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Abstract

Ground magnetic observatories measure the Earth’s magnetic field and its coupling with the solar wind responsible for iono-

spheric and magnetospheric current systems. Predicting effects of solar- and atmospheric-driven disturbances is a crucial task.

Using data from the magnetic observatory Chambon-la-ForÃªt at mid-latitude, we investigate the capability of our developed

deep artificial neural networks in the modeling of the contributions above 24 hours and the daily variations. Two neural networks

were built with the long short-term memory architecture with multiple layers. Using the data from 1995 onwards, the neural

networks were trained with physical parameters indicative of solar variabilities and geographical daily and seasonal variations.

By excluding the secular variation owing to the change of the Earth’s intrinsic magnetic field, we demonstrate that our ap-

proach can model the observed signals with overall good agreements for both a solar-quiet period in 2009 and a solar-active

period in 2012. Particularly, using the walk forward training, we updated our models with new data leading up to the test

year. The implication of this work is twofold. First, our approach can be adapted for near real-time prediction of intensity of

solar and atmospheric disturbances. Second, the neural networks can be used to model the quiet variations when excluding the

solar variabilities with important applications in the calculation of magnetic activity indices. This work is a proof-of-concept

that deep neural networks can be used to model solar- and atmospheric-driven perturbations modulated by daily and seasonal

variations as recorded at a ground magnetic observatory.
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Key Points:11

• We model solar- and atmospheric-driven magnetic perturbations at Chambon-la-12

Forêt observatory using long short-term memory neural networks.13

• Two neural networks are built to model the above-diurnal and the daily variations14

using the walk forward training.15

• This work demonstrates capability of our approach with important application for16

near real-time calculation of magnetic activity indices.17
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Abstract18

Ground magnetic observatories measure the Earth’s magnetic field and its coupling with19

the solar wind responsible for ionospheric and magnetospheric current systems. Predict-20

ing effects of solar- and atmospheric-driven disturbances is a crucial task. Using data from21

the magnetic observatory Chambon-la-Forêt at mid-latitude, we investigate the capa-22

bility of our developed deep artificial neural networks in the modeling of the contribu-23

tions above 24 hours and the daily variations. Two neural networks were built with the24

long short-term memory architecture with multiple layers. Using the data from 1995 on-25

wards, the neural networks were trained with physical parameters indicative of solar vari-26

abilities and geographical daily and seasonal variations. By excluding the secular vari-27

ation owing to the change of the Earth’s intrinsic magnetic field, we demonstrate that28

our approach can model the observed signals with overall good agreements for both a29

solar-quiet period in 2009 and a solar-active period in 2012. Particularly, using the walk30

forward training, we updated our models with new data leading up to the test year. The31

implication of this work is twofold. First, our approach can be adapted for near real-time32

prediction of intensity of solar and atmospheric disturbances. Second, the neural net-33

works can be used to model the quiet variations when excluding the solar variabilities34

with important applications in the calculation of magnetic activity indices. This work35

is a proof-of-concept that deep neural networks can be used to model solar- and atmospheric-36

driven perturbations modulated by daily and seasonal variations as recorded at a ground37

magnetic observatory.38

Plain Language Summary39

The Sun and its activities interact with the Earth’s magnetic field with effects mea-40

surable on the ground. Magnetic activity indices derived from ground magnetic obser-41

vatories measure the intensity of the Sun-magnetosphere-ionosphere and neutral atmo-42

sphere coupling; they are crucial parameters in which the space weather-related oper-43

ations rely on. The Kp index derived from several observatories at mid-latitude has been44

the most widely used. Yet, its time cadence (3h) and intensity scale (0 to 9) are rather45

crude. Besides, it is challenging to determine a geomagnetic ’baseline’ indicative of ‘quiet’46

variations in the absence of solar-driven perturbations in which the Kp index was de-47

rived. In an effort to derive a new index with higher cadence and finer intensity scale,48

we consider an application of machine-learning neural networks to model the ground mag-49

netic perturbations owing to the Sun-Earth coupling for both quiet periods, i.e., in the50

absence of solar storms, and active period, using first data from the observatory Chambon-51

la-Forêt, France. Particularly, we consider modeling a baseline using the solar irradiance52

and parameters indicative of daily and seasonal variations. Our work shows promising53

results demonstrating its potential applicability for near real-time calculation of a new54

magnetic index.55

1 Introduction56

Magnetic observatories at the ground level measure a superposition of magnetic57

fields of several sources at certain geographical locations. The dominant source is the58

Earth’s intrinsic magnetic field, also called the “main field”, generated by geodynamo59

processes in the Earth’s fluid inner core. The main field contributes over 93 % of the mag-60

nitude of the magnetic measurements at the surface, about tens of thousands of nano61

teslas (nT). Another internal source is the magnetized lithosphere which contributes to62

smaller scale variations (e.g., Thébault et al., 2010). Other sources contributing to the63

geomagnetic field are electric currents flowing in the ionosphere and magnetosphere. In64

the ionosphere, the solar quiet (Sq) current in low- and mid-latitudes in the E-region is65

a dominant source that gives rise to the regular daily variations on the order of tens of66

nT (e.g., Yamazaki & Maute, 2017). It forms on the sunlit side as powered by the so-67
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lar irradiance. The Sq variations are believed to be affected by tidal waves of atmospheric68

origins, which are global-scale oscillations with harmonic periods of a day. Along the mag-69

netic equator, a strong zonal current forms a belt known as the equatorial electrojet (EEJ;70

Chapman, 1951). At high latitudes, there are auroral electrojets (AEJ) driven by the71

ionospheric-solar dynamo. Depending on the energy input by the solar wind through con-72

vection and particle precipitation, the auroral ionospheric conductivities vary and give73

rise to AEJ, marking the auroral ovals in the northern and southern hemispheres. In the74

magnetosphere, current systems such as the ring current and field-aligned currents are75

significantly enhanced during solar events and modulate the geomagnetic field.76

The solar wind and the interplanetary magnetic field (IMF) interact with the Earth’s77

magnetic field through complex couplings in several regions from the bow shock down78

to the ionosphere and the ground level. Ground magnetic measurements are thus valu-79

able data sources for studying effects of the solar-driven disturbances on the magneto-80

spheric and ionospheric systems. Solar-driven disturbances including solar storms affect81

the overall magnetospheric-ionospheric systems that enhance current systems and gov-82

ern complex interaction among them. Solar storms are solar transient structures that83

can disturb the Earth’s magnetic field temporarily and consequently trigger geomagnetic84

storms involving magnetic reconnection at the Earth’s magnetopause and in the mag-85

netotail. Interplanetary coronal mass ejection (ICME) is a major type of solar distur-86

bances caused by an eruption on the solar surface. Earth-directed ICMEs have effects87

measurable on the ground from a few days up to a week. Corotating interaction region88

(CIR) is another transient structure formed when the fast solar wind originated from the89

Sun’s coronal holes takes over a slower wind. The compression region and high-speed wind90

embedded in CIRs can also disturbed the geomagnetic field up to several days. Char-91

acterization of the intensity or effects of these solar storms on the various systems is a92

vital task of the space weather community.93

Magnetic activity indices characterizing the intensity of solar-terrestrial activities94

are derived from ground magnetic measurements. K -indices were first introduced by Bartels95

et al. (1939) to indicate the level of the perturbations with respect to a regular varia-96

tion at a 3-hour range at mid-latitude. The K -indices were derived for the Niemegk ob-97

servatory with a scale of 0 (quiet) to 9 (strongly disturbed); this scale is then mapped98

to other observatories. These K -indices were later standardized as Ks-indices for 13 mid-99

latitude observatories. The Kp (K -planetary) index was then defined as the average of100

the Ks-indices (Bartels, 1949). Since their first conception, more geomagnetic indices have101

been proposed and concretized. Other K -derived indices include aa that was derived from102

two antipodal observatories from which the longest time series are available. The am,103

an, and as indices were proposed by Mayaud (1968) to indicate sub-auroral magnetic104

activities at global, northern and southern scales. A comprehensive review of magnetic105

activity indices can be found in Menvielle et al. (2011). To derive these indices, we need106

to establish a geomagnetic “baseline” that characterizes quiet magnetic variations in the107

absence of solar disturbances. The quiet variations refer specifically to the measurements108

with no significant external influences or sudden changes as mentioned next.109

The quiet magnetic variations traditionally involved hand-scaling from analogue110

magnetograms by well-trained observers. Bartels et al. (1939) defined the regular daily111

variation as “a smooth curve to be expected for that element on a magnetically quiet112

day, according to the season, the sunspot cycle and, in some cases, the phase of the Moon”.113

