
P
os
te
d
on

27
D
ec

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
70
36
53
70
.0
19
68
57
6/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Spectrally Resolved Longwave Surface Emissivity Reduces

Atmospheric Heating Biases

Lili Manzo1, Charles Sutton Zender1, Juan P Tolento1, and Chloe A. Whicker2

1University of California, Irvine
2University of Michigan

December 27, 2023

Abstract

Many Earth system models (ESMs) approximate surface emissivity as a constant. This broadband approximation reduces

computational burden, yet biases longwave (LW) atmospheric fluxes and heating by neglecting the spectral structure of surface

emissivity and atmospheric absorption. These biases are largest over surfaces with strongly varying emissivity and minimal

atmospheric opacity (e.g., due to water vapor and clouds). Our study focuses on liquid water, ice, and snow surfaces. We use

LW spectral emissivity ε(λ) calculated via the Fresnel equations and validated against a dataset of spectral surface emissivity.

We flux-weight and bin ε(λ) into 16 spectral bands accepted by an offline single-column atmospheric radiative transfer model

(RRTMG LW) commonly used in ESMs (including E3SM and CESM). We quantify flux and heating biases introduced by

broadband emissivity assumptions in comparison with the 16-band spectrally resolved case for three different surface types,

three standard atmospheric profiles, and for the key drivers surface temperature, cloud water path, and atmospheric water

vapor. In addition, we devise and test novel greybody and semi-spectral methods of representing ε(λ) with the goal of reducing

biases while preserving computational efficiency. We find that typical broadband assumptions artificially cool Earth’s surface,

thereby stabilizing the lower troposphere. LW upwelling flux is overestimated by 4.5 W/m2 (˜1.4%) at the bottom of a mid-

latitude winter atmosphere over an ice surface, and by 3.3 W/m2 (˜1.4%) at the top of atmosphere. Lastly, we find that a

semi-spectral approach (five bands instead of 16) reduces biases by up to 99% relative to the broadband approximation.
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Spectrally Resolved Longwave Surface Emissivity1

Reduces Atmospheric Heating Biases2
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Key Points:6

• Broadband surface emissivity assumptions combined with atmospheric conditions7

bias upwelling flux and heating rates in Earth system models.8

• These assumptions tend to artificially cool Earth’s surface and stabilize the lower9

troposphere.10

• Longwave flux bias can be reduced by over 70% by updating broadband values,11

and by over 99.9% by a semi-spectral emissivity representation.12
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Abstract13

Many Earth system models (ESMs) approximate surface emissivity as a constant. This14

broadband approximation reduces computational burden, yet biases longwave (LW) at-15

mospheric fluxes and heating by neglecting the spectral structure of surface emissivity16

and atmospheric absorption. These biases are largest over surfaces with strongly vary-17

ing emissivity and minimal atmospheric opacity (e.g., due to water vapor and clouds).18

Our study focuses on liquid water, ice, and snow surfaces. We use LW spectral emissiv-19

ity ϵ(λ) calculated via the Fresnel equations and validated against a dataset of spectral20

surface emissivity. We flux-weight and bin ϵ(λ) into 16 spectral bands accepted by an21

offline single-column atmospheric radiative transfer model (RRTMG LW) commonly used22

in ESMs (including E3SM and CESM). We quantify flux and heating biases introduced23

by broadband emissivity assumptions in comparison with the 16-band spectrally resolved24

case for three different surface types, three standard atmospheric profiles, and for the25

key drivers surface temperature, cloud water path, and atmospheric water vapor. In ad-26

dition, we devise and test novel greybody and semi-spectral methods of representing ϵ(λ)27

with the goal of reducing biases while preserving computational efficiency. We find that28

typical broadband assumptions artificially cool Earth’s surface, thereby stabilizing the29

lower troposphere. LW upwelling flux is overestimated by 4.5 W/m2 (∼1.4%) at the bot-30

tom of a mid-latitude winter atmosphere over an ice surface, and by 3.3 W/m2 (∼1.4%)31

at the top of atmosphere. Lastly, we find that a semi-spectral approach (five bands in-32

stead of 16) reduces biases by up to 99% relative to the broadband approximation.33

Plain Language Summary34

Earth’s energy budget is controlled by the amount of incoming and outgoing ra-35

diation. Outgoing radiation has either been reflected or absorbed and emitted. The en-36

ergy emitted by Earth is in part controlled by the emissivity ϵ(λ) of the surface. Emis-37

sivity depends on a variety of factors, notably wavelength and surface composition. At-38

mospheric energy absorption is also strongly wavelength dependent. However, many Earth39

system models (ESMs) currently employ a broadband assumption for surface emissiv-40

ity, approximating ϵ(λ) as a constant. The broadband assumption introduces error, or41

bias, in the models’ representation of outgoing radiation. This study quantifies the bias42

introduced by the broadband assumption by expanding the resolution of emissivity from43

one spectral bin to 16. We also devise and investigate novel methods of representing spec-44

tral emissivity that reduce bias and optimize computational resources. We find that eight45

or fewer bands are necessary to effectively eliminate LW flux and heating biases. Out46

of the cases we test, we find that the blackbody approximation can overestimate upwelling47

flux by up to 4.5 W/m2 (∼1.4%) at the bottom of atmosphere, and up to 3.3 W/m2 (∼1.4%)48

at the top of atmosphere.49

1 Introduction50

To predict the consequences of anthropogenic climate forcing, we must accurately51

depict Earth’s energy budget. Earth cools via longwave (LW) energy emission. The sur-52

face emissivity modulates the amount of upwelling LW radiation that Earth emits. Emis-53

sivity (ϵ(λ)) is defined as the ratio between actual emitted energy and idealized black-54

body emission. It depends on a variety of factors including surface composition, tem-55

perature, and wavelength. The emissivity of a pure water surface, for example, varies56

by about 20% in the longwave regime. Feldman et al. (2014) show that variations in emis-57

sivity as small as 5% can impact outgoing radiation up to 2 W/m2. However, Earth sys-58

tem models (ESMs) such as the Community Earth System Model (CESM) and Energy59

Exascale Earth System Model (E3SM) continue to approximate surface emissivity as con-60

stant blackbody (ϵ̄ = 1) or greybody (ϵ̄ < 1) over all wavelengths. This assumption61

helps to optimize model efficiency, since it reduces the amount of information passed be-62
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tween the surface components and the atmosphere. The broadband assumption also cre-63

