
P
os
te
d
on

27
D
ec

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
70
36
53
45
.5
69
50
56
7/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Rapid degassing in basaltic sills as a source of Deep Long Period

volcanic earthquakes

Oleg Melnik1, Vladimir Lyakhovsky2, and Nikolai M. Shapiro1

1Institut de Sciences de la Terre, Université Grenoble Alpes, CNRS
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Abstract

In this paper, we present numerical modeling aimed to explain Deep Long Period (DLP) events occurring in middle-to-lower

crust beneath volcanoes and often observed in association with volcanic eruptions or their precursors. We consider a DLP

generating mechanism caused by the rapid growth of gas bubbles in response to the slow decompression of H\textsubscript{2}O–

CO\textsubscript{2} over-saturated magma. The nucleation and rapid growth of gas bubbles lead to rapid pressure change in

the magma and elastic rebound of the host rocks, radiating seismic waves recorded as DLP events. The magma and host rocks

are modeled as Maxwell bodies with different relaxation times and elastic moduli. Simulations of a single sill-shaped intrusion

with different parameters demonstrate that realistic amplitudes and frequencies of P and S seismic waves can be obtained when

considering intrusions with linear sizes of the order of 100 m. We then consider a case of two closely located sills and model

their interaction. We speculate on conditions that can result in consecutive triggering of the bubble growth in multiple closely

located batches of magma, leading to the generation of earthquake swarms or seismic tremors.
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Key Points:7

• Spontaneous bubble nucleation leads to rapid pressure increase in a batch of magma.8

• Bubble nucleation in the center of a sill filled with magma results in a propaga-9

tion of a nucleation front inside the sill.10

• Expanding sill generate P and S seismic waves with amplitudes and frequencies11

close to the observations.12
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Abstract13

In this paper, we present numerical modeling aimed to explain Deep Long Period (DLP)14

events occurring in middle-to-lower crust beneath volcanoes and often observed in as-15

sociation with volcanic eruptions or their precursors. We consider a DLP generating mech-16

anism caused by the rapid growth of gas bubbles in response to the slow decompression17

of H2O–CO2 over-saturated magma. The nucleation and rapid growth of gas bubbles18

lead to rapid pressure change in the magma and elastic rebound of the host rocks, ra-19

diating seismic waves recorded as DLP events. The magma and host rocks are modeled20

as Maxwell bodies with different relaxation times and elastic moduli. Simulations of a21

single sill-shaped intrusion with different parameters demonstrate that realistic ampli-22

tudes and frequencies of P and S seismic waves can be obtained when considering intru-23

sions with linear sizes of the order of 100 m. We then consider a case of two closely lo-24

cated sills and model their interaction. We speculate on conditions that can result in con-25

secutive triggering of the bubble growth in multiple closely located batches of magma,26

leading to the generation of earthquake swarms or seismic tremors.27

1 Plain Language Summary28

Volcano seismology is one of the main geophysical methods used to study volcanic29

processes and to forecast the eruptions. It is based on analysis of ground motion recorded30

by seismographs installed in the vicinity of volcanoes. Different seismic signals such as31

impulsive volcanic earthquakes and nearly continuous volcanic tremors are recorded dur-32

ing periods corresponding to preparation of eruptions. Some of them originate from depths33

of a few tens of kilometers, i.e., from the roots of the system that feeds the magma sup-34

ply to volcanoes and their eruptions. Therefore, such deep seismic sources are particu-35

larly interesting because they may represent early eruption precursors. While we still lack36

physical understanding of the processes leading to this deep volcanic seismicity, there37

are several reasons to consider that it is not caused by a sudden slip on faults respon-38

sible for the majority of “regular tectonic” earthquakes. In this paper, we use numer-39

ical simulations to test another possible mechanism of generation of deep volcanic earth-40

quakes. Namely, we assume that they can be caused by rapid growth of bubbles from41

the gas that was initially dissolved in the magma. We use numerical simulations to demon-42

strate that this model predicts main properties of the observed seismic signals.43

2 Introduction44

Degassing is one of the main driving forces behind the volcanic activity. The sep-45

aration of gas and melt phases leads to the formation of bubbles, whose presence increases46

the magma buoyancy thereby leading to its ascent. Degassing is very strong at the very47

top part of volcanic systems where most of gases, especially H2O, no longer remain dis-48

solved due to the pressure decrease (e.g., Wallace et al., 2015). Therefore, dynamics of49

gas bubbles in the magma is predominant during the eruptions (e.g., Jaupart & Vergniolle,50

1988; Cassidy et al., 2018) and other near-surface volcano-related processes. In partic-51

ular, the degassing and associated bubble growth can cause significant magma pressure52

variations. If these pressure perturbations are sufficiently rapid, they are transmitted into53

the surrounding elastic media as seismic waves that can be recorded by seismographs as54

volcanic earthquakes. Such rapid pressure changes can occur when a magma volume first55

reaches the saturation level and then achieves the critical supersaturation after which56

the gas bubbles nucleate and grow rapidly (Lyakhovsky et al., 1996; Lensky et al., 2006).57

In one scenario, a rapid decompression of a shallow intrusion caused by a sudden58

gas escape via conduit results in a critical magma supersaturation. This pressure drop59

is fallowed by a pressure recovery because of the gas bubble grows (Nishimura, 2004).60

B. Chouet et al. (2006) modeled such sequence of magma depressurisation-pressurisation61

and related elastic deformation of the surrounding rocks in order to explain very long62
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period seismic signals associated with the Vulcanian explosions at Popocatépetl Volcano63

in Mexico (B. Chouet et al., 2005). They considered a sill-shaped volume of rhyolitic magma64

at a depth of 1.5 km. The system response has been found to depend strongly on var-65

ious parameters such as volatile diffusivity in the melt, the bubble number density, the66

initial bubble radius, and the shape of the intrusion. The model could reasonably ex-67

plain observed seismic waveforms within the range of acceptable parameters and predicted68

pressure variations of the order of a few MPa with characteristic timescale of tens of sec-69

onds.70

Another scenario has been recently considered by O. Melnik et al. (2020) to explain71

the Deep Long Period (DLP) earthquakes occurring in middle-to-lower crust beneath72

volcanoes and often associated with eruptions or their precursors (e.g., Ukawa & Ohtake,73

1987; Pitt & Hill, 1994; White et al., 1996; Power et al., 2004; Nichols et al., 2011; Aso74

et al., 2013; Aso & Tsai, 2014; Shapiro, Droznin, et al., 2017; Hensch et al., 2019; Kuri-75

hara et al., 2019; Wech et al., 2020; Ikegaya & Yamamoto, 2021; Kurihara & Obara, 2021;76

Greenfield et al., 2022; Lu & Bostock, 2022; Song et al., 2023). In some cases, the ori-77

gin of these DLP earthquakes has been attributed to the processes occurring within a78

cooling magma body stalled beneath the crust such thermal stresses (Aso et al., 2013)79

or “second boiling”, i.e., repeated pressurization by volatiles exsolution during magma80

crystallization (Wech et al., 2020). However, such cooling-related mechanisms are un-81

likely for DLP events occurring beneath active volcanoes in association with eruptions.82

Therefore, O. Melnik et al. (2020) suggested a possible DLP generating mechanism re-83

lated to the rapid growth of gas bubbles in response to the slow decompression of over-84

saturated magma. In this model, a volume of magma saturated with H2O–CO2 volatiles85

is slowly rising up which causes its depressurisation. This magma first reaches the sat-86

uration level and then achieves the critical supersaturation after which gas bubbles nu-87

cleation causes rapid pressure and elastic stress variations resulting in seismic waves recorded88

as DLP earthquakes.89

The model of O. Melnik et al. (2020) was particularly aimed to explain the DLP90

earthquakes occurring beneath the Klyuchevskoy volcano in Kamchatka, Russia (e.g.,91

Fedotov et al., 2010; Shapiro, Sens-Schönfelder, et al., 2017; Koulakov et al., 2020) just92

beneath the crust-mantle boundary (Levin et al., 2014; Shapiro, Droznin, et al., 2017;93

Galina et al., 2020; Journeau et al., 2022) at a depth of approximately 30-35 km. Re-94

cent studies suggested that primary Klyichevskoy magma may contain more than 4 wt%95

H2O and 0.35–0.9 wt% CO2 (Portnyagin et al., 2007; Mironov & Portnyagin, 2011; Port-96

nyagin et al., 2019). Single H2O volatile phase would result in a small saturation depth,97

but the addition of 0.6 wt% of CO2decreases volatile solubility dramatically (Papale,98

1999; Burgisser et al., 2015) so that magma becomes super-saturated at pressures of above99

800 MPa ( 30 km depth).100

O. Melnik et al. (2020) have shown that for realistic magma compositions and val-101

ues of the gas and bubble content, the elastic deformation of surrounding rocks forced102

by the expanding bubbly magma can be fast enough to generate seismic waves. They103

approximately estimated a volume of degassing magma of ∼ 103−104m3 would be nec-104

essary to explain amplitudes of signals recorded from the DLP earthquakes beneath the105

Klyuchevskoy volcano. Nevertheless, this model contained important approximations.106

First, an instantaneous bubble nucleation in the whole batch of magma was assumed,107

similar to B. Chouet et al. (2006). However, such scenario is unlikely within the slowly108

uplifting magma batch. In this case, we can rather expect that the babble growth will109

be first triggered in a small volume and than spontaneously propagate through the rest110

of the magma body. Second limitation of O. Melnik et al. (2020) was that only a spherical-111

shape intrusion was modeled. Also, excitation of seismic waves was not explicitly com-112

puted and the amplitudes of seismograms were predicted based on a simplified approx-113

imation.114
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To overcome the mentioned shortcomings, we developed a more complete and ac-115

curate model of generation of seismic waves by the pressure variations caused by bub-116

bles growth in magma. The model is based on an accurate numerical solution of cou-117

pled fluid-elastic equations and includes: (1) a bubble nucleation front propagating from118

initial trigger point, (2) a sill-shape magma intrusion, and (3) an exact estimation of the119

associated seismic potency (moment) tensor in order to compute the seismograms.120

