., 2023; Barnes et al., 2023). In this study, we will157

assess the performance of three common UQ methods (Bayesian, dropout, and variational158

NNs) by analyzing the relationships between uncertainty and accuracy during inference159

testing. We will also consider scenarios involving OOD generalization errors resulting from160

global warming.161

As already mentioned above, OOD generalization (extrapolation to a test data distri-162

bution different from that of the training set) is a major challenge for applications involving163

non-stationarity, like a changing climate. Studies have already shown that the lack of OOD164

generalization in data-driven parameterizations leads to inaccurate and unstable simula-165

tion (Rasp et al., 2018; O’Gorman & Dwyer, 2018; Chattopadhyay, Subel, & Hassanzadeh,166

2020; Guan et al., 2022; Nagarajan et al., 2020). A general and powerful method for im-167

proving the OOD generalization capability of NNs is transfer learning (TL), which involves168

re-training a few or all of the layers of a NN using a small amount of data from the new169

system (Yosinski et al., 2014). This approach has already shown remarkable success in170

enabling data-driven parameterization schemes to extrapolate across the parameter space171

(e.g., to 100× higher Reynolds number) in canonical test cases (Chattopadhyay, Subel, &172

Hassanzadeh, 2020; Subel et al., 2021; Guan et al., 2023; Subel et al., 2023; C. Zhang et al.,173

2023). In particular, Subel et al. (2023) introduced SpArK (Spectral Analysis of Regression174

Kernels and Activations) showing that re-training even one layer can lead to successful OOD175

generalization, although this optimal layer, unlike the rule of thumb in the ML literature,176

may not be the deepest but the shallowest hidden layer. Here, we further leverage these177

studies and show how TL can enable OOD generalization of data-driven parameterization178

schemes in state-of-the-art GCMs.179
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The methods used in this study and the learned lessons apply to a broad range of180

processes and applications in climate modeling. However, the results are presented for a181

single test case, that is based on the emulation of complex physics-based GWP schemes in182

version 6 of the Whole Atmosphere Community Climate Model (WACCM), a state-of-the-183

art GCM (Gettelman et al., 2019). Here, we use the emulations of current physics-based184

parameterization schemes as a stepping stone towards learning data-driven parameteriza-185

tions from observations and high-fidelity simulations by testing ideas for addressing items186

1-3 listed earlier. Furthermore, developing better representations of un- and under-resolved187

GWs in GCMs is an important problem on its own (Kim et al., 2003; Alexander et al., 2010;188

Achatz, 2022). A number of recent studies have taken the first steps in learning data-driven189

GWP from observations and high-resolution simulations (Matsuoka et al., 2020; Amiramjadi190

et al., 2022; Sun et al., 2023; Dong et al., 2023), though careful and time-consuming steps191

are needed in producing, analyzing, and using such data. Furthermore, two recent stud-192

ies focused on emulators of simpler GWP schemes in a forecast model and idealized GCM193

have readily shown the usefulness of lessons learned from emulators (Chantry et al., 2021;194

Espinosa et al., 2022; Hardiman et al., 2023). This further motivates the focus on using195

emulators for testing ideas for addressing data imbalance, UQ, and OOD generalization.196

This paper is structured as follows. Section 2 introduces the WACCM simulations and197

the NN architectures used in this study. The findings, detailed in Section 3, emphasize198

the insights gained in addressing data imbalance and UQ, alongside OOD generalization of199

the emulators under warmer climate conditions. Consistent with Chantry et al. (2021), we200

find that using an NN to emulate the parameterization of orographic GWs is significantly201

more challenging than non-orographic GWs. This necessitated additional steps to achieve202

reasonable offline performance, as detailed in Section 4. To the best of our knowledge, this203

stands as the first NN-based emulation of orographic GWs to address the challenges in204

Chantry et al. (2021). Finally, we provide a concluding summary in Section 5.205

2 Data and Methods206

2.1 The Whole Atmosphere Community Climate Model (WACCM)207

The NCAR’s WACCM version 6 introduced in Gettelman et al. (2019) is used in this208

study. WACCM has state-of-the-art GWP schemes for GWs from three different sources:209

orography (OGWs), convection (CGWs), and fronts (FGWs). These complex sources make210

the emulation of the GWP schemes in WACCM a challenging task. This is, therefore, a211

suitable test case to investigate ideas for learning rare events, UQ, and OOD generalization to212

benefit the future efforts for the much more complex task, that is learning data-driven GWP213

schemes from observations and/or high-resolution GW-resolving simulations (Amiramjadi214

et al., 2022; Sun et al., 2023).215

The configuration of the WACCM used in this study is identical to the public version in216

Gettelman et al. (2019), with a horizontal resolution of 0.95◦ × 1.25◦ and 70 vertical levels.217

The two non-orographic GWP schemes in WACCM both follow Richter et al. (2010), yet218
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allow separate specifications of FGW and CGW sources. For OGWs, WACCM uses an up-219

dated planetary boundary layer form drag scheme from Beljaars et al. (2004), near-surface220

nonlinear drag processes following Scinocca & McFarlane (2000), and a ridge-finding algo-221

rithm to define orographic sources based on Bacmeister et al. (1994). A full documentation222

of WACCM OGWs can also be found in Kruse et al. (2022).223

We conduct two sets of simulations: A 10-year pre-industrial “control” run, and a224

10-year pseudo-global-warming “future” run with 4×CO2 and uniform +4 K sea-surface225

temperature increases. In each run, we save, on the native grid, all the inputs and outputs226

for each of the three GWPs every 3 hours to capture the diurnal cycle. A complete list of227

these inputs/outputs, which are used in the training of the NN-based emulators, is presented228

in Appendix A.229

We train separate NNs for emulating the three GWP schemes that have different230

sources. We use the first 6 years of the control run for training and the last 4 years for231

validation (years 7 and 8) and testing (years 9 and 10). With a grid resolution of ∼1◦,232

there are 55,296 columns for each time snapshot, resulting in approximately 960 million233

input/output columns during the 6-year training period. Given the strong temporal cor-234

relation between the 3-hourly samples, we perform sub-sampling on both the training and235

validation data to reduce the dataset size. To accomplish this, we begin by shuffling all236

the input/output column pairs in time at each latitude/longitude grid point. Then, we237

randomly select 2,000 input/output pairs at each location for training and 500 pairs for238

validation.239

To give the readers a general idea of the parameterized GWs and large-scale circulation240

in WACCM, Figure 1 shows the zonal-mean climatology for zonal GW drag/forcing, here-241

inafter referred to as GWD, arises from the divergence of gravity wave momentum transport242

(fluxes), from all three sources, computed from the 6-year training period in the control run.243

The zonal-mean zonal wind climatology is also shown. Seasonal dependency for both the244

GWD and the circulation is observed in the simulations. At levels below 100 hPa, the ten-245

dencies of non-orographic GW are relatively small compared to those from OGWs; however,246

their amplitudes increase significantly at higher altitudes. While the parameterized effect of247

