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Key Points :

• The CLM5 irrigation scheme is applied at the point and regional scale and enhanced with the option
to use prescribed irrigation data

• Soil moisture dynamics were simulated well using the prescribed data while the default irrigation could
not fully reproduce field practices

• Regional simulations using different irrigation scenarios suggest substantial water saving potential for
improved irrigation management

Abstract

Irrigation strongly influences land-atmosphere processes from regional to global scale. Therefore, an accurate
representation of irrigation is crucial to understand these interactions and address water resources issues.
While irrigation schemes are increasingly integrated into land surface models, their evaluation and further de-
velopment remains challenging due to data limitations, e.g. irrigation amounts and timing, and soil moisture
(SM). This study assessed the representation of irrigation and its effect on crop yield in the Community Land
Model version 5 (CLM5) through implementation of an irrigation data stream that allows to directly use
observed irrigation data. Simulations were conducted at the point scale for two instrumented apple orchards
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using the CLM5 irrigation routine as well as the implemented data stream. Furthermore, irrigation require-
ments and the effect of deficit irrigation on crop yield and crop water use efficiency (CWUE) at the regional
scale were simulated and discussed. The irrigation data stream performed better in representing observed
SM dynamics compared to the standard irrigation routine that could be further improved by implementing
more flexible irrigation schedules and irrigation efficiency. At the regional scale, simulated irrigation and yield
showed a high sensitivity to climatic changes caused by the topographic gradient. While a 25 % reduction in
irrigation had negligible negative effect on simulated yield and CWUE, a reduction of 50 % notably reduced
both variables. These effects varied with climatic conditions, soil properties and timing of irrigation. These
results showcase how CLM5 could be utilized for irrigation and water resources management.

Plain Language Summary

Irrigation impacts how land and atmosphere interact, both locally and globally. Therefore, it is important
to understand the effects of irrigation practices and improve how water resources are managed. Advanced
models such as land surface models now include irrigation. However, missing information on irrigation and
other data make it difficult to evaluate and improve irrigation in these models. This study looks at how
irrigation and crop yield are represented in the Community Land Model (CLM5). The model was tested
using observed data and its own prediction of irrigation, and then compared to observed soil moisture and
yield in two apple orchards. The model was able to predict changes in soil moisture caused by irrigation.
Simulated irrigation was different in timing and amount from the observed one. This could be improved by
adding more details to the irrigation routine. Next, irrigation and crop yield were studied in the entire region.
Both were sensitive to changes in climate caused by the diverse landscape. A small reduction in irrigation
did not negatively affect yield while halving the irrigation caused it to decrease noticeably. These findings
show that land surface models like CLM5 can be useful tools for managing irrigation and water resources.

1 Introduction

Irrigation plays a vital role in sustaining global food production by providing a reliable water supply to
agricultural systems, especially in semi-arid or arid regions [McLaughlin and Kinzelbach , 2015]. With a
growing global population and increasing food demands, irrigation contributes significantly to ensuring food
security by enabling higher crop yields and reducing the vulnerability of agricultural systems to climate
change [McDermid et al. , 2023; Mueller et al. , 2012]. On the other hand, poor management of irrigation
water has led to the depletion of groundwater resources [Dangar et al. , 2021;Scanlon et al. , 2012; Wada
et al. , 2010] and water use conflicts in many regions [Cai et al. , 2003; Eshete et al. , 2020; Gurung et al. ,
2006]. Apart from quantitative and qualitative effects on water resources [Garćıa-Garizábal et al. , 2012; Y
Zhang et al. , 2022], irrigation substantially impacts biogeophysical and biogeochemical processes at the land
surface through alteration of the hydrological cycle or energy budget. This has subsequent effects on climate
[DeAngelis et al. , 2010;Erb et al. , 2017; Ferguson and Maxwell , 2012; Gordon et al. , 2005; Sacks et al. ,
2009]. The multidimensional role of irrigation calls for increased efforts in effective irrigation management
and irrigation impact studies using large-scale approaches. This is crucial not only to meet food demands
and mitigate future increases in climate change induced water stress, but also to understand its interactions
and feedback mechanisms within the Earth system [Elliott et al. , 2014; McDermid et al. , 2023].

Modeling can be a powerful tool to simulate complex interactions in agricultural systems, evaluate different
irrigation and climate scenarios, and provide decision support for water resources management [Blyth et al. ,
2021; Pongratz et al. , 2018]. This necessitates comprehensive modeling frameworks that combine field-scale
representations of crop growth and irrigation with a more holistic assessment of the impacts of irrigated
agriculture on water resources and climate at larger scale [Bin Peng et al. , 2020]. Process-based crop models
include a range of crop parameterizations that provide a unique way to study crop growth processes in
response to irrigation practices by using physical and biological principles. However, their main purpose is
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to simulate yield at the field scale, often over a single growing season, while lacking the interface with the
land surface, soil, and climate [Cheng et al. , 2020]. Land surface models (LSMs), on the other hand, provide
a more holistic representation of the land-atmosphere interactions to capture the feedback mechanisms
between irrigation, vegetation, hydrological processes, and climatic conditions beyond the field scale [Blyth
et al. , 2021]. Conversely, they often lack more detailed physiological and genetic representations of crops
and irrigation management [Lombardozzi et al. , 2020; B Peng et al. , 2018]. This limits the ability of LSMs
to reliably simulate yield and irrigation water withdrawals leading to poor model performance and biases
in related processes such as carbon, energy, and water fluxes over intensively irrigated regions [Leng et al. ,
2015;Lombardozzi et al. , 2020; Ozdogan et al. , 2010; Z Zhang et al. , 2020].

In recognition of the important role of human land management, efforts to advance the representation of
crops and irrigation in LSMs are ongoing [Pokhrel et al. , 2016]. Various land surface models such as OR-
CHIDEE, the Community Land Model (CLM), and Noah-MP have since added crop modules [Levis et al. ,
2012; Liu et al. , 2016; Smith et al. , 2010]. New crop representations have been developed to improve crop
growth and management processes [Boas et al. , 2021; B Peng et al. , 2018] or to add new crop types [Olga
Dombrowski et al. , 2022; Fader et al. , 2015;Fan et al. , 2015]. Rather simple irrigation schemes are generally
incorporated based on soil moisture thresholds [de Vrese et al. , 2016; Ozdogan et al. , 2010; Sacks et al. ,
2009], while more recent developments include the integration of irrigation techniques [Leng et al. , 2017;
Yao et al. , 2022], irrigation water withdrawal from different sources [Leng et al. , 2017; Xia et al. , 2022],
and water availability limitation [Yin et al. , 2020]. These studies, however, were performed at river basin,
county, or global level with coarse spatial resolutions between 10 and 100 km. Simulated irrigation was vali-
dated against rather uncertain statistics like total yearly irrigation water withdrawals, without considering
specific irrigation practices. Crop and irrigation data at higher spatial (<5 km) and temporal (e.g. daily or
sub-seasonal) resolution is needed to evaluate the representation of local irrigation schedules in LSMs and
support irrigation management decisions. However, data to reliably constrain and further develop implemen-
ted irrigation schemes is often lacking, e.g. irrigation amount and timing along with continuous soil moisture
(SM) observations [Lawston et al. , 2017].Lawston et al. [2017] first evaluated the sprinkler irrigation scheme
of the NASA Land Information System LSM with point and gridded SM observations at 1 km resolution.
While the model could not capture the field scale heterogeneity and overestimated irrigation amounts, it
captured well the seasonal variability and regional average SM dynamics. The authors did however use a
prescribed crop phenology (green vegetation fraction) and did not examine the effect of irrigation on crop
yield. A recent study examined the effect of different irrigation setups on maize yield and two water use
efficiency definitions using the dynamic crop and irrigation scheme of the Noah-MP LSM [Huang et al. ,
2022]. They found that modeled crop yield was sensitive to irrigation quantity and timing (in which crop
growth stage irrigation was applied) and based on these results recommended an optimal SM threshold to
trigger irrigation. While the authors lacked data to accurately assess the irrigation amount and crop yield,
their work presents a first use of a LSM to study the effects of deficit irrigation on crop growth, yield and
water use efficiency.