We start with formulating the mechanical model in section 3. A particular atten-121

tion is payed to an accurate description of the compressibility of the bubbly magma and122

its variations in association with the bubble growth. We then apply the developed me-123

chanical framework to model the gas bubble growth in an intrusion shaped as a horizon-124

tal sill. The numerical implementation and model settings are described in section 4. The125

results of the modeling are presented in section 5 and their implications are discussed126

in section 6. In particular, after considering solutions for a single sill-shaped intrusion127

with different parameters, we introduce a case of two closely located sills and model their128

interaction. We then speculate how such interaction can result in consecutive trigger-129

ing of the bubble growth in multiple closely located intrusions and lead to generation130

of earthquake swarms or seismic tremors.131

3 Mechanical model of a DLP earthquake source132

3.1 Conceptual model133

We consider a scenario illustrated in Figure 1a. Basaltic magmas rising from the134

mantle are underplated beneath the Moho forming sill-shaped intrusions. Following O. Mel-135

nik et al. (2020), we consider that H2O-CO2 rich basaltic magma becomes oversaturated136

at these depths leading to a spontaneous nucleation and rapid growth of gas bubbles within137

the sill (Figure 1b). Magma degassing in an initial small volume leads to perturbations138

of the pressure in its vicinity that, in turn, results in nucleation and growth of new bub-139

bles. Such “nucleation” front propagates along the whole sill (Figure 1c) causing it ex-140

pansion (Figure 1d) and leading to elastic deformation of the surrounding rocks and gen-141

eration of seismic waves that are then recorded by seismographs installed at the surface.142

3.2 Mathematical formulation for a coupled fluid-solid system with bub-143

bles144

The mechanical model for the scenario described above consists of a sill-shaped cav-145

ity filled with a viscous fluid (magma) embedded in an elastic medium (rocks). We solve146

the equations of motion for a continuum media in the whole volume of the model with-147

out body force:148

ρ
∂2ui

∂t2
=

∂σij

∂xj
(1)

where ρ – material density; ui – displacement vector; σij – stress tensor. The total strain149

is calculated from the displacement field as:150

εtij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(2)

Different stress–strain constitutive relations (different rheology) are adopted for the151

magma and the surrounding material. The host rock is simulated as perfectly elastic isotropic152

Hookean solid (εt = εe, where index e corresponds to elastic deformations). The con-153

stitutive stress-strain relations for elastic deformations are:154

σij = λεekkδij + 2µεeij (3)
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Figure 1. Schematic representation of the DLP source model. (a) General geometry with a

source (a sill filled with a rapidly degassing magma highlighted with the red color) located at the

crust-mantle boundary and the station recording seismic waves located at the surface. (b)-(d)

Main stages of the rapid degassing of the magma within a sill.

where λ and µ are Lame elastic modulus.155

Magma is approximated by Maxwell visco-elastic body with the total strain, εtij ,156

being a sum of the elastic, εeij and irreversible, εirrij , strain components.157

εtij = εeij + εirrij , (4)

Adopting the Newtonian stress – strain-rate relations for a viscous fluid, the de-158

viatoric stress, τij = σij + Pδij (where P = −trace(σij)/3 is the pressure) we obtain:159

τij = η
∂εirrij

∂t
, εv = P/K (5)

where η is the melt viscosity. The volumetric strain component εv for the bubble-free160

magma is calculated using the magma compressibility K. The magma remains bubble-161

free until the pressure is above the critical value associated with super-saturation of the162

gas dissolved in the melt.163

As soon as the critical magma super-saturation is reached, bubbles nucleate and164

start to expand. The dynamics of bubble growth under various conditions have been widely165

discussed in the literature (see reviews by (Sparks, 1978; Gardner et al., 2023) and ref-166

erences therein). According to the bubble growth model (Lyakhovsky et al., 1996) the167

gas diffusion into the small bubble is very efficient at the initial stage of growth follow-168

ing the nucleation. The initial pressure difference or nucleation pressure is partly com-169

pensated by the surface tension term, which decreases as inverse of the bubble radius,170

1/R. The surface tension steeply decreases with the bubble growth and the pressure driv-171

ing the bubble expansion practically remains constant. At this stage, the exponential172

increase of the bubble radius is controlled by the viscosity of the surrounding melt and173

the nucleation over-pressure ∆P = Ps − P0 or the difference between the saturation174

–5–
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pressure, Ps, and the pressure in the surrounding melt, P0. With the increase of the bub-175

ble radius, the efficiently of the diffusion decreases, and the rate of the bubble growth176

is controlled by the diffusive gas flux from the surrounding melt cell with a radius S. Fi-177

nally, the bubble size and gas pressure approach their equilibrium values depending on178

the initial values of pressure, gas concentration, and cell size, as well as melt properties.179

The initial cell size, S0, or the melt volume surrounding every bubble may be calculated180

assuming certain number of bubbles nucleated from the unit melt volume, or bubble num-181

ber density, Nd:182

4

3
πS3

0 =
1

Nd
(6)

The details of a single bubble growth model developed by (O. Melnik et al., 2020)183

consists of Raleigh-Lamb equation coupled with diffusion equations for multiple dissolved184

volatile and is briefly discussed in Appendix Appendix A.185

The pressure inside the bubble Pg just after nucleation is equal to the saturation186

pressure Ps. It is several tens of MPa higher than the initial pressure in the surround-187

ing melt P0. At final stage of the bubble growth both gas and melt Pm pressures approaches188

to the equilibrium pressure, Peq. We can define the pressure in the bubbly magma Pb189

as:190

Pb = Pgα+ Pm(1− α), (7)

where α is the volume fraction of bubbles, α = R3

S3
0
.191

Figure 2 shows the overpressure, Pb−P0, evolution in the bubbly magma pocket192

simulated by the model from O. Melnik et al. (2020) for three different values of the bub-193

ble number densities, Nd = 1013/m3 (green line), Nd = 1014/m3 (red line), Nd = 1015/m3
194

(blue line). Here we use the initial over-pressure of ∆P = Ps − P0 = 40 MPa (Shea,195

2017). This pressure increase leads to a deformation of the surrounding rock mass and196

serves as a source pressure for the sill opening. The S-shape of the pressure curves could197

be well approximated by an exponential function:198

Pb = Peq − (Peq − P0) ∗ exp(b ∗ δtγ) (8)

where δt is time since the bubble nucleation; γ = 2.4. The fitting coefficient b significantly199

depends on the assumed bubble number density. The fitted values are: b = −28 for Nd =200

1013/m3, b = −187 for Nd = 1014/m3, and b = −1355 for Nd = 1015/m3. Figure 2201

shows the comparison between calculated and fitted pressure variations for different num-202

ber density of bubbles.203

The equilibrium pressure in the melt pocket depends on the deformation of the sur-204

rounding rock and volume change of the considered bubbly melt pocket. It is calculated205

using the mass conservation law of the gas, stored in the bubble and dissolved in the sur-206

rounding melt, mg = Const.:207

mg =
4

3
πS3

0Cρm +
4

3
πR3ρg =

4

3
πS3

0Csρm (9)

where Cs is the gas concentration at the super-saturation needed for the bubble nucle-208

ation, ρm is the melt density. We use linear approximation for gas density, ρg:209

ρg = ar(P − P0) + br (10)

–6–
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Figure 2. Comparison between calculated and fitted pressure variations for different number

density of bubbles

and solubility, C:210

C = ac(P − P0) + C0 (11)

with the following values: ac = 1.4410−5/MPa, ar = 0.586kg/m3/MPa br = 419.0kg/m3.211

The value of C0 defines the volatile concentration at pressure P0.212

Substituting these linear approximation into the gas mass balance equation (9)213

S3
0ρm (ac(Peq − P0) + C0) +R3 (ar(Peq − P0) + br) = S3

0ρm(ac(Ps − P0) + C0) (12)

and dividing by S3
0 leads to:214

ρm (ac(Peq − P0) + C0) + α (ar(Peq − P0) + br) = ρm(ac(Ps − P0) + C0) (13)

By solving equation (13) against Peq we obtain the relation that adjusts equilib-215

rium pressure in equation (8)216

Peq =
ρmacPs + α(arP0 − br)

αar + acρm
(14)

Equation (8) together with (14) govern the evolution of the source pressure in the217

bubbly magma. As soon as the nucleation condition is reached in particular cell instead218

of using equation (5) to calculate the pressure from volumetric strain, we assume that219

the pressure is specified by equation (8) and the volume fraction of bubbles is calculated220

as a difference between the total volume change and the elastic melt expansion:221

α = εv − Pb/K; (15)

–7–
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The equilibrium pressure is then calculated from equation (14). Obtained Peq and222

re-calculated Pb values are used for the time marching.223

If this deformation is sufficiently rapid, the seismic waves are transmitted into the224

surrounding elastic media and recorded by seismographs as volcanic earthquakes. The225

earthquake source mechanism is estimated by integrating the irreversible strain over the226

sill volume:227

Πij(t) =

∫
V

εirrij (t)d3x (16)

Following Ben-Menahem and Singh (2012) this tensor is called potency or geomet-228

rical moment. The time-dependent moment tensor components are calculated using the229

Hook stress-strain relations with Lame parameters λ and µ of the host rock:230

Mij(t) = λΠkkδij + 2µΠij (17)

Synthetic seismograms are then computed as a convolution of the time-dependent231

seismic moment with the Green’s function. For the latter we use the far-field P and S232

waves in a homogeneous elastic media (Aki & Richards, 2002). The near-field terms of233

the Green’s function are ignored because the source-receiver distance is significantly larger234

than the wavelengths at dominant frequencies (above 1 Hz).235

4 Numerical method and model settings236

The 3D numerical modeling was performed using Explicit Finite Difference Lagrangian237

method, based on the FLAC (Fast Lagrangian Analyze of Continua) algorithm originally238

developed by Cundall (1988) for elasto-plastic rheology and implemented in the ITASCA239

software. The FLAC algorithm was modified for visco-elastic media (Poliakov et al., 1993).240

A modified version of this code incorporating heat transport is known as PAROVOZ and241

is widely used by many researchers. Lyakhovsky et al. (2001) developed their own 3-D242

code for quasi-static visco-elastic damage rheology modelling, which was used in many243

geodynamic applications. Later on the code was modified for dynamic processes, by re-244

ducing force damping to realistic values corresponding to wave attenuation. The numer-245

ical time-step was defined according to the Courant–Friedrichs–Lewy stability condition246

for explicit time-marching simulations. Technical details of the numerical approach for247

dynamic modelling of seismic wave propagation were discussed by Lyakhovsky et al. (2016).248

