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Abstract

Seawater intrusion poses a substantial threat to water security in coastal regions, where numerical models play a pivotal role

in supporting groundwater management and protection. However, the inherent heterogeneity of coastal aquifers introduces

significant uncertainties into model predictions, potentially diminishing their effectiveness in management decisions. Data

assimilation (DA) offers a solution by incorporating various types of observational data to characterize these heterogeneous

coastal aquifers. Traditional DA techniques, like ensemble smoother using the Kalman formula (ESK) and Markov chain

Monte Carlo, face challenges when confronted with the non-linearity, non-Gaussianity, and high-dimensionality issues commonly

encountered in aquifer characterization. In this study, we introduce a novel DA approach rooted in deep learning (DL),

referred to as ESDL, aimed at effectively characterizing coastal aquifers with varying levels of heterogeneity. We systematically

investigate a range of factors that impact the performance of ESDL, including the number and types of observations, the

degree of aquifer heterogeneity, the structure and training options of the DL models, etc. Our findings reveal that ESDL excels

in characterizing heterogeneous aquifers, particularly when faced with non-Gaussian conditions. Comparison between ESDL

and ESK under different experimentation settings underscores the robustness of ESDL. Conversely, in certain scenarios, ESK

displays noticeable biases in the characterizing results, especially when measurement data from nonlinear and discontinuous

processes are used. To optimize the efficacy of ESDL, meticulous attention must be given to the design of the DL model and

the selection of training options, which are crucial to ensure the universal applicability of this DA method.
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Abstract17

Seawater intrusion poses a substantial threat to water security in coastal regions, where nu-18

merical models play a pivotal role in supporting groundwater management and protection.19

However, the inherent heterogeneity of coastal aquifers introduces significant uncertainties20

into model predictions, potentially diminishing their effectiveness in management decisions.21

Data assimilation (DA) offers a solution by incorporating various types of observational22

data to characterize these heterogeneous coastal aquifers. Traditional DA techniques, like23

ensemble smoother using the Kalman formula (ESK) and Markov chain Monte Carlo, face24

challenges when confronted with the non-linearity, non-Gaussianity, and high-dimensionality25

issues commonly encountered in aquifer characterization. In this study, we introduce a novel26

DA approach rooted in deep learning (DL), referred to as ESDL, aimed at effectively charac-27

terizing coastal aquifers with varying levels of heterogeneity. We systematically investigate a28

range of factors that impact the performance of ESDL, including the number and types of ob-29

servations, the degree of aquifer heterogeneity, the structure and training options of the DL30

models, etc. Our findings reveal that ESDL excels in characterizing heterogeneous aquifers,31

particularly when faced with non-Gaussian conditions. Comparison between ESDL and ESK32

under different experimentation settings underscores the robustness of ESDL. Conversely,33

in certain scenarios, ESK displays noticeable biases in the characterizing results, especially34

when measurement data from nonlinear and discontinuous processes are used. To optimize35

the efficacy of ESDL, meticulous attention must be given to the design of the DL model and36

the selection of training options, which are crucial to ensure the universal applicability of37

this DA method.38

1 Introduction39

Seawater intrusion (SI) is a critical phenomenon in which seawater infiltrates into fresh-40

water aquifers, leading to the degradation of groundwater quality. SI can arise naturally41

due to hydraulic connections between seawater and groundwater, but human activities, no-42

tably excessive freshwater extraction from coastal aquifers and alterations in land use in43

coastal regions, can significantly intensify this process (Michael et al., 2005; Riva et al.,44

2015; Werner et al., 2013; Yu & Michael, 2019). Recent research conducted by Paldor and45

Michael (2021) indicates that SI may be further exacerbated by factors such as storm surges46

and climate change, presenting a growing threat to coastal groundwater systems. Alarm-47

ingly, about 32% of coastal metropolises, defined as cities located within 150 kilometers of48

coastlines with populations exceeding one million, are susceptible to SI (T. Cao et al., 2021).49

The impacts of SI are keenly felt in various regions worldwide, including Europe (Custodio,50

2010), Australia (Werner, 2010), China (D. Han & Currell, 2018), and the United States51

(T. Cao et al., 2021). Effectively managing coastal groundwater resources is imperative to52

prevent or mitigate the adverse consequences of SI, safeguarding the sustainability of these53

critical water resources.54

In the realm of scientific coastal aquifer management, a variety of modeling techniques55

have emerged to simulate SI processes across diverse scenarios. These models can be broadly56

categorized into two primary types: interface models that predominantly rely on analytical57

solutions, and variable-density models that harness numerical solutions (Coulon et al., 2021;58

Werner et al., 2013). The pioneering work by Strack (1976) introduced analytical solutions59

for calculating the maximum safe pumping rate of a single well in a semi-infinite and ho-60

mogeneous coastal aquifer. Building upon this groundwork, subsequent studies extended61

these analytical solutions to explore optimal management strategies in scenarios featur-62

ing multiple wells. This development laid a scientific foundation for safeguarding coastal63

aquifers (Lu, Werner, et al., 2013; Mantoglou, 2003; Park et al., 2009; Shi et al., 2020). For64

complex problems involving nonlinear processes and heterogeneous aquifers, employing nu-65

merical models such as SEAWAT (Lu, Chen, et al., 2013), SUTRA (Voss & Provost, 2002),66

FEFLOW (Michael et al., 2005), and COMSOL Multiphysics (Koohbor et al., 2019) is ad-67

visable. These numerical modeling approaches offer a flexible and reliable framework for68
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simulating and forecasting SI processes. Moreover, in recent years, the burgeoning field of69

deep learning (DL) has garnered substantial attention within SI research (Song et al., 2018;70

Yang et al., 2023; Yin et al., 2022). This data-driven modeling approach holds immense71

promise for tackling the intricate challenges in coastal aquifer simulations.72

When delving into the study of SI processes, it becomes evident that achieving a robust73

representation of geological heterogeneity within the simulation models is of paramount im-74

portance (Yu & Michael, 2022). Traditionally, since the pioneering work by Freeze (1975),75

hydraulic conductivity has been assumed to follow a log-normal spatial distribution. How-76

ever, when dealing with non-Gaussian fields characterized by a diverse array of connectiv-77

ity patterns, the adoption of multiple-point geostatistics becomes imperative for achieving78

reasonable subsurface representation (Mariethoz et al., 2010). Coastal aquifers, including79

channelized and fractured ones, often feature geological structures with intricate connectiv-80

ity patterns (Folch et al., 2020; Koohbor et al., 2019; Renard & Allard, 2013; Trabucchi et81

al., 2022; Xu et al., 2022; Yu & Michael, 2019; Zinn & Harvey, 2003). These structures can82

facilitate preferential flow and exacerbate SI (Geng & Michael, 2020). Consequently, the83

precise prediction of SI critically hinges on obtaining an accurate estimation of the conduc-84

tivity field (Zhou et al., 2014). Nonetheless, characterizing these parameters through direct85

borehole drilling is cost-prohibitive, challenging in capturing the full heterogeneity of the86

parameter field, and susceptible to the scale-effect issue (Sherlock et al., 2000; Sihag et al.,87