With the rise of the digital age, algorithms to automatically generate K indices were pro-114

posed (see Menvielle et al., 1995). These algorithms involved an estimation of the non-115

K variations that are the quiet variations according to the so-called Bartels-Mayaud rules116

(Mayaud, 1967). The Finnish Meteorological Institute (FMI) method (Sucksdorff et al.,117

1991) was found to be the most suitable for the continuation of K -indices series with-118

out any serious jump in the statistics when passing from analog to numerical determi-119

nation at one magnetic observatory (Menvielle et al., 1995). Four algorithms including120
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the FMI method have been endorsed by the IAGA (International Association of Geo-121

magnetism and Aeronomy; https://www.iaga-aiga.org/). Another proposed method122

adopted for the SuperMAG data processing to determine the baseline involves a decom-123

position of sources of the measured field (Gjerloev, 2012). Due to the lack of ground truth124

and clear identification of quiet sources, the subtraction of these empirically-derived base-125

lines from ground magnetic measurements may not reflect the real intensity of solar-driven126

perturbations. Thus, the magnitude of such perturbations may be underestimated or over-127

estimated. This can have serious impacts on space weather applications and warnings.128

To distinguish the perturbations of solar origin in the signals from other sources,129

establishing the geomagnetic baseline that robustly represents quiet periods is thus im-130

perative. In an effort to derive a new magnetic activity index with a higher time reso-131

lution, Haberle et al. (2022) proposed to characterize the magnetic measurements dur-132

ing quiet periods by filtering the signals into the above-diurnal (>24 hr), diurnal (24 hr),133

and sub-diurnal variations to capture physical sources at specific time scales and com-134

bine them to determine the geomagnetic baseline. This approach works rather well dur-135

ing quiet periods. It is efficient; it does not need any a priori information, thus it is scal-136

able and suitable for near-real time applications. However, in the presence of solar-driven137

disturbances, the perturbations are present in all of the filters that were supposed to rep-138

resent the quiet variations. Consequently, the actual intensity of solar-driven perturba-139

tions can be underestimated. Moreover, they compared their results to the FMI and Su-140

perMAG methods. It turns out that the baseline from the FMI method follows the geomagnetic-141

storm variation similar to the filtering approach while the baseline from SuperMAG is142

less sensitive to the storm variation. There is thus still a need to robustly establish the143

baseline that contains quiet variations with minimal influence of storm perturbations.144

In this work, we consider an application of machine learning for modeling solar-145

and atmospheric-driven ground magnetic perturbations. Deriving a geomagnetic base-146

line and a magnetic activity index requires careful, dedicated studies. As a first step, we147

consider also the machine-learning based modeling of a geomagnetic baseline represen-148

tative of the regular, quiet variations. Our goal is to be able to produce a baseline that149

is not influenced by geomagnetic storms while robustly accounting for the main inter-150

nal sources and the Sq variation and its possible day-to-day variability. We limit our fo-151

cus to mid-latitude. Since Haberle et al. (2022) have already decomposed the ground mag-152

netic measurements to several contributions, we take these data as a starting point with153

the aim to demonstrate the capability of machine-learning based approach. Specifically,154

we consider using neural networks for regression (i.e. time-series) modeling as they al-155

low us to consider independent parameters associated with physical sources contribut-156

ing to the magnetic measurements. Neural networks have increasingly been used for space-157

weather related applications including prediction of magnetic activity indices (e.g., Wu158

& Lundstedt, 1996; Kumluca et al., 1999; Stepanova & Pérez, 2000; Wintoft & Cander,159

2000; Lundstedt et al., 2002; Uwamahoro & Habarulema, 2014; Shin et al., 2016; Zhelavskaya160

et al., 2017; Tebabal et al., 2018; Efitorov et al., 2018; Gruet et al., 2018; Jackson et al.,161

2020; Zou et al., 2020; Chakraborty & Morley, 2020; Myagkova et al., 2021; Abuelezz et162

al., 2021; Siciliano et al., 2021; Collado-Villaverde et al., 2021; Madsen et al., 2022; Zhang163

et al., 2022; Huang et al., 2022; Bernoux et al., 2022; Collado-Villaverde et al., 2023; Vladimirov164

et al., 2023). We will demonstrate the capability of our newly developed neural networks165

during quiet periods as well as disturbed periods and discuss future applications.166

The organization of our paper is as follows. We first describe data in Section 2. We167

next introduce the neural networks and workflow in Section 3. Then, we report the mod-168

eling results and performance in Section 4. Finally, we present a discussion in Section 5169

and provide a summary and perspectives in Section 6.170
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2 Data171

2.1 Ground magnetic data172

We focus on data from the magnetic observatory Chambon-la-Forêt (CLF) located173

at mid-latitude (48.0250N, 2.2600E) in France, Europe. The data are available at Bu-174

reau Central de Magnétisme Terrestre data repository from 1936 onwards. The data are175

replicated and associated with worldwide magnetic observatory data at the International176

Real-time Magnetic Observatory Network (INTERMAGNET) for the period from 1991177

onwards. From Haberle et al. (2022), the data were processed from 1991 to 2019. The178

measurements were made at 1-min cadence. The data are provided in a local cartesian179

coordinate system (NED: North, East, Down). The X -axis corresponds to the geographic180

north, the Y -axis corresponds to the geographic east, and the Z -axis completes the or-181

thogonal system such that it directs towards the Earth’s core. An example of the mag-182

netic measurements at CLF can be found in the Supplementary Information (SI).183

In an effort to distinguish contributions from several sources to the ground mag-184

netic measurements, Haberle et al. (2022) first applied signal processing techniques to185

filter the measurement data. Using Finite Impulse Response filters, they decomposed the186

measurement data into the contributions at various time-scales as the following. Firstly,187

the above-diurnal contribution correspond to the variation in the signals above 24 (f>24)188

hours. Secondly, the diurnal and semi-diurnal contributions correspond to the variation189

at 24 (f24) and 12 (f12) hours, respectively. Finally, the contributions at 8 (f8) and 6190

(f6) hours were also derived. To keep the same notation as Haberle et al. (2022), we call191

these various contributions as “filter data”. Using measurement data from observato-192

ries at low to mid latitudes in both northern and southern hemispheres, Haberle et al.193

(2022) demonstrated that the derived filter data capture the physical sources contribut-194

ing to the measurements reasonably well. For instance, the f>24 trends are dominated195

by the secularly varying magnetic strength associated with the local change of the Earth’s196

intrinsic magnetic field. The diurnal and semi-diurnal trends, in contrast, are modulated197

by the season, the local time, and the day-to-day variation (see Campbell, 1989, and ref-198

erences therein). Haberle et al. (2022) combine all these filter data to determine a ge-199

omagnetic baseline during quiet periods.200

Our work considers using the filter data individually as well as a combination of201

them. Since using the full resolution (1-min) data in the neural networks is computa-202

tionally expensive, as a first step, we consider using the filter data at a lower time ca-203

dence. Taking the original 1-min filter data, we perform a decimation to obtain the data204

at every hour, i.e., at every HH:00 where HH is a given hour from 01, 02, 03, ... to 23.205

When considering an individual filter, e.g., the f24, we decimate them directly. When206

considering a combination of the filters, e.g., the sum of the f24, f12, f8, and f6, we first207

sum them at the original 1-min cadence before decimating them. As a test, we also pro-208

duced lower resolution data via a decimation to obtain data at every 15 minutes for the209

f8, and f6; their results are nearly identical to the results using 1-hour cadence data. The210

results in this work are thus produced using the 1-hour cadence filter data.211

2.2 Solar wind and solar radio flux data212

Solar wind conditions and solar variabilities drive the perturbation in the geomag-213

netic field. To get parameters relevant to these conditions, we utilize data products from214

the in-situ observations made upstream of the Earth at the Lagrangian L1 point as fol-215

lows. We obtain the solar wind magnetic field and plasma datasets that are time-shifted216

to the Earth’s bow shock nose (King & Papitashvili, 2005) from CDAWeb (Coordinated217

