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Abstract

Breaking atmospheric gravity waves in the tropical stratosphere are essential in driving the roughly two year oscillation of zonal

winds in this region known as the Quasi-Biennial Oscillation (QBO). As Global Climate Models (GCM)s are not typically able

to directly resolve the spectrum of waves required to drive the QBO, parameterizations are necessary. Such parameterizations

often require knowledge of poorly constrained physical parameters. In the case of the spectral gravity parameterization used

in this work, these parameters are the total equatorial gravity wave stress and the half width of phase speed distribution.

Radiosonde observations are used to obtain the period and amplitude of the QBO, which are compared against values obtained

from a GCM. We utilize two established calibration techniques to obtain estimates of the range of plausible parameter values:

History Matching & Ensemble Kalman Inversion (EKI). History Matching is found to reduce the size of the initial range of

plausible parameters by a factor of 98%, requiring only 60 model integrations. EKI cannot natively provide any uncertainty

quantification but is able to produce a single best estimate of the calibrated values in 25 integrations. When directly comparing

the approaches using the Calibrate, Emulate, Sample method to produce a posterior estimate from EKI, History Matching

produces more compact posteriors with fewer model integrations at lower ensemble sizes compared to EKI; however, these

differences become less apparent at higher ensemble sizes.
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Key Points:5

• History Matching and Ensemble Kalman Inversion were used to calibrate param-6

eters in a gravity wave parameterization using QBO observations.7

• History Matching was found to rapidly and compactly produce an estimate of the8

plausible space of parameters when compared to EKI.9

• EKI was found to be strong at single best estimates of the calibrated parameters10

at low ensemble sizes requiring few iterations.11
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Abstract12

Breaking atmospheric gravity waves in the tropical stratosphere are essential in driving13

the roughly two year oscillation of zonal winds in this region known as the Quasi-Biennial14

Oscillation (QBO). As Global Climate Models (GCM)s are not typically able to directly15

resolve the spectrum of waves required to drive the QBO, parameterizations are neces-16

sary. Such parameterizations often require knowledge of poorly constrained physical pa-17

rameters. In the case of the spectral gravity parameterization used in this work, these18

parameters are the total equatorial gravity wave stress and the half width of phase speed19

distribution. Radiosonde observations are used to obtain the period and amplitude of20

the QBO, which are compared against values obtained from a GCM. We utilize two es-21

tablished calibration techniques to obtain estimates of the range of plausible parame-22

ter values: History Matching & Ensemble Kalman Inversion (EKI). History Matching23

is found to reduce the size of the initial range of plausible parameters by a factor of 98%,24

requiring only 60 model integrations. EKI cannot natively provide any uncertainty quan-25

tification but is able to produce a single best estimate of the calibrated values in 25 in-26

tegrations. When directly comparing the approaches using the Calibrate, Emulate, Sam-27

ple method to produce a posterior estimate from EKI, History Matching produces more28

compact posteriors with fewer model integrations at lower ensemble sizes compared to29

EKI; however, these differences become less apparent at higher ensemble sizes.30

Plain Language Summary31

Atmospheric gravity waves (GWs) are buoyancy driven oscillations which propa-32

gate through the atmosphere and deposit momentum where they break. This momen-33

tum exchange plays a significant role in setting various large-scale atmospheric phenom-34

ena, of which a prominent example is the Quasi Biennial Oscillation, a roughly two year35

oscillation of winds in the tropical stratosphere. Many of the waves responsible for cre-36

ating these large scale patterns are too small to be simulated by climate models. Thus,37

we use parameterizations to estimate their impact on the large scale. These parameter-38

izations have settings that require tuning, to enable the model to produce variability that39

matches the observed climate. In this work, we utilize and compare two techniques: His-40

tory Matching and Ensemble Kalman Inversion. These methods are combined with ob-41

servations of the Quasi Biennial Oscillation to tune the settings for the gravity wave pa-42

rameterization.43

1 Introduction44

Global Climate Models (GCM)s are powerful tools for understanding and predict-45

ing the evolution of the Earth’s climate. For reasons of computational cost, the current46

generation of climate models has a horizontal resolution of O(100km) resolution in the47

horizontal. Motions on scales smaller than this model resolution and which vary on time48

scales smaller than a model time step are not explicitly resolved, but can significantly49

impact the resolved scales of motion.50

One such subgrid-scale process is atmospheric gravity waves (GW)s, which are gen-51

erated in the atmosphere by a wide range of sources including mountains, deep convec-52

tive storms and fronts (Fritts & Alexander, 2003). The horizontal scale of these GWs53

can range from tens to thousands of kilometers (Alexander et al., 2010). GWs are re-54

sponsible for substantial momentum transport from their source region to higher levels55

in the atmosphere, where they break and deposit the momentum into the mean flow (Fritts56

& Alexander, 2003). This breaking of gravity waves in the stratosphere plays a substan-57

tial role in driving large scale atmospheric patterns, including the Quasi-Biennial Oscil-58

lation (QBO).59
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The QBO is the dominant mode of variability in the tropical stratosphere and con-60

sists of alternating descending westerly and easterly zonal winds with a period of around61

28 months. The QBO is forced by a mixture of various tropical waves (Holton & Lindzen,62

1972). However, to simulate a spontaneous QBO in models, the impact of small scale63

GWs (approximated by GW parameterizations), appears crucial (Dunkerton, 1997; Lindzen64