ates model biases, especially over water, ice, and snow surfaces, whose emissivities vary64

strongly with wavelength, and cover over 80% of Earth’s surface. Atmospheric energy65

absorption also depends strongly on wavelength, from ∼7% near the atmospheric win-66

dow up to 100% in the CO2 absorption bands. Thus, the black- or greybody approxi-67

mations decorrelate surface emission features from atmospheric absorption bands and68

fail to produce the true spectral and spatial patterns of surface cooling and atmospheric69

heating. The full effects of these approximations on climate prediction is unknown, though70

hinted at in previous studies.71

Huang et al. (2016) implemented one month of global observations of surface emis-72

sivity and atmospheric conditions in an offline radiative transfer model. They found that73

top-of-atmosphere outgoing LW radiation decreases globally by up to 1.5 W/m2 for a74

clear sky, and 0.9 W/m2 for all-sky, in both January and July when comparing the spec-75

trally resolved measured surface emissivity to the broadband assumption. A later study76

incorporated spectral surface emissivity in the atmospheric component of CESM with-77

out modifying surface components (Huang et al., 2018). Huang et al. (2018) found a global78

mean bias in upwelling LW flux over a 30-year time period of 1.00 ± 0.16 W/m2 from79

a fully coupled run. They also found global mean surface temperature differences of 0.5480

K from the coupled run as a result of their modifications when compared to the stan-81

dard CESM that employs the broadband assumption, with some larger regional differ-82

ences. Decreases in upwelling LW flux F ↑ are typically balanced by increases in upwelling83

latent heat, which increases global precipitation. The largest reduction in LW flux bias84

appears over polar and desert regions, where water vapor concentrations are low. Huang85

et al. (2018) also uncovered a feedback loop between sea ice cover and surface emissiv-86

ity which is similar to, but much weaker than, the well-known sea-ice albedo feedback.87

While previous work has quantified the impacts of spectrally resolved longwave emis-88

sivity in both offline and coupled atmosphere models, they have not coupled self-consistent89

spectral bands between the surface and atmosphere components.90

This study uses first-principle methods to calculate emissivity over water, ice, and91

snow surfaces across the LW spectrum encompassed by the atmospheric radiative trans-92

fer model RRTMGP (10–3250 cm−1, or 3.08–1000 µm), which is utilized by CESM and93

E3SM (Clough et al., 2004). We validate our calculations against the emissivity dataset94

developed by Huang et al. (2016) and implement spectrally resolved emissivity over wa-95

ter, ice, and snow surfaces in an offline atmospheric radiative transfer model. Other sur-96

face types such as desert and vegetation are omitted because their emissivities vary dra-97

matically with season and location and are better represented empirically. We also in-98

vestigate novel greybody and semi-spectral approximations with the goal of reducing bi-99

ases while retaining computational efficiency if incorporated in a fully coupled ESM. We100

quantify the resulting changes in atmospheric radiative fluxes and warming rates for broad-101

band versus spectrally-resolved surface emissivity over water, ice, and snow surfaces, three102

standard atmospheric profiles, and for varying surface temperature, cloud water path,103

and atmospheric water vapor. This work assesses the impacts of broadband surface emis-104

sivity assumptions and provides options for how to treat surface emissivity in fully cou-105

pled ESMs.106

In Section 2, we describe the offline model, our methods for calculating ϵ(λ), and107

our various approaches to representing emissivity in the offline model. We present the108

results from the sensitivity tests of the broadband and semi-spectral approaches under109

different atmospheric conditions in Section 3. Finally, in Section 4 we discuss the impli-110

cations of these results for future modifications to fully coupled ESMs.111
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2 Methods112

2.1 Radiative transfer modelling113

The RRTMGP radiative transfer model (Clough et al., 2004) is used by CESM and114

E3SM to calculate two-stream (upwelling and downwelling) radiation. RRTMG LW is115

an offline single-column version of RRTMGP which provides instantaneous LW atmo-116

spheric fluxes and warming rates. RRTMGP LW divides flux and emissivity into 16 spec-117

tral bands, ranging from 10–3250 cm−1. RRTMG LW has been validated against the Line118

By Line Radiative Transfer Model (LBLRTM), whose accuracy has been established by119

extensive comparison with atmospheric radiance measurements (Turner et al., 2004). Rel-120

ative to LBLRTM, clear-sky flux and heating rate from RRTMG LW are accurate within121

1.5 W/m2 and 0.4 K/d respectively at all atmospheric levels (Iacono et al., 2008).122

The broadband surface emissivity varies between different models and even between123

different versions of the same ESM. For example, the sea-ice model in E3SM version 1124

(Golaz et al., 2019) uses ϵ̄ = 0.95 (Hunke & Lipscomb, 2010), while version 2 (v2) (Golaz125

et al., 2022) uses ϵ̄ = 1.0 (E. Hunke, personal communication, 2023). In this study, we126

use the broadband values currently employed in E3SM v2: ϵ̄ = 1 over the ocean, and127

0.97 over land ice and snow (Oleson et al., 2013). CESM treats snow and ice surfaces128

in the same way (van Kampenhout et al., 2020). Because the v2 ocean is depicted as a129

blackbody, we use a calculated value of ϵ̄ = 0.94 (described below) to explore greybody130

representations of emissivity over a water surface.131

2.2 Calculating spectral emissivity132

We use a dataset of refractive indices (Hale & Querry, 1973) to calculate the spec-133

trally varying emissivity of pure water. We test four different methods over a water sur-134

face, shown in Figure 1. The calculation for ocean water is simplified by assuming a pure135

water surface. Liu et al. (1987) found that emissivity varies between fresh and sea wa-136

ter, as well as with varying concentrations of organic and inorganic sediment. However,137

the difference in emissivity between pure freshwater (0.978) and pure seawater (0.975)138

is negligible over the longwave spectrum examined in the study (8–14 µm). We apply139

the same methods to ice refractive indices from Warren and Brandt (2008) to calculate140

the spectral emissivity of an ice surface.141

A surface emits energy at all angles, from zenith angle θ = 0◦ (perpendicular from142

surface) to θ = ±90◦ (parallel to surface). Emissivity that has been integrated and flux-143

weighed over all angles is diffuse emissivity, while emissivity at a single angle θ = θ0144

is direct. According to the diffusivity approximation constructed by Elsasser (1942), di-145

rect emissivity at θ0 = 53◦ is close to the diffuse emissivity. This estimate is commonly146

employed for ease of computation and measurement (see Huang et al. (2016); Cheng et147

al. (2016)). We calculate diffuse emissivity following the method established by Briegleb148

and Light (2007), integrating over a resolution of 2000 angular grid points. Addition-149

ally, we calculate direct emissivity at θ = 53◦ following two different methods (Orfanidis,150

