Timothy E $\operatorname{Dowling}^1$ 

 $^1{\rm University}$  of Louisville

December 27, 2023

# The Critical Latitudes of Jupiter and Saturn

## From Major Liabilities to Major Assets

Timothy E. Dowling, University of Louisville

Critical Latitude:

Local max. or min.

of PV = spin/depth ratio

# The Critical Latitudes of Jupiter and Saturn

#### From Major Liabilities to Major Assets

Timothy E. Dowling, University of Louisville

Critical Latitude:
Where Rossby waves
reverse direction

(The ice giants are not in this discussion because they do not have multiple critical latitudes.)



# The Critical Latitudes of Jupiter and Saturn

#### From Major Liabilities to Major Assets

Timothy E. Dowling, University of Louisville

Critical Latitude:
Where Rossby waves
reverse direction

(The ice giants are not in this discussion because they do not have multiple critical latitudes.)



Spin is proportional to depth:  $(\zeta + f) = PV * h$ 





Deep undulations are the tops of deep jets.

√ Juno

1988: Jupiter's Great Red Spot (GRS) was discovered to be twice as deep on its poleward side as its equatorward side.

Juno: PJ7 MWR, Cheng Li (private comm.)

#### References

Dowling and Ingersoll, 1988, *J. Atmos. Sci.* 45, 1380–1396 Dowling and Ingersoll, 1989, *J. Atmos. Sci.* 46, 3256–3278 Kaspi et al., 2018, *Nature 555*, 223–226 The tops of Jupiter's deep jets were discovered by:

1. Abandoning the established approach of assuming one form of interior-jet structure or another.

Instead, by:

2. Inferring interior jets from Voyager vorticity (spin) data.



1989:

The GRS straddles a critical latitude.

Juno has been quiet to date regarding critical latitudes.





1989:

The GRS straddles a critical latitude.

Juno has been quiet to date regarding critical latitudes.

√2011: Marcus & Shetty



Marcus and Shetty, 2011, Phi. Trans. R. Soc. A 369, 771–795

#### Jet Stream Theorems



This makes it appear that critical latitudes are major liabilities.

### But this is a common mistake. For example:

In the Wizard of Oz, Dorothy thinks "witches are old and ugly"...

but then she learns that "only bad witches are ugly."

Just so, we need to fill in the blank:

Only \_\_\_? \_\_critical latitudes are unstable.



2006: Wind and temperature data from *Voyager* and *Cassini* revealed that Jupiter is striped with critical latitudes (Read et al.).

Read et al., 2006, Q. J. R. Meteorol. Soc. 132, 1577–1603



1995: Multiple critical latitudes shown to maintain stability by phase locking the fastest (longest) Rossby waves.

Dowling, 1995, Ann. Rev. Fluid Mech. 27, 293-334

2009: The longest Rossby waves lock onto the planet's rotation period, yielding:

Read, Dowling & Schubert, 2009, Nature 460, 608-610

Jupiter: 9<sup>h</sup> 55<sup>m</sup> Saturn: 10<sup>h</sup> 34<sup>m</sup>

Multiple critical latitudes are major assets.

To use these assets, we need to understand how Rossby waves and critical latitudes govern jet stability.

### **Rossby Wave Example**

absolute vorticity

Elapsed time: 1902-02-15 03:19

EPIC 5.22

Jupiter

0.25° grid





Data Min = -2.14E-04, Max = -2.64E-05

Keaveney, Lackmann & Dowling

1880: Shear stability theorems began appearing.

```
Rayleigh (1880)
Kuo (1949)

Fjørtoft (1950)

Charney & Stern (1962)

Arnol'd (1966)

Ripa (1983)
```

2014: Shear stability theorems were non-dimensionalized for the first time.

Dowling, 2014, Int. J. Modern Phys. D 23, 1430006

"Supersonic" critical latitudes are stable.

"Supersonic" critical latitudes are stable.

The key to understanding how critical latitudes control Rossby waves is the non-dimensional Rossby Mach number,  $M_{\rm R}$  .

Rossby waves are unidirectional, hence there are 2 "supersonic" cases:



2014: The reciprocal Rossby Mach number concatenates these into a single stability region.

Rossby waves are unidirectional, hence there are 2 "supersonic" cases:



2014: The reciprocal Rossby Mach number concatenates these into a single stability region.

# How "supersonic" critical latitudes work, $M_R^{-1} < 1$



# How "supersonic" critical latitudes work, $M_R^{-1} < 1$



# How "subsonic" critical latitudes work, $M_R^{-1} > 1$



# How "subsonic" critical latitudes work, $M_R^{-1} > 1$



# Jet Stream Theorems, Updated



# Jet Stream Theorems, Updated



This makes it appear that <u>"subsonic"</u> critical latitudes are unstable.

## Jet Stream Theorems, Sharp

To prove that a "subsonic" critical latitude is both necessary and sufficient for shear instability:

- 1. Prove that a "subsonic" critical latitude is necessary and sufficient for the existence of a neutral mode.
- 2. Prove that a neutral mode is necessary and sufficient for the existence of an unstable mode.

# Jet Stream Theorems, Sharp



Deguchi, Hirota, and Dowling, Stability of alternating jets: necessary and sufficient conditions

## To Do List

- Determine winds and temperatures from PV inversion (elliptic operator) as in Sun and Lindzen (1994), but with  $M_R^{-1}=1$  instead of  $M_R^{-1}=0$  (w/ Voyager vorticity paradigm shift).
- Add the shear stability constraint,  $M_R^{-1} \le 1$ , to *Juno* gravity inversions everywhere there are jets (troposphere and interior).
- For systems with multiple stable critical latitudes (Jupiter, Saturn), apply the tight constraint (major asset),  $M_R^{-1} \cong 1$ :

1989: tops of Jupiter's deep jets (w/o Juno gravity data)

2009: Saturn's 10<sup>h</sup>34<sup>m</sup> period (w/o *Cassini* ring-wave data)