The work presented here builds upon previous studies to continue the evaluation and improvement of irri-
gation representations in LSMs combining local irrigation, SM, and yield observations. In particular, this
study applies CLM version 5, with a recent extension to represent deciduous fruit trees, to model irrigation
and crop growth in a Mediterranean catchment. Specifically, we aim to: (1) evaluate the existing irrigation
scheme of CLM5 and enhance its flexibility to account for local irrigation management practices; (2) assess
whether the model can reproduce soil moisture dynamics and crop growth in irrigated apple orchards using
the enhanced model capability; (3) examine the potential to improve regional irrigation management by
modeling the effect of different irrigation scenarios on crop yield and water use efficiency at the catchment
scale.
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2 Materials and Methods

2.1 Study Area

Located in central Greece, the Pinios Hydrologic Observatory (PHO) covers an area of approximately 45
km2 (Figure 1). The PHO was established in 2015 to study the Pinios catchment hydrological processes and,
ultimately, to support local authorities in the sustainable management of water resources [V Pisinaras et al.
, 2018]. It is characterized by a Mediterranean climate with an annual precipitation of 500 to 1200 mm, and
highest precipitation amounts in the winter months, annual potential evapotranspiration of approximately
1100 mm, and annual average air temperature of 15 °C [Bogena et al. , 2018]. The area displays a range of
altitudes from 1500 m in the northern part down to less than 200 m in the plain. The mountainous part
of the catchment features steep slopes and is covered by forests, mixed with shrubs and grassland, while
the southern plain is primarily characterized by agriculture and small villages. In the plain, sandy loam
soils dominate while sandy clay loam and loamy soils also occur [V Pisinaras et al. , 2018]. The PHO is
located in one of the most productive agricultural areas in Greece owing, among other factors, to widespread
irrigation practices that account for over 85 % of the local freshwater consumption [Panagopoulos et al. ,
2018]. The main cultivation are apple and cherry orchards (i.e., ˜78 % of agricultural area) that are irrigated
between May and October. There are a few other rainfed fruit and nut tree orchards in the area with < 5 %
coverage. Annual crops including corn, cereal (mainly winter wheat), and potato are grown on the remaining
agricultural land. They are partially irrigated, depending on precipitation occurrence, but cover a negligible
part of the total irrigated area. Irrigation in the orchards is typically applied through micro sprinklers and the
demand is almost entirely met by abstraction from the alluvial groundwater system through water wells, most
of which are privately owned. Overexploitation of groundwater in the area due to poor irrigation management
practices, amongst others, has previously been reported by Panagopoulos et al. [2018] andVassilios Pisinaras
et al. [2023] resulting in the decline of groundwater levels.

Within the PHO, irrigation management in two irrigated apple orchards, hereafter referred to as S09 and
S10, was studied (Figure 1). Both orchards have a size of around 1.2 ha, with a mild southern slope of <5
%. The soil texture is sandy loam and sandy clay loam with a high gravel content (13-29 %) (Table 1) and
many larger cobbles (>64 mm according to Wentworth [1922]), especially below 30-50 cm depth. Trees are
planted in rows, oriented North-South with 3.3 m distance between rows and an in-line distance of 1.5 m
(approximately 2020 trees ha-1). The trees in S09 and S10 were planted in 2013 and 2015 respectively, with a
mixture of 3 to 5 different varieties. Trees are pruned to a height of 3.5 m throughout the winter season and
residues are mulched back into the soil. Bud burst typically occurs in the second half of March while fruit
development starts with the end of flowering in mid to late April. Harvest dates range from late August to
mid-November depending on the harvested variety. Major leaf fall starts in late October and continues until
mid-November, sometimes until early December. Trees are irrigated with a micro sprinkler system with a
maximum flow rate of 60 L hour-1 that is installed below the canopy, halfway between the tree stems of the
same row. The irrigation season typically starts in May and continues until October. Orchards are fertilized
with 80 kgN ha-1 at the end of flowering in April. Pest and fungicide treatment is applied prior to flowering
and after flowering until late June. The grass in the alleys is generally mowed once a month starting in March
or April and mowing material is left on the ground. During periods of intense heat, the actively growing
grass cover provides a cooling effect to protect the apples from heat damage.
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Figure 1: Top left: Map overview of Greece and of the study area location. Top right: Elevation and land
use of Pinios Hydrologic Observatory with the locations of climate stations. Bottom: Apple orchards S09
and S10 with instrumentation.

Table 1: Main characteristics of the two apple orchards (S09 and S10).

Orchard
ID

Altitude
(m.a.s.l.) Size (ha) Size (ha)

Apple
varieties

Soil
depth
(cm)

Sand
content
(%)

Clay
content
(%)

Soil
organic
carbon
content
(%)

Gravel
content
(%)

S09 200 1.24 3 3 0-30 30-60
60-90

64.5 63.0
59.9

17.8 21.9
24.6

1.5 1.2 0.7 23.3 20.6
13.7

S10 190 1.13 5 5 0-30 30-60
60-90

64.3 65.8
65.4

12.5 12.7
13.7

1.44 0.86
0.66

28.2 28.7
28.7

2. 2 Data Sources

The meteorological data that are necessary to drive CLM5 including precipitation, air temperature, at-
mospheric pressure, wind speed, relative humidity, and incoming solar radiation, were acquired from three
meteorological stations located at different altitudes within the PHO (Figure 1) as well as two stations
located in the orchards S09 and S10. For the agricultural plain, detailed soil texture and organic matter

5
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information was collected during an extensive soil sampling campaign. In total, 116 locations were sampled
with one sample from the topsoil (0-50 cm) and a second sample from the subsoil (50-100 cm) (Figure 2). In
addition to the point measurements, the LUCAS topsoil physical properties for Europe soil map [Ballabio
et al. , 2016] and the European Soil Database (ESDB) derived data product [Hiederer , 2013] provide soil
information for the area at a resolution of 500x500 and 1000x1000 m, respectively (Table 2). These data
sources were combined to create soil texture (point measurements+LUCAS) and soil organic carbon (point
measurements+ESDB) maps for model input (Figure 2). In a first step, for the unsampled regions, data
points were extracted from the map products in a sampling density equal to the average density of the soil
sampling locations (˜580x580 m). Next, the extracted points were combined with the sampled points to a
single set of data points (Figure 2). Then, the points were interpolated to the target resolution of 100x100
m using ordinary kriging and a spherical variogram model with a radius that included 30 measurements
around an estimation point. Topographic information was available through the European Digital Elevation
Model (EU-DEM) [Copernicus , 2016], version 1.1 at a spatial resolution of 25x25 m (Figure 1). Detailed
maps of the agricultural fields and orchards were provided by the Hellenic Payment and Control Agency
for Guidance and Guarantee Community Aid while the land use of the remaining area was digitized from
satellite imagery, using ArcGIS® software by Esri (Figure 1).