2016; Liou, 2002) which both use Fresnel theory but differ slightly in their treatment of151

absorption. We also calculate hemispherically averaged emissivity as the multiplicative152

factor between blackbody and greybody upwelling flux (C. Zender, personal communi-153

cation, 2023).154

We validate the four different spectral emissivity calculations against the surface155

spectral emissivity dataset developed by Huang et al. (2016). Huang et al. (2016) de-156

veloped the surface spectral emissivity dataset by modeling the direct surface emissiv-157

ity of 11 surface types from 10–2000 cm−1 using the diffusivity approximation. These158

calculations are compared against satellite retrievals and in-situ measurements in the mid-159

infrared region (∼700–2700 cm−1) to substantiate the model in the far-infrared (∼10–160

700 cm−1) (Huang et al., 2016). We find that the method developed by Orfanidis (2016)161

–4–
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Figure 1. Spectral emissivity of a liquid water surface in the longwave regime calculated via

four different methods: direct (yellow and red), diffuse (green), and hemispheric averaging (blue).

We compare this to the emissivity of water obtained from the global dataset of spectral emissiv-

ity (black).

Table 1. Upwelling flux F ↑
s from the surface model at temperature Ts and temperature Ta

calculated and used by the atmospheric radiative transfer model RRTMG LW for four methods

of representing surface emissivity. We test n = 2, 4, 5, 8, and 16 spectral bins.

Method F ↑
s Ta

Blackbody σT 4
s (F ↑

s /σ)
1/4 = Ts

Effective greybody ϵ̄σT 4
s + (1− ϵ̄)F ↓

s (F ↑
s /σ)

1/4

Full greybody ϵ̄σT 4
s + (1− ϵ̄)F ↓

s

[
F↑

s −(1−ϵ̄)F↓
s

ϵ̄σ

]1/4
Spectral (n-band) π

∑n
i=1 ϵi

∫
∆νi

Bν(Ts)dν +
∑n

i=1(1− ϵi)F
↓
i Ts

best agrees with the surface spectral emissivity dataset (Figure 1), and therefore we em-162

ploy the Orfanidis (2016) method when calculating spectral emissivity for water and ice163

surfaces.164

We follow the methods of Chen et al. (2014) and Huang et al. (2016) to model the165

emissivity of snow. These methods involve utilizing Mie theory to obtain the optical prop-166

erties of snow. Due to snow’s granular nature, the calculation of optical properties through167

Mie theory must be corrected via the static structure factor correction method (Mishchenko,168

1994; Mishchenko & Macke, 1997; Wald, 1994). This accounts for changes in single-scattering169

properties among densely packed particles. Then, the Hapke emissivity model is applied170

to the scaled optical properties to calculate emissivity based on effective grain size. We171

use medium-grained snow, as it represents snow surfaces to an extent satisfactory to this172

study. Data provided by Feldman et al. (2014) extends from 10–3000 cm−1; therefore,173

we extrapolate the final 250 cm−1 with a two-term exponential function f(ν) = −8.39×174

10−7e0.00361ν + e−1.42×10−5ν fitted from wavenumber ν = 2400–2980 cm−1, which has175

an R-squared value of 0.99999 (black dotted line, Figure 2).176
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Figure 2. Spectral emissivity of water, ice, and snow surfaces in the longwave regime cal-

culated via Fresnel theory (black). Emissivity is Planck-weighted by upwelling energy from a

surface at temperature Ts = 273 K and partitioned in the 16 bins used by RRTMGP, shown in

red. Current E3SM broadband assumptions are shown in dashed gray, and calculated (actual)

broadband values are solid gray.
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Figure 3. Fraction of longwave energy absorbed in the atmospheric column by the five

strongest gaseous absorbers: methane (red), carbon dioxide (orange), water (light blue), nitrous

oxide (dark blue), and ozone (magenta) (Zender, 1999), with blackbody emission F ↑
BB from a

surface at 273 K normalized and underlaid in black. Absorption fraction is binned and averaged

over RRTMGP’s 16 spectral bands. The gray shaded regions represent the sum of each gas’s

contribution to absorption, or total energy absorption fraction per band.

2.3 Implementing spectral and greybody emissivity in RRTMG LW177

2.3.1 Spectral emissivity178

We use the Fresnel method of calculating emissivity over each band, as discussed179

in Section 2.2, to determine hyperspectral ϵ(λ) interpolated over a 1 cm−1 grid. We then180

bin ϵ(λ) by averaging and weighting the spectral emissivity by the flux upwelled by a black-181

body at T = 273 K in each of RRTMGP’s 16 bands. We replace the broadband con-182

stant ϵ̄ with this 16-band spectral emissivity in RRTMGP. The atmospheric fluxes ob-183

tained from this experiment are treated as the “true” or most accurate results to com-184

pare against all other methods. We quantify bias by normalizing the difference in flux185

per wavenumber from the broadband approximation (F ↑
brb) and the spectral case (F ↑

spc),186

then multiplying by F ↑
brb to weigh by the amount of flux per band:187

∆F ↑ = F ↑
brb ×

F ↑
brb − F ↑

spc

F ↑
spc

. (1)

2.3.2 Semi-spectral emissivity188

To completely eliminate the flux and heating biases, F ↑
s must be spectrally resolved189

across RRTMGP’s 16 bands. These 16 fluxes must then pass through the coupler to the190

atmosphere component, thereby increasing the required memory usage, bandwidth, and191

computational burden. Therefore, we additionally investigate bias from a variable n amount192

of bins which may efficiently eliminate bias. Efficiency can often be further improved when193

n evenly divides the number of CPU cores; therefore, we target cases n = 2, 4, and 8.194

We also include the five-band case as it exists near the juncture where flux bias approaches195

zero with increasing n. Starting with the 16-band case, we reduce n to 8 by combining196

the lower two (10–500 cm−1) and upper eight (1180–3250 cm−1) bands while preserv-197

ing the middle six bands. The bin boundaries used in each method can be found in Ta-198

