
P
os
te
d
on

27
D
ec

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
70
36
52
88
.8
21
65
74
9/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Deep Graph Neural Networks for Spatiotemporal Forecasting of

Sub-Seasonal Sea Ice: A Case Study in Hudson Bay

Zacharie Gousseau1, K Andrea Scott2, Philippe Lamontagne3, and Mohammad Sina
Jahangir4

1Department of Systems Design Engineering, University of Waterloo
2Department of Mechanical and Mechatronics Engineering, University of Waterloo
3Coastal and River Engineering Research Centre, National Research Council Canada
4Department of Civil Engineering, University of Waterloo

December 27, 2023

1



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Deep Graph Neural Networks for Spatiotemporal1

Forecasting of Sub-Seasonal Sea Ice: A Case Study in2

Hudson Bay3

Zacharie Gousseau1, Philippe Lamontagne2, and Mohammad Sina Jahangir3,4

K. Andrea Scott45

1Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada6
2Ocean, Coastal and River Engineering Research Centre, National Research Council Canada, Ottawa,7

Ontario, Canada8
3Department of Civil Engineering, University of Waterloo, Waterloo, Ontario, Canada9

4Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario,10

Canada11

Key Points:12

• GraphSIFNet employs a sequence-to-sequence deep learning framework based on13

the Graph Long-Short Term Memory (GCLSTM) framework for sub-seasonal sea14

ice forecasting.15

• The model demonstrates superior performance over a statistical baseline in Hud-16

son Bay, particularly in short- to medium-term predictions of sea ice concentra-17

tion.18

• GraphSIFNet’s graph-based approach provides a more natural representation of19

sea ice dynamics, more closely resembling physically-based models than those based20

on two-dimensional kernel convolutions.21
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Abstract22

This study introduces GraphSIFNet, a novel graph-based deep learning framework for23

spatiotemporal sea ice forecasting. GraphSIFNet employs a specialized Graph Long-Short24

Term Memory (GCLSTM) module within a sequence-to-sequence architecture to pre-25

dict daily sea ice concentration (SIC) and sea ice presence (SIP) in Hudson Bay over a26

90-day time horizon. The use of graph networks allows the domain to be discretized into27

arbitrarily specified meshes. This study demonstrates the model’s ability to forecast over28

an irregular mesh with higher spatial resolution near shorelines, and lower resolution oth-29

erwise. Utilizing atmospheric data from ERA5 and oceanographic data from GLORYS12,30

the model is trained to model complex spatial relationships pertinent to sea ice dynam-31

ics. Results demonstrate the model’s superior skill over a linear combination of persis-32

tence and climatology as a statistical baseline. The model showed skill particularly in33

short- to medium-term (up to 35 days) SIC forecasts, with a noted reduction in root mean34

squared error (RMSE) by up to 10% over the statistical baseline during the break-up sea-35

son, and up to 5% in the freeze-up season. Long-term (up to 90 days) SIP forecasts also36

showed significant improvements over the baseline, with increases in accuracy of around37

10% even at a lead time of 90 days. Variable importance analysis via feature ablation38

was conducted which highlighted current sea ice concentration and thickness as critical39

predictors. Thickness was shown to be important at longer lead times during the melt-40

ing season suggesting its importance as an indicator of ice longevity, while concentra-41

tion was shown to be more critical at shorter lead times which suggests it may act as an42

indicator of immediate ice integrity. The study lays the groundwork for future exploration43

into dynamic mesh-based forecasting, the use of more complex graph structures, and mesh-44

based forecasting of climate phenomena beyond sea ice.45

1 Introduction46

The drastic loss of Arctic sea ice volume is one of the most visible and immediate47

impacts of climate change (J. Stroeve & Notz, 2018). The Arctic is the fastest-warming48

region on Earth, and this warming is affecting the sea ice cover more than any other com-49

ponent of the climate system (Vihma, 2014; J. C. Stroeve et al., 2012; Cavalieri & Parkin-50

son, 2012). According to the National Snow and Ice Data Center (NSIDC), Arctic sea51

ice extent (SIE)—the total area of the Arctic Ocean with at least 15% ice cover—is see-52

ing a steady decline. This is especially prominent in September when sea ice extent is53

at its minimum (Serreze & Meier, 2019). Declining sea cover is connected to increasing54

air temperatures, changes in atmospheric and oceanic circulation, the albedo feedback55

loop, and the concentration of greenhouse gases in the atmosphere (J. C. Stroeve et al.,56