Orchard scale SM data were retrieved from S09 and S10, which were equipped for extensive monitoring in
September 2020 (Figure 1). SM was monitored via a SoilNet wireless sensor network [Bogena et al. , 2010;
Bogena et al. , 2022] with 12 nodes per orchard. Each node had six SMT100 SM sensors (Truebner GmbH,
Neustadt, Germany) divided into two separate profiles which were installed at 5, 20, and 50 cm depth as well
as two TEROS21 soil matric potential (SMP) sensors (METER Group Inc., Pullman, USA) installed at 20
cm depth. Irrigation amounts were recorded with TW-N flowmeters (TECNIDRO, Genova, Italy), installed
at different irrigation sectors within the orchards. Meteorological data was collected by the cost-effective
but reliable all-in-one Atmos41 weather station (METER Group Inc., Pullman, USA) installed above the
canopy in each orchard [O. Dombrowski et al. , 2021]. A more detailed description of the instrumentation and
setup used to monitor SM dynamics, irrigation, and meteorological variables is given inBrogi et al. [2023].
Additionally, S10 was equipped with six SFM-1 sapflow sensors (ICT International Pty Ltd, Armidale,
Australia) to estimate whole-tree transpiration. The sapflow sensors were installed on the trunk of six trees
to represent, as much as possible, the orchards’ trees in terms of height, perimeter, and vigor covering all five
varieties. The installation and data correction followed the procedure outlined in Burgess [2018]. Phenology
of the three main apple varieties was monitored using six phenocams (SnapShot Cloud 4G, Dörr GmbH,
Germany) installed in S10.

Table 2: Main characteristics of the different soil data products used for the surface file creation of the regional
case.

European Soil Database Derived data LUCAS topsoil physical properties for Europe

Underlying observational data European Soil Database, Harmonized World Soil Database, Soil-Terrain Database LUCAS 2009 soil survey (around 20 000 points) for EU-25
Resolution (m) 1000x1000 500x500
Soil texture Yes Yes
Organic matter Yes No
Depth ranges (cm) 0-30, 30-100 0-20
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Figure 2: Top, from left to right: Soil sampling locations within the Pinios Hydrologic Observatory, soil data
from the European soil database and the LUCAS topsoil map. Bottom: Soil texture input datasets of sand,
clay, and organic carbon derived from the three data sources.

2.3 The Land Surface Model

2.3.1 The Community Land Model

The Community Land Model v.5 (CLM5) used in this study is the latest version of the land component in
the Community Earth System Model (CESM) as described in detail by D M Lawrence et al. [2019]. CLM5
simulates land surface energy fluxes as well as hydrological, biogeophysical, and biogeochemical processes that
are driven by atmospheric input variables in combination with soil and vegetation states and characteristics
[D Lawrence et al. , 2018]. These processes are simulated on different subgrid units within a grid cell.
Subgrid units include (1) the land unit defining the land use category (e.g., vegetated, urban, crop), (2)
the column that is represented by 20 soil and 5 bedrock layers and resolves state variables and fluxes of
water and energy in the soil, and (3) the patch level capturing biogeophysical and biogeochemical differences
between plant functional types (PFTs) (e.g., broadleaf deciduous forest, evergreen shrub, maize, soy). The
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one-dimensional multilayer vertical water flow in the soil is simulated using a modified Richards equation
[Dingman , 2015]. Soil hydraulic parameters for these calculations are derived from pedotransfer functions
of sand and clay [Clapp and Hornberger , 1978; Cosby et al. , 1984] and organic properties of the soil [D
Lawrence and Slater , 2008]. With version 5 of CLM, a plant hydraulic stress routine was introduced that uses
a simple hydraulic framework to model water transport along a water potential gradient from soil via plant
to atmosphere [Kennedy et al. , 2019]. The new configuration replaces soil potential with leaf potential
as the basis for plant water stress while root water potential is used to drive root water uptake. A new
biogeochemistry and crop module, BGC-Crop, enhanced the representation of major crop functional types
and land management practices such as irrigation and fertilization. Unlike natural vegetation that competes
for water and nutrients, crops operate on separate soil columns that may be irrigated or non-irrigated, thus
allowing for differences in land management [D M Lawrence et al. , 2019].

The recent development of CLM5-FruitTree enables the simulation of deciduous fruit trees and associated
management practices in CLM5. The main features of the new sub-model include (1) a perennial phenology
routine that allows the woody plant parts to remain on the orchard for several years, (2) carbon storage
dynamics that enable the regrowth of annual plant parts, (3) an adapted carbon and nitrogen allocation, and
(4) the description of typical management practices such as transplanting, pruning, and orchard rotation.
Additionally, a new apple plant functional type was parameterized while fertilization and irrigation use
the default CLM5 schemes. The complete model development of CLM5-FruitTree is described in Olga
Dombrowski et al.[2022].

2.2.3 Irrigation module in CLM5

Irrigation is performed individually over each irrigated soil column and responds dynamically to SM based
on a daily check at 6 am. If crop leaf area is non-zero and if the available soil water over a specified irrigation
depth zirrig (=0.6 m by default) is below a defined threshold, irrigation is triggered. The irrigation amount
is based on the SM deficit (??????) that is calculated overzirrig:

Dirrig = wthresh − wavail Eq. 1

where ?????? is the available SM (mm) and ????? is the irrigation SM threshold (mm) calculated as:

wthresh = fthresh (wtarget − wwilt) + wwilt Eq. 2

where wtarget is the irrigation target SM (mm),wwilt is the SM at wilting point (mm), and ????? is a tuning
parameter. If fthresh= 1 (default), irrigation will be triggered once the available SM is below wtarget. If
fthresh = 0, irrigation is only triggered once the available SM falls below wwilt. Target SM is determined as
the sum of SM at the target SM of each soil layer:

wtarget =
∑nirr

i=1 θtarget,i ∗ zi Eq. 3

where nirr is the index of the soil layer corresponding tozirrig, zi (mm) is the depth of the soil layeri and
θtarget,i is the target volumetric SM value in a given soil layer. Similarly, wwilt is calculated as the sum of
SM at wilting point of each soil layer:

wwilt =
∑nirr

i=1 θwilt,i ∗ zi Eq. 4

where θwilt,i is the volumetric SM value at wilting point in a given soil layer. θtarget andθwilt

8
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are calculated by inverting the equation for soil matric potential (SMP) (Eq. 7.53 in D Lawrence et al.
[2018]) at the respective depth. By default, the SMP parameters ψtarget andψwilt are set to -34 and -1500
kPa, considered field capacity and permanent wilting point, respectively.

In addition to wtarget, wwilt,fthresh, and zirrig, the user can define the irrigation duration (??????). Irrigation

is applied directly to the ground surface at an intensity equal to
Dirrig

Tirrig
. Irrigation parameters are not spatially

distributed but are defined globally for a given model domain independent of geographic location or crop
type.

2.2.4 Irrigation data stream implementation

To study and evaluate the modeling outcomes under specific observed irrigation practices, an irrigation data
stream was implemented in CLM5 to enable continuous prescription of irrigation parameters, i.e., irrigation
rate, duration, and start time. These parameters are defined separately for one or multiple crop types and for
each grid cell. This allows to account for differences in irrigation management depending on crop type and
location to accurately reproduce local management practices. In addition, using the data stream, the applied
irrigation amount can be easily adjusted, thus creating different irrigation scenarios while maintaining the
same irrigation schedule. As irrigation is prescribed, the irrigation SM threshold that is calculated in the
standard irrigation routine is not needed for this implementation.

2.3 Model Implementation

2.3.1 Orchard scale simulations

For the simulations of S09 and S10, CLM5-FruitTree was run in single point mode and forced with hourly
meteorological data from the two orchards. Fertilizer amount and soil texture were adjusted according to
information provided by the farmer and soil samples. The default parameter file was adapted to account for
the local climate and orchards characteristics. Crop parameters such as the different phenological stages were
adjusted according to observations from the phenocam pictures, harvest information, and communication
with the farmer. In the absence of observed bud break dates, parameters for the bud break prediction model
were calibrated such that bud break would occur around the estimated date of 15th of March using the
available local climate data. The modified crop parameters are listed in Table 3. Additionally, the observed
irrigation time series was used as input to the irrigation data stream.