& Holton, 1968).65

In practice, GW parameterizations can be divided into two classes, orographic pa-66

rameterizations (Lott & Miller, 1997), useful for studying the impact of stationary moun-67

tain waves, and non-orographic parameterizations which typically utilize a spectrum of68

gravity wave phase speeds. We concern ourselves with the latter, specifically the com-69

monly used parameterization developed by Alexander and Dunkerton, henceforth referred70

to as AD99 (Alexander & Dunkerton, 1999). In practice, default parameter settings are71

chosen manually based on whether a given parameter produces realistic behavior of large72

scale, observable patterns known to be driven by GWs.73

Whilst these default choices are often sufficient to test the implementation of a pa-74

rameterization, the choice of parameters is rarely optimal. The task of obtaining an op-75

timal set of parameters based on observations of a related phenomenon is known as cal-76

ibration. Calibration can be formulated as an inverse problem in which a complex model,77

which is a function of parameterization settings, outputs some estimate of a real world78

observable. In this work an intermediate complexity GCM implementing AD99 was used79

to output predictions of the QBO period and amplitude. The root mean squared error80

(RMS) between the predictions and the observations weighted by the uncertainties was81

used as the loss function for the calibration. Due to the computational cost of running82

such a GCM, this loss function cannot practically be optimized by conventional gradi-83

ent descent methods.84

Various classes of methods exist to solve inversion problems. In this work, we will85

utilize an approach known as Bayesian History Matching. This approach was initially86

developed to calibrate models for oil exploration (Craig et al., 1997) and has found wide87

utility in various disciplines. This includes in calibrating models of galactic formation88

(Williamson et al., 2013), HIV disease transmission (Andrianakis et al., 2015) and re-89

cently in calibrating multi timescale dynamical systems (Lguensat et al., 2023).90

During each iteration of history matching, the current “plausible” parameter space91

is sampled and forward model integrations at the sampled points are used to obtain es-92

timates of the observables. An emulator, trained on the results of the model integrations93

is then used to predict the observables across the space. By comparing these predictions94

to the true observables we calculate an implausibility statistic which is minimized in re-95

gions of space where the predictions agree with the observations or those with high un-96

certainties. By determining the regions where this implausibility is below a certain thresh-97

old we obtain the “Not Yet Ruled Out” (NROY) space (Lguensat et al., 2023), a uni-98

form space of parameters that, relative to the uncertainties, simulate a QBO consistent99

with observations.100

An alternate calibration method known as Ensemble Kalman Inversion (EKI) was101

investigated on AD99 in a previous study (Mansfield & Sheshadri, 2022); and has also102

been utilized in the calibration of other parameterization schemes, e.g. (Dunbar et al.,103

2021). EKI is a gradient free optimization method, which converges upon a singular point104

that minimizes a loss function (Kovachki & Stuart, 2019; Iglesias et al., 2013). Whilst105

an emulator is not required for the update step of the calibration in EKI, it is required106

in order to reconstruct the complete posterior distribution to obtain a structure that is107

analogous to the NROY space in history matching (Cleary et al., 2021), a process known108

as Calibrate, Emulate, Sample (CES).109
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In this paper, we present the results of applying an implementation of History Match-110

ing for calibrating the AD99 parameterization and a comparison to the EKI calibration111

method (Mansfield & Sheshadri, 2022). The method and theory of this technique in ad-112

dition to the emulator development are described in section 2. The results of the history113

matching algorithm are then presented in section 3, with a comparison to EKI made in114

section 3.1. A discussion of the relative ability of EKI and History Matching to calibrate115

the AD99 parameterization is presented in section 4.116

2 Method117

2.1 Computational Configuration118

In this investigation, we utilize the Model of an Idealized Moist Atmosphere (MIMA)119

(Jucker & Gerber, 2017; Garfinkel et al., 2020), an intermediate complexity GCM that120

contains an implementation of the AD99 parameterization. The model is run at a T42121

spectral resolution using 40 vertical levels on a 128x64 longitude-latitude grid. This cor-122

responds to a resolution of around 310km at the equator, far too coarse to directly re-123

solve much of the spectrum of gravity waves (Baldwin et al., 2001). In order to capture124

a sufficient number of complete QBO cycles to characterize the distribution, 20 years of125

forward integration are performed. A mixture of cold start and hot start integrations126

are utilized in this investigation, with cold starts initialized with a uniform temperature127

of 260K and with a spin up period of 20 years. Hot start integrations utilized already128

initialized MiMA integration states containing a QBO, which only required a 2 year spinup129

period and are used once the cold start runs were completed.130

As we calibrated based on observations of the QBO in this investigation, we focused131

on the tropical parameters of AD99 following the approach of Mansfield & Sheshadri (Mansfield132

& Sheshadri, 2022). These are the ctropicsw & Beq
t parameters, henceforth referred to as133

cw and Bt. The former of these parameters sets the half width of the half maximum Gaus-134

sian spectrum of GW phase speeds that will be utilized by AD99 within the tropics. The135

Bt factor corresponds to the equatorial gravity wave total momentum stress and is used136

within AD99 to set the GW intermittency factor via a re-scaling of the GW spectrum.137

Neither of these parameters are well constrained by observations and as such form the138

target parameters for our calibration.139

2.2 Observations of the QBO140

Radiosonde observations, primarily over Singapore, which were collated by the Freie141

