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STUDY AREA
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investment’'s  robustness  under
climate change, following the
Lamcvzezx | framework presented in Figure 2.
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AFFILIATIONS FUNDING REFERENCES CONTACT
1 University of Cincinnati, Cincinnati, Ohio Much thanks to the Millennium Challenge Brown, C., & Lall, U. (2006). Water and economic development: The role of variability and a framework for resilience. Paper presented at the Natural Resources Forum, , 30(4) 306-317.
2 University of Massachusetts, Amherst, Massachusetts Corporation who supplied the funding for this Fletcher, S. M., Hadjimichael, A., Quinn, J., Osman, K., Giuliani, M., Gold, D., Figueroa, A. J., & Gordon, B. (2022). Equity in Water Resources Planning: A Path Forward for Decision Support Modelers. American Society of Civil Engineers (ASCE).
3 Industrial Economics, Inc., Cambridge, Massachusetts study (Federal Award: 9332420T0002) Jafino, B. A., Kwakkel, J. H., & Taebi, B. (2021). Enabling assessment of distributive justice through models for climate change planning: A review of recent advances and a research agenda. Wiley Interdisciplinary Reviews: Climate Change, 12(4), e721.
4 Pegasys, London, England, United Kingdom Mendoza, G., Jeuken, A., Matthews, J. H., Stakhiv, E., Kucharski, J., & Gilroy, K. (2018). Climate Risk Informed Decision Analysis (CRIDA): collaborative water resources planning for an uncertain future. UNESCO Publishing.
5 Millennium Challenge Corporation (MCC), Washington DC Ray, P. A., Bonzanigo, L., Wi, S., Yang, Y. E., Karki, P., Garcia, L. E., Rodriguez, D. J., & Brown, C. M. (2018). Multidimensional stress test for hydropower investments facing climate, geophysical and financial uncertainty. Global Environmental Change, 48, 168-181.

Seigerman, C. K., McKay, S. K., Basilio, R., Biesel, S. A., Hallemeier, J., Mansur, A. V., ... & Nelson, D. R. (2023). Operationalizing equity for integrated water resources management. JAWRA Journal of the American Water Resources Association, 59(2), 281-298.