–7–
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ble 2. We combine the bins in this way based on the spectral distribution of upwelling199

flux as described by the Planck function. When Ts = 273 K, emitted flux peaks near200

1000 cm−1. Although there are significant absorption bands from H2O, CO2, and N2O201

within the upper eight bands, they encompass only ∼5% of total upwelled flux, so bias202

is minimal in that region (see Figure 3). Though a larger fraction of LW flux is parti-203

tioned within the lower bands, flux found from the broadband approximation is very close204

to spectral and bias again is very low (about 6% of the total). We further reduce spec-205

tral resolution by expanding the ranges of the outer bands inwards towards 1000 cm−1.206

We test this semi-spectral method over water, ice, and snow surfaces under a typical mid-207

latitude winter atmospheric profile, with surface temperature at 273 K where water can208

exist in both solid and liquid states.209

2.3.3 Broadband emissivity210

We test three different broadband approximations with ϵ̄, along with the spectral211

representation that discretizes ϵ(λ) into multiple bands, all summarized in Table 1. The212

first approximation assumes blackbody (BB) emission from the surface model, and black-213

body emission at the same temperature in the atmosphere, with upwelling flux described214

by the Stefan-Boltzmann law F ↑ = σT 4
s where σ is the Stefan-Boltzmann constant and215

Ts is surface temperature. This approximation replicates the method used over E3SM’s216

ocean and sea-ice models (MPAS-O and MPAS-SI, respectively), where ϵ̄ = 1. The next217

approximation assumes greybody emission in the surface model and blackbody emission218

at the effective temperature of the total upwelling surface flux in the atmosphere. We219

call this the Effective Greybody (EG) approximation, which is used over the land model220

of E3SM (ELM) where ϵ̄ < 1. Finally, we developed a third approximation which as-221

sumes greybody emission in the surface model and greybody emission at the same tem-222

perature in the atmosphere. We call this the Full Greybody (FG) approximation. The223

FG method is not currently implemented in ESMs. However, it may be more accurate224

than the BB or EG methods because it resolves the mismatch between Ta and Ts.225

Currently in E3SM, the surface component passes one scalar broadband value for226

upwelling LW flux through the coupler to the atmosphere component. This flux F ↑
s is227

the sum of surface emission and reflection: F ↑
s = ϵ̄σT 4

s +(1− ϵ̄)F ↓
s , where F ↓

s is down-228

welling LW flux at the surface and ϵ̄ is broadband emissivity. When the atmosphere model229

(EAM) receives F ↑
s , it assumes a blackbody surface (ϵ̄ = 1) to calculate an effective sur-230

face temperature:231

Teff = (F ↑
s /σ)

1/4. (2)

EAM then uses Teff in RRTMGP to calculate atmospheric spectral fluxes in 16 spec-232

tral bands via the Planck function: F ↑
a = πΣ16

i=1

∫
∆νi

B(ν, Teff)dν = σT 4
eff . It is dur-233

ing these steps that bias is introduced. Effective temperature is always lower than ac-234

tual temperature, which leads to incorrect energy distribution by redshifting the Planck235

function per Wien’s displacement law. The blackbody approximation avoids this discrep-236

ancy, and ensures that Ts = Ta at the expense of a less accurate ϵ̄, and the neglect of237

any associated reflected flux. To quantify this bias in the offline model via the EG ap-238

proximation, we run RRTMG LW twice: once with a greybody surface at T = Ts, ϵ̄ =239

ϵ0, and then with a blackbody surface at T = Teff . The first run represents the calcu-240

lation performed by the surface model, with the actual surface temperature and grey-241

body emissivity. The second run then utilizes F ↑
s to calculate Teff assuming ϵ̄ = 1, us-242

ing the effective surface temperature and blackbody emissivity to output fluxes equiv-243

alent to those partitioned by the atmosphere component.244

The FG method simulates the effects of greybody emissivity in an ESM if the cou-245

pler were altered to pass an additional scalar for broadband greybody emissivity to the246
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atmosphere. This method also requires the atmosphere model to store downwelling flux247

F ↓
s for one additional timestep. This alters Equation 2 in the following way:248

Teff = Ts =

[
F ↑
s − (1− ϵ̄)F ↓

s

ϵ̄σ

]1/4
. (3)

FG ensures that atmospheric upwelling flux is computed at the exact temperature249

and emissivity as the surface model, rather than assuming a blackbody surface and ef-250

fective temperature as in EG. We expect this method to reduce bias in upwelling flux251

with a minimal increase in computational expense, as it only requires one more scalar252

passed through the coupler and stored in memory.253

2.4 Atmospheric profiles254

We use atmospheric profiles from the InterComparison of Radiation Codes in Cli-255

mate Models project (ICRCCM) (Ellingson & Fouquart, 1991; Ellingson et al., 1991) to256

demonstrate flux bias across three standard atmospheric states: tropical (TROP), mid-257

latitude winter (MLW), and sub-Arctic winter (SAW). These profiles are representative258

of typical conditions at their specified regions and seasons, allowing for a range of col-259

umn water vapor paths (WVP) and surface temperatures (SAW: 257 K, 0.10 kg/m2; MLW:260

272 K, 8.4 kg/m2; TROP: 300 K, 47.8 kg/m2) which strongly impact LW radiation. We261

restrict surface types to the profiles where they are physically allowed: water when Ts ≥262

273.16 K (TROP), ice and snow when Ts ≤ 273.16 K (MLW and SAW).263

2.5 Single-parameter tests264

We test the impacts that single parameters have on LW flux bias, varying surface265

temperature, column water vapor, cloud particle effective radius (reff), and cloud wa-266

ter path (CWP). We vary the temperature of an ice surface under sub-Arctic winter con-267

ditions from 190–270 K, from the coldest recorded SAW temperatures to near the melt-268

ing point. Within a single layer of cloud in the troposphere (728 mb), we vary CWP from269

0–100 g/m2 and reff from 3–60 µm. To test the sensitivity to column water vapor, we270

simultaneously vary relative humidity from 0–100% of the maximum in every level, based271

on the local temperature and pressure. We utilize the tropical atmosphere profile where272

maximum WVP is 81.6 kg/m2.273

3 Results274

3.1 Semi-spectral tests275

We investigate a semi-spectral approach that combines bands which encompass the276

largest and smallest wavenumbers (Table 2), where we found the lowest levels of resolv-277

able bias. With this approach, we test the bias remediated by two, four, five, and eight278

bands to assess the minimum number of bands needed to effectively eliminate flux bias.279