GWs is generally to decelerate the zonal flow, there are exceptions, notably in regions like248

the equatorward flanks of the stratospheric polar night jets, where FGWs can accelerate the249

flow. For more information on the GWP schemes and circulations in WACCM, see Garcia250

et al. (2017) and Gettelman et al. (2019).251

2.2 The NNs and UQ252

2.2.1 The Deterministic Fully Connected NN253

Here we briefly describe the general structure of the NN-based regression models trained254

as emulators for GWP schemes. For the deterministic artificial NN, denoted as ANN in this255

study, we use multilayer perceptrons (MLP). MLPs, which are feedforward fully connected256

NNs, take inputs through successive layers of linear transformation and non-linear activation257
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Figure 1. Climatology of zonal-mean GWD during summers (JJA) and winters (DJF) from

all 3 sources in the control (pre-industrial) WACCM simulations. Top: CGWs; middle: FGWs;

bottom: OGWs. The climatology of the zonal-mean zonal wind is also shown (grey lines), with an

interval of 20 m/s. Dashed lines indicate negative values. Zero lines are omitted.

functions to produce an output, so as to learn a functional relationship between the input258

and output (Figure 2a). Deep MLPs have multiple layers of weights, which are optimized259

over many samples of input-output data pairs. Such MLPs are thus very powerful in terms260

of learning complicated functional relationships. Generally, we can write the governing261

equations of an MLP as262

zℓ = σ
(
W ℓzℓ−1 + bℓ

)
, (1)

where zℓ is the activation (output) of layer ℓ, W ℓ is the weight matrix connecting layers ℓ263

and ℓ− 1, and bℓ is the bias at layer ℓ, which allows the network to fit the data even when264

all input features are equal to 0. σ is the non-linear activation function.265
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In this study, we employ the same NN structure while training three distinct NNs, each

for GWP originating from one of the three unique GW sources. The input layer contains the

same input variables (see Appendix A) used by the WACCM GWPs across all vertical levels.

There are 10 hidden layers in total (Figure 2a), and there are 500 neurons in each hidden

layer. In the output layer, both zonal and meridional GWD are predicted. The activation

function in each layer, σ, is chosen to be swish (Ramachandran et al., 2017), except for the

output layer, where it is linear. During training, W ℓ and bℓ are randomly initialized and

learned by minimizing a loss function using an ADAM optimizer, with a fixed learning rate

of α = 0.0001. One of the loss functions used here is the common MSE, i.e.,

L(Θ) =
1

n

n∑
i=1

∥∥∥NN (xi,Θ)− yi

∥∥∥2
2

(2)

Here, n is the number of training samples and ∥.∥2 is the L2 norm. For training sample266

i, vector xi contains all the inputs to the NN (Appendix A), vector yi contains the true267

zonal and meridional GWD at each vertical level, and Θ = {θj}j=1···p denotes the trainable268

parameters, i.e., the weights (p ≈ 3× 106).269

2.2.2 The UQ Methods and Metrics270

Although deterministic NNs are powerfully expressive and can exhibit high out-of-271

sample predictive skills, they do not provide estimates of the uncertainty associated with272

their predictions. As mentioned earlier, currently there is no rigorous method to estimate273

the uncertainty of an NN prediction. That said, a variety of techniques have been developed274

for UQ in NNs, though the validity and usefulness of the estimated uncertainty for scientific275

applications remain subjects of ongoing investigations (e.g., Psaros et al., 2023; Haynes et276

al., 2023). In this paper, we use three different and widely used approaches to perform UQ277

from the ML literature: Bayesian neural network (BNN), dropout neural network (DNN),278

and variational auto-encoder (VAE). A brief overview of these approaches is provided below.279

Bayesian neural network (BNN): A BNN combines the deterministic NN described280

earlier and in Figure 2a with Bayesian inference (Blundell et al., 2015). Simply speaking, a281

BNN estimates distributions of the weights, rather than point values (as in a deterministic282

NN). The posterior distributions in the BNN (i.e., the distributions of the weights and283

biases) are calculated using the Bayes rule. In this study, we follow the standard practice284

and assume that all variational forms of the posterior are normal distributions. Furthermore,285

to accelerate the training process, we use the normal distribution N (µ, 1) for all the priors in286

the BNN (where µ is obtained from parameters of the trained deterministic NN). Note that287

while we are assuming normal distributions for the trainable parameters, the predictions288

generated by BNN can fit different distributions due to the use of nonlinear activation289

functions. The resulting distribution of the predictions during inference gives an estimate290

of their uncertainty.291

Dropout neural network (DNN): A DNN is developed by randomly eliminating all out-292

going connections from some of the nodes (Figure 2a) in each hidden layer of a deterministic293
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NN during the training and the inference (Srivastava et al., 2014). The fraction of nodes294

“dropped” on average in each layer is called the dropout ratio. Mathematically, Equation (1)295

can be reformulated for a DNN as:296

zℓ = σ
(
DℓW ℓzℓ−1 + bℓ

)
, (3)

where the dropout matrix Dℓ is a square diagonal binary matrix of integers 0 or 1. The297

diagonal elements of Dℓ follow a Bernoulli distribution where the probability of zero is the298

dropout ratio.299

Dropout was initially developed as a regularization technique to prevent over-fitting in300

NNs. However, Gal & Ghahramani (2016) showed that training a NN with the dropout301

technique approximates a Bayesian NN. In this study, we use a dropout rate of 0.1, which302

is incorporated in all hidden layers, but we also investigate the sensitivity of the DNN to303

different dropout rates, as later shown in Appendix B. Note that the random dropping out304

is also used during inference, leading to a distribution for each prediction.305

Variational auto-encoder (VAE): A typical VAE (Kingma & Welling, 2014) consists306

of two NNs (Figure 2b): an encoder that transforms the input into a lower-dimensional307

latent space, parameterized by a normal probability distribution, and a decoder that inverts308

this transformation and produces the original input. The difference between the decoder’s309

output and the original input drives the learning process of the encoder and decoder, while310

the parameterized lower-dimensional latent space provides the uncertainty of this transfor-311

mation. The VAE was developed for generative reconstructions of data by simply drawing312

samples from the latent space. The VAE is basically a dimension-reduction method. Many313

variants, however, have been proposed for more specific purposes. In this study, following314

Foster et al. (2021), we add a third NN, as illustrated in Figure 2b, that randomly draws315

samples from the parameterized latent space as inputs, and predicts the zonal and merid-316

ional GWDs as outputs. The difference between the predicted GWDs and the true GWDs317

drives the learning of the third NN. Consequently, the loss for the entire network consists318

of three components: the loss between the reconstructed input and the original input, the319

Kullback–Leibler (KL) divergence between the distribution of the latent space and a nor-320

mal distribution, and the loss between the predicted GWDs by the third NN and the true321

GWDs.322

For a specific input, each of these three UQ methods discussed above can be run multiple323

times, generating an ensemble of predictions with different realizations of the weights by324

drawing from the trained distribution. This is in contrast to the deterministic NN that325

provides just a single-valued prediction for a given input. These ensembles can then be used326

to quantify the uncertainty associated with that prediction. We expect that the RMSE of327

the ensemble mean should exhibit approximately a 1-1 relationship with the ensemble spread328