We considered several cases of the model geometry. Most of simulations were per-249

formed for the model volume 200x200x100 m with a 50 m radius and 3 m thick penny-250

shaped sill located in the center (Figure 3a). In a few cases the model size have been dou-251

bled (both model dimensions and sill radius) keeping the same thickness. In the last se-252

ries of the model runs two penny-shaped sills with 40 meter radius located in the same253

plain with three different distances, 40, 45, 50 m., between their edges (Figure 3b). The254

adaptive grid with tetrahedral elements with 0.5 meter grid step represents the sill vol-255

ume. The grid size gradually increases in vertical direction away from the sill.256

Equation (1) is solved with fixed zero displacement boundaries with attached nar-257

row layer of highly damping material that prohibits the reflection of waves traveling in-258

side the host rock. The initial stress is equal to the solubility pressure P0 and zero de-259

viatoric components.260

The elastic material surrounding the sill has the properties close to those of the man-261

tle: the density ρ = 3000 kg/cm3, bulk modulus K of 80 GPa, and rigidity (shear mod-262

ulus) µ of 50 GPa. With these properties the seismic wave velocities in the host rock are:263

Vp=7 km/s, Vs=4.1 km/s. The density of the melt inside the sill is ρm = 2800 kg/cm3,264

–8–
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a) b)

Figure 3. Geometries used in numerical simulations. (a) A penny-shaped sill of 50 m radius

and 1 m thickness. Red color show the volume in which the bubble grow is triggered. (b) Two

penny-shaped sill of 40 m radius and 1 m thickness. The bubble growth is triggered in the center

one of the sills as shown with red color.

bulk modulus 10 GPa, and very low rigidity (5 orders of magnitude below the host rock265

rigidity). Melt viscosity (η) varied between 10 and 103 Pa*s between different model runs.266

These values provide numerical stability of the Maxwellian visco-elastic solution with neg-267

ligibly small elastic shear strain components in the melt. The shear stress in the melt268

is controlled by the product of the strain rate and melt viscosity, like in the Newtonian269

fluid. For the small volume fraction of bubbles the magma viscosity variations due to270

bubble content might be neglected. During the simulation the event potency is calcu-271

lated by integrating the inelastic strain over the volume of the sill (equation 16).272

After estimating the potency tensor, we compute the propagation of seismic waves273

through the crust with average density of 2900 kg/m3 and P and A wave velocities of274

6062 and 3500 m/s, respectively. We consider a source-receiver distance of 40 km and275

a take-off angle at the source of 30◦. This approximates the geometry with a curved seis-276

mic ray reaching a station located nearly above the source.277

5 Results278

During the study we considered fifteen different models (see Table 1), twelve of them279

for a single sill (Figure 3a) and the last three for two discs (Figure 3b). All the simu-280

lations start with a spontaneous bubble nucleation in the 5 meter circle area located in281

the center of the sill (red zone in Figure 3). In the case of a non-deformable surround-282

ing material and adopted melt parameters the maximal over-pressure may grow up to283

about 40 MPa in respect of the initial pressure P0. However, its final value is significantly284

reduced because of the elastic deformation of the surrounding rock and the increase of285

the sill volume (see equation (14).286

5.1 Single sill configuration287

Figure 4 shows four horizontal and vertical cross sections for sequential snapshots288

of pressure evolution for model N1-B (see Table 1 for parameters). Dashed lines on each289

cross section indicate the boundaries of the magmatic sill, where the bubble nucleation290

is expected.291

–9–
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Figure 4. Snapshots of pressure evolution in time in a model N1-B. Left and right frames

show horizontal and vertical cross-sections at Z=0 and Y=0, respectively. Time is indicated

above the frames.
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Run Model Sill size Nd Nucleation Melt viscosity Potency
# ID m 1/m3 threshold, kPa Pa s m3

1 N1 A 50 1013 10 100 22.325
2 N1 B 50 1013 30 100 21.692
3 N1 C 50 1013 50 100 20.238
4 N2 A 50 1014 10 100 22.286
5 N2 B 50 1014 30 100 22.133
6 N2 C 50 1014 50 100 21.895
7 N3 A 50 1015 10 100 22.121
8 N3 B 50 1015 30 100 21.875
9 N3 C 50 1015 50 100 21.651
10 N1 B V01 50 1013 30 10 22.300
11 N1 B V10 50 1013 30 1,000 22.359
12 N1 B L100 100 1013 30 100 100.41
13 N4 1 2x40 Dist. 120 3 1013 20 100 28.686
14 N4 2 2x40 Dist. 125 3 1013 20 100 28.167
15 N4 3 2x40 Dist. 130 3 1013 20 100 14.391

Table 1. Run parameters

During the early stage of the pressurization in the nucleated zone (reddish colors),292

the sill opening results in the decreased fluid pressure around this zone (bluish colors)293

leading to new nucleation and bubble growth. The location of the narrow yellow ring be-294

tween these zones corresponds to the radially propagating bubble nucleation front. The295

front expansion is driven by the “crack waves” resulting from elastic-acoustic coupling296

on the sill boundaries an propagating along the sill (e.g., B. Chouet, 1986; B. A. Chouet,297

1996). The exact cylindrical symmetry is preserved during the sill expansion since the298

melt and surrounding rocks are homogeneous. The size of the area with the elevated pres-299

sure where the bubble are nucleated is about 20 m for the first snapshot and the nucle-300

ation front reaches the sill edge (50 meter) during 0.1 s. This means that the nucleation301

front propagates at the rate of about 0.5 km/s.302

Seismic source properties, synthetic seismograms, and their Fourier amplitude spec-303

tra for model N1-B are shown in Figure 5. As expected for vertically expanding hori-304

zontal sill, the potency tensor is dominated by the ZZ component. Its conversion into305

seismic moment with equation (17) results in a diagonal tensor with ZZ component ap-306

proximately three times larger than YY and XX (e.g., pure horizontal tensile crack). All307

three non-zero moment tensor components are proportional to the ZZ potency function308

whose time dependence defines the source time function. The body wave displacement309

and velocity is proportional to its first and second time derivatives, respectively. The lat-310

ter, shown in Figure 5b is dominated by a low-frequency pulse corresponding to the ki-311

netics of the bubble growth. Much weaker high frequencies correspond to bouncing of312

the “crack waves” withing the sill (e.g., B. A. Chouet, 1996). Resulting synthetic seis-313

mograms (Figure 5c) contain both P and S waves with amplitudes close to the obser-314

vations. Their frequency content is also close to the observations (Figure 5d). The rel-315

atively long coda seen in the observed signal and not reproduced in the synthetic seis-316

mograms most likely arises from the scattering of seismic waves within the heterogeneous317

volcanic media, i.e., from the propagation effect whose explanation would require using318

a more realistic Green’s function.319

For other cases with higher Nd values, the nucleation front propagates two (N2 se-320

ries) and even more than three (N3 series) times faster. The bubble nucleation in the321

whole sill occurs relatively fast ( 0.1 s), while the overall duration of the sill expansion322

–11–



manuscript submitted to Solid Earth

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

se
ism

ic 
po

te
nc

y 
(m

3 )

a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

se
ism

ic 
m

om
en

t (
Nm

)

1e12

ZZ
XX
YY
XY
XZ
YZ

0.0 0.2 0.4 0.6 0.8 1.0
time (s)

500

0

500

1000

po
te

nc
y 

2-
nd

 d
er

iv
at

iv
e 

(m
3 /s

2 )

b)

0 10 20 30 40
time (s)

0.75

0.50

0.25

0.00

0.25

0.50

0.75

gr
ou

nd
 v

el
oc

ity
 (m

icr
on

/s
)

c)
data
model

10 1 100 101 102

frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
Fo

ur
ie

r a
m

pl
itu

de

d)
data
model

Figure 5. Seismic signature of model N1-B. (a) Components of potency (thick gray lines)

and seismic moment (thin black lines) tensors as function of time. (b) Second derivative of the

ZZ potency function. (c) Comparison of synthetic and observed seismograms shown with black

and gray lines, respectively. East-component seismogram of a DLP earthquake occurred on June

26, 2012 recorded at station LGN located on the slope of the Klyuchevskoy volcano (see supple-

mentary material for details) is shown as “data” (signal was high-passed at 0.5 Hz to remove the

microseismic noise. (d) Normalized Fourier amplitudes of signals shown in (c) smoothed in a 1

Hz wide moving window.
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Figure 6. Influence of nucleation threshold ∆P on seismic source time functions. Three con-

sidered models differ by the value of this parameter: N1-A 10 kPa, N1-B 30 kPa, N1-C 50 kPa.

(a) ZZ components of the seismic potency tensors as function of time. (b) Normalized Fourier

amplitude of second derivatives of the ZZ potency function.

vary between 0.2 and 0.8 s for the series of nine model setting (lines 1-9 in Table 1).323

Therefore, the overall duration is mainly controlled by the kinetics of the bubble growth.324

The nucleation of new bubbles under appropriate conditions occurs extremely fast and325

the nucleation time scale is well below the time scale of the front propagation (for the326

discussed sill size) and future sill pressurization.327

The bubbles nucleate when the over-saturation pressure is exceeded (e.g., Hirth et328

al., 1970). The level of the super-saturation depends on the temperature and a number329

of melt properties including surface tension, volume, and concentration of water molecules330

in the melt, as well as distance between them, diffusion coefficient of volatiles at the bubble-331

melt interface, probability that a nucleus at the top of the barrier will go on to form the332

new phase, rather than dissolve (Zeldovich factor), and others. With a huge uncertainty333

of these parameters and difficulties in their experimental constrain, we used three dif-334

ferent values of the bubble number density ( Nd = 1013, 1014, and 1015 1/m3 ) and super-335

saturation thresholds (∆P = 10, 30, and 50 kPa), assuming instantaneous nucleation when336

the target super-saturation is reached. Comparison of time-dependent potency for dif-337

ferent simulations demonstrate that the pressurization rate weakly depends on the nu-338

cleation threshold, ∆P (Figure 6), and it is strongly affected by the bubble number density,Nd339

(Figure 7). The general pattern of the evolving pressure is very similar to the one shown340

in Figure 5, but differs only by the rate of pressurization. The sill expands significantly341

faster in the case with elevated Nd values.342

Two additional simulations (10, 11 in Table 1) were performed to study a possi-343

ble impact the melt viscosity, which was increased and decreases by an order of magni-344

tude covering the realistic range of the basaltic melt properties. The difference in the345

pressurization rate (potency increase, not shown here) between these two cases and the346

model N1-B is negligibly small. The rate of the magma flow becomes important only at347

high viscosities (above 105 Pa s) typical for rhyolitic magmas (Hess & Dingwell, 1996)348

and controls the rate of sill pressurization.349

Similarly to the classical seismological scaling relations we expect stronger event350

with larger potency (area times opening) proportional to the sill size. For the same pres-351

sure inside the sill with radius increased by a factor of two, we expect the sill opening352

to increase by a factor
√
2, since penny-shaped crack opening is scaled as square root of353

the disc radius. Together with four times area increase (size in a power two), the potency354

should increase by a factor 22.5 ≈ 5.66. However, opening of the sill leads to the reduc-355