Bias (Equation 1) can be depicted in different ways. One way is to find the total bias280

by summing bias within each band (Figure 4 a, b, c), which can either be positive (flux281

is overestimated by the test case) or negative (flux is underestimated by the test case):282

∆F ↑
tot =

∑16
i=1 ∆F ↑

i . In this case, positive and negative spectral biases may cancel each283

other out, reducing total broadband bias. An alternative way is to treat the spectral bi-284

ases as positive-definite, resulting in an absolute broadband bias: ∆F ↑
abs =

∑16
i=1 |∆F ↑

i |285

(Figure 4 c, d, e). This bias is either equal to or greater than the total bias.286

For a MLW liquid water surface (Figure 4 a, d), the magnitude of ∆F ↑
tot is simi-287

lar to that of ∆F ↑
abs, meaning that bias has the same sign in most spectral bands (in this288

case, mostly negative) and there is little cancellation. This means that reducing the amount289
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Figure 4. Total (top row) and absolute (bottom row) broadband bias of upwelling flux

through the bottom- and top-of-atmosphere (green and blue respectively) as the number of

spectral bins n increases. The atmospheric conditions are a typical mid-latitude winter over wa-

ter (a, d), ice (b, e), and snow (c, f). Dashed lines illustrate the bias produced by the FG method

utilizing current broadband assumptions employed in E3SM.

of spectral bins tends to increasingly underrepresent upwelling flux. However, for ice and290

snow (Figure 4 b, c, e, f), there is more variation in the flux bias sign. For example, it291

appears that using one, two, or four spectral bins over a snow surface produces smaller292

broadband bias than the five-band case when looking at the total bias. Yet ∆F ↑
abs for293

the five-band case is significantly smaller than that of the lower band cases. One, two,294

and four spectral bands over a snow surface produce the same amount of bias because295

of the spectral shape of ϵsnw(λ). The spectral emissivity of snow is flatter than that of296

water and ice, particularly in the middle bands (see Figure 2); greybody is reached at297

four bands, meaning further reduction of spectral resolution has no effect. Based on these298

results, it is clear that fewer than sixteen spectral bands suffice to nearly eliminate the299

flux and heating biases.300

Furthermore, the biases produced by the current broadband approximations can301

be significantly reduced simply by improving the greybody (n = 1) value. Calculations302

of greybody emissivity via the Fresnel method used in this study find greybody values303

of 0.98 for snow, and 0.94 for ice and water (Figure 2). By changing the broadband emis-304

sivity to these calculated values, we can reduce ∆F ↑
abs by 14.7% for water, 47.3% for ice,305

and 70.6% for snow at the bottom of a mid-latitude winter atmosphere.306

3.2 Method intercomparison307

We find that blackbody emissivity consistently overestimates upwelling flux over308

all tested surface types, because ϵ(λ) < 1 for water, ice, and snow over the entire LW309

regime. The greybody assumption can bias F ↑ either positively or negatively depend-310

ing on the spectral bin, which reduces F ↑
tot. In the case of a typical clear-sky mid-latitude311

winter atmosphere over an ice surface, for example, the blackbody assumption produces312
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Table 3. Total and absolute broadband bias in upwelling flux from the blackbody and grey-

body assumptions over an ocean surface through the top and bottom of atmosphere of a clear-sky

tropical atmosphere. Percent of total upwelling flux is in parentheses. The smallest biases pro-

duced by a broadband approximation are bolded, and the method currently used in E3SM is

italicized.

∆F ↑ (W/m2) Blackbody Effective greybody Full greybody Spectral 5

Total TOA 0.591 (0.20%) 0.11 (0.04%) -0.766 (-0.27%) 0.011 (0.004%)
Total BOA 1.69 (0.59%) -1.96 (0.43%) -1.96 (-0.43%) 0.021 (-0.005%)
Absolute TOA 0.591 (-0.20%) 0.131 (-0.05%) 0.766 (-0.27%) 0.011 (-0.004%)
Absolute BOA 1.69 (-0.59%) 2.20 (-0.48%) 1.99 (-0.44%) 0.022 (-0.005%)

the largest bias by both total and absolute broadband metrics (Table 4). A five-band313

semi-spectral representation of surface emissivity is closest to the spectrally resolved case314

by over an order of magnitude (∼0.10 W/m2). The total and absolute broadband biases315

for the four different emissivity approximations over a water surface under a tropical at-316

mosphere, an ice surface under a mid-latitude winter atmosphere, and a snow surface317

under a sub-Arctic winter atmosphere, are summarized in Tables 3, 4, and 5, respectively.318

While the semi-spectral method consistently produces the smallest bias in upwelling319

flux out of the four compared methods, the fidelity of the broadband approximations varies320

by surface type and atmospheric profile. For instance, for a sub-Arctic winter snow sur-321

face (Table 5), EG better represents F ↑ at TOA, while FG is better at BOA. To further322

complicate matters, there is not always agreement between bias in irradiance versus per-323

cent of F ↑. For example, both total and absolute BOA bias in W/m2 over a tropical wa-324

ter surface are lowest via BB. However, in terms of upwelling flux fraction, EG and FG325

are tied. Interestingly, this shows that the blackbody approximation can be more accu-326

rate than either greybody method according to certain metrics in specific environmen-327

tal conditions (Table 3). This is essentially happenstance, and in general the more phys-328

ically based EG and FG broadband methods outperform BB.329

A more detailed comparison of bias between the four methods is shown in Figure330

5, weighted by bin size, with the same conditions as in Table 4. Spectrally, the largest331

biases are found near 1000 cm−1 (panel a, b), where F ↑ is largest and ϵ(λ) deviates strongly332

from ϵ̄. Differences between BOA and TOA are caused by atmospheric absorption (Fig-333

ure 3). Changes in surface emissivity negligibly alter downwelling flux F ↓ (not shown).334

Absolute warming rate, F ↑, F ↓, and F net for the same conditions as Figure 5 through-335

out the lower troposphere are provided in the supplementary material (Section 5, Fig-336

ure 8). Overall, the broadband assumptions tend to overrepresent upwelling and net flux,337

artificially cooling most of the lower troposphere.338

The mismatch between Teff and Ts in the EG method (cf. Section 2.3.3) causes no-339

table deviations in warming rate and LW fluxes in the lowest 100 mb of the atmosphere340

(panels c, d, e). Because Teff is always less than Ts, the EG method artificially redshifts341

the peak energy emission (by 8.1 cm−1 in 5) per Wien’s displacement law. This shifts342

more energy toward the strong CO2 and H2O absorption bands redward of 700 cm−1,343

and causes the positively biased warming rate. This bias is strongest at the bottom of344

the atmosphere, where F up and CO2 and water vapor concentrations are all maximal.345

3.3 Single-parameter sensitivity tests346

The spatially limited nature of a single-column model prevents us from present-347

ing a global view of flux biases incurred by LW broadband assumptions in ESM surface348
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Table 4. As in Table 3, for an ice surface and a mid-latitude winter atmosphere.