(i.e., the standard deviation of the ensemble members). To investigate this relationship, we329

use the spread-skill plot (Delle Monache et al., 2013). Detailed calculations behind the330

spread-skill plot can be found in Appendix C, where we also introduce two metrics: spread-331
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Figure 2. Schematics of the NN-based emulators and different training/re-training strategies

used in this study. (a) Schematic for the MLP and DNN. The inputs of the NN are connected

through successive layers of neurons (blue circles) to the output (GWDs). A fully connected MLP

NN is trained from randomly initialized weights and biases in all layers. A DNN is the same but

some connections are randomly eliminated during training and inference (black crosses). In TL,

only some of the layers of a previously trained MLP are re-trained using new data. (b) Schematic

for the VAE. A low-dimensional latent space is constructed and then used as the input for the

additional fully connected NNs, which is similar to the one in (a).

skill reliability (SSREL) and overall spread-skill ratio (SSRAT), both of which summarize332

the information presented in the spread-skill plot.333

2.3 Transfer Learning334

Transfer learning refers to leveraging/reusing information (weights) from an already335

well-trained base NN to effectively build a new NN for a different system from which only a336

small amount of training data is available (Yosinski et al., 2014; Tan et al., 2018; Chattopad-337

hyay, Subel, & Hassanzadeh, 2020). For our purpose, which is improving OOD generalization338

to the warmer climate, the TL procedure is as follows. For any of the NNs described earlier339

(e.g., the one in Figure 2a), we train them from randomly initialized weights and biases340

with data from the control simulations. The NN will work well during inference for test341
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samples from the control but not from future (warmer climate) simulations (as shown in342

the Results section). To address this, TL is applied wherein most of the NN’s weights are343

kept constant, and only one or two hidden layers are re-trained using a limited dataset from344

the future simulation. Although this small dataset is insufficient for training an entire NN345

from random initialization, careful and correct selection of hidden layers for re-training, as346

discussed in Subel et al. (2023), allows the development of an NN that accurately adapts to347

the new system, i.e., the future climate conditions.348

Here, we re-train the NN-based emulator that was initially trained on the control data349

with new data from only 1 month (30 consecutive days) of integration (1.4% of 6 years350

simulation for the initial training) of WACCM model under future forcing (4×CO2). We351

have explored different choices of layers to re-train with the same amount of new data and352

found that re-training the first hidden layer yields the best results, consistent with Subel et353

al. (2023). Therefore, the results with only re-training the first hidden layer are shown in354

Section 3 unless stated otherwise.355

3 Results356

3.1 Data Imbalance357

As discussed earlier, the physics-based GWP schemes in WACCM are directly linked to358

their sources. This means they only produce non-zero values when their respective sources359

are active. For example, in a specific grid box, CGWs only register non-zero values when360

there is active convection within that box. The heterogeneous and sometimes intermittent361

nature of these sources leads to a dataset that is significantly imbalanced. Figure 3 shows362

global maps of the occurrence frequency of non-zero GWD for CGWs and FGWs. On363

average, only 7.6% of all GCM columns yield non-zero CGWs, primarily located in the364

tropics. Similarly, for FGWs, only 8.5% of all columns have non-zero outputs, but unlike365

CGWs, the majority of these are located in mid-to-high latitudes, particularly along the366

storm track region. For the OGWs in WACCM, data imbalance presents a greater challenge,367

to be discussed in a later section. While it is possible to simply separate zero and non-zero368

columns for emulation work where we know the truth, this approach falls short with real-369

world data, which is the main purpose of this study.370

In addition to their sources, several other factors specific to GWD data exacerbate371

the data imbalance problem. In the case of each GCM column with non-zero GW activity,372

momentum fluxes are generally concentrated at a few critical height levels rather than being373

smoothly distributed throughout the entire column. This further restricts the effective374

occurrence frequency of non-zero values. Moreover, GWs exhibit significant intermittency,375

where a small portion of large-amplitude GWs often dominates the morphology of the376

observed global GW momentum flux distribution (Hertzog et al., 2012; Geller et al., 2013).377

Therefore, it is crucial for NNs to not only accurately identify the columns that produce378

GWDs but also to effectively learn and recognize rare and extreme GWDs.379
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Figure 3. Distribution of occurrence frequency for CGWs (top) and FGWs (bottom) in the

WACCM pre-industrial control simulations, based on the average of the 6-year training dataset.

Given the complexity of the GWD dataset, different normalization methods are con-380

sidered in this study. The first method, dubbed “NORM1”, is the typical normalization381

used in ML practices, which calculates elemental means and standard deviations for each382

feature (i.e., input variable at a given model level) and normalizes both inputs and outputs383

by these values (e.g., Espinosa et al. (2022)). With this approach, the same relative changes384

in wind at each level are treated equally in the input. The loss function in Equation (2) also385

penalizes the same relative error in GWD at each level equally. The second method, referred386

to as “NORM2“, is designed with the physics of GWD in mind. For the velocity inputs387

(u, v) and the tendency outputs (GWD), each column is normalized by one single value,388

which is the largest standard deviation from all model levels. Additionally, the mean values389

for these variables, are retained (e.g., unorm2(x, y, z, t) = u(x, y, z, t)/max(std(u)) ). Un-390

like NORM1, the original wind profile’s structure is preserved in NORM2, and large GWD391

values at certain heights maintain a relatively larger value after this normalization. For all392

other input variables, NORM2 is identical to NORM1. Compared to NORM1, NORM2393

places more emphasis on large GWD values and penalizes the NN more for missing these394

significant tendencies. These two normalization methods are also employed in Chantry et al.395

(2021), who found similar performance from these methods with the non-orographic GWPs.396

Figure 4 shows the performance of the emulations for CGWs with the two normal-397

ization methods. When employing NORM1, the conventional approach seen in prior ML398

practices, and also our initial attempts, the emulator’s performance is poor. Although the399

NN demonstrates some skill, its predictions tend to cluster around zero. However, when the400

second normalization method (NORM2) is employed, the emulation results show significant401
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Figure 4. Data imbalance for GWD due to CGWs and the emulation results with two different

normalization methods. a) A 2D histogram displaying the emulated GWD due to CGWs and the

truth, with the training dataset normalized using NORM1; b) Distribution of the original convective

GWD (black line) and the predicted values (blue line) with NORM2. The scatter plot in the corner

represents the tail part only, including points with the top 0.1% amplitudes; c) Similar to a), but

for NORM2; d) Similar to b), but for NORM2. The R2 uncertainty range is estimated by dividing

the test data into 10 segments, calculating the metric for each segment, and then computing the

standard deviation (STD).