In order to balance ecosystem carbon and nitrogen pools and total water storage in CLM5 [D Lawrence et
al. , 2018], a 200 years model spin-up was performed. For this, the CRUNCEPv7 atmospheric forcing data
set from 1986 to 2016 [Viovy , 2018] and the parameterized apple plant functional type were used. Using
the model state at the end of the spin-up, simulations were then re-initiated from planting in 2013 (S09)
and 2015 (S10) using meteorological data from climate station CS1 (2016-2020) and data from the Atmos41
sensors installed in the orchards for the years 2021 and 2022.

Table 3: Local crop parameters for the apple plant functional type.

Parameter Variable name (unit) Value

Base temperature for bud burst prediction and GDD summation baset (°C) 8.5
Chilling requirements for bud burst crequ (chill days) -126
Critical temperature to initiate leaf offset crit temp (K) 281.15
Final root allocation coefficient until harvest arootf2 (unitless) 0.12
GDD needed from bud break to canopy maturity lfmat (°days) 1350
GDD needed from bud break to harvest hybgdd (°days) 2100
GDD needed from bud break to the fruit ripening phase grnrp (°days) 640
GDD needed from bud break to the start of fruit development grnfill (°days) 130
Initial leaf allocation coefficient fleafi (unitless) 0.25

9
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Parameter Variable name (unit) Value

Maximum canopy height ztopmx (m) 3.65
Maximum harvest date in the northern hemisphere max NH harvest date (mmdd) 1120
Maximum LAI laimx (m2 m-2) 2.1
Maximum rooting depth root dmx (m) 0.6
Planting density nstem (# m-2) 0.202
Ratio of height: radius at breast height taper (unitless) 95
The slope of the relationship between leaf N per unit area (gN/m2) and Vcmax25top (umol CO2/m2/s) s vcad (μmol CO2 s-1 gN-1) 30

2.3.2 Regional case simulations

A regional model domain, encompassing the entire PHO, was set up at a spatial resolution of 1 ha. This
resolution was a compromise between accounting for the diverse, patchy landscape with small field and
orchard sizes (from a few 100 m2 to some hectares) and a reasonable computational effort. For the land
use information, the database of agricultural fields and orchards was combined with the remaining land uses
digitized from satellite imagery. Since CLM5 allows to define fractional land use in a single grid cell, the
overall area of individual land use classes was still accurately represented.

The slope of the terrain was derived from the EU-DEM. Furthermore, the surface parameter defining the
depth to bedrock was adjusted based on the minimum (0.27 m) and maximum (1.3 m) depths available
to roots from the ESDB, which were linearly scaled by the slope. In the plain area, the value was set
between 10 and 20 m to represent the thick alluvial deposits and prevailing free drainage conditions. Lastly,
the maximum fractional saturated area (fmax) that controls runoff generation was set to zero for all grid
cells containing crops due to the deep groundwater table, gentle sloping in the plain, and assuming that
there are no large saturated areas in the fields and orchards. fmax was set to 0.16 in the remaining areas
of the catchment as extracted from the global dataset. The adjusted parameters for apple were used as
described in section 2.3.1 while a separate parameter set was used for cherries to account for the earlier
start of the growing season and harvest, and lower productivity as compared to apples. For the sake of
consistency, parameters for winter wheat and potato were also modified based on Boas et al. [2021] with
minor adjustments to growing seasons to account for the local climate [Dercas et al. , 2022; FAO , 2023].

For the model spin-up, the available global GSWP3 v1 atmospheric forcing data set providing data from
1901 to 2010 at a 3-hourly temporal and 0.5° spatial resolution was used [Lange and Büchner , 2020]. The
model was spun-up for 720 years until equilibrium for soil carbon and nitrogen pools, soil water storage, and
other ecosystem variables was reached for all land uses in the catchment. For the remaining simulations, the
model was forced with a 7-year time series obtained from the observational data of meteorological stations
CS1, CS2 (2016-2022), and CS3 (2018-2022) in the study area as well as from the two Atmos41 stations
in orchard S09 and S10 (2021-2022) (Figure 1). The data was spatially interpolated to the same resolution
as the surface data using inverse distance weighting. The interpolation of precipitation and temperature
included a weighting factor for elevation variation using a linear correlation between station elevation and
mean annual station precipitation and temperature, respectively, as described in Panagoulia [1995]. Another
short spin-up period of 3 years was performed as the orchards had just reached their maximum lifespan
before orchard rotation is initiated and new seedlings need a couple of years to reach the full productivity
level [Olga Dombrowski et al. , 2022].

2.4 Simulation scenarios

To assess how well CLM5-FruitTree can represent soil moisture dynamics and crop growth in the study area,
1D simulations were first performed in orchards S09 and S10 for the growing seasons 2021 and 2022. Two
model set-ups were tested: the first used the default CLM5 irrigation routine with adapted parameterization
to approximate the observed irrigation schedule, while the second was prescribed with the observed irrigation

10
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through the irrigation data stream. By directly applying irrigation water to the ground surface, CLM5
assumes an irrigation efficiency of 100 % which is hardly achieved in sprinkler irrigation [Gilley and Watts
, 1977]. For the irrigation data stream, we thus assumed that only 75 % of the water volume measured
by the hydrometers is reaching the ground surface while the rest is lost through evaporation from leaf
surfaces, transpiration of the grass cover in the orchard alleys, and leakages in the piping system. Modeling
results were compared to observed SM and tree transpiration at a daily time step as well as crop yield
and development. Pearson’s r (r), the root mean square error (RMSE) and the percent bias (%bias) were
calculated for statistical model evaluation.

For the regional case, we conducted three simulation experiments to test different irrigation scenarios. Re-
gional data on irrigation outside the instrumented orchards S09 and S10 was not available. Thus, the model
was run using the default CLM5 irrigation routine with the same parameterization that was used for the
point scale simulations, in the following considered the full irrigation scenario (FI). Based on this scenario,
two deficit irrigation scenarios were created for both apple and cherry orchards with 75 and 50 % of full
irrigation (DI75 and DI50, respectively) using the irrigation data stream. All scenarios were run over the
same 7-year period (2016-2022). To investigate the differences between irrigation scenarios, multi-year ave-
rages and seasonal dynamics of irrigation, SM, crop growth or yield, and crop water use efficiency (CWUE)
were calculated and compared. In this study, CWUE was defined as the amount of yield produced per unit
volume of water consumed [Ibragimov et al. , 2007]:

CWUE = Y
ET Eq. 5

where Y is crop yield in t ha-1 and ET is crop evapotranspiration in mm.

3 Results

3.1 Orchard scale simulations

3.1.1 Soil moisture and matric potential dynamics

3.1.1.1 Outside the irrigation season

Figure 3 and Figure 4 show the SM time series at 5, 20, and 50 cm depth and SMP at 20 cm depth for
S09 and S10, respectively. The interquartile range (Q25-Q75), calculated from 24 measurements (12 nodes
with two profiles each) for every depth, shows considerable variability in SM, especially in S10 and at 50 cm
depth. This reflects the high heterogeneity of soil texture and gravel content that was observed during soil
sampling. When comparing the observed SM dynamics in the two orchards, S09 showed 4-12 vol% higher SM
on average compared to S10 throughout the measurement period. The soil textural analysis of both orchards
clearly showed a higher clay and organic matter content, and lower gravel content in S09 compared to S10
(Table 1). Frequent rainfall during the winter months (631 and 606 mm in 2021 and 2022 respectively) kept
the soil close to saturation with average SMP around -8.5 kPa in both orchards. Starting in April the soil
gradually became drier causing a steep decline in SMP to around -500 kPa (S09) and -300 to -400 kPa (S10)
by mid-May. The decline resulted from low rainfall amounts and increased evaporation demand along with
water consumption from the grasses in the alleys and the fruit trees. In addition to the observations, the
simulation results using both the standard CLM5 irrigation routine and the irrigation data stream are shown
for the corresponding CLM5 soil layers in Figure 3 and Figure 4. Table 4 lists the model quality parameters
used to evaluate the simulation results. The model simulations outside the irrigation season, using either
irrigation approach, corresponded well to the observed SM in S09. However, in S10, CLM5 overestimated
SM in the soil profile by on average 4.5-7.3 vol%. The observed differences in SM between both orchards
were not captured by the model where SM values in S10 were only 1-2 vol% higher. In April and May, just
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before the start of the irrigation season, the simulations showed the strongest deviation from observed values
for both orchards as the soil drying was much less pronounced in the simulations.