2019).88

To overcome these limitations, researchers can employ indirect observational data, such89

as hydraulic head (Yoon et al., 2017), solute concentration (Dodangeh et al., 2022), temper-90

ature (Blanco-Coronas et al., 2021), and electrical resistivity tomography (ERT; González-91

Quirós & Comte, 2020), and leverage data assimilation (DA) techniques for effective charac-92

terization of heterogeneous aquifers (Goebel et al., 2017; Sendrós et al., 2021). Among the93

various data types, hydraulic head, particularly the transient measurements, stand out for94

their ability of capturing fluid flow characteristics and thereby enriching aquifer characteri-95

zation (P. K. Kang et al., 2017). Complementing this, brine and contaminant concentration96

data, which encapsulate transport information, indirectly convey crucial flow characteristics97

and contribute significantly to the understanding of SI processes (P. K. Kang et al., 2017;98

Yoon et al., 2020). In contrast, temperature and ERT measurements provide a cost-effective99

and relatively comprehensive observational approach. However, the efficacy of temperature100

and ERT data is hampered by petrophysical heterogeneity, introducing a notable challenge101

to their reliability (Blanco-Coronas et al., 2021; González-Quirós & Comte, 2020; Brunetti102

& Linde, 2018). Moreover, the intricate relationships among these diverse data types add103

another layer of complexity. Yoon et al. (2020) demonstrated that in SI, fluid flow and so-104

lute transport are inherently coupled, fostering shared information between hydraulic head105

and concentration data. X. Kang et al. (2019) proposed that supplementing abundant106

yet less reliable ERT data to concentration data can significantly enhance characterization107

performance. The phenomena of information sharing and complementarity underscore the108

advantages of assimilating data from multiple sources, as emphasized by relevant research109

(Beaujean et al., 2014; Folch et al., 2020). Furthermore, the strategic selection of sam-110

pling locations plays a pivotal role in maximizing data informativeness. Numerous studies111

have delved into methodologies such as A-optimality, D-optimality, E-optimality, and rela-112

tive entropy to optimize observation locations and enhance the overall effectiveness of data113

collection (Sciortino et al., 2002; Zhang et al., 2015).114

Utilizing the available model and measurements, we can leverage DA to fuse the infor-115

mation from the both components, thereby enhancing the prediction accuracy of the model.116

In the realm of coastal aquifer characterization, the inherent challenges arising from high117

dimensionality, non-linearity, and non-Gaussian nature pose formidable obstacles, rendering118

many existing DA methods impractical. For instance, the famous Markov chain Monte Carlo119

(MCMC) method, while conceptually robust, proves inefficient in solving high-dimensional120

problems, primarily due to its prohibitive computational cost (Zhang, Vrugt, et al., 2020).121
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In contrast, the ensemble Kalman filter (EnKF; Evensen, 1994) and its variants like en-122

semble smoother (ES; Van Leeuwen & Evensen, 1996), which are based on the Gaussian123

assumption, cannot achieve robust DA results in non-Gaussian conditions (McCurry et al.,124

2023; Zhang, Zheng, et al., 2020; Zhou et al., 2011). Non-Gaussian challenges in this con-125

text can be categorized into two types: those aligning with multi-modal distributions of126

parameter values, such as the equifinality issue, and those describing parameter fields de-127

viating from Gaussian distributions, exemplified by the conductivity field in a channelized128

aquifer. To address the former, mitigation options include clustering (Elsheikh et al., 2013)129

and local updating (Zhang et al., 2018). As for the latter, researchers have proposed to130

re-parameterize non-Gaussian variables to conform to Gaussian distributions through tech-131

niques like normal-score transformation (Li et al., 2018), Gaussian anamorphosis (Schöniger132

et al., 2012), principal component analysis (Vo & Durlofsky, 2014), discrete cosine transfor-133

mation (Jung et al., 2017), level set (Chang et al., 2010), or DL (Canchumuni et al., 2017;134

Z. Han et al., 2022). However, it’s crucial to note that the reparameterization and updat-135

ing process may lead to the loss of certain essential features, and the Gaussian assumption136

remains inherent in the employed DA methods.137

To tackle the prevalent challenge of non-Gaussianity frequently encountered in subsur-138

face characterization problems, we introduced a novel DA method named ESDL in our earlier139

work (Zhang, Zheng, et al., 2020). ESDL harnesses the power of DL to formulate a non-140

linear updating scheme to replace the classical Kalman formula, and automatically capture141

potential non-Gaussian features inherent in the data. Numerical experiments have convinc-142

ingly demonstrated that ESDL performs on par with ESK (here “K” stands for adopting the143

Kalman update) in Gaussian scenarios, while exhibiting exceptional proficiency in address-144

ing non-Gaussian challenges. The applicability of the DL-based update in ESDL has led to145

its adoption in various applications. For instance, Man et al. (2022) applied ESDL to esti-146

mate heterogeneous soil properties, thereby enhancing risk assessment for vapor intrusion.147

In another instance, Godoy et al. (2022) replaced the DL model within ESDL with random148

forest for estimating subsurface conductivity parameters. A recent study by Zhang et al.149

(2023) introduced strategies to further enhance the performance of ESDL in non-Gaussian150

scenarios. Additionally, Wang and Yan (2022) improved the efficiency of ESDL in subsurface151

flow problems by incorporating multi-fidelity simulations. Furthermore, Xiao et al. (2023)152

adapted ESDL for predicting future states, instead of parameter estimation, in geological153

CO2 sequestration problems. Despite its application across various research domains, several154

issues remain unaddressed, particularly regarding its application in characterizing heteroge-155

neous coastal aquifers. These include: (1) determining the optimal selection of observational156

data to enhance ESDL’s performance, (2) identifying the suitable DL model structure and157

training options, and (3) understanding the impact of varying levels of heterogeneity on158

the effectiveness of ESDL. Resolving these questions is imperative to offer guidance for the159

effective implementation of ESDL in analogous complex problems.160

In this paper, we employ the ESDL method to conduct a comprehensive investigation161

into the factors influencing its performance in characterizing heterogeneous coastal aquifers162

with SI. Additionally, the ESK method is adopted for comparative analysis. Our study163

presents a robust experimental framework that encompasses three distinct hydraulic con-164

ductivity scenarios: Gaussian fields, binary channelized fields with two distinct conductivity165

values, and continuous channelized fields conforming to a bimodal Gaussian mixture distri-166

bution. Within each scenario, our methodology follows a systematic approach. Firstly, we167

meticulously compare inversion results using various types of observational data and their168

combinations. This systematic analysis aims to identify the most informative data types or169

combinations for our tasks. Secondly, we shift our focus to evaluating the ESDL method’s170

performance using different widely employed DL network architectures. This phase seeks171

to pinpoint the network architecture that aligns best with the particular case under con-172

sideration. Moreover, the effects of other factor including iteration and measurement error173

magnitudes are also investigated. The above exploration provides invaluable insights not174

only in selecting observation data types and network architectures but also in devising ef-175
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Figure 1. Cross-section of the coastal aquifer with seawater intrusion. The black rectangle

signifies a land-based contaminant source, while the black dot represents a pumping well.