improvement, in contrast to the findings of Chantry et al. (2021). We attribute this improve-402

ment to the more pronounced data imbalance in our dataset, and it is likely a consequence403

of NORM2’s emphasis on modeling the large GWD values. Nonetheless, emulating the tail404

of the probability density function (PDF) (rare events) remains poor, as evidenced by the405

tails in Figure 4c, primarily due to the predominance of zero GWD columns in the training406

dataset. To more effectively address the data imbalance issue in these regression tasks, we407

further propose two approaches here:408

1. Resampling the data (ReSAM): In this approach, we limit the number of training409

sample pairs with zero GWD to be equal to the number of samples with non-zero410

GWD. This significantly reduces the number of columns with zero GWD, thus mit-411

igating the data imbalance issue. Additionally, this sub-sampling reduces the total412

size of the training dataset, which, in turn, enhances the training speed (approxi-413

mately sevenfold). While resampling methods have been well-established in the ML414
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literature, they have mainly been used for classification problems. Their application415

to regression problems in climate research has not been extensively explored.416

2. Weighted loss function (WeLoss): Instead of assigning the same weight to all sample417

pairs in the loss function, we modify the weight for each column based on the PDF418

of its maximum GWD amplitude. This adjustment allows us to re-formulate the loss419

function defined in Equation (2) as420

L(Θ) =
1

n

n∑
i=1

∥∥∥Wi

{
NN (xi,Θ)− yi

}∥∥∥2
2

(4)

where

Wi =
1

PDF (max(|yi(z)|))
(5)

Note that, in practice, we lack knowledge of the precise PDF for the maximum GWD421

within each column. Therefore, we employ a histogram with 20 bins as an alterna-422

tive. Given the fact that large-amplitude GW events are rare, the WeLoss approach423

incentivizes the NN to prioritize these significant events.424

When we apply the ReSAM approach to balance the training dataset (after normal-425

ization with NORM1 or NORM2), the emulation results significantly improve, as shown in426

Figure 5. In fact, when considering the R-squared value between the NN prediction and the427

ground truth, the ReSAM approach with NORM2 yields the best results. However, as the428

training dataset is still predominantly composed of zeros and small GWD values due to the429

intermittence of the GWs, examining the emulation results for only large amplitude GW430

events (e.g., the top 0.1% in Figure 5d) reveals less satisfactory performance (R2 = 0.72).431

Regarding the WeLoss approach, it has a more limited impact on improving the R-squared432

value of the emulation (as shown in Figure 5e). However, it proves valuable in capturing433

the tails of the PDF and, thus, rare events (as depicted in Figure 5f). Moreover, as ReSAM434

and WeLoss represent distinct operations, they can be effectively combined when construct-435

ing a NN. The result of this combined approach for emulating the CGWs can be found in436

Figures 5g and 5h. While the R-squared value for the entire distribution only marginally437

changes (0.925 vs. 0.931 with ReSAM only), the performance of the emulation for the tail438

part has been improved (R2 increased to 0.77).439

Similarly, Figure 6 presents the offline emulation results for the FGWs. The conclusions440

drawn for CGWs generally hold true. However, data imbalance in FGWs is less pronounced441

compared to CGWs, which simplifies the task of emulating FGWs. Even without any442

resampling or changes to the normalization or (see Figure 6a), we achieve reasonable emu-443

lation results (R2 = 0.9). One contributing factor is the wider spatial distribution of FGWs444

compared to CGWs (refer to Figure 3). Additionally, the source of FGWs (frontogenesis445

function) in WACCM exhibits a much more continuous nature compared to precipitation446

and diabatic heating. As the data imbalance issue is less severe for FGWs, the performance447

with different normalization methods becomes more similar, echoing findings from Chantry448

et al. (2021) who emulated non-orographic GWs (including convective and frontal GWs)449

together.450
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Figure 5. Similar to Figure 4, but for CGWs with the proposed ReSAM andWeLoss methods. a)

A 2D histogram for the emulation with resampled data (ReSAM) after using Norm1; b) Distribution

of the emulated GWD due to CGWs similar to Figure 4b, but with ReSAM applied; c) Similar

to a), with training data normalized using Norm2; d) Similar to b), with training data normalized

using Norm2; e) Similar to a), but with the WeLoss approach; f) Similar to b), but with the WeLoss

approach; g) Similar to c), after applying both ReSAM and WeLoss methods together; h) Similar

to d), after applying both ReSAM and WeLoss methods.
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Figure 6. Similar to Figure 5, except for FGWs. a) A 2D histogram for the emulation using

Norm1, without ReSAM or WeLoss; b) Distribution of the GWD due to FGWs with NORM1,

similar to Figure 4b; c) Similar to a), with training data normalized using Norm2; d) Similar to

b), with training data normalized using Norm2; e) Similar to c), but with the ReSAM approach;

f) Similar to d), but with the ReSAM approach; g) Similar to Figure 5g, applying both ReSAM

and WeLoss methods to the FGWs; h) Similar to Figure 5h, applying both ReSAM and WeLoss

methods to the FGWs.
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In summary, data imbalance can pose challenges when learning from data that closely451

resembles real-world data (further discussed in the subsequent section on emulating OGWs).452

Proper resampling techniques can significantly enhance the NNs’ performance by improving453

dataset balance. Furthermore, modifying the loss function to penalize the NNs more for454

missing extreme values can further improve performance at the tails of the PDF. For the455

remainder of the paper, unless otherwise specified, we continue to employ the ReSAM456

approach and the standard loss function with NORM2 unless stated otherwise.457

3.2 Uncertainty Quantification458

As outlined in subsection 2.2.2, we employ three different methods (i.e., BNN, DNN,459

and VAE) to quantify the uncertainty of predictions during inference (testing). For this460

purpose, an ensemble of 1000 members is generated by running each UQ-equipped NN 1000461

times for each input from the testing set. Figure 7 presents sample profiles of zonal GWD462

derived from the deterministic NN (ANN) and the three UQ-equipped NNs, alongside the463

true GWD profiles from WACCM. Note that these examples have not been used in the464

training or validation process. It is evident from the figure that all three UQ-equipped465

NNs show reasonable skill in predicting the complex profiles of GWD due to CGWs and466

FGWs (also reflected in R-squared in Table 1), albeit with a slight decrease in accuracy467

compared to ANN. As discussed earlier, a valuable uncertainty estimate should correspond468

closely with the NN’s test accuracy, providing insights into when to trust the NN’s pre-469

diction during inference. Such a relationship can be seen in a few randomly chosen GWD470

profiles that’s shown in Figure 7. In each pair of CGW and FGW profiles, the left column471

shows the estimated uncertainty is also low when the prediction error is low, indicating the472

NN’s confidence in its accurate predictions. In contrast, the right column, which generally473

represents more complex profiles, exhibits the NN’s less accurate predictions, and increased474

uncertainty, highlighted by the wider confidence intervals.475

While Figure 7 demonstrates the performance of the UQ methods for just a few GWD476

profiles, the spread-skill plots shown in Figure 8 offer a broader perspective based on 60,000477

profiles, following the calculations detailed in Appendix C. It is evident from the plots478

that all three UQ methods produce reasonably informative uncertainty estimates, as their479

curves closely align with the 1-to-1 line. In the case of CGWs, all data points are above480

the 1:1 line, indicating a slight overconfidence (underdispersiveness) across all three UQ481

methods, with the DNN being slightly closer to the 1-to-1 line. For the FGWs, the DNN482

demonstrates slightly better performance, although it marginally drops below the 1-to-1483

line in the first few bins, indicating a slight underconfidence. Notably, it can be seen from484

the spread frequency inset that the vast majority of the data points are within the first few485

bins, for which both spread and skill values are small, and they are generally closer to the486