3.1.1.2 Irrigation season

In 2021 and 2022, the farmer irrigated every 5-7 days starting mid-May through October. Irrigation amounts
per event varied strongly and averaged 14 and 25 mm in S09 and S10 respectively (upper panel of Figure
3 and Figure 4). Irrigation increased SM by up to 10 vol% in the top 5 cm and about 5 vol% at 50 cm
depth. To represent the observed irrigation schedule, the CLM5 irrigation routine can be adjusted in two
ways, by (1) adapting ψtarget or (2) tuning thefthresh parameter. Figure 5 shows the effect that different
values of these two parameters have on several aspects of the simulated irrigation (e.g., start of irrigation
period, number of irrigation events, irrigation frequency) as well as on SM and crop yield. In both cases, a
lower parameter value results in a later onset of irrigation, fewer irrigation events and lower total irrigation
amounts. However, the parameters have different effects on irrigation frequency, whereby smaller values
of fthresh result in less frequent irrigation events while the irrigation volume per event increases (Figure 5).
Changing ψtarget, on the other hand, has little effect on the irrigation frequency and volume. SM in the upper
50 cm of soil increases with increasing values of both parameters. The increase is exponential forψtarget with
values ranging between 0.195 and 0.275 cm3 cm-3 and almost linear forfthresh with a somewhat smaller range.
Consequently, varying ψtarget has a more pronounced effect on yield compared to fthresh for the investigated
range of parameter values.

For the model run using the standard irrigation routine, we setfthresh to 0.7 while leaving ψtarget at its default
value of -34 kPa, which resulted in approximately weekly irrigation events of on average 26 mm per event,
starting mid-May. This, however, could only partially reproduce the observed irrigation schedule and SM
dynamics compared to using the irrigation data stream. Nevertheless, both irrigation approaches showed
fluctuations of similar magnitude compared to the observed values in the upper soil. Less dynamics than
observed were simulated at 50 cm depth for both irrigation approaches and both orchards. The wet bias
in S10 was still persistent throughout the profile for the simulation using the irrigation data stream while
simulated SM based on the default irrigation routine dropped to the range of observed values (Figure 4).

Simulated and observed total yearly irrigation were similar in S09 with the observed effective irrigation being
433 and 458 mm (75% of actual measured irrigation) and simulated amounts being 425 and 439 mm for
2021 and 2022, respectively. In S10, observed effective irrigation amounts were considerably higher than in
S09, which could be expected considering the lower observed SM in S10. Compared to the observed 706 and
586 mm, for 2021 and 2022, respectively, the model applied only 393 and 388 mm, which is a result of the
simulated wet bias.

12
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Figure 3: The upper panel shows precipitation, and observed and simulated irrigation for orchard S09 in mm
d -1 . The central panels show observed soil moisture (SM) as interquartile range between the 25 th and the
75 th percentile from 24 measurements, simulated SM using the standard CLM5 irrigation routine and the
irrigation data stream at 5, 20, and 50 cm depths. The bottom panel shows observed interquartile range and
simulations using the two irrigation approaches of soil matric potential (SMP) at 20 cm depth for orchard
S09 for 2021 and 2022.
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Figure 4: The upper panel shows precipitation, and observed and simulated irrigation for orchard S10 in mm
d -1 . The central panels show observed soil moisture (SM) as interquartile range between the 25 th and the
75 th percentile from 24 measurements, simulated SM using the standard CLM5 irrigation routine and the
irrigation data stream at 5, 20, and 50 cm depths. The bottom panel shows observed interquartile range and
simulations using the two irrigation approaches of soil matric potential (SMP) at 20 cm depth for orchard
S10 for 2021 and 2022.

Table 4: Pearson’s r (r), root mean square error (RMSE) and percent bias (%bias) for soil moisture (SM) at
5, 20 and 50 cm depth and soil matric potential (SMP) at 20 cm depth in orchards S09 and S10 simulated
using the irrigation data stream. The first number refers to 2021 and the second number to 2022. Statistics
were calculated for the whole year and for the irrigation season only (21 th May to 25 th Sep for 2021; 15 th

May to 10 th Oct and 14 th May to 2nd Oct for S09 and S10, respectively, in 2022).

S09 S09 S09 S10 S10 S10

Soil
depth
(m)

r RMSE
(vol%)

%bias r RMSE
(vol%)

%bias

Whole
year
2021/2022

0.05 0.88/0.81 3.97/3.89 13.13/8.18 0.77/0.83 9.55/8.08 50.21/39.89

0.2 0.88/0.86 3.10/3.23 10.14/9.26 0.75/0.84 8.18/7.68 37.30/35.55
0.5 0.78/0.80 3.08/3.49 -6.60/-

6.63
0.56/0.72 8.06/7.65 37.48/36.13

SMP
(kPa)

0.82/0.63 56.25/89.67 -27.54/-
37.14

0.62/0.75 41.65/122.41 -35.44/-
76.14

Irrigation
season
2021/2022

0.05 0.86/0.74 3.85/3.02 15.47/4.30 0.70/0.83 5.13/8.43 21.13/45.60

0.2 0.84/0.77 3.00/2.84 10.86/8.10 0.67/0.77 2.3/7.70 4.51/37.32
0.5 0.48/0.27 3.12/3.74 -6.27/-

6.14
0.25/0.45 1.73/7.10 -

0.74/33.74
SMP
(kPa)

0.73/0.64 46.61/61.36 -11.08/-
7.54

0.65/0.66 52.04/98.86 -81.11/-
72.95
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Figure 5: Effect of irrigation target soil matric potential (ψtarget) and irrigation threshold fraction ( fthresh)
on total irrigation amount (Irr), irrigation starting date (Irr start), number of irrigation events (Irr events),
irrigation frequency (Irr frequency), irrigation dose per event (Irr dose), soil moisture (SM) at 5, 20, and
50 cm depth, and yield. Shown are yearly average values for S09 and the year 2016.

3.1.2 Tree transpiration and fruit harvest

The comparison of measured sapflow with simulated transpiration expressed as water consumption per tree
is presented in Figure 6. Observed sapflow varied significantly between different trees resulting in large
inter-quartile ranges. The two model runs showed no difference in simulated tree transpiration despite the
difference in irrigation amount and timing. In 2021, CLM5 showed higher values and a slight shift in the
seasonal dynamic as a result of a too early onset of leaf development compared to the observed values
(LAIsim in Figure 6). Simulated leaf duration and total transpiration agreed well with the measurements
in 2022. Tree transpiration peaked in July with a measured monthly average of 12.5 (2021) and 20.2 L
tree-1 day-1 (2022) and simulated values of 25.1 (2021) and 24.5 L tree-1day-1 (2022). The better agreement
between simulated and observed values in 2022 followed a reinstallation that was performed after partial
sensor failure and unreliable measurements that resulted in data gaps for the 2021 growing season. The 2021
data should therefore be handled with care when interpreting absolute values. Simulated maximum leaf area
index (LAI) was reached in early July. Full canopy cover in the orchards occurred in the second half of June,
so slightly earlier, based on visual inspection of the phenocam pictures (data not shown). Simulated leaf
area and hence transpiration fell to zero by December, which broadly agreed with observed sapflow and leaf
senescence deduced from the phenocam images.
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Figure 6: Whole tree transpiration estimated from the sapflow sensors in orchard S10 together with simulated
transpiration expressed in liters per tree and day, and simulated leaf area index (LAI sim) for 2021 and 2022.