Universität Berlin (Kunze, 2007) are used as reference data for the QBO. Specifically,142

monthly averaged zonal wind speeds at the 10hPa level are used. A 5 month rolling mean143

is used to remove noise and high frequency components of the signal that are not due144

to the QBO. The QBO period is calculated using the Transition Time (TT) method com-145

monly employed by other studies (Bushell et al., 2022; Schenzinger et al., 2017; Richter146

et al., 2020). In this method, the signal is divided into individual periods based on the147

transition from the westerly to the easterly phase, which then allows the period to be148

calculated directly as the time difference between each transition. This yields a sample149

of the QBO periods from which an estimate of the population mean with an associated150

error is calculated via the Central Limit Theorem (CLT). The QBO amplitude is cal-151

culated from the same smoothed signal of the zonal wind, u, by calculating: (umax −152

umin)/2 for each individual QBO cycle calculated via the TT method above. As with153

the period, we use the CLT to determine an estimate for the QBO mean amplitude, with154

the associated error calculated as σ/
√
N .155

Using this method, the mean period of the QBO is calculated to be TQBO = 27.92±156

0.86months and the mean amplitude is determined to be: AQBO = 22.90± 0.52m/s.157

When applied to the model output from MiMA, the zonal wind component at the level158
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closest to 10hPa zonally averaged from 5°S to 5°N is used. The same TT method is em-159

ployed to extract a distribution of the periods and amplitudes of the smoothed signal160

which are then averaged.161

2.3 History Matching162

The objective of history matching is to iteratively reduce the size of the not yet ruled163

out (NROY) space of parameters θ that go into a model f(θ) that produces as output164

an estimate of some physical observable y:165

f(θ) = y + ϵf (1)

ϵf ∼ N(0,Σf ) (2)

Where ϵf is the model uncertainty in predicting y. This error is assumed to be drawn166

from a zero mean Gaussian distribution with covariance Σf . We further assume that er-167

rors in the prediction of each component of y are independent and thus Σf is a diago-168

nal matrix. History Matching measurements z of observable y in order to determine which169

inputs θ give plausible values of the observable. Such measurements z will also contain170

an error term:171

z = y + ϵz (3)

ϵz ∼ N(0,Σz) (4)

Where again ϵz represents the error in the observations of the physical process y172

which is also assumed to follow a zero mean Gaussian with each observation being in-173

dependent of each other. In this investigation f represents forward integrations of MIMA174

and thus our chosen parameters, θ, correspond to the aforementioned settings of the AD99175

parameterization:176

θ = (cw, Bt) (5)

Meanwhile the outputs of this model are the mean period and amplitude of the QBO177

in the zonal wind component at the 10hPa level calculated using the TT method as de-178

scribed above for the radiosonde data:179

f(θ) = (TQBO, AQBO) (6)

The History Matching procedure requires the specification of some initial NROY180

space, typically the largest possible range of plausible values of θ. Based on domain knowl-181

edge we determined that the initial plausible range of phase speed half-widths ranged182

from 5m/s to 80m/s, whilst the plausible maximum equatorial momentum fluxes where183

chosen to range from 1mPa to 7mPa.184

As forward integrations of a GCM are expensive, we wish to minimize the num-185

ber of required integrations. In the conventional history matching approach this is achieved186

by developing an emulator that is trained on a small number of true integrations and187

predicts our target vector z across the current NROY space. The points for these inte-188

grations are randomly sampled with a space filling objective. To that end, we utilize Min-189

max Latin Hypercube sampling (LHS) (McKay et al., 1979), which is a computation-190

ally efficient method for sampling a uniform unit hypercube. To draw N samples from191

a k dimensional hypercube space, this method works by subdividing the space into a grid192

where each axis contains n smaller hypercubes of size (1/n)k. We then pick n of these193
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smaller cubes as our sample points at random, subject to the criterion that along each194

axis of the grid, each (1/n) subsection contains one and only one smaller hypercube. In195

the 2-dimensional case this is analogous to the problem of trying to position chess rooks196

such that no rook directly attacks another (Golomb & Posner, 1964). The additional min-197

max constraint enforces the constraint that out of all possible valid configurations, we198

pick configurations such that the minimum distance between any two sub hypercubes199

is maximized. This eliminates trivial configurations such as selecting samples along any200

diagonal of the space.201

In this work, we investigate the impact in sampling with different number of points202

at each iteration to determine the optimal tradeoff between computation time and em-203

ulator accuracy. Specifically, we determined the impact of sampling 5, 10, 20 & 50 points204

from the NROY space at each iteration, with more points allowing for a more accurate205

emulator at the expense of greater computational cost. The number of points sampled206

at each iteration is denoted as N . After completing the corresponding integrations we207

obtained a training set {θi} of points with associated estimates for the QBO observables208