–13–



manuscript submitted to Solid Earth

0.0 0.2 0.4 0.6 0.8 1.0
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
ZZ

 se
ism

ic 
po

te
nc

y

a)

N1-B
N2-B
N3-B

10 1 100 101 102

frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
Fo

ur
ie

r a
m

pl
itu

de

b)
N1-B
N2-B
N3-B

Figure 7. Influence of bubble number density Nd on seismic source time functions. Three

considered models differ by the value of this parameter: N1-B 1013, N1-B 1014, N3-B 1015. (a)

ZZ components of the seismic potency tensors as function of time. (b) Normalized Fourier ampli-

tude of second derivatives of the ZZ potency function.

tion of the equilibrium pressure of the bubbly magma inside the sill. The results of the356

model N1-B-L100 show that the potency for the 100 m sill, instead of 50 m, is about 100357

m3 meaning the increase by a factor 5 instead 5.66. The coupling between opening and358

pressure in the sill leads to a potency-area scaling with slightly deviates from the pre-359

dictions of the linear elasticity ignoring the pressure-size dependency.360

5.2 Configuration with two sills361

Expansion of the sill due to the bubble growth and pressurization leads to the de-362

formation of the surrounding elastic media and formation of a relatively wide zone with363

a reduced pressure clearly seen in the last snapshots of Figure 4. This pressure reduc-364

tion can initiate bubble nucleation in another sill or magma pocket located at a certain365

distance within the area of the negative pressure change (blue zone). Three last simu-366

lations demonstrate the sensitivity of the secondary nucleation to the distance between367

two discs (Figure 3b). In order to improve the numerical resolution without significantly368

increasing the computation time, we slightly decreased the disc radius to 40 m and placed369

the second disc at three different distances between their centers 130, 120, and 125 m370

(Table 1) or 50, 40, and 45 m between disc edges. Figure 8 shows the snapshots for the371

case N4-1. Slightly before 0.3 s the nucleation threshold (20 KPa) is achieved in the disc372

on the left and the nucleation starts on the right edge of this disc mostly affected by the373

pressurization of the first disc (snapshot 1 in Figure 8).374

Seismic response of a two-sill system is illustrated in Figure 9 for model N4-2 (sep-375

aration of 125 m). Nucleation of the first sill results in the initial rise of potency/moment376

values occurring between 0 and 0.3 s. This initial pulse is shorter that for model N1-B377

(Figure 5) and the dominant frequency higher mainly because of the smaller sill size. The378

bouncing of “crack waves” expressed in high frequencies seems to be more prominent in379

such smaller sill. The second sill nucleation starts at 0.6 s. The overall potency increases380

corresponding to two sills are nearly identical. At the same time, the second derivative381

of the potency function shows that the second impulse is relatively depleted in high fre-382

quencies. The reason for this is that the nucleation of the second sill starts not at the383

center but at the edge. As a result, the bouncing of “crack waves” is much less efficient.384

The time delay for the second sill nucleation strongly depends on the distance be-385

tween discs as shown in Figure 10. It increases from 0.3 to 0.6 s between separations of386

120 ans 125 m. For the 130 m distance between disc centers, the nucleation threshold387

–14–



manuscript submitted to Solid Earth

is never achieved. After the nucleation occurred, the nucleation front propagates toward388

the opposite edge of the disc with the rate controlled by the bubble growth parameters389

as discussed above. With pressure growth increase in both discs, the size of zone with390

a reduced pressure (blue colors) increases and may provoke nucleation in additional magma391

pockets, not necessarily aligned in the same plane. Vertical cross sections clearly demon-392

strate significant increase of the negative pressure zone in the Z-direction. Comparison393

between three cases of the N4 series shows that there exist certain critical distance for394

the secondary nucleation and the delay time strongly depends on this distance.395

6 Discussion and conclusions396

We developed an accurate model of generation of seismic waves by the pressure vari-397

ations caused by bubble growth in the magma. This model is based on a numerical so-398

lution of a fluid-elastic coupled equations and includes a bubble nucleation front prop-399

agating from initial trigger point in a sill-shaped magma intrusion.400

The results of our simulations confirm the hypotheses of O. Melnik et al. (2020)401

that the rapid growth of gas bubbles within magmatic intrusions can generate seismic402

waves with amplitudes and spectral content similar to those observed from DLP earth-403

quakes. In particular, we show that with modeling realistic shapes of the intrusions such404

as sills, a mostly volumetric expansion results in generation of stronger S waves than P405

waves. Our simulations show that realistic amplitudes can be predicted with modeling406

sills of ∼50 m of radius and ∼1 m of thickness. The object of such dimensions can cor-407

respond either to an individual small sill or to a pocket of oversaturated magma within408

larger intrusions.409

Additionally, our modeling shows that bubble nucleation front propagation is con-410

trolled by the coupled elasto-acoustic waves. This propagation is rapid comparing to the411

kinetics of the bubble growth. The later dominates the source time function and the spec-412

tral content of the emitted signals. This kinetics is controlled by the the bubble num-413

ber density Nd and the gas content in the magma (O. Melnik et al., 2020). The effect414

of bouncing of “crack waves” eventually leading to resonances of fluid filled cracks (e.g.,415

B. Chouet, 1986; B. A. Chouet, 1996; Maeda & Kumagai, 2017) is rather weak and is416

not necessary to explain the properties of the observed DLP signals.417

The results of our modeling presented in subsection (5.2) highlight a possibility of418

“interaction” between closely located intrusions when the elastic deformation caused by419

the degassing/expansion of the first sill can trigger the bubble nucleation in the next closely420

located magma pocket. We presented simulations for two “interacting” sills. This results421

can be extrapolated to a case of many closely located magma pockets acting in a cas-422

cade. Such behavior can explain the observation of DLP earthquakes often occurring as423

swarms of many events closely located in time (e.g., White et al., 1996; Shapiro, Droznin,424

et al., 2017; Song et al., 2023) eventually leading to emergence of deep volcanic tremors425

(e.g., Aki & Koyanagi, 1981; Soubestre et al., 2019; Journeau et al., 2022).426

The emergence of tremors would become favorable in a configuration where many427

“interacting” pockets of oversaturated magma are closely located. The results shown in428

Figure 10 demonstrate that with the selected model parameters and in approximation429

of in-plane circular sills, the interaction becomes possible when inter-sill distance approaches430

the sill radius. The “interaction” distance would then increase with decreasing the the431

nucleation threshold. The time delay between two “interacting events” would increase432

with increasing the inter-sill distance and also with decreasing the bubble number den-433

sity.434

More generally, some scaling relations based on the stress distribution around a pres-435

surized inclusion could be considered. The linear elasticity predicts that the pressure dis-436

tribution around the inclusion is proportional to the overpressure and decreases as a poly-437
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nomial function of the ratio R
d (R – disc radius, d – distance from the inclusion center).438

Near the edge of the inclusion the forth order term, (Rd )
4, is dominant and defines fast439

pressure decay away from the inclusion. The width of the zone with the negative pres-440

sure is expected to be of the order of the inclusion size. For a given distance, d, from the441

inclusion, the nucleation occurs when the pressure in the inclusion drops below certain442

critical value, which linearly increases with the nucleation threshold and decreases as (Rd )
4,443

which is the dominant term for the near-field solution.444

The presented modeling frameworks can be applied to magma pockets of arbitrary445

shapes. One possible direction of its application to better understand the origin of deep446

volcanic tremors would be to investigate the cascading of magma degassing in a system447

containing many sills and dykes with variable sizes (e.g. O. E. Melnik et al., 2021; Binde-448

man et al., 2023). A more challenging and important task would be to move from a “static”449

systems of interacting magma pockets and to model their time evolution and, in partic-450

ular, their refilling with fresh magma and volatiles which is necessary for functioning of451

sustained generation of deep volcanic seismicity.452
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Appendix A Single bubble growth model461

The process of a single bubble growth from a supersaturated magma is described462

by a set of Raleigh-Lamb equations together with diffusion equations for multiple dis-463

solved volatiles:464

∂

∂r

(
r2νr

)
= 0; νr|r=R =

dR

dt
; (A1)

Pg − Pm =
2σ

R
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+
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)−1

; (A8)

–16–



manuscript submitted to Solid Earth

ρCO2 = (0.371 + 0.13× 10−3T )Pg + 1194.65− 0.4665T ; (A9)

ρH2O = (0.22 + 0.13× 10−3T )Pg + 892.2− 0.357T ; (A10)

Dw = cH2O exp

(
−8.56− 19110

T

)
; (A11)

Dc = exp

(
−13.99− (17367 + 1.945Pg)

T
+

cH2O(855.2 + 0.271Pg)

T

)
(A12)

Here t is time, r is the radial coordinate, R is the radius of the bubble, vr is the465

radial velocity, index s = w, c corresponds to water and carbon dioxide, respectfully,466

cc and cw are the mass concentrations of CO2 and H2O in the melt, Dc and Dw are the467

volatile diffusion coefficients, Pg is the pressure of the gas inside the bubble, Pm is the468

melt pressure, σ is the surface tension, µ is the magma viscosity, S is the radius of the469

cell, G is the shear modulus of the host rock, ρg is the density of the gas in the bubble470

that depends on the pressure, temperature T and bubble volatile composition xb
CO2

.471

The densities of pure CO2 and H2O are approximated at a limited P − T range472

using tables produced by NIST Chemistry WebBook (https://webbook.nist.gov/chemistry/).473

Diffusion equations (A4) are subjected to two boundary conditions: concentration474

gradients are equal to zero at the outer surfaces of the cell mimicking symmetry of the475

system. At r = R(t) volatiles in magma are in chemical equilibrium with the bubble.476