1-to-1 line.487

It should also be noted that for the large values of model spread (SD), there is only a488

very limited number of data points, as is evident from the inset histograms. Consequently,489
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CGWs FGWs

ANN ANN ANN ANN

Figure 7. Sample profiles of zonal GWD as predicted by various NNs, as indicated. The true

profile is shown by the black line, while the blue solid line represents the mean of 1000 ensemble

members. The shaded region indicates the 95% confidence interval. In each pair of CGWs and

FGWs profiles, the left column provides examples with low estimated uncertainty, corresponding

to instances of low error. Conversely, the right column illustrates cases with high uncertainty when

the error is high.
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Figure 8. Spread-skill plot for GWD due to (left) CGWs, and (right) FGWs. The diagonal 1:1

line represents the perfect spread-skill line. Points above (below) this line correspond to spread

values where the model is overconfident (underconfident). The inset histogram shows how often

each spread value occurs. See Appendix C for a detailed discussion on the calculations of the

spread-skill plot.

the standard deviation (STD) can become a misleading measure of spread because of the490

non-normal distributions.491

To summarize the quality of the spread-skill plots for the three UQ methods, we explore492

the metrics introduced in subsection 2.2.2 and Appendix C (see Table 1). The R-squared493

value for the ensemble mean prediction is also given to show the accuracy of each UQ494

method. Based on SSREL, whose ideal value is zero, BNN shows the best performance for495

both CGWs and FGWs. However, if we check SSRAT, where 1 is the optimal number, DNN496

is the best among these three methods. This discrepancy can be explained by a closer look497

at the Equations (C2) and (C3). SSREL, which is a bin-weighted average difference, is most498

sensitive to the performance of the NN in the first bin, where the vast majority of the data499

points are located (see the inset histograms in Figure 8), while SSRAT is more influenced by500

larger values of spread and skill. Accordingly, the VAE shows the highest values of SSREL,501

which is indicative of its sub-optimal performance in the first bin, where there are small502

values of spread and skill.503

In the results presented in Figure 8 and Table 1, each height level of a GWD profile is504

considered as an individual sample. A zonal GWD profile, with its 70 vertical levels, thus505

constitutes 70 distinct samples. While analyzing these samples offers insights into the NN’s506

overall performance by averaging statistics across numerous profiles, our primary interest is507

often in the uncertainty associated with an individual GWD profile. This uncertainty can508

then aid in determining whether to trust/use the NN’s prediction for that particular GWD509
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profile. Therefore, we use Equation (C4) to assess the relationship between uncertainty and510

test accuracy for each GWD profile. Furthermore, to estimate uncertainty, here we use the511

interquartile range (IQR) to reduce the influence of outliers.512

Figure 9 shows the Gaussian kernel density of spread against RMSE for all 60,000513

profiles, as indicated by the color shading. The x-axis represents the IQR of each GWD514

profile, while the y-axis denotes its corresponding RMSE. A strong correlation between515

the two is observed across all three UQ methods. Consequently, GWD profiles with larger516

uncertainties often coincide with larger errors. Figure 9 also shows a close similarity between517

BNN and DNN. In contrast, VAE tends to provide marginally larger uncertainties, especially518

for FGWs. This is consistent with VAE’s slightly reduced accuracy as indicated in Table519

1. Overall, given the monotonic relationship between the uncertainty and test error, these520

results show that all three UQ methods provide useful and informative uncertainty for with-521

distribution test samples. A user can set a threshold on uncertainty based on their tolerance522

for error (RMSE) and decide whether they trust the NN for a given input sample.523

The results presented so far show the performance of the UQ methods based on the524

testing data, i.e., data from the current climate. However, the effective performance of UQ525

methods can also be tested (perhaps more meaningfully) on OOD data, e.g., data from a526

warmer climate. This is particularly relevant for climate change studies. Accordingly, we527

evaluate the performance of these trained NNs with input data from the future climate, as528

depicted by the black lines in Figure 9. For FGWs, the spread-skill relationship remains529

largely similar, especially for BNN and DNN. This suggests that, based on their uncer-530

tainties, we can still reliably estimate the error in the NN predictions for FGWs for the531

warming climate. A similar pattern is observed for the VAE, though it exhibits increased532

uncertainties and higher errors with OOD data. As shown in a later section, for FGWs, the533

NNs generalize to the warmer climate without any further effort.534

In contrast, for CGWs, given the same level of uncertainty, the error in NN predictions535

increases significantly for the OOD data compared to that from the current climate, which536

means the spread-skill relationship, especially for the BNN and DNN, fails to generalize to537

the OOD data. From this perspective, VAE performs better, showing that for the same538

level of uncertainty, the increase in error is not as substantial as in BNN and DNN. The539

VAE also yields considerably higher uncertainty estimates for future climate, which may aid540

in the detection of OOD data. The observed discrepancies in the performance of the NNs541

for CGWs and FGWs hint at different levels of their generalizability, a topic we will delve542

into more deeply in the following subsection.543

In summary, while the three UQ methods provide credible and valuable uncertainty544

estimates for the current climate, the BNN and DNN are confidently wrong in estimating545

CGWs in a warmer climate although VAE shows some promising results. This problem is546

common among various UQ techniques as pointed out in the ML literature: they frequently547

show overconfidence when assessed with OOD data (e.g., Ovadia et al., 2019). The optimal548

UQ method selection depends on the specific metric of interest and the intended application.549

While BNN is more broadly used in the literature and gives the best accuracy, DNN could550
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Table 1. Evaluation scores for the three UQ methods. See Section 2 for more details.

CGWs FGWs

BNN DNN VAE BNN DNN VAE

SSREL (1e-4) 1.29 1.48 2.14 1.20 1.69 5.21
SSRAT 0.73 0.82 0.72 0.69 0.93 0.69
R-squared 0.90 0.86 0.87 0.94 0.92 0.89

achieve similar performance and is often more practical given its simplicity. On the other551

hand, VAE seems to perform better when applied to OOD data, at least in the one test case552

here. These observations warrant further research in the future using multiple test cases553

and climate-relevant applications. We also note here that each method has multiple tuning554

hyperparameters to optimize its uncertainty quantification. Consequently, the discrepancies555

among the three methods could potentially be mitigated with proper hyperparameter tuning556

(as discussed in Appendix B).557
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3.3 Out-of-distribution (OOD) Generalization via Transfer Learning558

As previously discussed, the GWP schemes in WACCM are coupled to their sources,559

which might change in a warmer climate. Specifically, under 4×CO2 forcing, we expect560

changes in both the amplitude and the phase speed distribution of GWs, in particular for561

the CGWs, due to their built-in sensitivities to changes in the convection. Consequently, the562

physics scheme in WACCM produces slightly stronger GWD for CGWs, especially in the563

tail of the distribution. This intensified GWD results in a shorter quasi-biennial oscillation564