{zi} which have an estimated error {σi}.209

For each iteration, once the parameters were sampled and the forward integrations210

completed, we follow the approach of Andrianakis (Andrianakis et al., 2015) and develop211

a Gaussian Process (GP) based emulator to estimate z across the entirety of the cur-212

rent NROY space. Gaussian Processes are useful for building emulators as they are ca-213

pable of taking a distribution over an infinite range of basis functions that are conditioned214

on the training dataset. Specifically, we trained one Gaussian Process Regression (GPR)215

emulator, implemented via the scikit-learn library, per each dimension of the output vec-216

tor of the model. Thus with a 2 dimensional output vector, 2 independent GPs are trained217

on the 2D input parameter space. The input parameters are scaled each wave to have218

zero mean and unit variance along each feature axis. Additionally, each output train-219

ing label in the GPR is normalized to have a zero mean and unit variance which typ-220

ically gives the best training performance for the default case where a zero mean, unit221

variance prior is used in the GPR.222

One important pathological case that needed to be considered for the input data223

to the GPR training was the case where no QBO was present in the output signal, de-224

fined as no transition in the zonal wind direction across the entire 20 year window. There225

are a variety of approaches to deal with these cases, however in this work we decided to226

exclude data points with no QBO present. This was done because the QBO breakdown227

results in a non smooth critical transition in the QBO period and amplitude. Thus if these228

points were included in the emulator training it would likely be captured poorly by the229

emulator and greatly bias the mean value of the emulator predictions. For history match-230

ing, the best way to deal with such anomalous points is to manually exclude regions of231

the space that are clearly implausible such as those with Bt or cw values below those needed232

to drive a QBO.233

The choice of kernel in a GPR is also critical for setting the smoothness of the em-234

ulated functions as well as for setting the scale of the emulator variance at each point.235

For this work a Radial Basis Function (RBF) kernel as defined below is used:236

K(θ, θ′) = C exp

(
−|θ − θ′|2

2l

)
(7)

where l and C were kernel hyper parameters representing the characteristic length237

scale and scale factor. The standard scaling of our input and output parameters gives238

a convenient choice for our length scale and scale factor of C = l = 1, as the standard239

deviation of the input points will by construction be 1.240
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In addition to the hyperparameter tuning, a “nugget” term is provided in the form241

of an array of the point wise training data noise estimated during the TT method de-242

scribed above. The nugget is added to the diagonal terms of the above kernel matrix dur-243

ing training and has been shown to be a useful term for emulating climate model out-244

put (Williamson et al., 2015).245

The final stage of an iteration of history matching is to calculate the implausibil-246

ity, a measure of how likely it is that a given point of the current NROY space is con-247

sistent with observations subject to some user defined cutoff. Thus a small implausibil-248

ity implies that either a parameter configuration is predicted to produce an output very249

close to the observations or that there is sufficiently large uncertainty in the predicted250

value at that point that the point must remain in consideration for future iterations. In251

the standard univariate History Matching case, the implausibility takes the form of the252

Mahalanobis distance:253

I =
|f̂(θ)− z|√
σ2
z + σ2

f̂

(8)

Where σz is the observational uncertainty and σf̂ is the uncertainty in the emu-254

lator prediction. Typically for the univariate case (Andrianakis et al., 2015; Lguensat255

et al., 2023; Couvreux et al., 2021; Williamson et al., 2013), Pulksheim’s rule is invoked256

which states that for a continuous unimodal distribution 95% of the probability mass257

lies within 3 standard deviations of the mean value (Pukelsheim, 1994). For the multi-258

variate case, as in this work with a 2-dimensional z there are various definitions of the259

implausibility. One approach is to calculate for the jth component of z, the correspond-260

ing univariate implausibility Ij and then define the total implausibility as:261

I = max
j

Ij (9)

A more robust method is to follow the approach of Vernon (Vernon et al., 2010)262

and calculate a full multivariate implausibility of the form:263

I2 =
(
f̂ − z

)T (
Σz +Σf̂

)−1 (
f̂ − z

)
. (10)

Here Σz is the covariance matrix of the observational uncertainty defined previously264

and Σf̂ is the covariance matrix of the emulator at a given point x in the parameter space.265

As the emulator for each component of f is trained independently of the others, Σf̂ will266

also be a diagonal matrix, however one could consider a more advanced multivariate em-267

ulator that outputs a non diagonal matrix for Σf̂ . Equation 10 demonstrates that the268

implausibility corresponds to a sum of squared random variables, which will follow a χ2
269

distribution with an order equal to the number of dimensions in the output space. Thus270

we can use a standard χ2 to reject (Vernon et al., 2010). In the specific case of this in-271

vestigation a significance level of 1% corresponds to a cut off implausibility squared of272

I2max = 9.21 a threshold which is very similar to the Imax = 3 used to invoke Pulk-273

shiem’s rule in the univariate case.274

Once this cut-off is applied, the next wave NROY space is obtained, from which275

additional samples can be drawn. As this space is unlikely to be a rectangular space, the276

LHS sampling approach cannot be utilized. For simplicity, conventional exclusion based277

sampling was performed in these cases. By running additional MiMA integrations at these278

points, a new emulator can be trained utilizing the new points alongside the existing ones279

which allows more of the NROY space to be ruled implausible with each iteration result-280

ing in a chain of GPR emulators being developed (Salter & Williamson, 2016). These281
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iterations can be performed continually until the NROY space is sufficiently converged.282

In this work, this is defined as when the fractional change in the area of the NROY space283

between consecutive iterations is below 5%.284

2.4 Ensemble Kalman Inversion285

In this work we also compare the results of the calibration obtained via History Match-286

ing with that obtained by Ensemble Kalman Inversion. The EKI algorithm can be con-287

sidered as an inverse formulation of the ensemble Kalman filter (EnKF), beginning with288

some prior set of parameters {θ(n)} which are progressively updated by comparison be-289

tween the estimates of observables at these parameters with the true observables. This290

is achieved by performing a global minimization (Kovachki & Stuart, 2019) of the Mahlobo-291

nis distance, defined in equation 8. For a prediction of some state f(θ) as defined in equa-292

tion 1, the nth ensemble member is updated via the following update equation (Iglesias293

et al., 2013):294

θ
(n)
t+1 = θ

(n)
t + Cfθ(Γ + Cff )