fective strategies to address the complexities posed by non-Gaussian fields. In doing so, we176

aspire to advance the field of coastal aquifer characterization, particularly in the context of177

SI.178

The rest of this paper is structured as follows: In Section 2, we present an overview179

of the model setup for characterization of coastal aquifer with SI. Section 3 provides the180

implementation details of both ESK and ESDL in updating our understanding of the hetero-181

geneous conductivity field using observational data. In Section 4, we undertake a compara-182

tive analysis of the inversion results obtained through ESDL and ESK across varying levels183

of field heterogeneity. Our focus is on elucidating the factors influencing the algorithm’s184

performance, with particular attention to the unique ability of ESDL in characterizing non-185

Gaussian fields. Finally, our findings are summarized in Section 5.186

2 Model Setups187

In this study, we investigate variable-density flow and contaminant transport within a188

heterogeneous coastal aquifer, as depicted in Figure 1. The domain size measures 240 m×30189

m. Initially, the domain is filled with freshwater, maintaining a constant head of 30 m. The190

upper and lower boundaries of the domain exhibit impermeable conditions. On the left side191

(hf = 31.6 m, Cf = 0 kg/m
3
, where the subscript “f” denotes freshwater), and the right side192

(hs = 31.0 m, Cs = 35 kg/m
3
, where the subscript “s” denotes saltwater), constant head193

and (salt) concentration boundaries are specified. This configuration signifies that seawater194

will gradually migrate from the right to the left. The simulation extends over a period of195

4,500 days. A pumping well, with a diameter of 0.5 m and positioned at {x = 100 m, z =196

25 m}, commences groundwater extraction at a rate of 2 m3/d after t = 1, 000 day. During197

the period from day 1500 to 2500, a land-based conservative contaminant is released at a198

constant rate of 35 kg/(m3 ·d) from a square region centered at {x = 20.25 m, z = 25.25 m},199

with a side length of 0.5 m.200
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In this study, we employ the following equations to describe the variable-density flow201

process:202

u = − K
ρg

(∇p+ ρg), (1)203

and204

∂

∂t
(εpρ) +∇ · (ρu) = Qm, (2)205

where u (m/s) represents the Darcy’s velocity, K (m/s) denotes the hydraulic conductivity,206

∇means the Nabla operator, p (Pa) is the pore pressure, ρ (kg/m3) signifies the fluid density,207

g (m/s2) is the gravitational acceleration, εp (-) denotes the porosity, and Qm (kg/(m3·s))208

represents the source or sink term, respectively.209

The transport of the conservative solute is described by the following equations:210

∂(εpCi)

∂t
+
∂(ρCs,i)

∂t
+∇ · Ji + u · ∇Ci = Ri + Si, (3)211

and212

Ji = −(Di +De,i)∇ci. (4)213

In the above equations, Ci (kg/m3) represents the concentration of specie i in the liquid,214

Cs,i (-) denotes the proportion adsorbed to solid particles, Ji (kg/(m2 · s)) is the mass215

flux diffusive flux vector, Ri (kg/(m3 · s)) signifies the reaction rate, Si (kg/(m3 · s)) is216

the source term, De,i = ε
4/3
p DF,i (m2/s) represents the effective diffusion coefficient, DF,i217

(m2/s) denotes the fluid diffusion coefficient, and Di (m2/s) denotes the dispersion tensor,218

respectively. For the study area on the x−z plane, the tensor Di is made up of the following219

four components:220

Dxx =
1

|u|
(
αLu

2
x + αTu

2
z

)
, (5)221

Dzz =
1

|u|
(
αLu

2
z + αTu

2
x

)
, (6)222

Dxz = Dzx =
1

|u|
(αL − αT)uxuz, (7)223

where Dxx, Dzz, Dxz, and Dzx are the two principal components of the dispersion tensor224

and their two cross terms, αL and αT specify the longitudinal and transverse dispersivities,225

ux and uz are the water flow velocities in the x and z directions, and |u| =
√
u2x + u2z is226

the magnitude of the velocity vector u, respectively. Based on the above settings, we simu-227

late the variable-density flow and contaminant transport processes in heterogeneous coastal228

aquifers with SI using COMSOL Multiphysics. Here, the uncertainty only stems from the229

heterogeneous K field, other parameter values are assumed known from field investigations230

or laboratory measurements, as listed in Table 1.231

3 Methods232

For any natural system, we can express the relationship between the observed values233

of the system, denoted as ỹ ∈ RNy , and the system model, denoted as F(·), as follows:234

ỹ = F(x) + ε, (8)235

where x ∈ RNx represents the model parameters, ε ∈ RNy denotes the error term. In the236

coastal aquifer system, the model parameters of interest encompass aquifer properties, the237

location and release history of contaminant source, and more. Measuring these parameters238

directly can be challenging. In such cases, DA techniques can be employed to integrate239

readily available observational data with numerical models, yielding estimates of these un-240

known parameters. In the following sections, we will introduce two DA methods, namely241

ESK and ESDL, for achieving this purpose.242
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Table 1. Reference parameter values for porous media and flow/transport processes in the

groundwater model with SI.