(QBO) period in WACCM. However, it is important to recognize that the response of the565

QBO to climate change differs across various general circulation models (Richter et al.,566

2022).567

The intensification of the CGWs in future climate simulations presents an opportunity568

to study how NNs handle the OOD data. Our findings in the UQ section already suggest569

increased prediction errors when testing NNs with OOD data, which raises concerns about570

their applicability in climate change studies. To more thoroughly investigate this issue,571

we conduct additional evaluations on our ANNs, by applying them to data samples from572

future climate simulations, as illustrated in Figure 10. It is clear that the ANN for the573

CGWs does not generalize well, evidenced by a decrease in R2 from 0.93 to 0.79. The574

ANN particularly struggles to capture the increase in GWD in the tail, with R2 for the tails575

decreasing from 0.72 to 0.36. As a result, it seems unlikely that this emulator will accurately576

reproduce changes in the circulation under different climate conditions, such as the shorter577

QBO period resulting from future warming in WACCM.578

In contrast to CGWs, the amplitude of FGWs shows a less marked increase in the future579

climate, and their PDF distribution closely resembles that of the control simulations. As580

a result, the ANN demonstrates better generalizability for FGWs when it is tested against581

future climate data, as seen in Figure 10d. There is only a slight decrease in the ANN’s582

performance, with R2 dropping from 0.97 to 0.95.583

Two factors can contribute to the considerable OOD generalization errors in an NN584

when applied across two distinct systems. First, the input-output relationship might vary585

between the two systems. Second, the input variables in the new system could originate586

from a distribution different from that of the original system (regardless of whether the587

input-output relationship remains the same or changes). The former is hard to quantify in a588

high-dimensional dataset. The latter can be quantified using similarity distances. To help us589

better understand these differences between the OOD generalizability of CGWs and FGWs,590

we assess the similarity between their input and output data distributions from control and591

future climate simulations using the Mahalanobis distance (D). The Mahalanobis distance592

is a measure of the distance between a data point and a distribution (Ling & Templeton,593

2015). Specifically, it is a multi-dimensional generalization of the idea of measuring how594

many standard deviations away a point is from the mean of the distribution. The application595

of Mahalanobis distance in understanding the source of OOD generalization errors in data-596

driven parameterization was previously demonstrated in Guan et al. (2022) for a simple597

turbulent system.598
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Table 2. Change of Mahalanobis distance based on the ratio of the average distance of the points

that are more than 3 standard deviations away from the mean. The choice of the variables here is

based on Appendix A, showing u, v, T, and source function contain most of the information needed

for the NN.

Variables u v T
Source

(diabatic heating for CGWs,
frontogenesis for FGWs)

Zonal drag Meridional drag

Distance (Convection) 1.03 1.00 1.19 3.62 1.42 1.44
Distance (Front) 1.03 0.96 1.50 1.10 1.00 1.00

To use the Mahalanobis distance, we first calculate the mean and covariance matrix of599

the training data from the control run. We then analyze the distribution of Mahalanobis600

distances in this training data, setting a baseline value, referred to as Dctrl. This baseline is601

the average distance for data points that deviate by more than 3 standard deviations from602

the mean. This choice aims to focus on outliers for which extrapolation is more challenging.603

Following this, we apply the same process to the data points in the future climate dataset,604

denoted as Dwarm. Table 2 presents the ratio of Dwarm for the warming scenario to Dctrl605

for the control scenario for selected variables. When this ratio is close to 1.0, it suggests606

minimal changes in this variable’s distribution under a warming scenario. Note that the607

NNs trained based only on these variables demonstrate performance comparable to NNs608

trained on all variables (not shown), which is why we only focus on these few key variables.609

The results reveal that among the various variables significantly contributing to the610

emulation of CGWs, diabatic heating (source of CGWs) is the sole variable that exhibits611

substantial changes from the control to the warming scenario. Conversely, changes in vari-612

ables used to emulate FGWs are considerably smaller. This outcome suggests that the likely613

reason for the better generalizability of FGWs is that the input distribution remains almost614

unchanged (and the input-output relationship, which is the physics scheme, remains the615

same too).616

To improve the generalizability of the emulator for CGWs, we explore TL, a technique617

introduced earlier and proven to be a powerful tool for improving the OOD generalizability618

of data-driven parameterization in canonical turbulent flows (e.g., Guan et al., 2022; Subel619

et al., 2023). Rather than re-training the entire NN for future climate scenarios, we only re-620

train, follwoing Subel et al. (2023), just a portion of the NN, thereby requiring only a small621

fraction of the data. Figure 10e showcases the emulation results after only re-training the622

first hidden layer of ANN using data from the first month of the WACCM simulation in the623

4×CO2 scenario, which amounts to approximately 1% of the original training dataset. After624

applying TL, the performance of the emulator in the warming scenario significantly improves,625

with R2 rising from 0.79 to 0.91, nearly matching its performance in the control simulations626

(R2 = 0.93). However, the improvement in the PDF tails is less pronounced, showing627

only a modest increase in R2 from 0.36 to 0.51. This is likely due to the limited number628

of large-amplitude GW events within the one-month period. Instead of using more data629
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Figure 10. NN performance for pre-industrial and warming scenarios for different sources

(a,c,e,f: CGWs ; b,d: FGWs). a) PDF of GWD due to CGWs in WACCM simulation and

the predicted CGWs using NN emulator, scatter plot shows points for the tail part only. b) same

as (a), but for FGWs. c) same as (a), but for the warming scenario, d) same as (b) but for the

warming scenario. e) same as (c) but after applying transfer learning to the first hidden layer of

the NN with 1-month WACCM simulation data under warming scenario (∼ 1% of the size of the

training data) f) same as (e) but with the weighted loss function used when we conduct transfer

learning (WeLoss).
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from the future climate (which is challenging to obtain in a realistic situation), we leverage630

the WeLoss approach, described earlier, during re-training. This modification results in a631

significant improvement in the tail, with R2 increasing from 0.51 to 0.68. Note that this632

improvement in the tail is critical, as inadequate learning of these rare but large-amplitude633

GWDs can result in significant errors and instabilities.634

We would like to point out that during the TL experiments, we have examined the635

effects of re-training each individual hidden layer of the NN. Our findings indicate that636

re-training the first layer yields the best results, which aligns with the findings in Subel et637

al. (2023). Re-training the last layer only brings marginal improvements to the NN (not638

shown). Notably, our experiments involving re-training the first two layers did not result639

in further performance enhancements, suggesting that the number of neurons is not the640

primary factor contributing to the varied performance observed when re-training different641

layers.642

Similar results regarding TL are also observed with other NNs used in this study. For643

instance, Figure 11 presents the same plot as Figure 10, but for the BNN. It is evident that644

BNN also struggles with generalization to OOD data, as could also be interpreted based645

on the results presented in section 3.2. It is also the case for DNN and VAE (not shown).646