∆F ↑ (W/m2) Blackbody Effective greybody Full greybody Spectral 5

Total TOA 3.31 (1.4%) 2.39 (1.0%) 1.28 (0.56%) -0.101 (-0.044%)
Total BOA 4.49 (1.4%) 1.69 (0.55%) 1.76 (0.57%) -0.139 (-0.045%)
Absolute TOA 3.31 (1.4%) 2.40 (1.0%) 1.43(0.63%) 0.106 (0.046%)
Absolute BOA 4.49 (1.4%) 3.64 (1.2%) 2.03 (0.66%) 0.134 (0.044%)

Table 5. As in Table 3, for a snow surface and a sub-Arctic winter atmosphere.

∆F ↑ (W/m2) Blackbody Effective greybody Full greybody Spectral 5

Total TOA 1.29 (0.65%) 0.436 (0.22%) -0.500 (-0.25%) -0.078 (-0.039%)
Total BOA 1.61 (0.81%) -0.703 (0.29%) -0.673 (-0.27%) -0.103 (-0.046%)
Absolute TOA 1.29 (0.65%) 0.621 (0.31%) 0.731 (0.37%) 0.092 (0.046%)
Absolute BOA 1.61 (0.81%) 1.67 (0.68%) 0.958 (0.39%) 0.122 (0.050%)

Figure 5. a) Distribution of top of atmosphere (TOA) upwelling spectral flux bias for black-

body emissivity (black), two greybody methods (red and blue), and the five-band semi-spectral

method (green) of representing emissivity in relation to the spectral case through a clear-sky

mid-latitude winter atmospheric profile over an ice surface. F ↑
BB has been normalized to F ↑

spc and

weighed by band width. Dashed lines represent total broadband flux bias for each method. b) as

in A, for bottom of atmosphere. c) Percent change in broadband warming rate throughout lower

troposphere in relation to the spectrally resolved case. d) As in C, for upwelling LW flux. e) As

in C, for net LW flux.
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models. The cases we present above, with varying surface types and atmospheric pro-349

files, demonstrate a diverse yet limited view of the ways in which the broadband surface350

emissivity assumption introduces bias to LW flux. Temperature, pressure, and atmospheric351

gas concentrations all vary simultaneously among the profiles. To provide a more con-352

tinuous view of how these changing variables affect our results, here we investigate the353

magnitude of flux bias introduced by four fields with potentially the greatest effects on354

LW flux: surface temperature Ts, column vapor path (CVP), cloud water path (CWP),355

and cloud particle effective radius (Figure 6). Additionally, we examine bias sensitivity356

to the three surfaces types explored in this study (Figure 7). We use E3SM’s current broad-357

band values of ϵ̄ = 1 over a water surface and ϵ̄ = 0.97 over ice.358

The upwelling LW broadband flux above a greybody surface is359

F ↑
gb = ϵ̄σT 4

s + (1− ϵ̄)F ↓
s (4)

where the first term is surface emission and the second term is reflected downwelling360

flux. The bias incurred by employing the blackbody approximation to a perfect grey-361

body surface is the difference between upwelling blackbody flux (F ↑
bb = σT 4

s ) and grey-362

body flux (Equation 4), or363

∆F ↑
gb = σT 4

s − [ϵ̄σT 4
s + (1− ϵ)F ↓

s ] = (1− ϵ̄)(σT 4
s − F ↓

s ). (5)

To quantify the bias of a broadband approximation relative to a fully spectral (16-364

band) representation, we must employ the discretized forms of F ↑
gb and spectral flux F ↑

spc:365

F ↑
gb = ϵ̄π

16∑
i=1

∫
∆νi

Bν(Ts)dν + (1− ϵ̄)

16∑
i=1

F ↓
s,i (6)

and366

F ↑
spc = π

16∑
i=1

ϵi

∫
∆νi

Bν(Ts)dν +

16∑
i=1

(1− ϵi)F
↓
s,i (7)

where F ↑
spc is 16-band upwelling spectral flux, Bν(Ts) is the Planck function, F ↓

s,i367

and ϵi are the downwelling BOA flux and emissivity of band i respectively, and ∆ν is368

the range of wavenumbers spanned by the band (Huang et al., 2018). The bias ∆F ↑ from369

applying greybody approximation to a surface with spectrally varying emissivity is Fgb−370

Fspc, or371

∆F ↑ =

(
ϵ̄π

16∑
i=1

∫
∆ν

Bν(Ts)dν − π

16∑
i=1

ϵi

∫
∆ν

Bν(Ts)dν

)
+

(
ϵ̄

16∑
i=1

F ↓
s,i −

16∑
i=1

ϵiF
↓
s,i

)
. (8)

For ice and water surfaces, the broadband emissivities ϵ̄ employed in this study are372

greater than or equal to ϵi in every band besides ϵ7 of ice (see Figure 2). Therefore, the373

error in the approximated emission, which is the difference between the first two terms374

on the right hand side, is positive definite. The error in approximated reflectance, the375

difference between the third and fourth terms, is also positive definite. The signs of the376

terms show that ∆F ↑ is positively correlated with surface temperature and negatively377

correlated with downwelling LW flux. This is demonstrated in Figure 6, which shows an378

increase in bias as Ts rises, and a reduction in bias as F ↓
i increases with CWP and CVP.379
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Figure 6. Single-parameter sensitivity tests over varying surface temperature Ts, cloud water

path (CWP), and column vapor path (CVP). Total broadband bias in upwelling flux through the

bottom of atmosphere (blue) and top of atmosphere (green) is shown.