Parameter Symbol Unit Value

Porosity εp - 0.40
Longitudinal dispersivity αL m 1.00
Transverse dispersivity αT m 0.10

Fluid diffusion coefficient DF,i m2/s 1.00× 10-9

Seawater density ρs kg/m3 1025.00
Freshwater density ρf kg/m3 1000.00

Reaction rate Ri kg/(m3 · s) 0.00

3.1 Ensemble Smoother based on the Kalman formula: ESK243

As a variant of the EnKF, ESK simultaneously assimilates all observations in a single244

update, offering practical convenience and computational efficiency for parameter estimation245

tasks such as subsurface characterization in coastal aquifers. In the implementation of ESK,246

Ne sets of parameter samples, denoted as X0 = {x0
1, . . . ,x

0
Ne
}, are initially drawn from the247

prior parameter distribution p(x). Subsequently, each sample x0
i (i = 1, ..., Ne) is updated248

using the Kalman formula as follows:249

x1
i = x0

i + C0
XY(C0

YY + R)−1
(
ỹ + εi −F(x0

i )
)
, (9)250

where X1 = {x1
1, . . . ,x

1
Ne
} represents the updated parameter ensemble, C0

XY stands for the251

cross-covariance between X0 and Y0 = {F(x0
1), . . . ,F(x0

Ne
)}, C0

YY is the auto-covariance252

matrix of Y0, and εi denotes random measurement error conforming to a normal distribution253

N (0,R). The Kalman gain matrix K0 = C0
XY(C0

YY + R)−1 defines the Kalman update in254

ESK. Notably, this update relies solely on the first two statistical moments, namely the mean255

and covariance. Furthermore, the mapping defined by K0 from ∆yi = ỹ + εi − F(x0
i ) to256

∆xi = x1
i−x0

i is linear. Thus, this Kalman-based DA method is constrained by the Gaussian257

assumption, which can limit its performance in problems involving complex processes and258

non-Gaussian distributions.259

3.2 Ensemble Smoother based on DL: ESDL260

To simplify expression, we can express the Kalman update formula as follows:261

∆xi = K0∆yi. (10)262

If we are able to replace the linear updating scheme defined by the Kalman gain matrix with263

a nonlinear operator that properly captures potential non-Gaussian characteristics, we can264

overcome the limitations mentioned above. To achieve this, we introduced a non-linear and265

non-Gaussian DA method named ESDL in our previous work (Zhang, Zheng, et al., 2020).266

In this method, the transformation from ∆yi to ∆xi can be succinctly expressed as follows:267

∆xi = G0DL(∆yi), (11)268

where G0DL(·) denotes the nonlinear relationship acquired through an adequately trained DL269

model. Utilizing this model, intricate features, such as non-Gaussian properties, embed-270

ded within ∆xi and/or ∆yi, can be extracted and harnessed for the estimation of model271

parameters and other relevant quantities.272
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Training a DL model typically demands a substantial volume of data. In the context of273

ESDL, we can generate training dataset from X0 and Y0 through the following procedure:274

∆X0 = {x0
i − x0

j | i = 1, . . . , Ne − 1, i < j ≤ Ne}, (12)275

∆Y0 = {y0
i − y0

j + εij | i = 1, . . . , Ne − 1, i < j ≤ Ne}. (13)276
277

Here, ∆Y0 serves as the input (predictor) to the DL model, ∆X0 is the target, and εij278

represents a random realization of measurement error. Here, an arbitrary parameter/output279

set {x0
i ,y

0
i } in the prior ensemble {X0,Y0} is treated as the true state, based on which280

we can generate Ne − 1 training data pairs from the rest samples in the prior ensemble.281

This process enables the creation of a training dataset with C2
Ne

= Ne(Ne − 1)/2 samples,282

supplying ample data for training the DL model. For instance, with an ensemble size of283

500, it becomes possible to generate 124,750 training data pairs.284

Once the training of G0DL(·) is completed, we can update each sample in X0 using the285

observed data ỹ as follows:286

x1
i = x0

i + G0DL

(
ỹ + εi −F(x0

i )
)
, (14)287

for i = 1, ..., Ne.288

For highly nonlinear problems, it is advisable to perform Niter iterations for both ESK289

and ESDL. The updating schemes at iteration t = 1, . . . , Niter for ESK and ESDL are as290

follows:291

xt
i = xt−1

i + Ct−1
XY

(
Ct−1

YY + αtR
)−1 (

ỹ +
√
αtεi −F(xt−1

i )
)
, (15)292

xt
i = xt−1

i + Gt−1
DL

(
ỹ +
√
αtεi −F(xt−1

i )
)
, (16)293

294

where αt > 0 is the inflation factor satisfying
∑Niter

t=1 1/αt = 1, and Ct−1
XY , Ct−1

YY , and Gt−1
DL (·)295

are calculated or trained based on Xt−1 = {xt−1
1 , . . . ,xt−1

Ne
} and Yt−1 = {F(xt−1

1 ), . . . ,F(xt−1
Ne

)}.296

The random errors added to the training data set ∆Yt−1 are also inflated by a factor of297 √
αt.298

To mitigate the occurrence of nonphysical updates, especially in the case of ESK under299

specific conditions, we will implement post-processing (or boundary processing) on the up-300

dated parameters. Assuming the lower and upper bounds of the parameters are denoted as301

xlow and xup, and the prior and updated parameters are represented by xf and xa, respec-302

tively. In cases where xa > xup, we set xa = (xf + xup)/2. Conversely, if xa < xlow, we set303

xa = (xf + xlow)/2. This post-processing step ensures that the updated parameters remain304

within the reasonable bounds, promoting the physical validity of the results.305

3.3 Factors Affecting the Performance of ESDL306

Although ESDL has been utilized in various DA applications owing to its superiority307

over its Kalman counterpart in addressing the non-linear and non-Gaussian challenges, the308

effectiveness of this DA method can be influenced by several crucial factors. These factors309

encompass the selection of observational data (such as its type, location, time span, and310

error level), the degree of subsurface heterogeneity (ranging from Gaussian to non-Gaussian311

distributions), the specific architecture of the DL model, and the training configurations em-312

ployed for the DL model, etc. Unfortunately, a comprehensive and systematic evaluation of313

these factors has been lacking, impeding the method’s optimal application in practical sce-314

narios, notably within the context of coastal aquifer characterization, which is indispensable315

for mitigating issues related to SI. In this study, by conducting an extensive benchmarking316

analysis, we aim to answer the following questions:317

(1) In characterization of coastal aquifers, hydraulic pressure (p), brine concentration318

(Cb) and contaminant concentration (Cc) have been widely used. However, there remains319

a lack of clarity regarding the impact of these data on the performance of ESK and ESDL.320
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It is conceivable that an improper selection of observational data could adversely affect the321

outcome of DA. This prompts the following question: What represents the most effective322

data type or combination thereof for the ESDL method? Does this choice align with that of323

ESK?324

(2) In our previous study (Zhang, Zheng, et al., 2020), we have demonstrated that325

ESDL outperforms ESK when characterizing aquifers with binary channelized parameter326

fields. However, it remains uncertain whether ESDL maintains its performance in other327

non-Gaussian conditions. It is crucial to assess the performance of ESDL, as well as ESK,328

in scenarios with varying levels of heterogeneity and non-Gaussianity within the K field.329

Identifying the limits of a DA method can offer valuable insights for its practical application.330

Furthermore, how will iteration affect the performance of ESDL and ESK in this scenario?331