Overall, when these NNs are tested against the 4×CO2 future climate data, their accuracy647

is not better than the deterministic ANN. However, methods with UQ, especially the VAE648

(see Figure 9), could potentially indicate the increased uncertainty when testing with input649

data from the 4×CO2 integration. These results underscore the necessity of re-training the650

NNs using TL.651

4 Emulation of Orographic GWs (OGWs)652

Similar to Chantry et al. (2021), our initial attempts to emulate OGWs did not succeed,653

primarily due to the presence of a pronounced data imbalance. Notably, the physics-based654

scheme responsible for OGW generation operates exclusively over terrestrial regions. How-655

ever, it is surprising that the issue of data imbalance continues to persist, even when we656

limit our NN training and testing exclusively to columns located over land (Figure 12a).657

Still, the emulated OGW drag often remains close to zero and completely fails to predict658

the rare events (Figure 12b), which poses a considerable hurdle for the emulator’s perfor-659

mance. Further investigations reveal that the key to this problem lies in the highly localized660

nature of orographic GWD, where significant drag is observed only at a handful of specific661

locations. Furthermore, even within these limited regions, GWD exhibits a significant in-662

termittent behavior. To help our understanding, we also conducted a K-means clustering663

analysis, categorizing GWD data for all land-based columns (Table 3). Among the 6 clus-664

ters, cluster 4 accounts for a staggering 97.51% of the dataset. Remarkably, all samples665

within this cluster exhibit exceptionally weak orographic GWD, as evidenced by the cluster666

center’s maximum GWD amplitude, which is two orders of magnitude smaller than that of667

other clusters.668
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Figure 11. Panels (a) to (e) are the same as those in Figure 10 but for BNN. Panel (f) shows

emulation for FGWs under warming scenario after applying transfer learning to the first hidden

layer of the NN.
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Table 3. Clustering analysis for OGWs. Analysis is done for all columns over land in the training

data.

Cluster
Frequency (%) in the

training data
Maximum GWD amplitude

of cluster center

c1 0.18 8.7 e-3 m/s2

c2 0.13 4.4 e-3 m/s2

c3 0.93 3.6 e-3 m/s2

c4 97.51 2.8 e-5 m/s2

c5 0.15 2.1 e-3 m/s2

c6 1.10 4.3 e-3 m/s2

To overcome this persistent data imbalance in the OGWs, we first separate all columns669

over land into large-drag columns (with column maximum greater than one STD of all670

GWD from OGWs) and small-drag columns. We then perform subsampling on the latter671

group only to create a more balanced dataset. To improve NN training, we also include all672

columns from the 6-year simulation to augment the sample size of the large-drag columns.673

Figures 12c and 12d illustrate the performance after re-balancing the dataset. Notably, the674

result represents a substantial improvement, evidenced by an R2 increase from 0.29 to 0.80,675

and also a significant improvement in the accuracy for rare events. While we acknowledge676

that this skill remains lower than what is achieved for CGWs and FGWs, it already signifies a677

reasonable NN. Furthermore, we posit that by incorporating additional training data (either678

by extending the WACCM model integration or simply augmenting the data with OGWs679

scheme only), we can further improve our emulation results. The possibility of achieving680

superior emulation outcomes through the adoption of an alternative NN architecture is also681

possible, although such exploration is beyond the scope of this paper.682

5 Summary and Discussion683

Through the emulation of complex GWPs in a state-of-the-art atmospheric model684

(WACCM), we have elucidated and explored solutions for three critical challenges in the685

development of ML-based data-driven SGS schemes for climate applications: data imbal-686

ance, UQ, and OOD generalizability under different climates. A brief summary is provided687

below:688

1. In the presence of non-stationary, and highly imbalanced datasets, such as those en-689

countered in WACCM, specialized approaches (e.g., resampling and weighted loss690

function) are essential to enhance the performance of data-driven models. Through691

resampling, we have successfully trained a robust NN emulator for OGWs, a challeng-692

ing task as demonstrated in Chantry et al. (2021). The effectiveness of the trained693

emulator is also significantly influenced by the choice of the loss function used dur-694

ing training. In our case, while a weighted loss function (WeLoss) does not improve695

the overall R2 score, it yields significant improvements in the emulation results for696
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Figure 12. Performance of the emulator for OGWs when trained with all columns over land

(panel a) & panel b)) and balanced training data with a balanced number of large-drag columns

(column maximum > 1 STD of all GWD from OGWs) and small-drag columns (panel c) & panel

d).

the PDF tails of the GWD. This finding aligns with those in Lopez-Gomez et al.697

(2022), where their custom loss function, tailored to emphasize extreme events, led698

to substantial improvements in predicting heatwaves.699

2. All three UQ methods employed in this study provide reasonable uncertainty esti-700

mates for GWD prediction for the current climate. The spread-skill plots (refer to701

Figures 8 and 9) indicate that greater uncertainty corresponds to a larger prediction702

error. Yet, the reliability of UQ methods diminishes when they are challenged with703

OOD data. Both BNN and DNN used in this study tend to be overconfident in es-704

timating CGWs in a warmer climate, thereby struggling to identify OOD samples.705

The VAE, on the other hand, yields rather promising results in providing useful UQ706

for OOD data. Given the variations in different methods, the metrics selected to707

assess the SGS model will play a significant role in determining the choice for the UQ708

methods. We also note that further optimization of tunable parameters within each709

UQ method could affect their performance (refer to Appendix C).710

3. Our findings illustrate the challenges SGS schemes face in generalizing to OOD data711

and extrapolating to new climates. Nonetheless, the TL approach has proven highly712

effective in aiding an NN to extrapolate to different climates. For CGWs in WACCM,713

the physics-based scheme exhibits larger GWD under 4×CO2 forcing, primarily due714

to an increase in diabatic heating from convection. With only one month of sim-715
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ulation data from this future warming scenario (representing approximately 1% of716

the original training dataset), we successfully reduce its OOD generalization error717

through re-training the first layer of the NN, following the findings of Subel et al.718

(2023). Additionally, we have illustrated the value of metrics like the Mahalanobis719

distance in assessing the potential OOD generalizability of NNs.720

We would like to emphasize that these challenges are often intertwined. For instance,721

addressing data imbalance in CGWs is a prerequisite for obtaining an accurate NN model,722

which, in turn, impacts UQ and OOD generalizability assessments. Moreover, there exists723

a strong link between UQ and OOD generalizability evaluations: if the NN struggles with724

OOD generalization, performing poorly with OOD data, the reliability of UQ for such data725

(e.g., data from a warmer climate) also becomes questionable. This presents a substantial726

challenge for UQ methods, especially for climate change research where reliable UQ methods727

are crucial.728

This study has primarily focused on offline skill assessment. We acknowledge that good729

offline performance (at least in terms of common metrics such as R2) is not necessarily an730

indicator of stable and accurate online (coupled to climate model) performance (Ross et731

al., 2022; Guan et al., 2022), though more strict metrics such as R2 of the PDF tails might732

better connect the offline and online performance (Pahlavan et al., 2023). However, for733

the purpose of this study, which is to provide a testbed to test ideas for data imbalance,734