−1(y − f(θ)) (11)

Where Cff is the empirical covariance between the forward integrations for all en-295

semble members and Γ is the error covariance matrix representing the uncertainty in ob-296

servations and predictions of the observations. Meanwhile Cfθ, is a cross covariance ma-297

trix defined as:298

(Cfθ)ij =
1

N

N∑
n=1

(f(θ(n))i − fi)(θ
(n)
j − θj) (12)

At each iteration t, the current best estimate of the calibrated parameter values299

is taken as the ensemble mean. Iterations are run continually until the ensemble mean300

converges to a fixed value. Unlike History Matching, EKI is a optimization algorithm301

which alone does not provide any estimates of the distribution of the plausible param-302

eter and thus it cannot be used for uncertainty quantification. To address this, the Cal-303

ibrate, Emulate, Sample (CES) approach developed by Cleary et al. (Cleary et al., 2021)304

can be used to draw samples from the calibrated posterior distribution of parameters.305

Under CES, a Gaussian Process Emulator, as described in the previous section, is trained306

on the entire ensemble of all timesteps, in order to predict the observables over the en-307

tire parameter space. In contrast to History Matching, where we train a chain of emu-308

lators at each iteration to further refine the current NROY space, under CES we need309

a single emulator that is able to perform well across the entire parameter space.310

Several adjustments are therefore made to the GP architecture described in sec-311

tion 2.3, including using a “MinMax” scaler to transform the input parameters, as op-312

posed to a zero mean unit variance standard scaler. This is needed under EKI as in the313

infinite time limit, ensemble members converge to a single point which under a standard314

scaler pushes the early timestep points farther away from the origin, resulting in degraded315

emulator performance away from the converged point. Under “MinMax” scaling each316

input parameter is re-scaled such that the total range spans in the interval [0, 1]. This317

choice removes the basis for choosing a fixed length scale of 1 in the RBF kernel in equa-318

tion 7, therefore hyper-parameter tuning is required during the emulator training. In ad-319

dition, to improve the performance of the emulator over the wider parameter space a white320

noise kernel is added to account for unresolved noise as defined below:321

κ(θ, θ′) =

{
σ2 if θ = θ′

0 otherwise
(13)
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In order to tune the above hyper-parameters, the log marginal likelihood p(y|θ; l, C, σ)322

is optimized in accordance with the method described by Rasmussen (Rasmussen & Williams,323

2005). This optimization approach naturally tends to favour hyper-parameter choices324

that give models of intermediate complexity, balancing model complexity with quality325

of model fit.326

Once this emulator is obtained we assume a Gaussian function at each point, yield-327

ing a likelihood function of the form:328

p(y|θ) = 1√
det Γ

exp

(
−1

2
(y − f̂)TΓ(θ)−1(y − f̂)

)
(14)

Where in the above, f̂ represents the mean value predicted by the GP emulator329

at point θ. By use of Bayes’ law combined with the uniform prior distribution specified330

previously we may calculate the posterior distribution p(θ|y). The Metropolis-Hastings331

algorithm, a Markov Chain Monte Carlo method, is then used to sample this posterior332

distribution (Metropolis et al., 1953).333

For this work, EKI runs are launched with the same ensemble sizes, N , as those334

used in history matching as the number of sample points per iteration (5, 10, 20 & 50335

points). In addition, the LHS samples drawn in the first iteration of history matching336

were also used as the initial ensemble members for EKI. This setup allowed for a com-337

parison between the convergence characteristics of EKI and History Matching to be con-338

ducted, noting that for both approaches the time taken to perform the forward integra-339

tion, f(θ) on each sample far exceeds the time taken to perform the calibration step.340

3 Results341

The first test case for History Matching that is investigated utilized N = 50 sam-342

ple points. MiMA integrations are performed to train the GP emulator, and its perfor-343

mance for the QBO period is demonstrated in Figure 1. Two cross sections are indicated344

where Bt and cw are kept at constant values in θ space. Indicated in black is the observed345

value for the QBO period as taken from the radiosonde data along with the associated346

95% confidence interval of the observational uncertainty, indicated using dashed black347

lines. Indicated in solid blue in figure 1 is the mean GP prediction with the shaded blue348

indicating the 95% confidence interval for the prediction. The viability of the emulator349

is validated by withholding a single point out of the training set and using it as a val-350

idation point. For the case for the single point withheld in the 50 point case, the emu-351

lator is capable of producing a prediction compatible with the withheld point. We use352

a two sided t-test to determine whether the emulated mean value for the QBO period353

and amplitude is consistent with that of the withheld point. The test statistic value for354

the QBO period is 0.73 and for the QBO amplitude the test statistic is -1.23. The p-value355

for both of these statistics lie within a standard significance level of 5%, indicating con-356

sistency of the emulator predictions with the MiMA GCM.357

The emulator predictions in Figure 2 suggest that the emulator has learnt non triv-358

ial relationships between the input parameters and the QBO statistics. For example, for359

a cw greater than approximately 20m/s, the QBO amplitude is primarily set by Bt. In360

the emulator for the QBO period, it is observed that there is a horseshoe shaped region361

in which the QBO period is predicted to be consistent with observations. Both these fea-362

tures are useful to explain the structure of the implausibility in figure 3, where we see363

that the gradients in the implausibility space are substantially greater along the Bt axis364

than the cw axis, forming a “banana” shaped region. The form of this space resembles365

that obtained by Mansfield and Sheshadri (Mansfield & Sheshadri, 2022) when an un-366

certainty quantification analysis was performed on AD99 using EKI.367
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(a) (b)

Figure 1: Demonstration of the Gaussian Process Emulator trained on 50 samples taken
at two distinct cross-sections. Indicated is the mean GP estimate in solid blue with the
95% confidence interval shaded. The solid black line indicates the observed QBO period
with the dashed black lines indicating the 95% confidence interval in the observational
value.