(3) As a methodology rooted in DL, the performance of ESDL depends not only on the332

complexity of the problem and the choice of observational data but also on the specific DL333

model constructed for this DA framework. With the continual evolution of DL technology, a334

diverse range of well-established DL models is available for consideration, such as DenseNet335

(Huang et al., 2017), ResNet (He et al., 2016), and Unet (Ronneberger et al., 2015). In336

the context of coastal aquifer characterization challenges, the exploration of DL model ar-337

chitectures and training configurations remains relatively under-explored, especially when338

tailored to the unique characteristics of the problem and the available data.339

4 Case Studies340

In this section, we will systematically investigate factors that may affect ESDL’s perfor-341

mance in coastal aquifer characterization, considering varying levels of heterogeneity within342

the conductivity field. For comparative purpose, we also include results obtained by ESK.343

In this section, we establish four cases: the first one involving a Gaussian-distributed param-344

eter field, the second and third ones featuring binary channelized non-Gaussian fields with345

increasing complexity, and the final one comprising a continuous channelized non-Gaussian346

field. Within each of these cases, we focus on the influence of various factors on the ability347

of ESDL/ESK to characterize these heterogeneous parameter fields.348

4.1 Case 1: Estimating Gaussian-Distributed Parameter Field349

In the first case, we undertake the estimation a Gaussian-distributed parameter field350

using both ESDL and ESK. Under the Gaussian condition, ESK is expected to yield reliable351

results. However, this expectation may not hold true in the context of complex and highly352

non-linear SI problems. As demonstrated later, the inclusion of the Cb measurements can353

lead to a significant deterioration in the results obtained by ESK. Subsequent investigations354

reveal that the magnitude of measurement error associated with Cb plays a role in influencing355

the performance of ESK. In contrast, ESDL is able to obtain reliable results under various356

conditions.357

In this work, the K field consistently demonstrates characteristics of both heterogeneity358

and isotropy across all case studies. In the present case, to adhere to Gaussianity, the target359

of DA is the ln(K) field to the base e, as opposed to the K field itself, with reference360

values depicted in Figure 2(a). The objective is to estimate the ln(K) field with diverse361

measurement data types collected at 6×12 locations denoted by the red dots in Figure 2(a).362

This comprehensive observational dataset comprises 6×12×40 points, encompassing both p363

and Cb measurements at 15 moments of t = 300, 600, ..., 4500 days, and Cc measurements364

at 10 moments of t = 1800, 2100, ..., 4500 days, respectively.365

This case study revolves around four pivotal aspects: (1) the influence of measurement366

types and their combinations on the performance of both ESDL and ESK, (2) the impact367

of measurement error magnitude on the efficacy of the two DA methods, (3) the potential368
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Figure 2. (a) The reference ln(K) field and the 6×12 locations of observational wells (red dots)

in Case 1; (b-i) The mean fields obtained by ESK/ESDL with different measurement types, error

levels (εL for low level and εH for high level), and iteration numbers (I1 for one iteration and I3

for three iterations).

enhancement of algorithm effectiveness through iterations, and (4) the influence of DL model369

structures and training hyper-parameters on the performance of ESDL. In addressing the370

first aspect, this investigation incorporates seven types or combinations of observational371

data for parameter estimation, i.e., “p”, “Cb”, “Cc”, “p+Cb”, “p+Cc”, “Cb+Cc”, and372

“p+Cb+Cc”, respectively. Concerning the second aspect, the analysis explores the impact373

of measurement errors by testing three magnitudes: εL ∼ N (0, 0.052) as the low level,374

εM ∼ N (0, 0.52) as the medium level, and εH ∼ N (0, 22) as the high level (for convenience,375

all data types use the same distribution for the measurement error). With regard to the third376

aspect, three iterations are conducted for the “p+Cb+Cc” observational scenario under the377

low measurement error condition (note, the other tests perform only one iteration). Finally,378

the fourth aspect considers the influence of three DL models, namely Unet, DenseNet,379

and ResNet, along with various training hyper-parameters (as indicated in Table 2) on the380

performance of ESDL.381

Using the “ESDL - Unet - p+Cb+Cc - εL - I1” scenario as an example, we provide382

a concise overview of the method’s implementation details. Initially, we generate Ne =383

500 sets of random parameter samples, denoted as X0 = {x0
1, ...,x

0
Ne
}, from the prior384

parameter distribution. Here, x ≡ ln(K), and we utilize the sequential Gaussian simulation385

from GSLIB (Deutsch & Journel, 1998) to generate random realizations of the ln(K) field,386

maintaining a mean of ln(10−4) and standard deviation of one. Subsequently, we compute387

the corresponding model outputs, i.e., Y0 = {y0
1 = F(x0

1), ...,y0
Ne = F(x0

Ne)}. In this388

context, the parameter has dimensions of 91×241×1, while the model output y = {p, Cb, Cc}389

has dimensions of 6×12×40. The Unet model is employed to establish the relationship390

between ∆y and ∆x. The architecture of the Unet model, illustrated in Figure 3(a), includes391

2-D convolution (Conv) layers, transposed 2-D convolution (ConvT) layers, max-pooling392

layers, rectified linear unit activation (ReLU) layers, and other components. With X0 and393

Y0, we can generate training dataset of {∆y,∆x} with Ne(Ne − 1)/2 samples, which can394

facilitate the effective training of the Unet model under the training configuration denoted395

as C1 in Table 2. By inputting the difference between the observed values (perturbed with396

random measurement error, i.e., ỹ + ε) and the model output (i.e., y0) into the trained397
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Table 2. Options (i.e., hyper-parameters, HPs) for training the DL model employed in different

tests of this study. Note, HP1 to HP5 represent the number of epochs, learning rate, size of mini-

batch, gradient threshold, and factor for L2 regularization, respectively. Here, the ADAM optimizer

is used in each test. For different tests, these configurations have been systematically examined so

that the ESDL method can obtain reliable results.