2012). The Arctic ice cover is of particular importance as it helps regulate the Earth’s57

climate, and the decline in sea ice and subsequent loss of reflectivity directly contribute58

to the acceleration of climate change (Moon et al., 2019). Changes in Arctic sea ice cover59

also disturb marine and terrestrial ecological dynamics (Post et al., 2013); create chal-60

lenges for Northern communities (Meier et al., 2014); and influence human activity as61

new trade routes become available through the Arctic (Mudryk et al., 2021). Forecast-62

ing sea ice conditions is therefore becoming increasingly important as accurate knowl-63

edge of these changes would allow for more effective preparation.64

In this study, we introduce a deep learning based sea ice forecasting model that em-65

ploys Graph Neural Networks (GNNs) integrated within a Long Short-Term Memory (LSTM)66

module to predict daily sea ice concentration (SIC) and sea ice presence (SIP) in Hud-67

son Bay up to 90 days in advance. The choice of Hudson Bay as our study area is driven68

by its important role as a shipping hub, the presence of communities living within the69

region relying on maritime re-supply, and its unique characteristics as an in-land sea largely70

isolated from the wider Arctic. The 90-day forecasting horizon addresses the needs for71

planning and decision-making in industries such as shipping operations as well as the plan-72

ning requirements of local communities residing in the region. This time horizon cov-73
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ers short-term (up to 7 days), medium-term (up to a month) and long-term (up to 3 months)74

planning needs. The study highlights the effectiveness of GNNs in handling irregular spa-75

tial domains by dividing Hudson Bay into a spatially irregular mesh with a higher res-76

olution along shorelines. We evaluate the performance of two types of spatial graph con-77

volutions within the model: the basic Graph Convolutional Network (GCN) and an attention-78

based transformer convolution. The model was trained using sea ice and oceanographic79

data from a coupled ice-ocean reanalysis product (GLORYS12 (Jean-Michel et al., 2021)),80

as well as atmospheric data from the ECMWF Reanalysis v5 (ERA5 (Hersbach et al.,81

2020)). We validate the model’s accuracy by comparing its predictions to a statistical82

baseline and comparing forecasted and observed freeze-up and break-up dates at ports83

on Hudson Bay.84

2 Background85

Sea ice forecasting is a spatiotemporal forecasting task which can be formulated86

as a next-frame prediction problem. Given a sequence of frames X = (Xt−n, ...,Xt−1,Xt)87

with Xt ∈ Rw×h×c where n is the number of frames in the sequence, w and h are the88

spatial dimensions of the frames, and c is the number of channels, the objective is to pre-89

dict the next T frames in the sequence, Xt+1, ..., Xt+T .90

While traditional time series modeling techniques such as ARIMA have been widely91

used for forecasting, they are less effective for spatiotemporal forecasting due to their92

inherent limitations in handling spatial dependencies and complex temporal dynamics.93

ARIMA models, primarily designed for univariate time series, lack the capacity to ef-94

fectively model spatial relationships and multi-dimensional data structures, which are95

critical in spatiotemporal forecasting. To address these limitations, methods like Vec-96

tor Autoregression (VAR) (Sims, 1980) and Spatial Autoregressive (SAR) (Anselin, 1988)97

models were developed, offering improved handling of multivariate data and spatial de-98

pendencies, respectively. However, these models still struggled with dynamic spatial re-99

lationships and non-linear interactions. Space-Time Autoregressive Integrated Moving100

Average (STARIMA) models (Pfeifer & Deutsch, 1980) were introduced to better inte-101

grate spatial dependencies with temporal dynamics. Dynamic Linear Models (DLMs)102

and State Space Models (Kalman, 1960) offered a framework for handling evolving tem-103

poral dynamics but were limited in their spatial modeling capabilities.104

With the advent of deep learning, many neural network methods were developed105

for spatiotemporal problems, largely based on spatial convolutions with fixed-size two-106

or three-dimensional kernels (Oprea et al., 2022). These convolutional models are par-107

ticularly well-suited for image data with a gridded structure such as images or video frames108

and allow for learning rich features that are present in real-world image sequences.109