Generally, fruit harvest in the orchards was performed between 17th of August and 30th of October in a first
and second harvest for most varieties. Due to very low apple quantity, harvest in 2022 occurred in a single
harvest between 1st Sep and 15th Nov depending on variety. Simulated harvest in 2021 occurred on 12thand
18th Sep for S09 and S10 respectively, and a few days earlier in 2022. The two simulation runs using either
the adapted CLM5 irrigation routine or the irrigation data stream showed no difference in harvest amounts.
In 2021, simulated yield was close to the observed values while the exceptionally low yield in 2022 was
not captured by the simulations (Table 5). Visual inspection of the phenocam images showed significantly
less flowers on the trees in 2022 compared to 2021 (data not shown). No extreme weather conditions were
observed during the winter 2021/2022 that could explain the reduced flowering. Other possible reasons for
the low number of flowers and hence low yield in this year may be related to alternate bearing of the varieties
or other factors (e.g., plant physiology or traits, pest and disease or certain management practices) that are
not included in the model.

Table 5: Observed and simulated apple yield in t ha-1 for orchards S09 and S10 for 2021 and 2022.

Yield in S09 (t ha-1) Yield in S09 (t ha-1) Yield in S09 (t ha-1) Yield in S10 (t ha-1) Yield in S10 (t ha-1)

Year obs sim obs obs sim
2021 44 47 47 47 51
2022 16 49 11 11 50

3.2 Regional simulations

3.2.1 Irrigation signature in the PHO

Figure 7 shows simulated seasonal mean SM and sum of evapotranspiration (ET) within the PHO averaged
over the 7-year period. Depicted values represent grid cell averages, meaning they are the weighted average
of all land uses in a given cell. During the winter months and into spring, SM is high throughout the
catchment, but with a declining gradient along the North-South axis from the mountainous part down to the
plain. ET in the catchment is low during winter but starts to increase in spring, revealing a discernible pattern
attributed to differences in land use (Figure 1). During the summer months, ET reaches its peak, displaying
a distinct irrigation signature with significantly higher ET values of 293 mm on average over irrigated land,
as opposed to 214 mm on average in the rest of the catchment. The pattern persists throughout autumn and
is also evident in summer and autumn SM, albeit less pronounced due to the lower productivity of rainfed
vegetation, resulting in reduced water uptake from the soil. The subsequent analysis will focus exclusively
on the irrigated land, more specifically on apple orchards, as they account for 91 % of the total irrigated
area.
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Figure 7: Seasonal mean soil moisture, and evapotranspiration sums in the PHO catchment, averaged over
the period 2016-2022.

3.2.2 Simulated spatial patterns

Figure 8 shows average and standard deviation of the 7-year simulation period for irrigation, SM, yield, and
CWUE for all apple orchards in the PHO, between 2016 and 2022. Modeling results show a clear spatial
pattern that is driven by climatic conditions following the topographic gradient (Figure 1) on the one hand
and soil characteristics on the other hand (Figure 2). Average yearly irrigation requirements range between
400 and 450 mm in the plain. The highest values are found in the southeast while considerably lower values
occur at higher altitudes in the northern part of the catchment (<200 mm). Harvest values show a similar
pattern because cooler temperatures and lower incoming radiation in the northern part of the catchment
result in lower crop productivity and thus smaller yields (16-38 t ha-1) compared to the plain where yields
are around 50 t ha-1 without much spatial variability. In addition to lower crop productivity and thus lower
crop water demands, spatial variability in irrigation requirements results from the higher precipitation in the
upper parts of the catchment that further reduces the need for irrigation as well as soil textural differences.
The latter is most evident in the southern part of the catchment where the higher clay content and the
consequently higher water holding capacity of the soil result in increased evaporation (not shown). This in
turn generates a greater irrigation demand resulting in slightly lower CWUE of orchards planted on these
soils. Soil textural differences are also reflected in the SM plot where areas with a higher percentage of clay
or organic matter show higher SM values than areas with sandier soils or soils that are lower in organic
matter. CWUE ranges from 57-65 kg ha-1 mm-1 in the plain to 35-45 kg ha-1 mm-1 in the northern part
of the catchment and largely reflects the spatial patterns of irrigation and harvest whereby high irrigation
requirements and low harvest lead to low CWUE. Inter-annual variability (standard deviation plots) within
the catchment shows similar patterns for irrigation, harvest, and CWUE and is higher in the northwestern
part of the catchment. The higher variability was driven by local temperature differences in some years that
delayed the onset of the growing season up to 14 days compared to the remaining orchards. Inter-annual
variability of SM is generally low without a distinct spatial pattern.
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Figure 8: Mean and standard deviation (SD) of average yearly irrigation, soil moisture in the root zone (0-60
cm), harvest, and crop water use efficiency (CWUE) for apple orchards within the PHO between 2016-2022
under full irrigation (FI).

3.2.3 Effect of irrigation deficit scenarios

The effect of deficit irrigation on total irrigation amounts, harvest, and CWUE of apple orchards in the
PHO for the moderate irrigation deficit scenario, DI75, and the more severe deficit scenario, DI50, are shown
in Figure 9. Yield differences between the FI and the DI75 scenario are almost negligible, ranging from a
decline of maximum 3 t ha-1 (5 %) to even slight increases in yield. However, the DI50 scenario resulted in
a clear decline of simulated yield with up to 12 t ha-1 corresponding to a 30 % reduction in yield compared
to the FI scenario. Nonetheless, orchards located at high altitudes and in the southeast on clay-rich soils are
still barely affected by the higher water deficit (<5 % decline in yield). Overall, annual water savings are
highest in the plain, averaging 100-125 mm for DI75 and 210-250 mm for DI50. CWUE shows a differing
pattern between both scenarios. While in DI75, CWUE declines slightly in the central part of the plain by
around 1 kg ha-1 mm-1 (2 %), there are large areas that show an increase in CWUE of similar magnitude.
The decline in CWUE is concentrated on the orchards growing on soils with a high percentage of sand. For
DI50, on the other hand, CWUE is almost exclusively showing a decrease of up to 8.8 kg ha-1mm-1 (17
%), though again CWUE for orchards in the higher altitudes and the ones located on soils with higher clay
content are less affected.
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Figure 9: Absolute and relative differences in irrigation amount, harvest, and crop water use efficiency
(CWUE) between the full and the 75 % irrigation scenario (DI75-FI), and the full and 50 % irrigation
scenario (DI50-FI) for apple orchards within the PHO during the period 2016-2022.

3.2.4 Irrigation and yield at the inter-annual and monthly scale

Yearly irrigation amounts, precipitation during the main irrigation season, and harvest averaged for all
apple orchards in the PHO are shown in Figure 10. For the investigated 7-year period, irrigation ranges
between 297 and 487 mm while precipitation is around 167-322 mm from May to October. Differences in
precipitation drive the inter-annual variability in irrigation requirements whereby drier summer months, such
as 2019-2022, result in higher irrigation demand compared to wetter years. Yield ranges between 32 and 55
t ha-1, with 2019 and 2020 being the years with the highest yields due to favorable meteorological conditions
(high solar radiation and temperature). Notably, the effect of deficit irrigation on yield is strongest in these
two years reducing yield by >12 t ha-1for the DI50 scenario. In contrast, both the DI75 and DI50 scenario
have negligible effect on yield in the first three simulation years.
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Figure 10: Yearly sum of precipitation during the main irrigation season (May-Oct), irrigation, and harvest
averaged over all apple orchards within the PHO from 2016 to 2022, under full irrigation (FI) and the
difference for the 75 % and the 50 % deficit irrigation scenarios (DI75 and DI50).