Data Analysis Web). Specifically, we use the OMNI combined, definitive 5-min resolu-218

tion IMF and plasma data. For this data product, the data are available from 1995 on-219

wards. We note that we have also tried the 1-hour merged OMNI data product, but the220

modeling results are somewhat poorer. The IMF data were obtained in the geocentric221

–5–



manuscript submitted to Space Weather

solar magnetic (GSM) coordinates, labelled as Bx, By, and Bz, where X -axis points to-222

wards the Sun, Z -axis corresponds to the geomagnetic north, and Y -axis completes the223

right-hand orthonormal system. The plasma parameters were obtained for the proton224

bulk flow speed (V ), the proton number density (N), and the proton temperature (Temp).225

These solar wind data are downsampled to 1 hour cadence using linear interpolation to226

reduce noise or local effects upstream of the bow shock. Besides, we performed a run-227

ning average using the window size of 24 hours, centered on the considered data point,228

to further smooth the data. Without this smoothing, the modeling results would appear229

qualitatively noisy compared to the filter data. In addition, we obtain the daily 10.7 cm230

solar radio flux (F10.7) from the OMNI combined, definitive, and hourly product. The231

F10.7 is an important indicator of the solar activity, derived from a measurement of the232

flux density computed from the total emission at 10.7 cm wavelength from all sources233

present on the solar disk made over 1 hour period (Tapping, 2013). An example of these234

parameters can be found in the SI.235

2.3 Geometrical data236

Measurements at a magnetic observatory are influenced by the geographical loca-237

tion of the station (i.e. northern/southern hemisphere), the local time (i.e. day/night),238

and the season (i.e. the position of Earth around the Sun). Thus, parameters that record239

these variabilities, so-called “geometrical parameters” are relevant. We chose the solar240

zenith angle (SZA) and the solar longitude (Ls), in addition to the local time (LT ) de-241

rived from the time stamps of the data. The SZA is the angle measured from directly242

above the observation point (zenith) to the elevation of the Sun in the sky, measured from243

the horizon. The Ls is the ecliptic longitude of the Sun; it indicates the position of the244

Earth around the Sun which relates to the seasons. The Ls is defined as 0o at spring equinox245

in the northern hemisphere, 90o at summer solstice, 180o at autumn equinox, and 270o246

at winter solstice. All these parameters are indicative of daily and seasonal variations247

(see examples of these parameters in the SI).248

3 Neural network and workflow249

3.1 Neural network description and workflow250

We develop a neural network with multiple input features and multiple output tar-251

gets. The multiple input features are to accommodate the independent variables includ-252

ing the solar wind IMF and plasma, the solar radio flux, and the geometrical parame-253

ters. The multiple output targets are set to accommodate the dependent variables con-254

sisting in the three components (X, Y , Z) of the filter data. Fig 1 shows a schematic255

diagram of the artificial neural network architecture for the above-diurnal filter. The neu-256

ral network is built using the TensorFlow Keras module (Abadi et al., 2015).257

We set up two main neural networks. The first one is to model the above-diurnal258

filter (f>24) for all of the three components (x>24, y>24, z>24), as shown in Fig 1. The259

f>24 filter contains effects driven by the solar wind IMF and plasma variations, despite260

being dominated by the secular variations owing to the internal geomagnetic change as261

will be discussed in detail in Section 4.1. Next, a second neural network is set up to model262

the sum of other contributions: the diurnal (f24), semi-diurnal (f12), and 8 hr (f8) and263

6 hr (f6). We call the sum of the other contributions as the daily filter or fD. This sec-264

ond neural network has the same inputs and the same neural network architecture, but265

with different output targets being xD, yD, and zD. The fD is mainly dominated by the266

periodic variation with a period of one day as modulated by the geometrical parameters.267

Additionally, we also tested setting up individual neural networks for the diurnal and268

sub-diurnal filters; the sum of the modeling results are equivalent to modeling the fD269

directly (while taking more computational resources).270
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Figure 1. Diagram of the neural network architecture. The input layer (left) takes solar wind

IMF and plasma parameters, the solar radio flux, and the geometrical parameters. The output

layer (right) yields the three components (X, Y , Z) of the filter data, shown for the above-

diurnal filter in this diagram. The hidden layers comprise 5 layers, with certain numbers of nodes

for the individual layers. A dropout layer is added between the last hidden layer and the output

layer to avoid overfitting. Each layer is an LSTM recurrent neural network layer (see text).

Since we set up two neural networks, we prepare two separate workflows for the271

above-diurnal filter and the daily filter. Fig 2 shows workflow diagrams for modeling f>24272

(Fig 2a) and fD (Fig 2b). The final modeling outputs are the sum of the modeled f¿24273

and fD as indicated in Fig 2c. The f>24 and fD require different pre-processing and post-274

processing steps; these will be described in Section 4. Apart from those steps, the two275

workflows have identical processes (a2 and b2 in Fig 2) for scaling and then structuring276

the data before the modeling with the neural network. The scaling part is a usual rou-277

tine for machine learning in order to standardize or normalize the data, which helps im-278

prove the performance of machine learning algorithms.279

Since the ground magnetic measurements comprise the responses from the solar-280

wind and atmospheric conditions influencing the magnetospheric and ionospheric cur-281

rents, the neural network must be able to account for the history of such conditions and/or282

physical processes. For this reason, we chose the Long Short-Term Memory (LSTM) that283

is a recurrent neural network (Hochreiter & Schmidhuber, 1997). In principal, this type284

of neural network can keep track of the dependencies in the input sequences. Through285

the learning process, the neural network can memorize past input sequences that will likely286

affect the present and future data. We set our default time window of the history to be287

30 hours. This 30-hr window was chosen based on a cross-correlation analysis between288

the solar wind speed and the variation in the x>24 filter, which is in general most sen-289

sitive to perturbations induced by the solar wind. Using each month of data of two rep-290

resentative years for a solar minimum (2009) and a solar maximum (2012), the best cor-291

relation coefficients (above 0.5) were found for the time lags between 0.6 and 12 hours,292

depending on the average solar wind speed. This 30-hour window is sufficiently long to293

take into account the time response of the magnetospheric-ionospheric systems in the294

order of several hours.295
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Figure 2. Workflow diagrams for the modeling of (a) the above-diurnal filter and (b) the

daily filter. (a) The above-diurnal filter workflow consists in (a1) the pre-processing involving the

secular trend removal, (a2) the predefined processes and the neural network modeling, and (a3)

the post-processing involving adding the secular trend back. (b) The daily-filter workflow consists

in (b1) the computation of the summed diurnal component, (b2) the predefined processes and the

neural network modeling, and (b3) the computation of modeled output. The modeled outputs

from (a3) and (b3) are finally added together in (c) to compute the final modeled outputs.