Figure 2: Emulator predictions across the initial NROY space for both the QBO period
and the QBO amplitude. Training points for the emulator are indicated with blue crosses.
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Figure 3: Calculated implausibility between the emulator in figure 2 and the QBO obser-
vations. Lower values imply regions of space that either agree more with observations or
have higher uncertainties.

Figure 4: Demonstration of applying the χ2 exclusion criterion and uniformly sampling
the next iteration NROY space.
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Figure 5: Comparison of the area of the NROY space as function of the number of 20
year forward integrations of MiMA that were required indicated for various number of
sample points per iteration.

After applying the implausibility cutoff using a χ2 distribution, we obtain the next368

iteration NROY space from which samples can be drawn uniformly. These are indicated369

in figure 4, which also shows the evolution of the NROY space and the samples taken370

for the next iteration of history matching. As seen, after this first iteration the area of371

the NROY space is reduced substantially, by a factor of 91.8%.372

We define the NROY space as being converged once the relative change in the area373

of the NROY space from one iteration to the next is less than 5%. For measuring the374

speed of convergence, a convenient metric is the total number of forward integrations of375

MiMA that needed to be performed, as this represents by far the largest computational376

cost of the calibration. For the N = 50 case demonstrated above, convergence was ob-377

tained after 5 iterations, which required a total of 250 forward integrations of MiMA.378

As mentioned in section 2, a range of N are investigated. A reduced number of sam-379

ple points will result in a less accurate and confident emulator, however this has the ben-380

efit that the emulator will be updated more frequently. This can allow for obviously im-381

plausible regions of space to be ruled out without requiring that region of space to be382

directly sampled. Figure 5 displays the area of the NROY space against the cumulative383

number of MiMA forward integrations that were performed for each sample size. It can384

be seen that using fewer sample points per iteration attains convergence with the fewest385

model integrations, with N = 5 converging after 40 forward integrations of MiMA. How-386

ever, as indicated in figure 5, this convergence is reached with a larger NROY space which387

was greater than 5% of the original space area. This was substantially higher than con-388

figurations with higher N , all of which achieved convergence with an NROY area of less389

than 2.5% of the original area.390

As such, a configuration with N = 10 is seen to be the best performing, reach-391

ing convergence after 60 forward integrations of MiMA. The full chain of subsequent NROY392
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Figure 6: Demonstration of the convergence of the NROY space for the N = 10 case.

spaces can be seen in figure 6. The final converged area of this run was 2.06% the size393

of the original space area for this configuration and is centered on the point cw = 45.62394

m/s & Bt = 2.94 mPa. As mentioned by various authors, History Matching does not395

give preference to any one point located within the final NROY space, as all points are396

assumed to be equally “plausible” (Andrianakis et al., 2015; Williamson et al., 2015).397

3.1 Comparison with Ensemble Kalman Inversion398

As introduced in section 2.4, the Ensemble Kalman Inversion method is also used399

for the calibration of AD99 parameters utilizing the same QBO mean statistics as the400

ground truth observations. Analogously to History Matching, ensemble sizes of 5, 10,401

20 & 50 were used. In the optimization framework of EKI, these ensemble sizes can be402

considered similar to batch sizes in mini-batch gradient descent, where smaller batches403

run quicker however take less accurate steps whilst larger batches are more computation-404

ally intensive with more accurate individual steps.405
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Figure 7: Positions of ensemble members during EKI for the first 4 iterations with an
ensemble size of 10. The grey arrow indicates the trajectory taken by a single member
under EKI

Figure 7 shows the ensemble members for the first 4 iterations of EKI using an en-406

semble size of 10 particles with the trajectory of a single member of EKI, indicated in407

grey. It is seen that the ensemble members gradually converge towards the bottom right408

of the figure, which is similar to the location seen with History Matching. The ensem-409

ble mean represents the current best estimate of the optimal parameter value. The evo-410

lution of the ensemble mean with increased iterations is seen in figure 8 for each ensem-411

ble size investigated. It is evident that the ensemble mean position converges to a sin-412

gle point with subsequent iterations. The exact location of this optimum along the cw413

axis appeared to be substantially different in the N = 20 case than for the smaller en-414

semble sizes. This is likely due to the presence of multiple local optima in the param-415

eter space, with the difference between their calibrated values indistinguishable from each416

other when accounting for the process level noise in the true QBO signal.417

This behavior under EKI means that the centroid of the ensemble represents the418

best estimate of a calibrated parameter at any given iteration, in contrast to History Match-419

ing where there is no preference given to the centroid over any other point. Figure 8 demon-420

strates that regardless of choice of ensemble size, this centroid always converges on a sin-421

gular point. This is in contrast to what is seen with history matching in figure 9 where422