Configuration HP1 HP2 HP3 HP4 HP5

C1 50 10−3 128 +∞ 1×10−4

C2 50 10−3 512 +∞ 1×10−4

C3 100 10−3 128 +∞ 1×10−4

C4 100 10−3 64 10 2×10−4

C5 150 10−3 1024 10 2×10−4

C6 100 10−3 512 10 2×10−4

C7 100 10−3 128 10 2×10−4

C8 50 10−3 128 10 2×10−4

C9 50 10−3 256 10 2×10−4

DL model, we can obtain the updated ln(K) by adding the predicted parameter difference398

with the prior parameter vector (i.e., ∆xpred + x0). In alternative scenarios with ESDL,399

DenseNet and ResNet models depicted in Figures 3(b-c) will be employed, whose training400

configurations are respectively illustrated in Table 2 as C4 and C5.401

Figures 2(b-i) illustrate the mean estimates of ln(K) obtained through ESK/ESDL under402

various settings. Employing the Unet-based ESDL method for assimilating all three types403

of data (with the error level of εL) in a single iteration yields a robust estimate of the404

parameter field (Figure 2b), characterized by an average root mean square error (RMSE) of405

0.72 between the obtained posterior ensemble and the reference ln(K) fields. It is noted here406

that the average RMSE between the prior X0 and the reference ln(K) is 1.16. The reference407

parameter field’s high and low regions are identifiable, although the estimated field appears408

smoother, lacking characterization of certain fine details. However, utilizing the ESK method409

under the same conditions results in a significantly biased estimation, as depicted in Figure410

2(c). In this scenario, ESK tends to overestimate high parameter values and underestimate411

low parameter values, with a related RMSE of 1.48—considerably higher than that of ESDL,412

and even the prior ensemble. Increasing the level of measurement error (εH) marginally413

improves ESK’s performance, achieving an RMSE of 1.28. Nonetheless, the ln(K) field414

remains inaccurately estimated (Figure 2f). In this context, ESDL slightly overestimates415

parameter values at the left boundary (Figure 2e) but not to a significant extent. After416

three iterations (with εL), ESDL demonstrates improved results (RMSE: 0.55), while ESK417

continues to produce divergent results (RMSE: 1.78), as depicted in Figures 2(h-i). However,418

if only the p data are utilized in ESK, reasonable results can be obtained (Figure 2g), with419

an average RMSE of 0.77. These findings indicate that ESK struggles to adequately handle420

the complex solute transport process in coastal aquifers with SI, characterized by highly421

non-linear and discontinuous behaviors. This classical method appears effective primarily422

in situations involving more linear and continuous hydraulic processes (e.g., when only using423

the p data).424

For ESDL with a single iteration, employing “p+Cc+Cb” at different error magnitudes425

of εL, εM, and εH, the resulting average RMSEs are 0.72, 0.77, and 0.99, respectively, align-426

ing with the typical expectations. When ESDL is implemented with different DL models427

(p+Cp+Cc - εL - I1), remarkably similar results are achievable, with RMSEs of 0.72, 0.72,428

and 0.75 for Unet, DenseNet, and ResNet, respectively. This indicates that a well-designed429
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Figure 3. The network structures of (a) Unet, (b) DenseNet, and (c) ResNet, respectively. In

each layer, the numbers represent the output sizes in the form of height×width×channels. Conv,

ConvT, BN, and ReLU correspond to 2-D convolution layer, transposed 2-D convolution layer,

batch normalization layer, and rectified linear unit, respectively. It is worth noting that while

the input/output dimensions may vary for different case studies, the network structure remains

consistent.

DL model with appropriate training options can yield comparable outcomes. When only430

a single data type of p, Cc, or Cb is utilized at the low measurement level (εL), ESDL at-431

tains RMSEs of 0.77, 0.86, and 0.93, respectively, suggesting that the p data contain more432

information about the hydraulic conductivity parameters.433

To enable a thorough comparison of the characterization performance between the two434

algorithms across diverse scenarios, we conduct an analysis of the probability density dis-435

tributions derived from the estimated mean fields of ln(K), as depicted in Figure 4. In436

this representation, the reference field is denoted by the black curve, while the mean fields437

obtained by ESDL and ESK are represented by the red and blue curves, respectively. The438

sub-figure titles are meticulously structured to provide implementation details. Particularly439

noteworthy is the“nbp” designation, indicating the absence of parameter boundary process-440

ing for the updated parameters obtained by ESK. Moreover, the mean (µ) and standard441

deviation (σ) of each field are provided in the sub-figures. Upon careful examination of these442

distribution curves, a significant observation arises: the standard deviation of the mean field443

obtained through ESDL is markedly smaller than that of the mean field estimated by ESK.444

In the comparison of Figures 4(a) and (d), it becomes evident that iterations lead to a bet-445

ter alignment of the probability density curves obtained by ESDL with the reference field.446

Figures 4(a), (o), and (p) display the distribution of mean fields obtained by ESDL based on447

three different DL models. The probability density distribution curves reveal that all three448

DL models perform equally well in inverting the reference field. For ESK using the “Cb”449

and “p+Cb” datasets, unexpected bi-modal distributions of ln(K) are observed in Figures450

4(f) and (j). This is caused by the boundary processing of the updated parameters ob-451

tained by ESK. If this boundary processing approach is absent, as shown in Figures 4(q-r),452

significantly biased results will be obtained, indicating divergence in the Kalman updating453

outcomes.454
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Figure 4. Probability density curves of the mean ln(K) fields obtained by ESDL or ESK with

different settings in Case 1.
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Figure 5. (a) The reference K field and distribution of the 6×12 observational locations in Case

2. (b-i) Mean fields of K obtained by ESDL and ESK with different settings indicated by the titles of

the sub-figures. Here, ESDL utilizes the Unet model, “IOL” indicates the condition with increased

observational locations that has 15×48 wells uniformly distributed in the flow domain.

4.2 Case Study 2: Estimating Simple Binary Channelized Parameter Field455

With a primary focus on assessing the effectiveness of ESDL in characterizing non-456

Gaussian parameter fields, especially those exhibiting channelization patterns, we formulate457

two cases representing varying complexity levels. Case 2 revolves around a relatively simple458

channelized field, while Case 3 features a more intricate condition. Here, the parameter459

fields exhibit binary features (Figures 5a and 7a). In these scenarios, our investigation460

delves into strategies aimed at improving the characterization effectiveness of ESDL under461

non-Gaussian conditions. This encompasses considerations such as optimal choices of data462

types, spatial distribution of measurement wells, and the iterative implementation of ESDL.463

In the simpler case, we generate the reference (Figure 5a) and prior realizations of K464

field (61×61) with the direct sampling method proposed by Mariethoz et al. (2010). There465

are two distinct values of K, i.e., K1 = 10−4 m/s for the low permeable background, and466

K2 = 10−3 m/s for the high permeable channels. In the numerical model, the interpolated467

K values are integrated into the model’s triangulated grid network. We obtain observed468

values of p and Cb at moments of t = 300, 600, ..., 1500, 2100, 2700, ..., 4500 days, and Cc469

at t = 1800, 2100, ..., 3000 days, at the 6×12 locations marked by red dots in Figure 5(a).470

Consequently, the total number of observational data is 6×12×25. It’s noteworthy that the471

DL model used in this case study is Unet with the configuration of C2 in Table 2.472

In this case study, we set the ensemble size as Ne = 500 for both ESK and ESDL.473

Figure 5(b) illustrates that when utilizing all measurement data at a low error magnitude474

(εL), ESDL effectively captures channelized patterns in the reference field, achieving an av-475

erage RMSE of 3.54×10−4. Meanwhile, the average RMSE between the prior parameter476

ensemble and the reference K field is 5.65×10−4. The update made by ESDL signifies a477

notable reduction in parametric uncertainty. In contrast, ESK yields significantly biased re-478

sults (RMSE: 5.83×10−4), as depicted in Figure 5(c). Upon increasing the error magnitude479

to εM, ESK exhibits substantial improvement (RMSE: 4.41×10−4), while ESDL experiences480

slight degradation (RMSE: 3.70×10−4), as observed in Figures 5(e-f). After three itera-481

tions (with εL), ESDL demonstrates enhanced performance (RMSE: 2.99×10−4), whereas482
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Figure 6. The RMSE values between the estimated K fields obtained by ESDL/ESK and the

reference field under different settings in Case 2. Here, “IOL” indicates the case with increased

observational locations that has 15×48 measurement locations uniformed distributed in the flow

domain. Here, ESDL utilizes the Unet model.