To test whether the LSTM neural network could model the filter data, we set up296

experiments to search for an optimum number of neural network layers. Using the f>24297

variation excluding the secular trends as the output targets and solar wind and geomet-298

rical data as the input features (see Section 4.1), we find that using five hidden layers299

as displayed in Fig 1 provides reasonable modeling results in comparison to the observed300

data. Technically, this type of artificial neural networks is called “deep neural networks”,301

but we will simply call them neural networks in the rest of the paper for short. To avoid302

overfitting, we add a dropout layer, which helps to generalize the results (Srivastava et303

al., 2014), with a dropout ratio of 0.2. The number of hidden parameters in the first layer304

is chosen to be 100; the numbers of hidden parameters in the second, third, fourth, and305

fifth layers are chosen to be 50. We tried smaller numbers of the hidden parameters in306

our early attempts; the numbers specified here provide rather satisfactory results (see307

Section 4). The final neural network architecture is summarized in Fig 1.308

For the model training, we set up the neural network to learn in batches where it309

learns from a certain amount of data at a time. Here, the batch size is set to 256 for the310

training data at 1 hour cadence (95,945 data points for the data in 1997 - 2007). The311

weights and biases in the neural network layers and nodes are updated through several312

cycles. The number of training cycles is known as “epoch”. The learning process is op-313

timized and tracked through the loss function, which evaluates the model performance314

during each training epoch. Here, the loss function is set to be the mean squared error.315

We monitor the learning process through the validation loss (see Section 3.2). The learn-316

ing process is stopped once there is no improvement in the validation loss for five con-317
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secutive epochs. The best model is saved when the validation loss reaches a minimum318

value before the training stops. Furthermore, we set the optimization algorithm to be319

“Adam” (Kingma & Ba, 2014) with the learning rate of 0.001. These setups proved to320

work reasonably well for our filter data as will be shown in the Section 4.321

3.2 Neural network training: the walk forward approach322

To effectively train the neural network model, we split the datasets, comprising the323

solar wind and solar radio flux, the geometrical parameters, and the filter data, as the324

following. Overall, we split the sequential data into the training, validation, and test sets.325

The validation set is used for evaluating and monitoring the model performance during326

the learning over several epochs. The ground magnetic measurements have temporal de-327

pendencies coming from the solar wind and solar dynamo (influencing the solar activ-328

ities or phases). Therefore, the choice of training and validation data can introduce bi-329

ases. Firstly, the neural network must be trained using a sufficient amount of data, in330

this case a complete solar cycle, so that it learns more or less from all the possibilities.331

Secondly, since a best model is chosen based on the validation data, the choice of val-332

idation data can also introduce a bias. For example, if the model is validated and selected333

using an interval of data with active solar activities, i.e., during a solar maximum where334

the occurrence of ICMEs is high, the model may not be appropriate for use during the335

quiet solar activities, i.e., during a solar minimum where the occurrence of ICMEs is low.336

To minimize such a bias, we propose a new strategy for the model training as follows.337

To best capture the different nature of solar activities in the various phases of the338

solar cycle, we propose an adaptive training method called “Walk Forward Validation”339

(also called “Sliding Window” or “Rolling Forecast”) approach (e.g., Brownlee, 2019).340

A schematic illustration is shown in Fig 3. This approach has been used in economy and341

stock market predictions where the model is retrained once newer data become available342

(e.g., Kaastra & Boyd, 1996). The advantage is that the model would be the most up-343

to-date, making it more relevant to the current situation and thus the near future sit-344

uation. In brief, the model is trained in several steps while moving forward along the time345

series. The walk forward approach can be summarized as follows.346

1. The model is trained with the data within a specified minimum training window347

(Fig 3a) as shaded in blue. It is then validated with the unseen data adjacent to348

the training data defined within a specified validation window as shaded in green.349

2. The model is trained again with the data in a next, shifted training window (Fig350

3b). The validation data in the previous step are included in the training data.351

The model is then validated with the unseen data, defined within a specified val-352

idation window, adjacent to the newly shifted training window.353

3. The process is repeated until the end of all the training data (Figs 3a - 3c) exclud-354

ing the test set (Fig 3d) as shaded in purple.355

For our purpose, we define a minimum training window to be 11 years and a val-356

idation training window to be one year. Data in 2009 and 2012 are taken as the test datasets357

representative of the quiet and active solar periods, respectively. Since the high-resolution358

OMNI data are only available from 1995, we perform the walk forward training from 1995359

up until 2009 (with data in 2008 being the validation data in the last training step, see360

Fig 3) and 2012 (with data in 2011 being the validation data in the last step). Here, the361

model is most relevant to the time closer to the end of the training window as it is trained362

several times using the newer data, while being less relevant to the older data. This ap-363

proach would offer optimum results for the time-dependent prediction made by the neu-364

ral network. We demonstrate the performance of the walk forward training in the SI.365
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Figure 3. The walk forward training approach. The F10.7 (black) indicative of the solar

variability, i.e., the solar cycle phases, is shown for context. (a - c) The walk forward approach

consists in several training and validation steps leading up to the test year, here shown for 2009.

(d) The model is tested after the final training and validation step.

4 Results366

Here we report our modeling results from the neural networks using the walk for-367

ward training described in Section 3 for quiet (2009) and active (2012) solar activity pe-368

riods. We start by presenting the model results for the f>24 in Section 4.1 and then for369

the fD in Section 4.2. The final outputs, f>24+fD, are then presented in Section 4.3.370

Finally, we present the results using the same neural networks but with restricted inde-371

pendent parameters to model the quiet variation, i.e., geomagnetic baseline, in Section 4.4.372

4.1 Modeling of the above-diurnal (f>24) contribution373

The f>24 data are shown in Fig 4. From Haberle et al. (2022), the f>24 is dom-374

inated by the secular variation due to the change in the main field at the location of the375

ground station. Particularly, the Earth’s south magnetic pole, locating in the geographic376

north, was found to have drifted from its location in the Canadian arctic, determined377

from the first in-situ measurements in 1831, towards Siberia (Olsen & Mandea, 2007; Liv-378

ermore et al., 2020) over the past decades. Consequently, the magnetic measurements379

at CLF in Europe shown in Fig 4 remarks a steadily increasing trend in all magnetic com-380

ponents, in the order of tens of nanotesla (nT) per year. This secular trend dominates381

over the variations coming from other sources and it was estimated to constitute 93%382

of the overall measurements in magnitude. To model the f>24 contributions owing to the383
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solar-driven perturbations, we consider a pre-process of the data by removing this sec-384

ular trend. In brief, we removed this trend by subtracting the 30-day running average385

of the f>24, denoted as ⟨f>24⟩30D as shown in Fig 4 for all magnetic components in or-386

ange, from the original f>24 data. Appendix A describes our process for this choice in387

detail.388

Figure 4. Above-diurnal (f>24) variations of the ground magnetic measurements at

Chambon-la-Forêt (CLF) between 1991 and 2019 (black) and their 30-day running averages

(orange) shown for the x, y, and z components in panels (a), (b), and (c), respectively.

We now focus on qualitative results. Here, the detrended f>24 are taken as the out-389

put targets (see Fig 1) of the neural network. The modeling results are rescaled to the390

original units (nT) and the removed trend at the pre-processing step is added back at391

the post-processing step (see Fig 2a). Fig 5 shows data in 2009 and 2012 in left and right392

panels, respectively. The solar wind speed and the IMF Bz along with their 24-hour run-393

ning averages are shown in panels (a, f) and (b, g) for the context. The comparison be-394

tween the observed data (black) and the modeling results (red) is shown in other pan-395

els. Considering the f>24, there is an overall agreement for the trend and smaller-scale396

fluctuations for both 2009 and 2012. There are several peaks and dips, especially in the397

x>24 component, in addition to the secular variation. These occasional drops in x>24 and398

peaks in other components correspond to the perturbations due to ICMEs and high-speed399

stream arrivals (caused by CIRs), in some cases in conjunctions with negative IMF Bz400

especially in 2012. At these peaks and dips, there are some apparent mismatches in the401

strength at peak values visible in all components. At around July - September 2009, for402

instance, there are clearly a few local dips in the x>24 component where the minima of403

the modeled data are lower than those of the observations. Meanwhile, at around July404

- August 2012, these peaks appear to be overestimated. Furthermore, there is a slight405
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gap, i.e., a relatively small offset, between the observed and modeled (average) values406

in the last three months of the year for both 2009 and 2012, best seen in Fig 5c. This407

offset is due to the trend removal process; this aspect is discussed in Section 5. Despite408

the offset, our results demonstrate an overall good agreement with the original f>24.409

Figure 5. Solar wind speed (a, f), IMF Bz (b, g) and a comparison between the original f>24

(black) and the modeling results (red) shown for (c, h) x>24, (d, i) y>24, and (e, j) z>24 compo-

nents in 2009 (left) and 2012 (right). The solar wind speed and IMF Bz are shown for context

along with their 24-hour running averages used as inputs for the model.