Thus, cs = ceqs
(
Pg, T, x

b
CO2

)
.477

The dynamics of bubble growth under various conditions have been widely discussed478

in the literature ((Gardner et al., 2023)). Based on the experimental observations we adopt479

that at the critical supersaturation for the bubble nucleation, the gas pressure, P0, is sev-480

eral tens of MPa above the pressure of the surrounding melt. This initial pressure dif-481

ference is compensated by the surface tension term (see equation A2), which decreases482

as 1/R. This surface tension decrease together with efficient volatile mass flux into the483

bubbles leads to a steep gas pressure increase. At the later stage the rate of the pres-484

sure growth decreases and gas pressure approaches to the equilibrium pressure, Peq.485
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Figure 8. Snapshots of pressure evolution in time in a model with two interacting sills (dis-

tance 120 m, model N4-1). Left and right frames show horizontal and vertical cross-sections at

Z=0 and Y=0, respectively. Times are indicated above the frames. Dashed lines indicate the

boundaries of the magmatic sill.
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Key Points:7

• Spontaneous bubble nucleation leads to rapid pressure increase in a batch of magma.8

• Bubble nucleation in the center of a sill filled with magma results in a propaga-9

tion of a nucleation front inside the sill.10

• Expanding sill generate P and S seismic waves with amplitudes and frequencies11

close to the observations.12
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Abstract13

In this paper, we present numerical modeling aimed to explain Deep Long Period (DLP)14

events occurring in middle-to-lower crust beneath volcanoes and often observed in as-15

sociation with volcanic eruptions or their precursors. We consider a DLP generating mech-16

anism caused by the rapid growth of gas bubbles in response to the slow decompression17

of H2O–CO2 over-saturated magma. The nucleation and rapid growth of gas bubbles18

lead to rapid pressure change in the magma and elastic rebound of the host rocks, ra-19

diating seismic waves recorded as DLP events. The magma and host rocks are modeled20

as Maxwell bodies with different relaxation times and elastic moduli. Simulations of a21

single sill-shaped intrusion with different parameters demonstrate that realistic ampli-22

tudes and frequencies of P and S seismic waves can be obtained when considering intru-23

sions with linear sizes of the order of 100 m. We then consider a case of two closely lo-24

cated sills and model their interaction. We speculate on conditions that can result in con-25

secutive triggering of the bubble growth in multiple closely located batches of magma,26

leading to the generation of earthquake swarms or seismic tremors.27

1 Plain Language Summary28

Volcano seismology is one of the main geophysical methods used to study volcanic29

processes and to forecast the eruptions. It is based on analysis of ground motion recorded30

by seismographs installed in the vicinity of volcanoes. Different seismic signals such as31

impulsive volcanic earthquakes and nearly continuous volcanic tremors are recorded dur-32

ing periods corresponding to preparation of eruptions. Some of them originate from depths33

of a few tens of kilometers, i.e., from the roots of the system that feeds the magma sup-34

ply to volcanoes and their eruptions. Therefore, such deep seismic sources are particu-35

larly interesting because they may represent early eruption precursors. While we still lack36

physical understanding of the processes leading to this deep volcanic seismicity, there37

are several reasons to consider that it is not caused by a sudden slip on faults respon-38

sible for the majority of “regular tectonic” earthquakes. In this paper, we use numer-39

ical simulations to test another possible mechanism of generation of deep volcanic earth-40

quakes. Namely, we assume that they can be caused by rapid growth of bubbles from41

the gas that was initially dissolved in the magma. We use numerical simulations to demon-42

strate that this model predicts main properties of the observed seismic signals.43

2 Introduction44

Degassing is one of the main driving forces behind the volcanic activity. The sep-45

aration of gas and melt phases leads to the formation of bubbles, whose presence increases46

the magma buoyancy thereby leading to its ascent. Degassing is very strong at the very47

top part of volcanic systems where most of gases, especially H2O, no longer remain dis-48

solved due to the pressure decrease (e.g., Wallace et al., 2015). Therefore, dynamics of49

gas bubbles in the magma is predominant during the eruptions (e.g., Jaupart & Vergniolle,50

1988; Cassidy et al., 2018) and other near-surface volcano-related processes. In partic-51

ular, the degassing and associated bubble growth can cause significant magma pressure52

variations. If these pressure perturbations are sufficiently rapid, they are transmitted into53

the surrounding elastic media as seismic waves that can be recorded by seismographs as54

volcanic earthquakes. Such rapid pressure changes can occur when a magma volume first55

reaches the saturation level and then achieves the critical supersaturation after which56

the gas bubbles nucleate and grow rapidly (Lyakhovsky et al., 1996; Lensky et al., 2006).57

In one scenario, a rapid decompression of a shallow intrusion caused by a sudden58

gas escape via conduit results in a critical magma supersaturation. This pressure drop59

is fallowed by a pressure recovery because of the gas bubble grows (Nishimura, 2004).60

B. Chouet et al. (2006) modeled such sequence of magma depressurisation-pressurisation61

and related elastic deformation of the surrounding rocks in order to explain very long62

–2–



manuscript submitted to Solid Earth

period seismic signals associated with the Vulcanian explosions at Popocatépetl Volcano63

in Mexico (B. Chouet et al., 2005). They considered a sill-shaped volume of rhyolitic magma64

at a depth of 1.5 km. The system response has been found to depend strongly on var-65

ious parameters such as volatile diffusivity in the melt, the bubble number density, the66

initial bubble radius, and the shape of the intrusion. The model could reasonably ex-67

plain observed seismic waveforms within the range of acceptable parameters and predicted68

pressure variations of the order of a few MPa with characteristic timescale of tens of sec-69

onds.70

Another scenario has been recently considered by O. Melnik et al. (2020) to explain71

the Deep Long Period (DLP) earthquakes occurring in middle-to-lower crust beneath72

volcanoes and often associated with eruptions or their precursors (e.g., Ukawa & Ohtake,73

1987; Pitt & Hill, 1994; White et al., 1996; Power et al., 2004; Nichols et al., 2011; Aso74

et al., 2013; Aso & Tsai, 2014; Shapiro, Droznin, et al., 2017; Hensch et al., 2019; Kuri-75

hara et al., 2019; Wech et al., 2020; Ikegaya & Yamamoto, 2021; Kurihara & Obara, 2021;76

Greenfield et al., 2022; Lu & Bostock, 2022; Song et al., 2023). In some cases, the ori-77

gin of these DLP earthquakes has been attributed to the processes occurring within a78

cooling magma body stalled beneath the crust such thermal stresses (Aso et al., 2013)79

or “second boiling”, i.e., repeated pressurization by volatiles exsolution during magma80

crystallization (Wech et al., 2020). However, such cooling-related mechanisms are un-81

likely for DLP events occurring beneath active volcanoes in association with eruptions.82

Therefore, O. Melnik et al. (2020) suggested a possible DLP generating mechanism re-83

lated to the rapid growth of gas bubbles in response to the slow decompression of over-84

saturated magma. In this model, a volume of magma saturated with H2O–CO2 volatiles85

is slowly rising up which causes its depressurisation. This magma first reaches the sat-86

uration level and then achieves the critical supersaturation after which gas bubbles nu-87

cleation causes rapid pressure and elastic stress variations resulting in seismic waves recorded88

as DLP earthquakes.89

The model of O. Melnik et al. (2020) was particularly aimed to explain the DLP90

earthquakes occurring beneath the Klyuchevskoy volcano in Kamchatka, Russia (e.g.,91

Fedotov et al., 2010; Shapiro, Sens-Schönfelder, et al., 2017; Koulakov et al., 2020) just92

beneath the crust-mantle boundary (Levin et al., 2014; Shapiro, Droznin, et al., 2017;93

Galina et al., 2020; Journeau et al., 2022) at a depth of approximately 30-35 km. Re-94

cent studies suggested that primary Klyichevskoy magma may contain more than 4 wt%95

H2O and 0.35–0.9 wt% CO2 (Portnyagin et al., 2007; Mironov & Portnyagin, 2011; Port-96

nyagin et al., 2019). Single H2O volatile phase would result in a small saturation depth,97

but the addition of 0.6 wt% of CO2decreases volatile solubility dramatically (Papale,98

1999; Burgisser et al., 2015) so that magma becomes super-saturated at pressures of above99

800 MPa ( 30 km depth).100

O. Melnik et al. (2020) have shown that for realistic magma compositions and val-101

ues of the gas and bubble content, the elastic deformation of surrounding rocks forced102

by the expanding bubbly magma can be fast enough to generate seismic waves. They103

approximately estimated a volume of degassing magma of ∼ 103−104m3 would be nec-104

essary to explain amplitudes of signals recorded from the DLP earthquakes beneath the105

Klyuchevskoy volcano. Nevertheless, this model contained important approximations.106

First, an instantaneous bubble nucleation in the whole batch of magma was assumed,107

similar to B. Chouet et al. (2006). However, such scenario is unlikely within the slowly108

uplifting magma batch. In this case, we can rather expect that the babble growth will109

be first triggered in a small volume and than spontaneously propagate through the rest110

of the magma body. Second limitation of O. Melnik et al. (2020) was that only a spherical-111

shape intrusion was modeled. Also, excitation of seismic waves was not explicitly com-112

puted and the amplitudes of seismograms were predicted based on a simplified approx-113

imation.114
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To overcome the mentioned shortcomings, we developed a more complete and ac-115

curate model of generation of seismic waves by the pressure variations caused by bub-116

bles growth in magma. The model is based on an accurate numerical solution of cou-117

pled fluid-elastic equations and includes: (1) a bubble nucleation front propagating from118

initial trigger point, (2) a sill-shape magma intrusion, and (3) an exact estimation of the119

associated seismic potency (moment) tensor in order to compute the seismograms.120

We start with formulating the mechanical model in section 3. A particular atten-121

tion is payed to an accurate description of the compressibility of the bubbly magma and122

its variations in association with the bubble growth. We then apply the developed me-123

chanical framework to model the gas bubble growth in an intrusion shaped as a horizon-124

tal sill. The numerical implementation and model settings are described in section 4. The125

results of the modeling are presented in section 5 and their implications are discussed126

in section 6. In particular, after considering solutions for a single sill-shaped intrusion127

with different parameters, we introduce a case of two closely located sills and model their128

interaction. We then speculate how such interaction can result in consecutive trigger-129

ing of the bubble growth in multiple closely located intrusions and lead to generation130

of earthquake swarms or seismic tremors.131

3 Mechanical model of a DLP earthquake source132

3.1 Conceptual model133

We consider a scenario illustrated in Figure 1a. Basaltic magmas rising from the134

mantle are underplated beneath the Moho forming sill-shaped intrusions. Following O. Mel-135

nik et al. (2020), we consider that H2O-CO2 rich basaltic magma becomes oversaturated136

at these depths leading to a spontaneous nucleation and rapid growth of gas bubbles within137

the sill (Figure 1b). Magma degassing in an initial small volume leads to perturbations138

of the pressure in its vicinity that, in turn, results in nucleation and growth of new bub-139

bles. Such “nucleation” front propagates along the whole sill (Figure 1c) causing it ex-140

pansion (Figure 1d) and leading to elastic deformation of the surrounding rocks and gen-141

eration of seismic waves that are then recorded by seismographs installed at the surface.142