the centroid often appears to move erratically. However it can be seen that for all N ,423

approximately the same centroid point is obtained. For EKI, convergence about the fi-424

nal point can be seen to take approximately 5 to 6 iterations for all the ensemble sizes425

indicated above, implying the speed of convergence is not a strong function of ensem-426

ble size. This is further indicated in figure 10 which shows the root mean squared (RMS)427

magnitude of all the ensemble update vectors obtained via equation 11. In this we ob-428

serve that this update vector magnitude decays at a similar rate for all ensemble sizes429

considered. This ensemble size invariance indicates that EKI is a strong algorithm if the430

objective of the calibration is to obtain a single best estimate of a parameter, and such431

a calibration can be performed rapidly with a small ensemble size, with N = 5 result-432
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Figure 8: Evolution of the centroid for each ensemble size under EKI.
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Figure 9: Evolution of the centroid for each ensemble size under History Matching.

Figure 10: Normalized root mean squared magnitude of the update vectors under EKI
for each ensemble size.
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(a) EKI (b) History Matching

Figure 11: Comparison between estimates of the posterior distribution p(θ|y) between
History Matching and EKI after 6 iterations, N = 10.

ing in an approximately converged centroid after 25 total GCM integrations, with fig-433

ure 10 showing minimal updates to the ensemble members beyond this point.434

As mentioned above, History Matching does not produce an equivalent “best es-435

timate” and thus to provide a comparison, the ability of both approaches to quantify the436

uncertainty in the calibrated parameters is estimated. In quantitative terms this trans-437

lates to obtaining an estimate of the posterior distribution: p(θ|y). In an ideal case, this438

posterior distribution would be as “compact” as possible given the observation noise level,439

indicating that we have a narrow set of calibrated values that reproduce consistent ob-440

servables. The NROY space from History Matching provides a rough heuristic for this441

posterior distribution subject to a uniform assumption whilst the CES methodology as442

described in section 2.4 can be used to obtain an estimate of the full posterior distribu-443

tion (Cleary et al., 2021). In figure 11a we show 10,000 sample points drawn from the444

estimated posterior distribution sampled via the Metropolis Hasting algorithm for an EKI445

calibration at iteration 6 and N = 10. Meanwhile figure 11b shows an equivalent sam-446

ple of 10,000 sample points drawn from the iteration 6, N = 10 History Matching NROY447

space, which was the first iteration to meet the N = 10 NROY convergence criterion.448

449

To gain an estimate of the compactness of each sample space, we can calculate the450

normalized average spread of the posterior sampled points about the centroid for both451

EKI and History Matching, shown in figure 12b as a function of the number of model452

integrations. An equivalent estimate of the NROY space can also be calculated by use453

of equation 10 for the implausibility calculated using EKI via the CES emulator across454

the entire space and utilizing the same implausibility cutoff as for history matching. In455

other words, this represents where 95% of the probability mass lies. This is seen in fig-456

ure 12a.457

It is evident from both figures that for low ensemble sizes, history matching is able458

to obtain a substantially more compact calibrated space when considering both NROY459

and normalized spread. This is in contrast to the behavior in figures 8 and 9 where for460

small ensemble sizes EKI is able to obtain a converged centroid much more rapidly than461

history matching at small N , indicating the relative strengths of these approaches. For462

the larger ensemble size of N = 20 & N = 50, the differences between the two approaches463
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(a) NROY area

(b) Normalized Spread

Figure 12: Comparison of the NROY area and normalized spread method for quantifying
the relative uncertainty in the EKI and History Matching calibrations.
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become less apparent. However, the NROY comparison shows that the EKI equivalent464

NROY space is not able to collapse as compactly as seen under history matching. This465

comparison is limited however, as it neglects to take into account that the estimated NROY466

under EKI is not sampled from uniformly as it is under History Matching. As the com-467

parison using the RMS posterior sample spread takes into account the non-uniform na-468

ture of the EKI posterior compared against the uniform history matching approach, the469

spread likely better reflects the true quantification of the compactness. The main down-470

side of comparing RMS spread in comparison to the NROY area for history matching471

is that in cases where the centroid of the NROY space is not itself within the NROY space472

is that the normalized spread will not tend to zero even as the NROY area does tend473

to zero. Figure 12b, indicates that for N=5 & N=10 history matching draws a far more474

compact set of posterior samples compared to EKI and requires only approximately 50475

GCM integrations to do so. This can be understood by the approach that history match-476

ing takes as it spends more time obtaining samples near the edges of the initial param-477

eter space compared to EKI, allowing for more confident emulator performance in these478

regions yielding the more compact posterior. Thus in contrast to the centroid result de-479

scribed above, figure 12 indicates that History Matching can provide a converged pos-480

terior distribution of the plausible parameters with only 5 to 10 ensemble members, in481

concurrence with the results described in section 3.1.482

4 Discussion483

In this investigation we presented an implementation of the History Matching pro-484

cedure for calibrating the AD99 gravity wave parameterization based on observations485

of the QBO. We showed that a chain of Gaussian Process regression emulators is capa-486

ble of acting as a feasible emulator across the entire parameter space. The history match-487

ing procedure was successful at converging the initial NROY space by a factor of up to488