ESK shows the opposite trend (RMSE: 6.29×10−4). For ESDL to better capture the non-483

Gaussian features, acquiring additional measurement data to enhance information content484

regarding the unknown parameter field is advisable. To explore this further, we conduct485

a test with observations obtained from more locations and time steps (15×48 points uni-486

formly distributed in the flow domain, with observation times the same as those in Case 1),487

denoted as “IOL” (increased observational locations). Figure 5(d) reveals that, with p and488

Cb data at the low measurement error magnitude, ESDL (using the configuration of C6 in489

Table 2) achieves an improved characterization of the K field and a reduced average RMSE490

value of 2.83×10−4. Switching to ESK under these conditions also yields satisfactory results491

(RMSE: 3.63×10−4), as depicted in Figure 5(g).492

To comprehensively evaluate the performances of ESK and ESDL in characterizing the493

channelized K field, we plot RMSE values between the estimated and the reference K fields494

under various settings in Figure 6. The box-plots presented in this figure lead to the following495

findings. (1) The inversion results of ESK exhibit significant variations across different types496

or combinations of observational data, with the optimal performance obtained when utilizing497

the “p+Cc” combination. In contrast, ESDL demonstrates greater stability in estimation498

results across different data types or combinations. (2) For the ESK method, an increase in499

observational error level (εL → εM → εH) reveals a decrease in the RMSE metrics when all500

three data types are used (see the first three columns of Figure 6). However, ESDL exhibits a501

slight deterioration trend. (3) Implementing three iterations shows a noticeable decrease in502

RMSE for ESDL, while ESK exhibits an increase, indicating the divergent outcome obtained503

by the Kalman update. (4) When the observational locations increase from 6×12 to 15×48,504

both ESK and ESDL will enjoy an improvement in performance, as shown in the eight and505

nine columns of Figure 6.506
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Figure 7. (a) The reference K field and distribution of 6×12 observational locations, (b-i) mean

field of K estimated by ESDL or ESK with different settings in Case 3. Here, “IOL” indicates the

condition with increased observational locations that has 12×24 wells uniformly distributed in the

flow domain. In the above results, we only consider the low measurement error condition of εL.

4.3 Case Study 3: Estimating Complex Binary Channelized Parameter507

Field508

In the previous section, we tested both ESK and ESDL in characterizing a relatively509

simple K field with channelized patterns. To assess their performances under more challeng-510

ing conditions, we present a new case in this section. The reference field of K considered511

here is more complex, as illustrated in Figure 7(a). The dimension of this parameter field is512

91×241, approximately six times larger than that in the previous case. In ESDL, we respec-513

tively utilize Unet, DenseNet, and ResNet with the C1, C7 (C8 for the “IOL” condition),514

and C7 configurations (Table 2) for comparison. In the “IOL” condition, 12×24 uniformly515

distributed measurement wells is considered. The other settings remain consistent with516

those of Case 2.517

In Figure 7(b), utilizing the Unet-based ESDL to assimilate “p+Cb+Cc” in a single518

iteration yields a mean field capturing only fragmented features of the reference field, strug-519

gling to properly represent the connectivity patterns provided by the channels. Never-520

theless, the resulting average RMSE (4.26×10−4) is significantly lower than the average521

RMSE (5.65×10−4) of the prior ensemble. Likewise, increasing the iteration number (Fig-522

ure 7e, RMSE: 3.88×10−4) and observational wells (Figure 7h, RMSE: 3.32×10−4) can523

enhance the performance of ESDL. For ESK, however, increasing the observational wells524

improves the performance, while increasing the iteration number diminishes the effective-525

ness of the Kalman update, as depicted in Figures 7(c), (f), and (i), with respective RMSEs526

of 5.75×10−4, 6.47×10−4, and 4.52×10−4. When exclusively using p data obtained from a527

more linear and continuous hydraulic process, ESK achieves reasonable results (Figure 7g,528

RMSE: 4.54×10−4), albeit superior to ESDL (Figure 7d, RMSE: 5.07×10−4). Overall, this529

case presents greater challenges, yet still underscores the robustness of ESDL.530

In Figure 8, we conduct a comprehensive comparison of the RMSE values obtained531

through ESK/ESDL under various settings. The primary findings are outlined as follows.532

Generally, ESDL demonstrates more robust results compared to ESK. For this complex533

case, using all three data types can produce the best performance for ESDL. Notably, in the534
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Figure 8. The RMSE values between the estimated K fields obtained by ESDL/ESK and the

reference field in Case 3. Here, “IOL” indicates the case with increased observational locations that

has 12×24 points uniformed distributed in the flow domain. “U”, “D”, and “R” denote the Unet,

DenseNet, and ResNet models used in ESDL, respectively.

case of the “p-εL-I1” setting, it is interesting to observe that ESK outperforms Unet-based535

ESDL. This phenomenon may arise from the inherent complexity of the problem and the536

sub-optimal configuration of the Unet model and training options. The three DL models537

yield comparable results in ESDL, and considering the shortest training time needed for538

training Unet, this DL model is recommended for practical use.539

4.4 Case Study 4: Estimating Continuous Channelized Parameter Field540

In practical applications, variations exist in both the high and low permeable regions541

of the K field. In our final case study, we consider a more realistic scenario involving a542

continuous channelized K field. Illustrated in Figure 9(a), a 91×241 dimensional reference543

K field is generated by adding a binary field (K1 = 1 × 10−4, K2 = 5 × 10−4) with a544

Gaussian distributed field (µ = 0, σ = 0.2). This reference field exhibits a Gaussian mixture545

distribution, as shown in Figure 11 (the blue curves). In this case study, the Unet, DenseNet,546

and ResNet models used in ESDL correspond to the training configurations of C3, C9, and547