3.2 Mathematical formulation for a coupled fluid-solid system with bub-143

bles144

The mechanical model for the scenario described above consists of a sill-shaped cav-145

ity filled with a viscous fluid (magma) embedded in an elastic medium (rocks). We solve146

the equations of motion for a continuum media in the whole volume of the model with-147

out body force:148

ρ
∂2ui

∂t2
=

∂σij

∂xj
(1)

where ρ – material density; ui – displacement vector; σij – stress tensor. The total strain149

is calculated from the displacement field as:150

εtij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(2)

Different stress–strain constitutive relations (different rheology) are adopted for the151

magma and the surrounding material. The host rock is simulated as perfectly elastic isotropic152

Hookean solid (εt = εe, where index e corresponds to elastic deformations). The con-153

stitutive stress-strain relations for elastic deformations are:154

σij = λεekkδij + 2µεeij (3)
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Figure 1. Schematic representation of the DLP source model. (a) General geometry with a

source (a sill filled with a rapidly degassing magma highlighted with the red color) located at the

crust-mantle boundary and the station recording seismic waves located at the surface. (b)-(d)

Main stages of the rapid degassing of the magma within a sill.

where λ and µ are Lame elastic modulus.155

Magma is approximated by Maxwell visco-elastic body with the total strain, εtij ,156

being a sum of the elastic, εeij and irreversible, εirrij , strain components.157

εtij = εeij + εirrij , (4)

Adopting the Newtonian stress – strain-rate relations for a viscous fluid, the de-158

viatoric stress, τij = σij + Pδij (where P = −trace(σij)/3 is the pressure) we obtain:159

τij = η
∂εirrij

∂t
, εv = P/K (5)

where η is the melt viscosity. The volumetric strain component εv for the bubble-free160

magma is calculated using the magma compressibility K. The magma remains bubble-161

free until the pressure is above the critical value associated with super-saturation of the162

gas dissolved in the melt.163

As soon as the critical magma super-saturation is reached, bubbles nucleate and164

start to expand. The dynamics of bubble growth under various conditions have been widely165

discussed in the literature (see reviews by (Sparks, 1978; Gardner et al., 2023) and ref-166

erences therein). According to the bubble growth model (Lyakhovsky et al., 1996) the167

gas diffusion into the small bubble is very efficient at the initial stage of growth follow-168

ing the nucleation. The initial pressure difference or nucleation pressure is partly com-169

pensated by the surface tension term, which decreases as inverse of the bubble radius,170

1/R. The surface tension steeply decreases with the bubble growth and the pressure driv-171

ing the bubble expansion practically remains constant. At this stage, the exponential172

increase of the bubble radius is controlled by the viscosity of the surrounding melt and173

the nucleation over-pressure ∆P = Ps − P0 or the difference between the saturation174
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pressure, Ps, and the pressure in the surrounding melt, P0. With the increase of the bub-175

ble radius, the efficiently of the diffusion decreases, and the rate of the bubble growth176

is controlled by the diffusive gas flux from the surrounding melt cell with a radius S. Fi-177

nally, the bubble size and gas pressure approach their equilibrium values depending on178

the initial values of pressure, gas concentration, and cell size, as well as melt properties.179

The initial cell size, S0, or the melt volume surrounding every bubble may be calculated180

assuming certain number of bubbles nucleated from the unit melt volume, or bubble num-181

ber density, Nd:182

4

3
πS3

0 =
1

Nd
(6)

The details of a single bubble growth model developed by (O. Melnik et al., 2020)183

consists of Raleigh-Lamb equation coupled with diffusion equations for multiple dissolved184

volatile and is briefly discussed in Appendix Appendix A.185

The pressure inside the bubble Pg just after nucleation is equal to the saturation186

pressure Ps. It is several tens of MPa higher than the initial pressure in the surround-187

ing melt P0. At final stage of the bubble growth both gas and melt Pm pressures approaches188

to the equilibrium pressure, Peq. We can define the pressure in the bubbly magma Pb189

as:190

Pb = Pgα+ Pm(1− α), (7)

where α is the volume fraction of bubbles, α = R3

S3
0
.191

Figure 2 shows the overpressure, Pb−P0, evolution in the bubbly magma pocket192

simulated by the model from O. Melnik et al. (2020) for three different values of the bub-193

ble number densities, Nd = 1013/m3 (green line), Nd = 1014/m3 (red line), Nd = 1015/m3
194

(blue line). Here we use the initial over-pressure of ∆P = Ps − P0 = 40 MPa (Shea,195

2017). This pressure increase leads to a deformation of the surrounding rock mass and196

serves as a source pressure for the sill opening. The S-shape of the pressure curves could197

be well approximated by an exponential function:198

Pb = Peq − (Peq − P0) ∗ exp(b ∗ δtγ) (8)

where δt is time since the bubble nucleation; γ = 2.4. The fitting coefficient b significantly199

depends on the assumed bubble number density. The fitted values are: b = −28 for Nd =200

1013/m3, b = −187 for Nd = 1014/m3, and b = −1355 for Nd = 1015/m3. Figure 2201

shows the comparison between calculated and fitted pressure variations for different num-202

ber density of bubbles.203

The equilibrium pressure in the melt pocket depends on the deformation of the sur-204

rounding rock and volume change of the considered bubbly melt pocket. It is calculated205

using the mass conservation law of the gas, stored in the bubble and dissolved in the sur-206

rounding melt, mg = Const.:207

mg =
4

3
πS3

0Cρm +
4

3
πR3ρg =

4

3
πS3

0Csρm (9)

where Cs is the gas concentration at the super-saturation needed for the bubble nucle-208

ation, ρm is the melt density. We use linear approximation for gas density, ρg:209

ρg = ar(P − P0) + br (10)
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Figure 2. Comparison between calculated and fitted pressure variations for different number

density of bubbles

and solubility, C:210

C = ac(P − P0) + C0 (11)

with the following values: ac = 1.4410−5/MPa, ar = 0.586kg/m3/MPa br = 419.0kg/m3.211

The value of C0 defines the volatile concentration at pressure P0.212

Substituting these linear approximation into the gas mass balance equation (9)213

S3
0ρm (ac(Peq − P0) + C0) +R3 (ar(Peq − P0) + br) = S3

0ρm(ac(Ps − P0) + C0) (12)

and dividing by S3
0 leads to:214

ρm (ac(Peq − P0) + C0) + α (ar(Peq − P0) + br) = ρm(ac(Ps − P0) + C0) (13)

By solving equation (13) against Peq we obtain the relation that adjusts equilib-215

rium pressure in equation (8)216

Peq =
ρmacPs + α(arP0 − br)

αar + acρm
(14)

Equation (8) together with (14) govern the evolution of the source pressure in the217

bubbly magma. As soon as the nucleation condition is reached in particular cell instead218

of using equation (5) to calculate the pressure from volumetric strain, we assume that219

the pressure is specified by equation (8) and the volume fraction of bubbles is calculated220

as a difference between the total volume change and the elastic melt expansion:221

α = εv − Pb/K; (15)
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The equilibrium pressure is then calculated from equation (14). Obtained Peq and222

re-calculated Pb values are used for the time marching.223

If this deformation is sufficiently rapid, the seismic waves are transmitted into the224

surrounding elastic media and recorded by seismographs as volcanic earthquakes. The225

earthquake source mechanism is estimated by integrating the irreversible strain over the226

sill volume:227

Πij(t) =

∫
V

εirrij (t)d3x (16)

Following Ben-Menahem and Singh (2012) this tensor is called potency or geomet-228

rical moment. The time-dependent moment tensor components are calculated using the229

Hook stress-strain relations with Lame parameters λ and µ of the host rock:230

Mij(t) = λΠkkδij + 2µΠij (17)

Synthetic seismograms are then computed as a convolution of the time-dependent231

seismic moment with the Green’s function. For the latter we use the far-field P and S232

waves in a homogeneous elastic media (Aki & Richards, 2002). The near-field terms of233

the Green’s function are ignored because the source-receiver distance is significantly larger234

than the wavelengths at dominant frequencies (above 1 Hz).235

4 Numerical method and model settings236

The 3D numerical modeling was performed using Explicit Finite Difference Lagrangian237

method, based on the FLAC (Fast Lagrangian Analyze of Continua) algorithm originally238

developed by Cundall (1988) for elasto-plastic rheology and implemented in the ITASCA239

software. The FLAC algorithm was modified for visco-elastic media (Poliakov et al., 1993).240

A modified version of this code incorporating heat transport is known as PAROVOZ and241

is widely used by many researchers. Lyakhovsky et al. (2001) developed their own 3-D242

code for quasi-static visco-elastic damage rheology modelling, which was used in many243

geodynamic applications. Later on the code was modified for dynamic processes, by re-244

ducing force damping to realistic values corresponding to wave attenuation. The numer-245

ical time-step was defined according to the Courant–Friedrichs–Lewy stability condition246

for explicit time-marching simulations. Technical details of the numerical approach for247

dynamic modelling of seismic wave propagation were discussed by Lyakhovsky et al. (2016).248

We considered several cases of the model geometry. Most of simulations were per-249

formed for the model volume 200x200x100 m with a 50 m radius and 3 m thick penny-250

shaped sill located in the center (Figure 3a). In a few cases the model size have been dou-251

bled (both model dimensions and sill radius) keeping the same thickness. In the last se-252

ries of the model runs two penny-shaped sills with 40 meter radius located in the same253

plain with three different distances, 40, 45, 50 m., between their edges (Figure 3b). The254

adaptive grid with tetrahedral elements with 0.5 meter grid step represents the sill vol-255

ume. The grid size gradually increases in vertical direction away from the sill.256