Graph Neural Networks (GNNs) offer a compelling alternative to Convolutional110

Neural Networks (CNNs) for emulating models of physical processes, such as ice dynam-111

ics, for several reasons. One of the primary advantages of GNNs in this context is their112

inherent ability to capture the spatial relationships between neighboring nodes through113

graph edges, which can be arbitrarily specified. This is particularly crucial in applica-114

tions like sea ice dynamics, where the spatial relationships are fundamental in determin-115

ing heat and momentum exchanges, and other factors influencing ice processes. In GNNs,116

both nodes and edges can encode information about the system, and graph convolutions117

update these encodings by applying some non-linear function. This allows GNNs to ef-118

fectively model the exchange of physical quantities such as heat or ice volume at a given119

location in space and time while accounting for the directionality of processes, which is120

represented by directed edges. In contrast, CNNs operate on a fundamentally different121

principle. They extract features such as edges or gradients from an input image by tun-122

ing kernel filters. This process involves convolving these filters over the input image to123

identify patterns and features at various scales and orientations. While this approach124
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(a) CNN: Kernel filters (bottom

figures) are learned to extract

patterns in an image of a building.

(b) GNN: Non-linear functions are learned to

model the relationship between neighboring

nodes in a graph.

Figure 1: Conceptual comparison of the mechanisms of convolutional neural networks
(CNN) and graph neural networks (GNN). (a) CNNs learn kernel filters which slide across
the image to identify patterns in the image, such as edges or gradients. (b) GNNs learn
a function to update a target node’s state vector (A) by non-linearly combining the state
vectors of its neighbours (B, C, D).

is highly effective for tasks like image recognition, where identifying and categorizing vi-125

sual patterns is key, it may not be as well-suited for learning the underlying physical laws126

that govern interactions between points in space. CNNs typically lack the ability to ex-127

plicitly model directional relationships and complex dependencies between disparate points128

in a spatial domain, which are critical in understanding and predicting physical phenom-129

ena like ice dynamics. A high-level visual representation of these two neural network types,130

highlighting their structural and functional differences, is shown in Figure 1. CNNs lever-131

age spatial locality and translation invariance inherent in images through convolutional132

layers with fixed-size filters that extract local features across the image. Techniques such133

as the use of pooling operators, stride convolutions, or dilated filters can be used to cap-134

ture longer-range patterns and hierarchical information(K. He et al., 2016; Yu & Koltun,135

2016). In contrast, message-passing GNNs can natively capture long-range patterns through136

edge propagation, potentially reaching across the entire graph structure given a sufficiently137

deep network. Although in most cases the underlying graphs are too large for informa-138

tion to be propagated globally, limited information propagation across can help mod-139

els gain a holistic view of the spatial domain and learn complex spatial patterns (Wu et140

al., 2022). Additionally, most types of GNNs exhibit both translation and rotation in-141

variance as convolutions are applied indiscriminately to all nodes and the aggregation142

operators are most often permutation invariant. Note that this is not always the case;143

operators based on recurrent units such as the LSTM variant of GraphSAGE (Hamilton144

et al., 2017) or sorting units such as the SortPooling aggregator (M. Zhang et al., 2018)145

do not exhibit rotation invariance. Another noteworthy advantage of GNNs over CNNs146

is their scalability due to the inherent parallelism in their architecture, allowing for ef-147

ficient processing of data over large regions or with fine resolution. This parallelism how-148

ever comes at the cost of higher memory usage which may become limiting, though this149

can be circumvented by partitioning the graph and processing the subgraphs indepen-150

dently before combining the outputs. Overlapping subgraphs can be used to ensure no151

spatial artifacts or discontinuities arise from the partitioning.152
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3 Related work153

Prior to the advent of deep learning techniques in sea ice forecasting, traditional154

physics-based and statistical models were the mainstay for both short-term and long-155

term predictions. Dynamic models, often integrated within data assimilation systems,156

such as the Pan-Arctic Ice-Ocean Modeling and Assimilation System (PIOMAS) (J. Zhang157