4.2 Modeling of the daily contribution410

In this Section, we consider the daily filter fD that is the sum of filters f24, f12,411

f8, and f6 of the ground magnetic measurements. Physical contributions to these indi-412

vidual filters are discussed in Haberle et al. (2022). In brief, the fD captures the Sq cur-413

rent systems including their day-to-day variability at mid-latitude, which show signif-414

icant dependencies on the neutral atmosphere including neutral winds and tides. Using415

the same inputs as for the f>24 (Section 3.2), we test whether the neural network can416

model the fD. Specifically, we use the same neural network architecture but change the417

output targets to be xD, yD, and zD as summarized in Fig 2b.418

4.2.1 Daily contribution: solar-quiet year419

Fig 6 shows a comparison between the original fD = (xD, yD, zD) and the mod-420

eling results for 2009. A winter month (February, a-c) and a summer month (August,421

d-f) were chosen for displaying the results. The original fD (black) shows daily, periodic422

variations that are almost regular particularly for yD and zD. These regular variations423

may indicate that they are mostly modulated by the geometrical parameters. The orig-424
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Figure 6. Comparison of the original data (black) and the modeling results for the daily filter

(fD) for a winter month (February; a-c) and a summer month (August; d-f) in 2009. The mod-

eled xD, yD, and zD are shown respectively in panels (a - c) for February in blue and in panels

(d - f) for August in orange. Purple and green shades highlight the intervals of ICME and CIR

passages, respectively. A purple vertical dashed line marks the beginning of ICME disturbances.
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inal xD, however, shows less regular periodic variations. Our modeling results show ex-425

cellent agreements for yD in August, shown in orange. To the first order, our neural net-426

work model produces similar periodic variations to the original fD, especially in August427

where the amplitudes of the daily variations are stronger. To the second order, however,428

there appear certain extrema of the variations (e.g., Fig 6e) in which our modeling re-429

sults underestimate their peak values. Furthermore, there are smaller-scale variations,430

which appear as secondary bumps in between the daily extrema in all components. Im-431

portantly, in February, our model produce daily variations that appear to be slightly out-432

of-phase as can be seen in Fig 6b. This effect is less strong for zD (Fig 6c) except for the433

first week. Meanwhile, the results are relatively poorer for xD (Figs 6a, 6d) where some434

observed peaks are missed completely. Here, the X-direction corresponds to the geographic435

north. With CLF being at mid-latitude, the x components (x>24, x24, etc.) could be in-436

fluenced by the perturbations coming from the higher latitudes such as the auroral elec-437

trojets as well as from the lower latitudes such as the equatorial electrojets. In brief, the438

xD is more susceptible to perturbations of solar origins (this effect is different at vari-439

ous geographical latitudes). Apart from the issues with the xD, our neural network re-440

sults show good qualitative agreement with the observed yD and zD.441

We now focus on apparent perturbations in the different months. In February 2009,442

apart from the regular periodic variations, there are clear perturbations in the original443

data, e.g., around February 4 - 5, in all components. These fluctuations are the pertur-444

bation following the passage of an ICME on February 4, from 00:00 to 16:00 UT (see the445

ICME catalog by Richardson & Cane, 2010). We highlight this interval in purple shade446

as well as for the arrival of the ICME disturbance (i.e., shock) with a purple dashed ver-447

tical line. This ICME disturbance caused the daily extrema to be further driven, appear-448

ing as strong peaks and dips, in all components. It is apparent that the modeled signals449

(blue) underestimate these peaks, especially for xD. Furthermore, we mark a passage450

of the CIR on February 14th in green shade (see the updated catalog by Jian et al., 2006).451

This CIR arrival caused the original fD to dip further than the previous days. Our model452

underestimates these dips for all components, especially for xD. In August 2009 (Figs 6d453

- 6f), there appears nearly a week-long perturbation between August 5 and 11. These454

perturbations follow the CIR passage between August 5 ∼04:45 and August 6 ∼19:15455

as marked in green shade. From Jian et al. (2006)’s list, it was marked that there is an456

ICME embedded in this CIR. Our model (orange lines) again underestimates the peaks,457

in particular for xD and yD. Additionally, there are two more CIR passages in the same458

month as highlighted in green, although their effects are less clear. In brief, we find that459

our model results reproduce the daily variations rather well although they reproduce less460

well the perturbations induced by the passage of solar-transient structures.461

Overall, the modeling results appear better for August. Among the three compo-462

nents, the neural network performs less well for the xD component. We conclude that463

our neural network for the daily filter fD performs rather well for the solar-quiet period.464

4.2.2 Daily contribution: solar-active year465

We now consider a solar-active year. Fig 7 shows a comparison between the orig-466

inal data and the modeling results for 2012 for a winter month (January; a-c) and a sum-467

mer month (July; d-f). We note that our model results are available from January 2 at468

06:00 onwards because it takes 30 hr history of the data (starting from January 1 at 00:00)469

for the LSTM neural network to produce one data point. The original signals (black)470

show stronger amplitudes of the daily variations compared to those in 2009 in general.471

There are two ICME arrivals in January 2012; the first one is between the 21st at ∼06:00472

and the 22nd at ∼ 08:00, the second one is between the 22nd at ∼23:00 and the 23rd473

at ∼ 07:00 UTC as highlighted in purple shades. We find that the neural network model474

underestimates the perturbations in all the components, especially for xD. In addition,475
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Figure 7. Comparison between the original data (black) and the modeling results for the

daily filter (fD) for a winter month (a-c) and a summer month (d-f) for 2012. The modeled xD,

yD, and zD are shown respectively in panels (a - c) for January in cyan and in panels (d - f) for

July in red. Purple and green shades highlight the intervals of ICME and CIR passages, respec-

tively. Purple vertical dashed lines mark the starting times of ICME disturbances.

–15–



manuscript submitted to Space Weather

there are two CIR passages as highlighted in green shades. Our model replicates the ob-476

served variations rather well although the extrema are underestimated.477

We now focus on storm perturbations. In July 2012 (Figs 7d - 7f), there are four478

ICME arrivals on the 4th, 8th, 14th, and 21st (see the catalog by Hajra & Sunny, 2022)479

as marked by dashed purple lines. The time intervals of these ICME passages are high-480

lighted in purple shades. Among these four ICMEs, only the one arrived on July 14 ap-481

pears to induce strong perturbations especially in xD and zD. Based on the properties482

of those ICMEs, the one arrived on the 14th has the fastest average bulk flow speed (490483

km/s) and the fastest maximum bulk flow speed (670 km/s) compared to the others which484

are in the range of 310 - 540 km/s for both quantities. Our model (red solid lines) ap-485

pears to reproduce and somewhat overestimate the perturbation peaks seen in xD and486

zD in this case, albeit the slight underestimation for yD peaks. In addition, there are a487

few CIR passages as shaded in green although there appear no clear perturbations on488

the fD. We will further discuss the effects of ICMEs and CIRs in Sections 4.3 and 5. Over-489

all, the neural network reproduces some of the storm perturbations in addition to the490

daily variations for 2012 although the extrema are often underestimated.491

4.3 Final modeling results: the filter baseline492

We have now modeled both the f>24 and the fD filters. Next, we consider a sum493

of these two modeled signals in order to produce our final output product (Fig 2c). The494

sum of the filters, namely f>24 + fD, was proposed by Haberle et al. (2022) to be a ge-495

omagnetic baseline during magnetically quiet periods. We define this as a filter baseline496

(fFB). This baseline was compared to existing baselines such as those from the FMI and497

SuperMAG. We focus first on the ability of the neural networks to reproduced the orig-498

inal fFB . We will then consider the production of a geomagnetic baseline by excluding499

the non-quiet variations owing to the solar wind and IMF in Section 4.4.500

4.3.1 Modeling of the filter baseline: solar-quiet year501

Fig 8 shows the results for February (a - c) and August (d - f) 2009, similar to Fig 6502

with the highlighted ICME (purple shade) and CIR (green shade) passages. We find that503

our modeled fFB = (xFB , yFB , zFB) shows overall good agreements especially for yFB504

and zFB in the absence of perturbations owing to the solar transients, e.g., between Au-505

gust 10 and 16 in Figs 8e and 8f. Similar to Section 4.2.1, we find some mismatches for506

the extrema and small-scale features. The fFB in February shows poorer agreements with507

the original fFB , especially for xFB and zFB where there is a slight gap or a small off-508

set between the observed and modeled data, best seen in Fig 8a in the first week. The509

fFB in August (Fig 8d) shows a better qualitative agreement with the observations. Dur-510

ing and after the ICME passage highlighted in purple (Figs 8a - 8c), our model under-511

estimates the extrema. In the presence of CIR perturbations highlighted in green, our512

model results mostly show an underestimation of the daily extrema, consistent with the513

results in Section 4.2.1. Additionally, we evaluate the performance by computing the Pear-514

son correlation coefficient (Pcc) and R2 score in Appendix B for each month in 2009 (see515