Figure 11 shows the seasonal course of irrigation, precipitation, and fruit growth in the apple orchards
averaged over the PHO and the 7-year period. The simulated irrigation season starts in April or May and
lasts until October with negligible amounts still applied in November for some years. Monthly irrigation
requirements increase sharply between April and June until reaching their peak in August with on average
107 mm per month. Accordingly, August is also the month in which the greatest water savings occur for
the deficit scenarios. After that, irrigation declines rapidly. Fruit biomass increases steadily from April
to harvest in September with faster growth occurring in the earlier months. While fruit growth is barely
affected by a 25 % reduction in irrigation (DI75), for the DI50 scenario it decreases sharply in August and
to a smaller extent in July and September. The reduced fruit growth results in a yield loss of on average 0.5
t ha-1 for DI75 and 6.5 t ha-1 for DI50.

Figure 11: Seasonal pattern of monthly precipitation, irrigation, and fruit biomass averaged over all apple
orchards within the PHO and the period 2016-2022, under full irrigation (FI) and the difference for the 75
% and the 50 % deficit irrigation scenarios (DI75 and DI50).

4 Discussion

4.1 Evaluation of the CLM5 irrigation routine

The direct comparison of simulated SM dynamics to observed SM from a dense sensor network in two irrigated
orchards gave valuable insights into model performance. Our findings demonstrate that the standard CLM5
irrigation routine lacks the necessary flexibility to represent specific irrigation practices observed in the
orchards. Simulated crop growth and transpiration at the orchard scale were not sensitive to the difference
in irrigation amount and timing between the two model runs using the standard irrigation routine and the
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implemented irrigation data stream respectively. However, as differences between the simulated and actual
irrigation practices increase, the effects may become more important especially considering runoff generation
or sensible and latent heat fluxes that were not analyzed in this study. Similarly, if the irrigation is limited so
that the crop experiences some degree of water stress, the timing of irrigation may become more important.
This could be further tested by applying different irrigation schedules under various amounts of irrigation
using the irrigation data stream.

Prior studies using the irrigation module in CLM were limited to calibrating the target SM or adjusting the
irrigation threshold fraction to match gross irrigation requirements reported at the country or regional level,
or performed no calibration at all [Felfelani et al. , 2018; Leng et al. , 2015; Leng et al. , 2013;Zhu et al. ,
2020]. The model, however, does not currently consider restrictions on irrigation schedule, over irrigation, or
irrigation efficiency that significantly affect gross irrigation requirements as our results revealed. The newly
implemented irrigation data stream can be used to overcome some of these limitations by prescribing crop and
farmer specific irrigation schedules and amounts. This allows investigating the irrigation-induced effects on
e.g., crop yield, SM, or carbon and energy fluxes under observed irrigation practices and can help to identify
existing model biases by removing one possible source of uncertainty. While the use of the irrigation data
stream at larger scale is currently hampered by the limited availability of precise information on irrigation
practices in most areas [Felfelani et al. , 2018], it can serve as a valuable tool to investigate the modeled
effect of different irrigation schedules and water availability scenarios. This can offer a basis and direction
for further developments of the irrigation routine that are necessary for a more realistic representation of
irrigation management practices [Yao et al. , 2022].

4.2 Model uncertainties and limitations of this study

4.2.1 Parametric uncertainty

SM dynamics outside the growing season were well reproduced by CLM5, indicating that the model was
able to capture infiltration and soil water redistribution in the studied orchards. However, the significant
SM bias in S10 suggests structural and parametric uncertainty in the estimation of soil hydraulic properties,
probably due to inappropriate pedotransfer functions implemented in CLM5 [X. Han et al. , 2015]. Gao
et al. [2021] found that poor performance of CLM5 in reproducing observed root zone soil moisture was
mainly due to uncertainty in porosity estimates. In addition, a high content of rock fragments, which is
typical of many Mediterranean soils [Nijland et al. , 2010; Poesen and Lavee , 1994; Zalidis et al. , 2002],
can strongly influence the SM regime through non-linearity in soil hydraulic conductivity and by reducing
the soils’ effective porosity [Angulo-Jaramillo et al. , 1997]. For this reason, most pedotransfer functions fail
to correctly reproduce the hydraulic properties of stony soils [Nasri et al. , 2015], which likely led to biases
in simulated SM in S10. Further investigation of the results would be needed to confirm this hypothesis, e.g.
data assimilation of observed soil variables could be used to optimize soil hydraulic parameters [Strebel et
al. , 2022]. In both orchards, the simulations showed a lower simulated SM dynamic in 50 cm depth, which
could be the result of uncertainties in the rooting distribution and thus root water uptake within the soil
profile. The current parameterization of the vertical discretization of root fraction results in a rather shallow
profile while deeper roots may still contribute to root water uptake in the studied orchards. Shrestha et al.
[2018] encountered a similar issue when analyzing root zone SM on a grassland site using CLM3.5 and were
able to improve simulated SM dynamics by increasing the root fraction in deeper layers. This may help to
improve the simulated SM dynamics at 50 cm on our study sites.

The sensitivity experiments performed using two parameters of the CLM5 irrigation routine (Figure 5) and
the results from the irrigation scenarios revealed relatively low sensitivity of crop yield to reduced irrigation
(Figure 9). The new plant hydraulics introduced byKennedy et al. [2019] advanced the physical basis for
hydraulic stress in the model, but there is large uncertainty in its parameterization and in capturing the
relationship of plant water stress and SM deficit for different crops. To better quantify the model performance
and find the most suitable parameters for apple orchards, comparison of simulations to observations from
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stressed and non-stressed crops would be necessary. Additionally, sensitivity analysis of plant hydraulic
parameters, which was out of the scope for this paper, could help to better constrain these model parameters.

4.2.2 Crop representation

The PHO catchment is characterized by a diversity of small-scale farm holders resulting in considerable
heterogeneity in management practices, which cannot be fully captured by the model. While simulated
yield was close to observations during a “good” year for the point-scale simulations, according to Mattas et
al. [2019] average Greek apple production in 2016 was only ˜23 t ha-1. This suggests a great variability
in orchard productivity, apple cultivars, or type of end product (e.g. apples for direct consumption or for
juice) which would necessitate the inclusion of additional crop types and management practices in CLM5.
In striving for global applicability, CLM5 and other LSMs face constraints in computational resources and
often insufficient observational data to parameterize additional crop types, which results in biases in certain
regions, while others are more accurately represented [Lombardozzi et al. , 2020]. In our case, the model
demonstrated a strong correlation of yield and irrigation with the climatic gradient induced by the topography
in the PHO, indicating a high sensitivity to model forcing data. The large simulated differences in yield
between orchards in the plain (˜50 ton ha-1) vs. the higher altitudes (as low as 16 ton ha-1) may however
be exacerbated, as CLM5 employs a single set of parameters for a given crop across diverse geographies
and climates. In reality, various cultivars of the same crop type, along with plant physiological adaptations
to their environments, can lead to comparable productivity levels despite variations in climatic conditions.
This phenomenon is evident in the cultivation of numerous crops, including apples, across climates on a
global scale [Sherman and Beckman , 2002]. The issue has been addressed byLombardozzi et al. [2020] who
recommended further developments in CLM5 to improve phenological triggers and agricultural management,
and to include different cultivars. In the future, the incorporation of additional satellite-derived crop data,
advanced parameterizations, or the use of crop calendars to constrain these models may help reduce some
of the biases [Pongratz et al. , 2018; Yao et al. , 2022; Z Zhang et al. , 2020].