Figure 7. Spectral upwelling LW flux bias at the bottom of atmosphere over ice and snow

surfaces compared to water under a mid-latitude winter profile at Ts = 273 K.

Bias follows an exponential decrease as CWP and CVP increase, in accordance with the380

Bouguer-Lambert law I = I0e
−µd where µ is optical density and d is path length. The381

sharp rise in bias below ∼3 kg/m2 CVP demonstrates how quickly the major water va-382

por absorbance bands saturate. We find that cloud particle effective radius has no no-383

table effect on flux bias for opaque clouds. The largest instantaneous radiative biases from384

current broadband approximations are therefore over regions with low moisture and cloud385

cover, in agreement with results from Huang et al. (2016, 2018).386

Surface type itself also has an impact on forcing. Figure 7 compares forcing between387

water, ice, and snow surfaces by subtracting the spectral flux of a water surface under388

a MLW atmosphere at Ts = 273 K (the triple point of water) from the three surface389

types in identical atmospheric conditions. As such, the total broadband forcing from ice390

and snow at BOA are -1.25 and 1.15 W/m2 with respect to a water surface. These in-391

stantaneous BOA forcings are expected to occur due to ice or snow melt. Fusion of liq-392

uid is expected to heat the resulting ice surface by +1.25W/m2.393

4 Discussion and conclusions394

We implemented spectrally resolved surface emissivity into a single-column offline395

radiative transfer model to quantify the biases introduced in ESMs such as E3SM via396

broadband assumptions. We also devised and implemented a novel method of represent-397

ing greybody emissivity (“FG”) and found that it reduces biases in certain conditions.398

Optimal broadband method depends on surface type, atmospheric state, and metric of399
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comparison. Over a tropical ocean surface, EG is the best method to represent ∆F ↑
TOA;400

BB is best at ∆F ↑
BOA in Watts per square meter; and FG is best at ∆F ↑

BOA in flux frac-401

tion (Table 3). Interestingly, column bias in warming rate produced by the EG method402

is partially compensated by heightened absorption as a result of redshifted energy emis-403

sion.404

We examined three homogeneous surface types (water, ice, and snow) whose spec-405

tral emissivities can be accurately simulated from first principles, and whose current rep-406

resentation produces tractable biases and cover more than 80% of Earth’s surface. Flux407

biases at the tops and bottoms of standard tropical, sub-Arctic winter, and mid-latitude408

winter atmospheric profiles due to broadband and semi-spectral assumptions were eval-409

uated. We also quantified the extent to which surface temperature, cloud water path,410

column water vapor, and surface type impact upwelling LW flux bias. Variations in sur-411

face temperature from 195–270 K introduce biases in the broadband assumption from412

-1.7–2.8 W/m2 at BOA. Cloud water path reduces bias by about 1.3 W/m2 at TOA as413

it reaches saturation, while water vapor content impacts bias by up to 17.3 W/m2 at TOA.414

While full spectral emissivity (16-bands for RRTMGP) is ideal, we also investigated415

bias reduction with two, four, five, and eight bands. We found that a single change in416

the greybody value reduces current biases in E3SM by over 70%, and a five-band approx-417

imation of spectral emissivity reduces biases by over 99.9%. This method effectively elim-418

inates biases while significantly reducing the computational burden of a full 16-band emis-419

sivity.420

The blackbody approximation consistently over-represents emitted energy, or over-421

cools Earth’s surface, while greybody emissivity can over- or under-represent cooling de-422

pending on greybody value and method. Artificial cooling of the atmosphere due to Teff <423

Ts impacts global circulation and unrealistically reduces atmospheric warming rates, thereby424

stabilizing the lower troposphere. Related work which quantifies bias in shortwave (SW)425

atmospheric fluxes has found that the current ESM (e.g., E3SM and CESM) two-band426

representations of SW surface albedo α(λ) tend to overestimate surface and atmospheric427

heating, and artificially destabilize the lower troposphere (Tolento et al., accepted, 2023).428

However, this does not negate the biases introduced by the broadband emissivity assump-429

tion shown in this study because the SW and LW radiative processes that heat and cool430

Earth’s atmosphere operate with distinct spatio-temporal characteristics. For example,431

Tolento et al. (accepted, 2023) find smaller SW biases over water surfaces compared to432

ice and snow, opposite to LW biases studied here. The spectral albedo of water has far433

less variance compared to spectral emissivity, making the two-band albedo approxima-434

tion more precise. As a result, the cooling effects demonstrated in this study outweigh435

the heating effects of two-band albedo over water surfaces. Furthermore, emissivity-induced436

biases operate continually, whereas albedo-induced biases occur only during daylit hours.437

Spectrally resolving ϵ(λ) or α(λ) alone may not improve climate simulations. Im-438

proved spectral representations of both surface emissivity and albedo should be imple-439

mented to avoid introducing new compensating biases. Work is currently underway to440

implement and assess the impacts of spectral emissivity and albedo in E3SM. While these441

changes necessitate increased computational burden and coupler bandwidth, in return442

they will improve surface and lower tropospheric heating, with effects that will propa-443

gate throughout the climate system.444

5 Supplementary material445

Warming rates and longwave fluxes in absolute values (K/day and W/m2) from446

the Blackbody, Effective Greybody, Full Greybody, and Spectral 5 methods over an ice447

surface through a mid-latitude winter can be found in Figure 8.448
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Figure 8. Absolute warming rate and longwave fluxes from four methods of representing

emissivity of an ice surface through a MLW atmosphere.