& Rothrock, 2003), rely on solving physical equations to simulate the interactions be-158

tween sea ice, atmosphere, and ocean. These models are computationally intensive and159

require extensive calibration, but are considered fairly reliable due to their capacity to160

incorporate well-understood physical processes and parameters. On the other hand, sta-161

tistical models such as multiple linear regression (MLR) and autoregressive integrated162

moving average (ARIMA) have been used for their simplicity and computational efficiency163

relative to physical-based models (Petty et al., 2017). These models often utilize histor-164

ical sea ice concentration, temperature, and other meteorological variables to make short-165

term forecasts. However, they lack the ability to adequately capture the complex spa-166

tial and temporal patterns inherent in sea ice dynamics needed to forecast over longer167

timeframes.168

The application of deep learning techniques to sea ice forecasting has gained in-169

creasing attention in recent years due to their computational efficiency and generaliz-170

ability, particularly in the face of a changing climate and increased availability of large171

training datasets. Early studies applying deep learning to sea ice forecasting were lim-172

ited to either spatial or temporal modelling. For instance, Chi and Kim (2017) used a173

long-short term memory (LSTM) module to forecast sea ice on a per-pixel level but did174

not consider spatial patterns. Kim et al. (2019) later used a deep neural network (DNN)175

with two fully-connected layers to forecast sea ice concentration considering interactions176

between pixels through dense layers but did not explicitly account for spatial autocor-177

relation. Later models based on the convolutional neural network (CNN) were able to178

leverage spatial patterns. Andersson et al. (2021) used a U-net trained on both climate179

simulation and observation data to forecast monthly sea ice concentration and was found180

to out-perform the SEAS5 dynamical model, but did not explicitly model in the tem-181

poral dimensions. Spatiotemporal models were then proposed that unify spatial and tem-182

poral models. Liu et al. (2021) proposed a model based on the convolutional long-short183

term memory (ConvLSTM) (X. Shi et al., 2015) to perform one-step ahead forecasting184

of sea ice in the Barents sea which showed promise by outperforming statistical baselines.185

Asadi et al. (2022) built on this work by proposing a sequence-to-sequence model based186

on the ConvLSTM to forecast sea ice presence in Hudson Bay. The model generally out-187

performed the European Centre for Medium-Range Weather Forecasts’s (ECMWF) subseasonal-188

to-seasonal (S2S) ensemble predictions (Vitart & Robertson, 2018).189

GNN-based approaches have recently seen some attention in global climate mod-190

elling, motivated in part by successes in GNN-based physics simulation models such as191

MeshGraphNets (Pfaff et al., 2020) or graph network simulators (Sanchez-Gonzalez et192

al., 2020; Rubanova et al., 2022). Keisler (2022) first proposed a GNN for forecasting193

the global climate using an autoregressive encoder-processor-decoder architecture. Grid-194

ded reanalysis data was encoded onto an icosohedron graph structure on which a message-195

passing neural network performed several steps of processing before being decoded back196

onto the latitude-longitude grid. Results showed that the model is competitive in com-197

parison with state-of-the-art physical models when forecasting geopotential height and198

temperature over a 6-day rollout with a 6-hour temporal step. Lam et al. (2022) built199

upon this work with GraphCast, a similar model structure with the most notable dif-200

ference being the use of multiple icosahedron grids at varying spatial resolution. They201

demonstrated greater skill than operational state-of-the-art physical models when fore-202

casting global temperature, precipitation, and wind patterns over a 10-day rollout at a203

6-hour temporal step.204
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4 Methodology205

4.1 Data206

In this study, ERA5 reanalysis data is used as atmospheric forcing data to train207

the models along with oceanographic variables from the GLORYS12 reanalysis product.208

Sea ice concentration estimates from GLORYS12 are used as the target variable and a209

proxy for the ground truth.210

4.1.1 ERA5211

ERA5 (Hersbach et al., 2020) is a climate reanalysis dataset produced by ECMWF212

that offers hourly estimates of climatic variables at a spatial resolution of 0.25◦ from 1979213

to present. It is based on the IFS Cycle 41r2 4D-Var data assimilation system and in-214

cludes a wide range of climatic variables at different pressure levels of the atmosphere.215