At the orchard scale, we found discrepancies between observed and simulated SM during the growing sea-
son that suggest limitations specific to the current representation of orchards. As CLM5 does not allow
intercropping, the actively growing grass cover in the orchard alleys is not included in the CLM5-FruitTree
sub-model [Olga Dombrowski et al. , 2022]. Consequently, our simulations do not account for the additional
root water uptake and transpiration as well as interception of the irrigation water from the grasses. The
former may explain the smaller simulated decline in SM early in the season compared to the observations,
while we considered the latter to some extent by assuming a reduced irrigation efficiency. In doing so, we did
however neglect the additional ET flux. Yao et al. [2022] developed and tested different irrigation techniques
in CLM5 and found an increase in canopy evaporation through increased interception for their implemen-
tation of sprinkler irrigation. However, the overall impact on ET and total applied irrigation remained
small compared to the control run using the standard CLM5 irrigation. More importantly, accounting for
conveyance and application losses would increase the simulated irrigation amount and could lead to more
realistic irrigation values [Yao et al. , 2022].

Despite these limitations, and though we could not validate the simulation of crop yield and irrigation
requirements in the PHO catchment due to the lack of observational data, the reasonable modeling results
at the orchard scale give some confidence in the robustness of the regional simulations.

4.3 Implications for irrigation management

We studied the relationship between crop yield and water use efficiency, and irrigation at the regional scale, as
it is determinant for a reasonable allocation of irrigation water according to crop needs. For most part of the
PHO, CWUE and yield were little affected when irrigation was reduced to 75 %, suggesting that this scenario
lies closer to the optimal irrigation that maximizes yield while minimizing water consumption as opposed to
the FI scenario. These results are similar to a study by Li et al. [2018] who used CLM to schedule irrigation
in a citrus orchard in Spain which resulted in 24 % less irrigation compared to the farmers’ practices. This
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could indicate that farmers irrigate too much when water is available and water prices are low [Latinopoulos
, 2005]. Simulated apple yield was sensitive to a reduction of 50 % of the applied irrigation water causing
up to 30 % decline in yields. The effect, however, varied with different meteorological conditions and soil
types within the PHO. At higher altitudes, cooler temperatures and lower incoming radiation rather than
water scarcity limited crop growth. Irrigation in these orchards could thus be greatly reduced without
negatively affecting yield. Moreover, under the same climatic conditions, orchards growing on soils with
a higher percentage of clay (southeastern part of the catchment) could maintain similar yield and CWUE
under 50 % reduction in irrigation water because of the greater water holding capacity of the soil. This
will make orchards growing on these soils less prone to experience to water stress. The effect of deficit
irrigation on fruit growth and yield varied between years and throughout the growing season. Years with
high productivity and greater dependence on irrigation (due to low rainfall) showed greater yield loss under
deficit irrigation (Figure 10). At the seasonal scale, fruit growth showed the highest reduction in August
followed by July and September (Figure 11). This was mainly an effect of higher temperature, little rainfall,
and larger leaf area that resulted in high irrigation requirements in this month. Apples, similarly to other
crops, show different susceptibility to drought stress depending on their growth stages whereby flowering
and fruit set as well as fruit development and maturation are highly susceptible to drought. The latter stage
falls within the period July-September where the model showed the largest reduction in fruit growth. While
the simulated plant water stress is currently linked to environmental conditions rather than capturing plant
physiological differences in this stage of growth, it suggests that under limited water conditions, irrigation
should be prioritized during these months to maintain reasonable yields.

4.4 Perspectives for further application and model development

The analysis performed in this study displays the current ability and potential way forward of applying
CLM5 for irrigation and water resources management at various scales. Prospectively, future applications
and research studies should focus on the improvement of input datasets, crop and irrigation parameteriza-
tions, and process representation. Input related improvements include the creation of high-resolution climate
and land use information, especially crop types and the extent and type of irrigation. Our results clearly
showed how climate and environmental heterogeneity (e.g. topography, landuse, soil properties) can greatly
affect total crop water requirements, emphasizing the need for spatially explicit modeling for large-scale
applications. Model investigation at the orchard scale revealed the importance of soil and crop-specific pa-
rameterization to correctly represent soil moisture and phenology dynamics, and harvest time. Extending
simulations to larger scales will thus require further improving soil hydraulic parameterization through im-
proved pedotransfer functions [Vereecken et al. , 2022] or parametrization of soil hydraulic properties through
data assimilation approaches [Xujun Han et al. , 2014]. Furthermore, information on crop management and
improved differentiation between different crop varieties and cultivars (e.g. different growing seasons and
harvest of cherry compared to apple trees) is necessary, as these can result in distinct irrigation seasons and
amounts. Concerning irrigation, this could include either crop-specific or spatially explicit values for irriga-
tion parameters that are currently the same for all irrigated crops, hence not reflecting different management
strategies or susceptibilities to water stress. Lastly, some processes could be refined or added to represent
irrigation requirements more realistically. These include a parameterization of irrigation efficiency, water
availability considerations and more flexible irrigation schedules that can be tailored to represent typical
field practices. Conducting parallel testing and assessment of future developments covering greater spatial
and temporal scales (e.g., in the form of long-term observatories) will be crucial, especially as more accurate
irrigation data becomes available.

5 Conclusions

This study assessed the ability of the CLM5-FruitTree sub-model to represent irrigation practices in fruit
orchards in a small Mediterranean catchment and explored the effects of different irrigation scenarios on
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simulated yield and CWUE. The standard CLM5 irrigation routine could not accurately reproduce observed
irrigation practices, which motivated the implementation of an irrigation data stream that directly prescribes
measured irrigation data. Using this irrigation data stream, observed SM dynamics in the two studied apple
orchards were well captured by the model. We did however find some discrepancies between observed and
simulated SM, transpiration, and yield that were related to uncertainties in soil hydraulic parameters and
limitations in the crop representation, which does, for instance, not account for the active grass cover growing
in the alleys.

To examine the potential to improve regional irrigation management using CLM5, we simulated different
irrigation scenarios and analyzed their effect on crop yield and CWUE. The model showed distinct effects
of deficit irrigation on yield and CWUE for scenarios with 25 % and 50 % reduction in irrigation (DI75 and
DI50, respectively) that were tested using the irrigation data stream. While DI75 had negligible negative
effect on yield and CWUE, DI50 notably reduced both yield and CWUE. Based on the modeling results,
this would suggest substantial water savings of up to 125 mm year-1 with little to no effect on apple yields
and up to 250 mm year-1 when accepting up to 30 % reduction in yield (although potential effects of fruit
quality need to be considered as well). These effects varied depending on climatic conditions, soil type, and
timing of irrigation. Hence, under limited water availability, irrigation should primarily focus on the summer
months July to September and on sandy soils with lower water holding capacity.

The outcomes of this study demonstrate the potential use of CLM5 in irrigation and water resources man-
agement research and applications. Future research efforts should focus on improving soil and crop param-
eterizations, and as well as process representation. Finally, we anticipate that implementing more realistic
irrigation schedules in land surface models such as CLM5 will allow for better water resource management
at the local and regional level.
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Climate data from climate stations CS1, CS2, and CS3 from the TERENO sites Agia (TERENO ID:
AGIA K 001, AGIA K 002, AGIA CK 003) are freely available via the TERENO data portal [TERENO
, 2023]. Data collected from the two apple orchards S09 and S10 is available via the TEODOOR data-
base at https://doi.tereno.net/landingpage/doi/10.34731/e1ss-pc69 [O. Dombrowski and Bogena , 2023].
Data analysis was performed in Python version 3.10.4 [PythonSoftwareFoundation , 2023] available at
https://www.python.org/downloads/ and figures were made with Matplotlib version 3.5.2 [Caswell et al.
, 2022], available under the Matplotlib license at https://matplotlib.org/. The map overview was created
with QGIS version 3.12.3 [Dawson et al. , 2022] available at https://qgis.org/.
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