C7 in Table 2. The other settings remain consistent with those of Case 3.548

In Figures 9(b-i), we illustrate the estimated mean fields of K using ESK/ESDL across549

various settings. The corresponding average RMSE values are 1.98×10−4, 3.42×10−4,550

1.93×10−4, 2.38×10−4, 2.06×10−4, 1.93×10−4, 1.61×10−4, and 2.12×10−4, respectively.551

For reference, the average RMSE value of the prior parameter ensemble is 2.52×10−4. No-552

tably, it is pleasing to observe that ESDL using ResNet achieves a robust characterization of553

the K field without the need for additional measurement locations, as exemplified in Figure554

9(g). It indicates that in this complex problem, the choice of the DL model plays a vital555

role in the performance of ESDL. Other findings are similar to the previous cases.556

In Figure 10, we conduct a comprehensive comparison of RMSEs obtained through557

ESDL and ESK across a broader range of settings. In this intricate scenario, we note the558
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Figure 9. (a) The reference K field and distribution of 6×12 observational locations, (b-i) mean

fields of K estimated by ESDL/ESK with different settings in Case 4. Here, “IOL” indicates the

condition with increased observational locations that has 12×24 wells uniformly distributed in the

flow domain. In the above results, we only consider the low measurement error condition of εL and

perform one iteration.

consistent robustness of ESDL across diverse configurations. However, it is interesting to559

observe instances where ESK outperforms ESDL, particularly in cases such as when only p560

or Cc data aer utilized with εL in a single iteration (the 8th and 10th columns of Figure 10).561

This discrepancy may be attributed to the heightened continuity of the K field in comparison562

to Cases 2-3. In the context of ESK, it exhibits results with decreased performance whenever563

Cb is employed, except in scenarios with increased observational locations. Notably, for564

ESDL, employing three iterations may yield less accurate parameter field estimates compared565

to a single iteration, as evidenced by the comparison between the first and fourth columns566

of Figure 10.567

Moreover, we present the probability density curves depicting the reference and es-568

timated K fields by ESDL and ESK under various algorithmic settings. Notably, ESDL569

demonstrates a higher frequency of instances where the bi-modal distribution of K can be570

identified to a certain extent. It is essential to highlight that a more accurate identification571

of the bi-modality in K does not correspond to a more precise estimation of the parameter572

field, reflected in a smaller RMSE value. For instance, in Figure 11(h), ESDL achieves the573

optimal match of bi-modality, despite the related RMSE value being marginally larger than574

that of ESK using the same settings. However, Figure 11 serves as a comprehensive indi-575

cator of the overall effectiveness of a DA method in characterizing non-Gaussian parameter576

fields. On the other hand, for ESK, the identification of the bi-modal distribution of K is577

either unsuccessful (e.g., Figure 11f) or inaccurate (e.g., Figure 11e). Notably, the peak578

values of the density curves obtained by ESK consistently deviate from the reference values,579

underscoring the method’s vulnerability in addressing non-Gaussian DA problems.580

Despite the considerable capability of ESDL in addressing non-linear and non-Gaussian581

DA problems, achieving a robust alignment with the reference distribution curve of K in582

this particular scenario still poses a persistent challenge. To enhance the performance of583

ESDL, several strategic approaches can be implemented. Firstly, one effective tactic involves584

increasing the ensemble size Ne. By doing so, a larger volume of training data can be585
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Figure 10. Comparison of RMSEs values between the estimated K fields obtained by ESDL/ESK

and the reference field in Case 4. Here, “IOL” indicates the case with increased observational

locations that has 12×24 points uniformed distributed in the flow domain. “U”, “D”, and “R”

denote the Unet, DenseNet, and ResNet models, respectively. Additionally, “I1” and “I3” represent

one iteration and three iterations, respectively.

acquired, thereby enhancing the generalization capabilities of the DL model. Secondly,586

there is a crucial need to refine the architectures of the DL model and optimize training587

configurations. While this study employed three widely used DL models (i.e., Unet, ResNet,588

and DenseNet), acknowledging the potential for more suitable design in model architectures589

is essential for continued improvement. Thirdly, to augment the information content of the590

measurement data and concurrently reduce sampling costs, it is recommended to undertake591

optimal experiment design. This involves strategic decisions on where, when, and what592

types of data to collect, ensuring a more efficient and informative data acquisition process593

for our task at hand.594

5 Conclusions595

SI poses a significant threat to coastal groundwater systems. effectively preventing and596

controlling SI involve conducting predictive analyses and scenario studies based on numer-597

ical models. A crucial prerequisite for achieving this goal is the precise characterization of598

heterogeneity in coastal aquifers through DA. Traditional DA methods face challenges in599

obtaining reliable results when dealing with non-linear processes and non-Gaussian param-600

eters/states.601

In this study, we advocate for employing a DL-based DA method, specifically ESDL, to602

robustly characterize heterogeneous coastal aquifers. To demonstrate the method’s efficacy603

and constraints, we systematically explore various factors influencing its performance, in-604

cluding the number and types of observations, the degree of aquifer heterogeneity, and the605

structural and training options of the DL model. Four case studies, incrementally increasing606

in complexity, are devised, and we implement the classical DA method based on the Kalman607

update, denoted as ESK, for comparative analysis. Through methodical experimentation,608

the study reveals the following key findings.609
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Figure 11. Probability density curves of the estimated K fields obtained by ESDL and ESK with

different settings in Case 4.
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(1) ESK consistently falls short in providing satisfactory characterization of hydraulic610

conductivity fields, whether in Gaussian or various non-Gaussian forms. Even in scenar-611

ios where ESK is expected to excel, such as Gaussian cases, divergent updating outcomes612

emerge when highly non-linear processes are involved, e.g., when utilizing Cb data. ESK613

performs adequately only when assimilating p data from relatively linear and continuous614

processes. Interestingly, when incorporating all three data types (p, Cb, and Cc), increasing615

the iteration number exacerbates the deterioration of ESK outcomes. However, elevating616

the magnitude of measurement error provides a modest mitigation of updating divergence,617

leading to a slight improvement in estimation accuracy, which is different from ESDL.618

(2) ESDL consistently demonstrates robust performance across all case studies with619

varying settings, particularly when paired with a suitable DL model such as Unet, DenseNet,620

or ResNet. Enhancing the iteration number or increasing the volume of measurement data621

consistently contributes to the improved performance of this DA method. Notably, when622

the target parameter field displays bi-modal distribution characteristics, ESDL exhibits the623

capability to partially replicate this feature in its estimation results. In a few tests of Case624

4, the performance of ESDL is still not good enough. To optimize the efficacy of ESDL,625

meticulous attention must be given to the design of the DL model and the selection of626

training options. Furthermore, to provide more informative data for DA, it is recommended627

to implement optimal design strategies for selecting locations, times, and types of data,628

considering constraints such as budget limitations.629
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