98%, producing a compact region of plausible parameters. We showed that this result489

is robust across different choices of ensemble sizes, with a size of N = 10 converging490

the fastest.491

We also compared history matching with an alternative calibration method, En-492

semble Kalman Inversion. We found that this algorithm is capable of obtaining a sin-493

gle optimal calibrated value in best agreement with the observations, which it can do rapidly494

at small ensemble sizes. The Calibrate-Emulate-Sample (CES) method was used to ob-495

tain an estimate of the posterior distribution across the entire parameter space for com-496

parison to the NROY space generated by history matching. It was found when consid-497

ering the mean spread of the samples drawn from both methodologies that for large en-498

semble sizes of N = 20 & N = 50, both methods gave posteriors with a similar de-499

gree of compactness, however the smaller ensembles showed that history matching was500

able to obtain a stronger degree of compactness.501

One key constraint that was imposed for simplicity in this work was the low dimen-502

sional space chosen for both the observables and the input parameters. Such a constraint503

was useful for reducing the number of iterations required to obtain convergence for both504

methodologies, in addition to making the outputs easy to visualize. Future work could505

look to increase the dimensionality of both the observable vector and the input param-506

eters. In the case of the QBO, introducing a 3rd observable variable would allow the cal-507

ibration to be based on the peak easterly and westerly velocities of the QBO instead of508

the amplitude. This could be significant given the acknowledged westerly bias present509

in GCMs (Bushell et al., 2022). Palmer demonstrated how this could be alleviated with510

an orographic gravity wave parameterization scheme (Palmer et al., 1986) and in ongo-511

ing work, we are considering the calibration of both orographic and non-orographic schemes512

in conjunction. Finally, we also restricted the calibration in this work to just the trop-513

ical parameters for AD99, however extra-tropical and polar parameters in principle also514

need to be calibrated.515
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As these additional considerations all increase the number of dimensions of the in-516

put and output spaces, both History Matching and EKI may require a dramatically in-517

creased number of iterations to converge. It is possible that History Matching may be518

a challenge, as for the ensemble sizes considered in this work, the density of members519

in the NROY space will decrease exponentially with the number of parameters, result-520

ing in a reduced support for the emulator and thus a greatly less confident one. This is521

in contrast to EKI which has demonstrated efficiency even at large numbers of param-522

eters (Kovachki & Stuart, 2019; Pahlavan et al., 2023). Another calibration algorithm523

that could be investigated in future work is Bayesian Optimization (BO) (Garnett, 2023;524

Shahriari et al., 2016) which has proven popular within the domain of hyper-parameter525

optimization for machine learning methods. This method works similarly to history match-526

ing as it involves using GPR to approximate the behavior of the model at different pa-527

rameters. Unlike History Matching, an “acquisition function” is also obtained which is528

used to determine regions in the parameter space to be sampled for future iterations. Such529

functions often make a trade off between exploring unsampled regions of the space and530

exploitation of regions of the space where the error between the predictions and obser-531

vations is minimized. This approach should in principle provide for a more optimal sam-532

pling in high dimensional spaces compared to the uniform approach of History Match-533

ing; however, this does come at the cost of more user-defined choices in the acquisition534

function.535

Other calibration methods within the same family as EKI also exist. An example536

is Ensemble Kalman Sampling (EKS) (Garbuno-Inigo et al., 2020; Ding & Li, 2021) which537

includes an additional random walk component on top of the EKI update step. Such a538

random walk prevents the EKI ensemble members from falling into local minima dur-539

ing the loss function optimization and should lead to the final EKS ensemble members540

being distributed according to the posterior distribution without CES being explicitly541

required. EKS can be shown to produce exact results and converge in finite time in the542

case where the posterior distribution is Gaussian. However, no such assertion can be made543

for the more general non linear case. Unscented Kalman Inversion (UKI) is another re-544

cent method in the Kalman filter family of calibration methods that also aims to directly545

capture the posterior distribution (Huang et al., 2022) by allowing for nonlinear effects546

to be estimated during the update step in a Kalman filter.547

Overall, our calibration of AD99 in MiMA using History Matching and EKI showed548

that both methods are able to competently reduce a large initial range of parameters and549

produce a compact space of plausible parameters that result in QBO statistics that re-550

semble observations. Techniques such as BO as well as the above mentioned newly de-551

veloped techniques have not yet been widely applied to aiding climate model develop-552

ment. We expect that future work probing the utility of these techniques for climate model553

calibration should prove useful in further constraining the plausible range of parameters,554

and thus potentially allow for more accurate model predictions with uncertainty quan-555

tification. These techniques also allows us to determine the future range of variability556

in observables such as the QBO period and amplitude under various CO2 forcing sce-557

narios using the current calibrated parameters.558

5 Open Research559

The “Quasi-Biennial-Oscillation (QBO) Data Series” developed by the Freie Uni-560

versität Berlin(Kunze, 2007) was used as the source of zonal wind observations of the561

QBO. This dataset can be found at https://www.geo.fu-berlin.de/en/met/ag/strat/562

produkte/qbo/index.html. The Model of an idealized Moist Atmosphere GCM code-563

base can be found at https://github.com/mjucker/MiMA. The code developed during564

the course of this work is available in two repositories: one for the generic History Match-565

ing implementation & another for performing the analysis and model runs specific to the566

AD99 calibration. The History Matching code is made available at https://github.com/567
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Eddy-Stanford/History-Matching-Core and can also be installed via the history-matching568

package available on PyPy. The analysis and model run code is available at https://569

github.com/Eddy-Stanford/QBO-History-Matching.570
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