Table B1). We find that the average Pcc and R2 score values are better in summer than516

in winter. The average of the monthly Pcc and R2 score values for 2009 are found to be517

[0.62, 0.87, 0.81] and [0.14, 0.70, 0.65], respectively, for the (xFB , yFB , zFB) components.518

The average Pcc and R2 values of the three components are 0.77 and 0.49, respectively.519

4.3.2 Modeling of the filter baseline: solar-active year520

Fig 9 shows the results for January (a - c) and July (d - f) 2012, similar to Fig 7.521

Note that the modeling data start from January 1 at 06:00 only as it takes 30 timestamps522

starting from January 1 at 00:00 to produce the first points. Outside the perturbed pe-523

riods (non-shaded intervals), our model shows rather good agreements for yFB and zFB .524
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Figure 8. Comparison between the original filter baseline (fFB , black) and the modeling re-

sults for 2009 shown for February (a-c) and August (d-f). The modeled signals are in blue and

orange for February and August, respectively. Purple and green shades highlight the ICME and

CIR passages, respectively. A purple dashed line marks the ICME disturbance.
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Figure 9. Comparison between the original filter baseline (fFB , black) and the modeling

results for 2012. The modeled signals are shown in cyan for January (a - c) and in dark red for

July (d - f) for xFB , yFB , and zFB . Purple and green shades highlight the ICME and CIR pas-

sages, respectively. Purple dashed lines mark the beginning of ICME disturbances.

–18–



manuscript submitted to Space Weather

In the presence of ICME passages (purple shades), the original fFB (black) show strongly525

perturbed variations especially between January 21 and 26, and between July 14 and 18.526

For the ICME in January, it is apparent that the perturbations on the filtered ground527

magnetic measurements persist up to a few days after the ICME arrivals and passages.528

Our model underestimates its effects for the xFB and yFB while showing some repro-529

duced peaks for the yFB . The CIR passages (green shades) in the same month produce530

barely noticeable effects. In July 2012, there are several ICME and CIR passages with531

variable visible effects on the original fFB . The strongest effect is visible between July532

14 and 18 as mentioned earlier. Our model correctly produced the perturbations in all533

components, despite some overestimation in xFB and yFB . Similar to the solar-quiet year,534

our modeling results have better quantitive results in summer than in winter (see Ta-535

ble B2 in Appendix B). The average of the monthly Pcc and R2 score values are found536

to be [0.76, 0.90, 0.83] and [0.51, 0.79, 0.65], respectively, for the [xFB , yFB , zFB ] com-537

ponents. The average Pcc and R2 values of all the three components for 2012 are found538

to be 0.83 and 0.65, respectively, which are better than those in 2009.539

Overall, we find that our approach produces rather similar results to the baseline540

from Haberle et al. (2022). However, there are somewhat dissimilar results in the pres-541

ence of perturbations owing to the solar transients, and some disagreement in the xFB .542

We will discuss future improvements and applicabilities of our approach in Section 5.543

4.4 Neural network modeling of the quiet variations544

We now consider the modeling of the quiet variations within the filter data in an545

absence of the external drivers, i.e., the solar wind and IMF. The aim is to be able to546

produce a geomagnetic baseline representative of the regular variations modulated solely547

by the quiet sources using the neural networks for both quiet and active solar periods.548

The quiet, regular variation is dominated by the solar-quiet (Sq) variation which yields549

the day-to-day variation (24 hr period) measurable at a ground station. The Sq varia-550

tion is produced by the recurring ionospheric current on the sunlit side under which the551

station rotates. Thus, the F10.7 indicative of the solar irradiance and the local time are552

useful parameters. Furthermore, this Sq variation varies depending on the season. To553

take into account the quiet variation, we thus build a similar LSTM neural network as554

in Section 3 but with the input parameters being only the F10.7, SZA, and LT . This555

neural network is to model the daily filter fD. Since the quiet variation of the f>24 is556

the secular variation of the Earth’s internal magnetic field, we can indeed take only its557

running average (30-day) to represent its quiet contribution. Finally, the total quiet vari-558

ation is the sum of the 30-day running average of f>24 and the modeled fD without the559

solar wind and IMF. We name this product as fFB,noSW = ⟨f>24⟩30D + fD,noSW .560

Fig 10 shows a comparison between the original filter baseline fFB from Haberle561

et al. (2022) and the neural network filter baseline when excluding the solar wind and562

IMF (fFB,noSW ), as shown in black and red, respectively. Panels (a) - (c) show the x,563

y, z components in August 2009. We find that the fFB,noSW shows periodic variations564

similar to the original fFB for all components with the amplitudes being correctly re-565

produced. The y-component, in particular, shows an excellent agreement during quiet566

time, e.g. between August 12 and 19. The x- and z-components, however, show an agree-567

ment to a lesser extent. Importantly, in the presence of the perturbations appearing in568

the original fFB as shaded in green for CIRs and in purple for ICMEs, e.g. between Au-569

gust 5 and 12 driven by the CIR, our fFB,noSW remains regular. This is a desirable qual-570

ity of the geomagnetic baseline that robustly represents the quiet variation without be-571

ing sensitive to the external drivers. Panels (d) - (f) show the x, y, z components in July572

2012. In the presence of the perturbations, e.g., between July 14 and 20 driven by the573

ICME, the modeled fFB,noSW also remains regular. The same results yield for winter574

2009 and 2012 months (not shown). This shows a potential applicability of the fFB,noSW575
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Figure 10. Comparison between the original filter baseline FFB = (xFB , yFB , zFB) (black)

and the modeled filter baseline when excluding the solar wind and IMF FFB,noSW (red). The

data are shown for August 2009 (a - c) and July 2012 (d - f), for the x- (a,d), y- (b,e), and z-

(c,f) components. Green and purple shades highlight the CIR and ICME passages, respectively.

Purple dashed lines mark the beginning of ICME disturbances.
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as a geomagnetic baseline that would robustly represents the regular variation for both576

quiet and perturbed periods.577

5 Discussion578

We have modeled the above diurnal (f>24) and the daily (fD) variations of the ge-579

omagnetic baseline derived using the filtering technique proposed by Haberle et al. (2022).580

Our purpose is to be able to reproduce these variations using neural networks. Using the581

in situ observations of the solar wind IMF and plasma parameters, the daily F10.7 cm582

solar radio flux, and the geometrical parameters as inputs, we built the neural networks583

to model f>24 = (x>24, y>24, z>24) and fD = (xD, yD, zD) at 1 hr cadence. The LSTM584

architecture was chosen in order to be able to account for the history of the observations585

which may contain the solar wind perturbations and/or the solar transients in the last586

30 hours. Using data from 1995 onwards, we developed individual neural networks for587

f>24 and fD using the walk forward training (Fig 3). The data in 2009 and 2012 were588

chosen as the test data for a solar-quiet year and a solar-active year, respectively.589

Our neural network is illustrated in Fig 1 where it comprises five hidden layers; this590

neural network is identical for f>24 and fD. For f>24, we first removed the secular trends591

owing to the change of the internal geomagnetic field before feeding them into the neu-592

ral networks; the removed trends were then added back at the post-processing step (Fig 2).593

We then considered the sum of f>24 and fD, the so-called fFB , as our final modeled prod-594

uct. We find that our approach produces f>24 and fD, and subsequently fFB , agree qual-595

itatively well with the original signals. The yearly averaged Pcc of the modeled [xFB ,596

yFB , zFB ] was found to be [0.62, 0.87, 0.81] for 2009 and [0.76, 0.90, 0.83] for 2012. (see597