Equation (1) is solved with fixed zero displacement boundaries with attached nar-257

row layer of highly damping material that prohibits the reflection of waves traveling in-258

side the host rock. The initial stress is equal to the solubility pressure P0 and zero de-259

viatoric components.260

The elastic material surrounding the sill has the properties close to those of the man-261

tle: the density ρ = 3000 kg/cm3, bulk modulus K of 80 GPa, and rigidity (shear mod-262

ulus) µ of 50 GPa. With these properties the seismic wave velocities in the host rock are:263

Vp=7 km/s, Vs=4.1 km/s. The density of the melt inside the sill is ρm = 2800 kg/cm3,264
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a) b)

Figure 3. Geometries used in numerical simulations. (a) A penny-shaped sill of 50 m radius

and 1 m thickness. Red color show the volume in which the bubble grow is triggered. (b) Two

penny-shaped sill of 40 m radius and 1 m thickness. The bubble growth is triggered in the center

one of the sills as shown with red color.

bulk modulus 10 GPa, and very low rigidity (5 orders of magnitude below the host rock265

rigidity). Melt viscosity (η) varied between 10 and 103 Pa*s between different model runs.266

These values provide numerical stability of the Maxwellian visco-elastic solution with neg-267

ligibly small elastic shear strain components in the melt. The shear stress in the melt268

is controlled by the product of the strain rate and melt viscosity, like in the Newtonian269

fluid. For the small volume fraction of bubbles the magma viscosity variations due to270

bubble content might be neglected. During the simulation the event potency is calcu-271

lated by integrating the inelastic strain over the volume of the sill (equation 16).272

After estimating the potency tensor, we compute the propagation of seismic waves273

through the crust with average density of 2900 kg/m3 and P and A wave velocities of274

6062 and 3500 m/s, respectively. We consider a source-receiver distance of 40 km and275

a take-off angle at the source of 30◦. This approximates the geometry with a curved seis-276

mic ray reaching a station located nearly above the source.277

5 Results278

During the study we considered fifteen different models (see Table 1), twelve of them279

for a single sill (Figure 3a) and the last three for two discs (Figure 3b). All the simu-280

lations start with a spontaneous bubble nucleation in the 5 meter circle area located in281

the center of the sill (red zone in Figure 3). In the case of a non-deformable surround-282

ing material and adopted melt parameters the maximal over-pressure may grow up to283

about 40 MPa in respect of the initial pressure P0. However, its final value is significantly284

reduced because of the elastic deformation of the surrounding rock and the increase of285

the sill volume (see equation (14).286

5.1 Single sill configuration287

Figure 4 shows four horizontal and vertical cross sections for sequential snapshots288

of pressure evolution for model N1-B (see Table 1 for parameters). Dashed lines on each289

cross section indicate the boundaries of the magmatic sill, where the bubble nucleation290

is expected.291
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Figure 4. Snapshots of pressure evolution in time in a model N1-B. Left and right frames

show horizontal and vertical cross-sections at Z=0 and Y=0, respectively. Time is indicated

above the frames.
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Run Model Sill size Nd Nucleation Melt viscosity Potency
# ID m 1/m3 threshold, kPa Pa s m3

1 N1 A 50 1013 10 100 22.325
2 N1 B 50 1013 30 100 21.692
3 N1 C 50 1013 50 100 20.238
4 N2 A 50 1014 10 100 22.286
5 N2 B 50 1014 30 100 22.133
6 N2 C 50 1014 50 100 21.895
7 N3 A 50 1015 10 100 22.121
8 N3 B 50 1015 30 100 21.875
9 N3 C 50 1015 50 100 21.651
10 N1 B V01 50 1013 30 10 22.300
11 N1 B V10 50 1013 30 1,000 22.359
12 N1 B L100 100 1013 30 100 100.41
13 N4 1 2x40 Dist. 120 3 1013 20 100 28.686
14 N4 2 2x40 Dist. 125 3 1013 20 100 28.167
15 N4 3 2x40 Dist. 130 3 1013 20 100 14.391

Table 1. Run parameters

During the early stage of the pressurization in the nucleated zone (reddish colors),292

the sill opening results in the decreased fluid pressure around this zone (bluish colors)293

leading to new nucleation and bubble growth. The location of the narrow yellow ring be-294

tween these zones corresponds to the radially propagating bubble nucleation front. The295

front expansion is driven by the “crack waves” resulting from elastic-acoustic coupling296

on the sill boundaries an propagating along the sill (e.g., B. Chouet, 1986; B. A. Chouet,297

1996). The exact cylindrical symmetry is preserved during the sill expansion since the298

melt and surrounding rocks are homogeneous. The size of the area with the elevated pres-299

sure where the bubble are nucleated is about 20 m for the first snapshot and the nucle-300

ation front reaches the sill edge (50 meter) during 0.1 s. This means that the nucleation301

front propagates at the rate of about 0.5 km/s.302

Seismic source properties, synthetic seismograms, and their Fourier amplitude spec-303

tra for model N1-B are shown in Figure 5. As expected for vertically expanding hori-304

zontal sill, the potency tensor is dominated by the ZZ component. Its conversion into305

seismic moment with equation (17) results in a diagonal tensor with ZZ component ap-306

proximately three times larger than YY and XX (e.g., pure horizontal tensile crack). All307

three non-zero moment tensor components are proportional to the ZZ potency function308

whose time dependence defines the source time function. The body wave displacement309

and velocity is proportional to its first and second time derivatives, respectively. The lat-310

ter, shown in Figure 5b is dominated by a low-frequency pulse corresponding to the ki-311

netics of the bubble growth. Much weaker high frequencies correspond to bouncing of312

the “crack waves” withing the sill (e.g., B. A. Chouet, 1996). Resulting synthetic seis-313

mograms (Figure 5c) contain both P and S waves with amplitudes close to the obser-314

vations. Their frequency content is also close to the observations (Figure 5d). The rel-315

atively long coda seen in the observed signal and not reproduced in the synthetic seis-316

mograms most likely arises from the scattering of seismic waves within the heterogeneous317

volcanic media, i.e., from the propagation effect whose explanation would require using318

a more realistic Green’s function.319

For other cases with higher Nd values, the nucleation front propagates two (N2 se-320

ries) and even more than three (N3 series) times faster. The bubble nucleation in the321

whole sill occurs relatively fast ( 0.1 s), while the overall duration of the sill expansion322
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Figure 5. Seismic signature of model N1-B. (a) Components of potency (thick gray lines)

and seismic moment (thin black lines) tensors as function of time. (b) Second derivative of the

ZZ potency function. (c) Comparison of synthetic and observed seismograms shown with black

and gray lines, respectively. East-component seismogram of a DLP earthquake occurred on June

26, 2012 recorded at station LGN located on the slope of the Klyuchevskoy volcano (see supple-

mentary material for details) is shown as “data” (signal was high-passed at 0.5 Hz to remove the

microseismic noise. (d) Normalized Fourier amplitudes of signals shown in (c) smoothed in a 1

Hz wide moving window.
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Figure 6. Influence of nucleation threshold ∆P on seismic source time functions. Three con-

sidered models differ by the value of this parameter: N1-A 10 kPa, N1-B 30 kPa, N1-C 50 kPa.

(a) ZZ components of the seismic potency tensors as function of time. (b) Normalized Fourier

amplitude of second derivatives of the ZZ potency function.

vary between 0.2 and 0.8 s for the series of nine model setting (lines 1-9 in Table 1).323

Therefore, the overall duration is mainly controlled by the kinetics of the bubble growth.324

The nucleation of new bubbles under appropriate conditions occurs extremely fast and325

the nucleation time scale is well below the time scale of the front propagation (for the326

discussed sill size) and future sill pressurization.327

The bubbles nucleate when the over-saturation pressure is exceeded (e.g., Hirth et328

al., 1970). The level of the super-saturation depends on the temperature and a number329

of melt properties including surface tension, volume, and concentration of water molecules330

in the melt, as well as distance between them, diffusion coefficient of volatiles at the bubble-331

melt interface, probability that a nucleus at the top of the barrier will go on to form the332

new phase, rather than dissolve (Zeldovich factor), and others. With a huge uncertainty333

of these parameters and difficulties in their experimental constrain, we used three dif-334

ferent values of the bubble number density ( Nd = 1013, 1014, and 1015 1/m3 ) and super-335

saturation thresholds (∆P = 10, 30, and 50 kPa), assuming instantaneous nucleation when336

the target super-saturation is reached. Comparison of time-dependent potency for dif-337

ferent simulations demonstrate that the pressurization rate weakly depends on the nu-338

cleation threshold, ∆P (Figure 6), and it is strongly affected by the bubble number density,Nd339

(Figure 7). The general pattern of the evolving pressure is very similar to the one shown340

in Figure 5, but differs only by the rate of pressurization. The sill expands significantly341

faster in the case with elevated Nd values.342

Two additional simulations (10, 11 in Table 1) were performed to study a possi-343

ble impact the melt viscosity, which was increased and decreases by an order of magni-344

tude covering the realistic range of the basaltic melt properties. The difference in the345

pressurization rate (potency increase, not shown here) between these two cases and the346

model N1-B is negligibly small. The rate of the magma flow becomes important only at347

high viscosities (above 105 Pa s) typical for rhyolitic magmas (Hess & Dingwell, 1996)348

and controls the rate of sill pressurization.349

Similarly to the classical seismological scaling relations we expect stronger event350

with larger potency (area times opening) proportional to the sill size. For the same pres-351

sure inside the sill with radius increased by a factor of two, we expect the sill opening352

to increase by a factor
√
2, since penny-shaped crack opening is scaled as square root of353

the disc radius. Together with four times area increase (size in a power two), the potency354

should increase by a factor 22.5 ≈ 5.66. However, opening of the sill leads to the reduc-355
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Figure 7. Influence of bubble number density Nd on seismic source time functions. Three

considered models differ by the value of this parameter: N1-B 1013, N1-B 1014, N3-B 1015. (a)

ZZ components of the seismic potency tensors as function of time. (b) Normalized Fourier ampli-

tude of second derivatives of the ZZ potency function.