UQ, and OOD generalization with transfer learning, the offline tests, particularly using735

the several metrics we have used, suffice. That said, the main reason that we have not736

provided online results is that coupling various complex NNs, with the same framework, to737

complex climate models (e.g., WACCM) without slowing down the model is a challenging738

and time-consuming task (Espinosa et al., 2022), and this is work in progress.739

Emulating complex GWPs within the WACCM provided a unique opportunity to ad-740

dress three critical challenges in developing ML-based, data-driven SGS schemes for climate741

science applications. However, it is crucial to acknowledge that such emulated schemes742

essentially adopt the limitations inherent in the physics-based schemes. Addressing these743

limitations, the next step is to harness high-resolution data from GW-resolving simula-744

tions, which are carefully validated against observational data. A library of such high-745

resolution simulations, notably of convectively generated GWs using the Weather Research746

and Forecasting (WRF) model, is now established (Sun et al., 2023), alongside additional747

global high-resolution simulations (Wedi et al., 2020; Polichtchouk et al., 2023; Köhler et al.,748

2023). The next phase involves integrating the approaches outlined in this study with the749

data from these GW-resolving simulations to develop a stable, trustworthy, and generaliz-750

able data-driven GWP scheme. This scheme is then expected to overcome the limitations of751

physics-based GWPs and potentially incorporate features like the transient effect (Bölöni et752

al., 2021; Kim et al., 2021) and lateral propagation of GWs (e.g., Sato et al., 2009)—marking753

a significant advancement towards next-generation GWP schemes.754
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Appendix A Input/output variables for the physics-based GWP schemes755

and their emulators756

We use the exact same inputs as those of each GWP scheme in the WACCM for the757

training of the NN-based emulator of that scheme. These inputs are listed in Table A1. As758

for the outputs, we only consider the zonal and meridional drag forcings. The GWPs in759

WACCM also estimate additional effects of the GWs that result in changes of temperature760

profile and vertical diffusion. These outputs are not considered in our emulations.761

Table A1. List of the input and output variables for the NNs trained as emulators of the GWP

schemes in WACCM. The numbers in parentheses in front of each variable are the number of

vertical levels for that variable. Note that each input and output is a 1D column at a given

latitude/longitude grid point. Diabatic heating in WACCM is provided by the cumulus scheme.

The topography variables listed in the table are mxdis (height estimates for ridges), hwdth (width

of ridges), clngt (length of ridges), angll (orientation of ridges), and anixy (anisotropy of ridges).

GWP
Input

Output
pressure levels surface level forcing

CGWs u(70),
v(70),
T (70),
z(70),
ρ(71),

Brunt–Väisälä frequency N (70),
dry static energy DSE (70)

lat (1),
lon (1),

Psurface (1),

diabatic heating (70) zonal drag
GWDx (70),

meridional drag
GWDy (70),

FGWs
frontogenesis
function (70)

OGWs

mxdis (16),
hwdth (16),
clngt (16),
angll (16),
anixy (16),

From Table A1, one can guess that some input variables are correlated with each762

other. Consequently, it is plausible that the trained NNs may have spurious connections.763

Preliminary tests further support this notion, indicating that employing only u, v, T, and764

the forcing function as inputs yields comparable offline skill (results not presented here).765

Appendix B Tuning UQ-equipped NNs766

In addition to the hyperparameters of the deterministic NNs, designing an architecture767

for UQ often demands additional hyperparameter optimization. For instance, for the DNN,768

decisions need to be made regarding the number of neurons to drop out (dropout rate).769

While less common, one can also choose whether to apply dropout to all hidden layers or770

only selected ones. Variations in the dropout rate and the layers to which dropout is applied771

can influence the final configuration and performance of the DNN. Figure B1 illustrates these772

effects. As we increase the number of dropped neurons (whether through a higher dropout773

rate or by subjecting more layers to dropout), the uncertainty in the DNN predictions774

tends to rise. Yet, there is a persistent pattern in the relationship between spread (IQR)775

and RMSE across the various plots in Figure B1. Specifically, as spread increases, RMSE776

concurrently grows, consistent with the insights highlighted in Figure 9.777
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Figure B1. Similar to Figure 9 but for DNN only with different dropout rates, which are applied

to different numbers of hidden layers.

In the case of BNN or VAE, even though there is no dropout rate, there are distinct778

tuning opportunities available. For instance, with the VAE, one might consider applying779

dropout to the NN emulator. Moreover, given that the loss function in VAE comprises three780

components, decisions can be made regarding which component to penalize more heavily,781

allowing for nuanced adjustments to its performance.782

Appendix C The UQ metrics783

Each point in the spread-skill plot corresponds to one specific bin of ensemble spread784

(SDk), which is defined as the average standard deviation of the ensemble members. We785

first separate the spread using a pre-selected number of bins (a subjective choice of 15 is786

used here). Then for the kth bin:787


RMSEk =

[
1
Nk

∑Nk

i=1 (ŷi − yi)
2
] 1

2

SDk = 1
Nk

∑Nk

i=1

[
1

M−1

∑M
j=1 (yi − yij)

2
] 1

2

yi =
1
M

∑M
j=1 yij

(C1)

ŷi is the observed value for the ith example, yi is the mean prediction for the ith example, yij788

is the jth prediction for the ith example, Nk is the total number of examples in the kth bin,789

and M is the ensemble size. Following Haynes et al. (2023), we summarize the quality of the790
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spread-skill plot by two measures: spread-skill reliability (SSREL) and overall spread-skill791

ratio (SSRAT). SSREL is the bin-weighted mean distance from the 1-to-1 line:792

SSREL =

K∑
k=1

Nk

N
|RMSEk − SDk| (C2)

where N is the total number of examples, K is the total number of bins, and other variables793

are as in Equation C1. SSREL varies from [0,∞), and the ideal value is 0. On the other794

hand, SSRAT is averaged over the whole dataset:795

SSRAT =
SD

RMSE
(C3)

SSRAT also varies from [0,∞), and the ideal value is 1. SSRAT > 1 indicates the model is796

under-confident on average, while SSRAT < 1 indicates that the model is overconfident on797

average.798

In Equation (C1), each level of a GWD profile is considered as an individual sample.799

As discussed earlier, while these samples help assess the model’s overall performance, our800

main interest is often the uncertainty of individual GWD profiles. Such uncertainty informs801

the trustworthiness of the model’s prediction for that specific profile. Accordingly, for each802

profile, we can compute:803


RMSEprofile =

[
1
Nz

∑Nz

z=1 (ŷz − yz)
2
] 1

2

profile

IQRprofile =
[

1
Nz

∑Nz

z=1 (yz,75th − yz,25th)
2
] 1

2

profile

yz =
[

1
M

∑M
j=1 yzj

]
profile

(C4)

where Nz is the number of vertical levels for each profile, and IQRprofile is its interquartile804

range: yz,25th corresponds with the 25th percentile, and yz,75th corresponds with the 75th805

percentile.806
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The data for all the analyses in the main text are available at https://doi.org/10808
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