Appendix B). In the presence of perturbations following arrivals and passages of solar598

transients including ICMEs and CIRs, however, our approach produced more arbitrary599

results where peaks of the perturbations are underestimated or overestimated depend-600

ing on the component and/or the event, although the overall shape of the signal is pre-601

served. In general, we find that the model results are better in summer. This is plau-602

sibly because the amplitude of the daily variations is stronger, making it more discernible603

and thus easier to model. Besides, we find that the results in 2012 are better, plausibly604

for the same reason as the fluctuations are stronger during a solar-active year compared605

to a solar-quiet year. We conclude that our approach provides good agreement to the606

fFB proposed by Haberle et al. (2022) for both solar-quiet and solar-active periods.607

We discuss some caveats of our approach as the following. First, the secular trends608

in f>24 were removed using the rolling average with a window of 30 days. This trend re-609

moval process was aimed to get rid of the secular variation of the geomagnetic field mea-610

sured at CLF; this process also helps the neural network to be able to learn patterns ow-611

ing to the perturbations of solar origins. Nevertheless, the rolling average may also re-612

move some useful information. In particular, some large-amplitude perturbations ow-613

ing to the effects of solar-transient structures can also be partially removed. As a con-614

sequence, the data we fed into the neural network underestimate the actual magnitude615

of the perturbations. This plausibly explains the underestimation of extrema during the616

storm-perturbed fluctuations predicted by our neural network. It would be desirable if617

we can remove this secular trend based on physical understandings. The use of main ge-618

omagnetic field model outputs together with constants on each component, to take into619

consideration the local crustal biases at the considered magnetic observatory location,620

will likely reduce the observed discrepancies between the filter data and the neural net-621

work model results. The IGRF model (International Geomagnetic Reference Field; Alken622

et al., 2017), for instance, in conjunction with constant values to consider the crustal field623

due to remnant rocks within the crust may be considered in our future improvements.624

Yet, this approach will downgrade the capacity of real-time calculation and lead to use625

of a priori information, making it less convenient for operational implementation.626
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Our model shows less satisfactory results for x>24, xD, and subsequently xFB , un-627

like for other components. This is likely because the x-component is influenced by the628

solar and geometrical parameters differently unlike the y- and z-components. Since CLF629

is at mid-latitude, the x-component which records fluctuations in the north-south direc-630

tion can be influenced by both the auroral electrojets from high latitudes and the equa-631

torial electrojets and ring currents from low latitudes. Technically, the x-component may632

be modeled separately using a dedicated neural network, and this will likely improve the633

model performance. However, the x-component is indeed a projection of a physical (vec-634

tor) quantity — the magnetic field — that cannot be treated apart. Overall, we find that635

our current configuration provides reasonable results; it demonstrated that the machine-636

learning based model can be used. Future work should include an optimization of this637

approach for yielding better results.638

Our work focused on the effects of solar-driven perturbations on the filter baseline.639

Despite that, there may be other important drivers of inner-magnetosphere origins and/or640

atmospheric origins that should be taken into account. For example, even if this current641

modeling attempt reproduces reasonably well the day-to-day variability, atmospheric grav-642

ity or tides may have other measurable effects at the ground level. Currently, we do not643

have exploitable measures that can be fed into our model at the time of our model de-644

velopment. It would be desirable to understand or identify all sources relevant to the mag-645

netic measurements at the ground level. Progress in this field of research would poten-646

tially improve our future modeling. Importantly, since we take the solar wind IMF and647

plasma data upstream of the Earth, we bypass the understanding of the coupling of var-648

ious physical processes in the magnetosphere down to the ground. Our approach does649

not give any physical insights; it merely provides an advanced statistical machine-learning650

based model. Exploring the transparency of machine-learning based models is currently651

an active area of research. Investigation of interpretability (e.g., Lundberg & Lee, 2017)652

of the neural networks may provide physical insights and improve our understanding.653

We demonstrated the applicability of the neural network modeling in predicting654

the filter baseline. Particularly, we demonstrated that the neural network can model the655

regular, quiet variation when excluding the solar wind and IMF. Although we focused656

on data from CLF, our approach is scalable and can be applied to data from other sta-657

tions. Future applications of our approach include (a) producing a machine-learning based658

geomagnetic baseline, and (b) predicting the solar-driven ground magnetic measurements.659

For (a), we need more analyses to test the robustness of our modeled quiet variations660

driven by the solar irradiance and the geometrical parameters. A test for producing the661

quiet variations was performed; it showed promising results as demonstrated in Section 4.4.662

For (b), we will need future improvements for predicting more accurate results for the663

x-component, as well as further validation and extension of data interval for the model664

training to cover the various phases of a solar cycle. Importantly, the impacts of CIRs665

and ICMEs should be assessed. This work is a proof of concept that the neural network666

can be used for predicting ground magnetic perturbations driven by the solar wind. Our667

method can be adapted for real-time use. Once the neural networks are trained with suf-668

ficiently long data (e.g., two solar cycles), they can be retrained every month or every669

day to update the models and then make forecast for the next month or next day(s).670

In terms of the computational resources, our approach is rather efficient. For the671

model training part with the walk forward training, it takes 1 hour 17 mins and 1 hour672

48 mins in CPU time for f>24 and fD, respectively. For the production of the quiet vari-673

ation fFB,noSW , only the neural network for fD is needed to be trained; this takes about674

1 hour 48 mins in CPU time. When producing results on the test sets, it takes 6 seconds675

to produce 1 year of data. In summary, it takes about 5 hours in total in CPU time to676

train the neural networks for the results shown here.677
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6 Summary and Perspectives678

We developed a novel approach based on machine-learning neural network to model679

the ground magnetic perturbations, characterized as the above-diurnal variation and the680

daily variation (Haberle et al., 2022), at CLF as driven by the solar and atmospheric vari-681

abilities. The sum of both variations, so called filter baseline produced from the filter-682

ing technique, fFB , was reproduced using two neural networks with identical LSTM ar-683

chitecture. Using data from 1995 onwards, we trained each neural network along with684

the walk forward training that allows us to update the models with new data. Our mod-685

eled fFB shows an overall good agreement with the original fFB for both a solar-quiet686

year (2009) and a solar-active year (2012), with the Pcc values of 0.77 and 0.83, respec-687

tively, for the average of the xFB , yFB , and zFB components. Importantly, by using only688

the F10.7 and geometrical parameters at CLF, we demonstrated that our neural networks689

can model the regular, quiet variation owing to the Sq variation. Our modeled quiet vari-690

ation remains regular for both quiet and non-quiet periods, i.e. in the presence of geo-691

magnetic storms, while capturing accurately the amplitude of the seasonal-dependent692

Sq variation. This latter aspect is a desirable quality for a geomagnetic baseline that would693

robustly discerns perturbed periods and provides a more-reliable magnetic activity in-694

dex that reflects the actual intensity of geomagnetic storm perturbations.695

Our work focused on data from CLF that is located at mid-latitude. The devel-696

oped approach can be adapted to other magnetic observatories, although there can be697

local effects specific to geographical latitude and longitude. Our results at CLF show a698

less satisfactory result for xFB (with average R2 score of 0.1 - 0.5, compared to 0.6 - 0.8699

of yFB and zFB), which can be influenced by the auroral and equatorial electrojets and700

ring current during the perturbed periods. Additionally, our model performance varies701

with the season with a better result in summer. More exploitable data related to the other702

contributing sources to the ground magnetic measurements, e.g., the neutral atmosphere,703

may improve our model. This work is a proof of concept that the neural networks can704

be used to predict the contributions to the ground magnetic measurements owing to the705

solar variabilities as well as the regular modulation owing to the daily and seasonal vari-706

abilities. Our future work will include a further optimization of the neural network work-707

flow to improve its performance, an investigation of the neural network interpretability,708

and a consideration for future real-time applications in producing a reliable geomagnetic709

baseline as well as for predicting influence of the solar wind and solar transients at the710

ground level. Finally, our approach can be adapted for real-time and future forecasting711

of a magnetic activity index with high temporal resolution and fine intensity scale.712
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Appendix A Removing the secular trend726

To remove the secular trend, we apply a rolling average on the sequential data us-727

ing a specific window size centered at data point in consideration. The secular trend vari-728

ation varies on the time scale between a month to a few thousand of years. On time scales729

of between a month and 100 years, the secular variation is entirely caused by the rigidly730

coupled movement of the magnetic field lines with the fluid motion in the liquid outer731

core (advection). In order to find an optimum window size for the trend removal, we pre-732

process the filter data by removing the rolling average with window sizes of 30, 45, and733

90 days. For this experiment, we limit the training data for the neural network to 1997734

- 2007 and use the validation data in 2008 as described in Section 3.2. Table A1 shows735

Pcc and R2 values of individual components and the average values of all components736

(Pccav and R2
av) of each model with a different window size for the trend removal. Con-737

sidering the Pccav, the model using 45-day trend removal has the best value. However,738

it yields negative R2
av as well as for the individual components. While the model using739

90-day trend removal has a better Pccav, it has a lower R2
av compared to the model us-740

ing 30-day window. The model using 30-day window appears to be the best compromise.741

Table A1. Pearson correlation coefficients (Pcc) and R2 score of the “static” neural network

model for the above diurnal components using various window sizes for the secular trend removal.