tion of the equilibrium pressure of the bubbly magma inside the sill. The results of the356

model N1-B-L100 show that the potency for the 100 m sill, instead of 50 m, is about 100357

m3 meaning the increase by a factor 5 instead 5.66. The coupling between opening and358

pressure in the sill leads to a potency-area scaling with slightly deviates from the pre-359

dictions of the linear elasticity ignoring the pressure-size dependency.360

5.2 Configuration with two sills361

Expansion of the sill due to the bubble growth and pressurization leads to the de-362

formation of the surrounding elastic media and formation of a relatively wide zone with363

a reduced pressure clearly seen in the last snapshots of Figure 4. This pressure reduc-364

tion can initiate bubble nucleation in another sill or magma pocket located at a certain365

distance within the area of the negative pressure change (blue zone). Three last simu-366

lations demonstrate the sensitivity of the secondary nucleation to the distance between367

two discs (Figure 3b). In order to improve the numerical resolution without significantly368

increasing the computation time, we slightly decreased the disc radius to 40 m and placed369

the second disc at three different distances between their centers 130, 120, and 125 m370

(Table 1) or 50, 40, and 45 m between disc edges. Figure 8 shows the snapshots for the371

case N4-1. Slightly before 0.3 s the nucleation threshold (20 KPa) is achieved in the disc372

on the left and the nucleation starts on the right edge of this disc mostly affected by the373

pressurization of the first disc (snapshot 1 in Figure 8).374

Seismic response of a two-sill system is illustrated in Figure 9 for model N4-2 (sep-375

aration of 125 m). Nucleation of the first sill results in the initial rise of potency/moment376

values occurring between 0 and 0.3 s. This initial pulse is shorter that for model N1-B377

(Figure 5) and the dominant frequency higher mainly because of the smaller sill size. The378

bouncing of “crack waves” expressed in high frequencies seems to be more prominent in379

such smaller sill. The second sill nucleation starts at 0.6 s. The overall potency increases380

corresponding to two sills are nearly identical. At the same time, the second derivative381

of the potency function shows that the second impulse is relatively depleted in high fre-382

quencies. The reason for this is that the nucleation of the second sill starts not at the383

center but at the edge. As a result, the bouncing of “crack waves” is much less efficient.384

The time delay for the second sill nucleation strongly depends on the distance be-385

tween discs as shown in Figure 10. It increases from 0.3 to 0.6 s between separations of386

120 ans 125 m. For the 130 m distance between disc centers, the nucleation threshold387
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is never achieved. After the nucleation occurred, the nucleation front propagates toward388

the opposite edge of the disc with the rate controlled by the bubble growth parameters389

as discussed above. With pressure growth increase in both discs, the size of zone with390

a reduced pressure (blue colors) increases and may provoke nucleation in additional magma391

pockets, not necessarily aligned in the same plane. Vertical cross sections clearly demon-392

strate significant increase of the negative pressure zone in the Z-direction. Comparison393

between three cases of the N4 series shows that there exist certain critical distance for394

the secondary nucleation and the delay time strongly depends on this distance.395

6 Discussion and conclusions396

We developed an accurate model of generation of seismic waves by the pressure vari-397

ations caused by bubble growth in the magma. This model is based on a numerical so-398

lution of a fluid-elastic coupled equations and includes a bubble nucleation front prop-399

agating from initial trigger point in a sill-shaped magma intrusion.400

The results of our simulations confirm the hypotheses of O. Melnik et al. (2020)401

that the rapid growth of gas bubbles within magmatic intrusions can generate seismic402

waves with amplitudes and spectral content similar to those observed from DLP earth-403

quakes. In particular, we show that with modeling realistic shapes of the intrusions such404

as sills, a mostly volumetric expansion results in generation of stronger S waves than P405

waves. Our simulations show that realistic amplitudes can be predicted with modeling406

sills of ∼50 m of radius and ∼1 m of thickness. The object of such dimensions can cor-407

respond either to an individual small sill or to a pocket of oversaturated magma within408

larger intrusions.409

Additionally, our modeling shows that bubble nucleation front propagation is con-410

trolled by the coupled elasto-acoustic waves. This propagation is rapid comparing to the411

kinetics of the bubble growth. The later dominates the source time function and the spec-412

tral content of the emitted signals. This kinetics is controlled by the the bubble num-413

ber density Nd and the gas content in the magma (O. Melnik et al., 2020). The effect414

of bouncing of “crack waves” eventually leading to resonances of fluid filled cracks (e.g.,415

B. Chouet, 1986; B. A. Chouet, 1996; Maeda & Kumagai, 2017) is rather weak and is416

not necessary to explain the properties of the observed DLP signals.417

The results of our modeling presented in subsection (5.2) highlight a possibility of418

“interaction” between closely located intrusions when the elastic deformation caused by419

the degassing/expansion of the first sill can trigger the bubble nucleation in the next closely420

located magma pocket. We presented simulations for two “interacting” sills. This results421

can be extrapolated to a case of many closely located magma pockets acting in a cas-422

cade. Such behavior can explain the observation of DLP earthquakes often occurring as423

swarms of many events closely located in time (e.g., White et al., 1996; Shapiro, Droznin,424

et al., 2017; Song et al., 2023) eventually leading to emergence of deep volcanic tremors425

(e.g., Aki & Koyanagi, 1981; Soubestre et al., 2019; Journeau et al., 2022).426

The emergence of tremors would become favorable in a configuration where many427

“interacting” pockets of oversaturated magma are closely located. The results shown in428

Figure 10 demonstrate that with the selected model parameters and in approximation429

of in-plane circular sills, the interaction becomes possible when inter-sill distance approaches430

the sill radius. The “interaction” distance would then increase with decreasing the the431

nucleation threshold. The time delay between two “interacting events” would increase432

with increasing the inter-sill distance and also with decreasing the bubble number den-433

sity.434

More generally, some scaling relations based on the stress distribution around a pres-435

surized inclusion could be considered. The linear elasticity predicts that the pressure dis-436

tribution around the inclusion is proportional to the overpressure and decreases as a poly-437
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nomial function of the ratio R
d (R – disc radius, d – distance from the inclusion center).438

Near the edge of the inclusion the forth order term, (Rd )
4, is dominant and defines fast439

pressure decay away from the inclusion. The width of the zone with the negative pres-440

sure is expected to be of the order of the inclusion size. For a given distance, d, from the441

inclusion, the nucleation occurs when the pressure in the inclusion drops below certain442

critical value, which linearly increases with the nucleation threshold and decreases as (Rd )
4,443

which is the dominant term for the near-field solution.444

The presented modeling frameworks can be applied to magma pockets of arbitrary445

shapes. One possible direction of its application to better understand the origin of deep446

volcanic tremors would be to investigate the cascading of magma degassing in a system447

containing many sills and dykes with variable sizes (e.g. O. E. Melnik et al., 2021; Binde-448

man et al., 2023). A more challenging and important task would be to move from a “static”449

systems of interacting magma pockets and to model their time evolution and, in partic-450

ular, their refilling with fresh magma and volatiles which is necessary for functioning of451

sustained generation of deep volcanic seismicity.452
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Appendix A Single bubble growth model461

The process of a single bubble growth from a supersaturated magma is described462

by a set of Raleigh-Lamb equations together with diffusion equations for multiple dis-463

solved volatiles:464

∂

∂r

(
r2νr

)
= 0; νr|r=R =

dR

dt
; (A1)

Pg − Pm =
2σ

R
+ 4µ

dR

dt

(
1

R
− R2

S3

)
; (A2)

Pm = P 0
m +

4

3
G

(
S3 − S3

0

S3
0

)
; (A3)

∂cs
∂t

+ νr
∂cs
∂r

=
1

r2
∂

∂r

(
Dsr

2 ∂cs
∂r

)
; (A4)

4π

3

d

dt

(
R3ρgx

b
CO2

)
= 4πR2Jc; (A5)

4π

3

d

dt

(
R3ρg

(
1− xb

CO2

))
= 4πR2Jw; (A6)

Js = −Dcρm

(
∂cc
∂r

)
r=R

; Jw = −Dwρm

(
∂cw
∂r

)
r=R

. (A7)

ρg =

(
xb

CO2

ρCO2 (Pg, T )
+

1− xb
CO2

ρH2O (Pg, T )

)−1

; (A8)
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ρCO2 = (0.371 + 0.13× 10−3T )Pg + 1194.65− 0.4665T ; (A9)

ρH2O = (0.22 + 0.13× 10−3T )Pg + 892.2− 0.357T ; (A10)

Dw = cH2O exp

(
−8.56− 19110

T

)
; (A11)

Dc = exp

(
−13.99− (17367 + 1.945Pg)

T
+

cH2O(855.2 + 0.271Pg)

T

)
(A12)

Here t is time, r is the radial coordinate, R is the radius of the bubble, vr is the465

radial velocity, index s = w, c corresponds to water and carbon dioxide, respectfully,466

cc and cw are the mass concentrations of CO2 and H2O in the melt, Dc and Dw are the467

volatile diffusion coefficients, Pg is the pressure of the gas inside the bubble, Pm is the468

melt pressure, σ is the surface tension, µ is the magma viscosity, S is the radius of the469

cell, G is the shear modulus of the host rock, ρg is the density of the gas in the bubble470

that depends on the pressure, temperature T and bubble volatile composition xb
CO2

.471

The densities of pure CO2 and H2O are approximated at a limited P − T range472

using tables produced by NIST Chemistry WebBook (https://webbook.nist.gov/chemistry/).473

Diffusion equations (A4) are subjected to two boundary conditions: concentration474

gradients are equal to zero at the outer surfaces of the cell mimicking symmetry of the475

system. At r = R(t) volatiles in magma are in chemical equilibrium with the bubble.476

Thus, cs = ceqs
(
Pg, T, x

b
CO2

)
.477

The dynamics of bubble growth under various conditions have been widely discussed478

in the literature ((Gardner et al., 2023)). Based on the experimental observations we adopt479

that at the critical supersaturation for the bubble nucleation, the gas pressure, P0, is sev-480

eral tens of MPa above the pressure of the surrounding melt. This initial pressure dif-481

ference is compensated by the surface tension term (see equation A2), which decreases482

as 1/R. This surface tension decrease together with efficient volatile mass flux into the483

bubbles leads to a steep gas pressure increase. At the later stage the rate of the pres-484

sure growth decreases and gas pressure approaches to the equilibrium pressure, Peq.485
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Figure 8. Snapshots of pressure evolution in time in a model with two interacting sills (dis-

tance 120 m, model N4-1). Left and right frames show horizontal and vertical cross-sections at

Z=0 and Y=0, respectively. Times are indicated above the frames. Dashed lines indicate the

boundaries of the magmatic sill.
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Figure 9. Similar to Figure 5 but model N4-2.
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Figure 10. Comparison of seismic source time functions for models with two sills. (a) ZZ

components of the seismic potency tensors as function of time. (b) Second derivatives of the ZZ

potency function.
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