6 Open research449

The global database of surface spectral emissivity developed by Huang et al. (2016)450

can be found at https://huang.engin.umich.edu/182-2/. The offline radiative trans-451

fer model RRTMG LW and the atmospheric profiles used in this study are available for452

download at https://github.com/AER-RC/RRTMG LW. The MATLAB toolbox with the453

fresnel function used to calculate spectral LW emissivity can be accessed at http://454

eceweb1.rutgers.edu/~orfanidi/ewa/.455

Acknowledgments456

L. Manzo, C. Zender, and J. Tolento gratefully acknowledge support from the En-457

ergy Exascale Earth System Model project (DE-SC0022117) funded by the US Depart-458

ment of Energy, Office of Science, Biological and Environmental Research Program. C.459

Whicker gratefully acknowledges support from NSF Grant DGE 1841052. We also thank460

Xianglei Huang for his spectral emissivity dataset and help with emissivity estimates.461

References462

Briegleb, B. P., & Light, B. (2007, February). A Delta-Eddington multiple scattering463

parameterization for solar radiation in the sea ice component of the Commu-464

nity Climate System Model (Tech. Rep.). Boulder, CO: National Center for465

Atmospheric Research.466

Chen, X., Huang, X., & Flanner, M. G. (2014). Sensitivity of modeled far-IR467

radiation budgets in polar continents to treatments of snow surface and ice468

cloud radiative properties. Geophysical Research Letters, 41 , 6530–6537. doi:469

10.4137/CCRPM.S6882470

Cheng, H., Chen, X., & Huang, X. (2016). Quantification of the errors associated471

with the representation of surface emissivity in the RRTMG LW. Journal of472

Quantitative Spectroscopy & Radiative Transfer , 180 , 167–176. doi: 10.1016/j473

.jqsrt.2016.05.004474

Clough, S. A., Shephard, M., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-475

Pereira, K., . . . Brown, P. (2004). Atmospheric radiative transfer modeling: a476

summary of the AER codes. Journal of Quantitative Spectroscopy & Radiative477

Transfer , 91 , 233-244. doi: 10.1016/j.jqsrt.2004.05.058478

–17–



manuscript submitted to JGR: Atmospheres

Ellingson, R. G., Ellis, J., & Fels, S. (1991). The intercomparison of radiation codes479

used in climate models: Long wave results. Journal of Geophysical Research,480

96 (D5), 8929. Retrieved 2023-01-23, from http://doi.wiley.com/10.1029/481

90JD01450 doi: 10.1029/90JD01450482

Ellingson, R. G., & Fouquart, Y. (1991). The intercomparison of radiation codes in483

climate models: An overview. Journal of Geophysical Research, 96 (D5), 8925.484

Retrieved 2023-01-23, from http://doi.wiley.com/10.1029/90JD01618 doi:485

10.1029/90JD01618486

Elsasser, W. M. (1942). Heat transfer by infrared radiation in the atmosphere. Cam-487

bridge, MA: Harvard University.488

Feldman, D. R., Collins, W. D., Pincus, R., Huang, X., & Chen, X. (2014). Far-489

infrared surface emissivity and climate. Proceedings of the National Academy490

of Sciences, 111 , 16297–16302. doi: 10.1073/pnas.1413640111491

Golaz, J.-C., Caldwell, P. M., Roekel, L. P. V., Petersen, M. R., Tang, Q., Wolfe,492

J. D., . . . Zhu, Q. (2019). The DOE E3SM coupled model version 1: Overview493

and evaluation at standard resolution. Journal of Advances in Modeling Earth494

Systems, 11 . doi: 10.1029/2018MS001603495

Golaz, J.-C., Roekel, L. P. V., Zheng, X., Roberts, A. F., Wolfe, J. D., Lin, W., . . .496

Bader, D. C. (2022). The DOE E3SM model version 2: Overview of the physi-497

cal model and initial model evaluation. Journal of Advances in Modeling Earth498

Systems, 11 . doi: 10.1029/2022MS003156499

Hale, G. M., & Querry, M. R. (1973). Optical constants of water in the 200-nm to500

200-mm wavelength region. Applied Optics, 12 , 555-563.501

Huang, X., Chen, X., Flanner, M., Yang, P., Feldman, D., & Kuo, C. (2018). Im-502

proved representation of surface spectral emissivity in a global climate model503

and its impact on simulated climate. American Meteorological Society , 31 ,504

3711–3727. doi: 10.1175/JCLI-D-17-0125.1505

Huang, X., Chen, X., Zhou, D., & Liu, X. (2016). An observationally based506

global band-by-band surface emissivity dataset for climate and weather507

simulations. American Meteorological Society , 73 , 3541–3555. doi:508

10.1175/JAS-D-15-0355.1509

Hunke, E. C., & Lipscomb, W. H. (2010, May). CICE: the Los Alamos sea ice510

model documentation and software user’s manual version 4.1 (Tech. Rep.).511

Los Alamos, NM: Los Alamos National Laboratory.512

Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., &513

Collins, W. D. (2008). Radiative forcing by long-lived greenhouse gases: Cal-514

culations with the AER radiative transfer models. Journal of Geophysical515

Research: Atmospheres, 113 . doi: 10.1029/2008JD009944516

Liou, K. N. (2002). An introduction to atmospheric radiation. San Diego, CA: Else-517

vier Science.518

Liu, W.-Y., Field, R. T., Gantt, R. G., & Klemas, V. (1987). Measurement of the519

surface emissivity of turbid waters. Remote Sensing of Environment , 21 , 97-520

109.521

Mishchenko, M. I. (1994). Asymmetry parameters of the phase function for densely522

packed scattering grains. Journal of Quantitative Spectroscopy and Radiative523

Transfer , 52 , 91-110. doi: 10.1016/0022-4073(94)90142-2524

Mishchenko, M. I., & Macke, A. (1997). Asymmetry parameters of the phase func-525

tion for isolated and densely packed spherical particles with multiple internal526

inclusions in the geometric optics limit. Journal of Quantitative Spectroscopy527

and Radiative Transfer , 57 , 767-794. doi: 10.1029/97JD00237528

Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven,529

C. D., . . . Thornton, P. E. (2013, July). Technical description of version 4.5530

of the Community Land Model (CLM) (Tech. Rep.). Boulder, CO: National531

Center for Atmospheric Research.532

Orfanidis, S. J. (2016). Electromagnetic waves and antennas. New Brunswick, NJ:533

–18–



manuscript submitted to JGR: Atmospheres

Rutgers University.534

Tolento, J. P., Zender, C. S., & Whicker, C. A. (accepted, 2023). Surface and at-535

mospheric heating responses to spectrally resolved albedos of frozen and liquid536

water surfaces. Journal of Geophysical Research.537

Turner, D. D., Tobin, D. C., Clough, S. A., Brown, P. D., Ellingson, R. G., Mlawer,538

E. J., . . . Shephard, M. W. (2004). The QME AERI LBLRTM: A closure539

experiment for downwelling high spectral resolution infrared radiance. Journal540

of the Atmospheric Sciences, 61 . doi: 10.1175/JAS3300.1541

van Kampenhout, L., Lenaerts, J. T. M., Lipscomb, W. H., Lhermitte, S., Noël, B.,542
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