Window size (days) Pcc [x>24, y>24, z>24] Pccav R2 [x>24, y>24, z>24] R2
av

30 [0.658, 0.412, 0.535] 0.535 [0.341, 0.005, 0.105] 0.150
45 [0.734, 0.466, 0.578] 0.593 [-0.084, -0.103, -0.078] -0.088
90 [0.722, 0.401, 0.557] 0.560 [0.201, -0.054, 0.215] 0.121

Appendix B Model performance for each month in 2009 and 2012742

Table B1 shows the monthly performance of our modeled fFB for 2009. Table B2743

shows the monthly performance of our modeled fFB for 2012. The model performance744

is assessed using Pcc and R2 for the individual components, as well as the averages of745

the three component. The yearly average for Pcc and R2 are also given.746

Table B1. Pcc and R2 score of the fFB for each month in 2009.

Month Pcc [xFB , yFB , zFB ] Pccav R2 [xFB , yFB , zFB ] R2
av

Jan [0.667, 0.714, 0.697] 0.693 [0.385, 0.362, 0.473] 0.407
Feb [0.57, 0.747, 0.781] 0.699 [0.209, 0.43, 0.609] 0.416
Mar [0.516, 0.82, 0.856] 0.731 [0.062, 0.626, 0.729] 0.472
Apr [0.543, 0.93, 0.925] 0.799 [0.134, 0.85, 0.846] 0.61
May [0.343, 0.923, 0.922] 0.729 [-0.178, 0.833, 0.85] 0.502
Jun [0.825, 0.935, 0.848] 0.869 [0.624, 0.874, 0.674] 0.724
Jul [0.768, 0.92, 0.829] 0.839 [0.566, 0.845, 0.674] 0.695
Aug [0.705, 0.939, 0.816] 0.82 [0.467, 0.878, 0.637] 0.661
Sep [0.677, 0.917, 0.84] 0.811 [0.252, 0.828, 0.695] 0.592
Oct [0.718, 0.866, 0.845] 0.816 [0.226, 0.706, 0.694] 0.542
Nov [0.701, 0.867, 0.801] 0.79 [0.076, 0.683, 0.624] 0.461
Dec [0.399, 0.84, 0.591] 0.61 [-1.141, 0.424 , 0.267] -0.15

Average [0.619, 0.868, 0.813] 0.767 [0.140, 0.695, 0.648] 0.494
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Table B2. Pcc and R2 score of the fFB for each month in 2012.

Month Pcc [xFB , yFB , zFB ] Pccav R2 [xFB , yFB , zFB ] R2
av

Jan [0.797, 0.874, 0.7] 0.79 [0.546, 0.741, 0.42] 0.569
Feb [0.698, 0.864, 0.792] 0.785 [0.423, 0.74, 0.595] 0.586
Mar [0.798, 0.831, 0.874] 0.834 [0.607, 0.678, 0.751] 0.679
Apr [0.684, 0.895, 0.89] 0.823 [0.439, 0.795, 0.776] 0.67
May [0.714, 0.937, 0.915] 0.855 [0.509, 0.872, 0.838] 0.74
Jun [0.809, 0.924, 0.877] 0.87 [0.63 , 0.85, 0.764] 0.748
Jul [0.868, 0.905, 0.876] 0.883 [0.656, 0.793, 0.758] 0.736
Aug [0.668, 0.953, 0.85] 0.824 [0.399, 0.907, 0.721] 0.676
Sep [0.796, 0.931, 0.866] 0.864 [0.559, 0.864, 0.706] 0.71
Oct [0.857, 0.921, 0.84] 0.873 [0.71, 0.844, 0.638] 0.731
Nov [0.816, 0.868, 0.729] 0.804 [0.544, 0.718, 0.39] 0.551
Dec [0.603, 0.861, 0.769] 0.744 [0.142, 0.703, 0.458] 0.434

Average [0.759, 0.897, 0.832] 0.829 [0.514, 0.792, 0.651] 0.653
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Sucksdorff, C., Pirjola, R., & Häkkinen, L. (1991). Computer production of k-indices882

based on linear elimination. Geophys. Trans, 36 , 333–345.883

Tapping, K. F. (2013, July). The 10.7 cm solar radio flux (F10.7). Space Weather ,884

11 (7), 394-406. doi: 10.1002/swe.20064885

Tebabal, A., Radicella, S. M., Nigussie, M., Damtie, B., Nava, B., & Yizengaw, E.886

(2018, July). Local TEC modelling and forecasting using neural networks.887

Journal of Atmospheric and Solar-Terrestrial Physics, 172 , 143-151. doi:888

10.1016/j.jastp.2018.03.004889

–27–



manuscript submitted to Space Weather

Thébault, E., Purucker, M., Whaler, K. A., Langlais, B., & Sabaka, T. J. (2010, Au-890

gust). The Magnetic Field of the Earth’s Lithosphere. Space Sci Rev , 155 (1-4),891

95-127. doi: 10.1007/s11214-010-9667-6892

Uwamahoro, J., & Habarulema, J. B. (2014, December). Empirical modeling of the893

storm time geomagnetic indices: a comparison between the local K and global894

Kp indices. Earth, Planets and Space, 66 , 95. doi: 10.1186/1880-5981-66-95895

Vladimirov, R. D., Shirokiy, V. R., Myagkova, I. N., Barinov, O. G., & Dolenko,896

S. A. (2023, April). Comparison of the Efficiency of Machine Learning Meth-897

ods in Studying the Importance of Input Features in the Problem of Forecast-898

ing the Dst Geomagnetic Index. Geomagnetism and Aeronomy , 63 (2), 161-171.899

doi: 10.1134/S0016793222600795900

Wintoft, P., & Cander, L. R. (2000, March). Twenty-four hour predictions of f 0 F 2901

using time delay neural networks. Radio Science, 35 (2), 395-408. doi: 10.1029/902

1998RS002149903

Wu, J.-G., & Lundstedt, H. (1996, February). Prediction of geomagnetic storms904

from solar wind data using Elman Recurrent Neural Networks. Geophys. Res.905

Lett., 23 (4), 319-322. doi: 10.1029/96GL00259906

Yamazaki, Y., & Maute, A. (2017, March). Sq and EEJ—A Review on the Daily907

Variation of the Geomagnetic Field Caused by Ionospheric Dynamo Currents.908

Space Sci Rev , 206 (1-4), 299-405. doi: 10.1007/s11214-016-0282-z909

Zhang, H., Xu, H. R., Peng, G. S., Qian, Y. D., Zhang, X. X., Yang, G. L., . . . Zhu,910

M. B. (2022, October). A Prediction Model of Relativistic Electrons at Geo-911

stationary Orbit Using the EMD-LSTM Network and Geomagnetic Indices.912

Space Weather , 20 (10), e2022SW003126. doi: 10.1029/2022SW003126913

Zhelavskaya, I. S., Shprits, Y. Y., & Spasojević, M. (2017, November). Empiri-914
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