The IFS system assimilates observations from dozens of satellite missions and ground216

stations to create a physically consistent best representation of atmospheric conditions.217

Although the model does not have a coupled ocean-atmosphere component, it uses daily218

passive microwave-derived sea ice concentration estimates from the Ocean and Sea Ice219

Satellite Application Facilities (OSI-SAF) as boundary conditions (Hersbach et al., 2020).220

In this study, we follow previous studies (Asadi et al., 2022; Andersson et al., 2021) and221

use 2-meter temperature, 10-meter wind speeds, and surface sensible heat fluxes from222

ERA5 as input features to our model (see Table 1)223

4.1.2 GLORYS12224

GLORYS12 (Jean-Michel et al., 2021) is a global ocean and sea ice reanalysis data225

product developed by the Copernicus Marine Environment Monitoring Service (CMEMS),226

utilizing the LIM2 EVP NEMO 3.1 platform (Madec, n.d.) in the ORCA025 configura-227

tion designed by the DRAKKAR consortium. This configuration includes a global sea-228

ice model with a 1/4◦ Mercator grid. Atmospheric forcing for the ocean surface model229

is provided by ECMWF’s ERA-Interim (Dee et al., 2011) reanalysis data until 2019, and230

ERA5 data thereafter. The spatial resolution of the ocean and ice models is 1/12◦. The231

data assimilation component of GLORYS12 includes in-situ temperature and salinity (T&S)232

profiles, satellite sea surface temperature (SST), and along track sea-level anomalies de-233

rived from satellite altimetry. The assimilation of oceanic observations occurs using a234

reduced-order Kalman filter, which is based on a singular evolutive extended Kalman235

(SEEK) filter. The SEEK filter utilizes a three-dimensional multivariate background er-236

ror covariance matrix and operates on a 7-day assimilation cycle. The system also in-237

tegrates sea ice concentration observations from IFREMER/CERSAT. Historical records238

are available from 1993 to present. This study uses GLORYS12 sea ice concentration,239

thickness, velocities and sea surface temperatures.240

4.2 Meshing241

Meshes allow for greater flexibility in defining the model’s spatial basis. Unlike two-242

dimensional convolutional approaches, which require defining a regular two-dimensional243

grid of pixels over a region, meshes are comprised of cells of abitrary sizes, allowing the244

modeler to control which areas are modelled in higher resolution (e.g., around ports or245

passages of interest). Since cells are only defined in regions of interest we also avoid the246

need to apply a land mask as a post-processing step, unlike in CNN-based approaches247

which most often model over the whole region before applying a mask to exclude land248

pixels from the output.249

Figure 2 shows possible meshes for Hudson Bay using a 1/12 degree grid as the base250

resolution when trying to balance resolution and computational requirements. The mesh251
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(a) Full resolution regular mesh (b) Coarsened regular mesh (c) Irregular mesh

Figure 2: Comparison of different mesh definitions for modeling Hudson Bay. (a) A high-
resolution regular mesh with 32,856 cells, computationally intensive but highly detailed;
(b) a four-times coarsened regular mesh with 2,425 cells lacking sufficient detail along
land interfaces; (c) irregular mesh with 9,422 cells, a compromise for both computational
efficiency and high resolution at land interfaces. This approach ensures no cell overlaps
land while providing high-resolution data for critical regions like ports, passages, and
areas of meteorological interest such as the Kivalliq latent heat polynya.

shown in (a) uses the base resolution as a regular mesh, which is computationally heav-252

ier with its 32,856 cells, while the mesh in (b) uses a regular four-times coarsened ver-253

sion of the same mesh with 2,425 cells, which may not have sufficient definition. At the254

shoreline, this coarse mesh overlaps land but the model does not have the ability to ac-255

knowledge this overlapping. A 4 × 4 cell with only one non-land pixel assigns the sea256

ice concentration value to the entire cell, possibly undermining the model’s ability to rea-257

son about volumetric continuity. As a compromise between resolution and computational258

efficiency, an irregular mesh can be defined with the same four-times coarsened resolu-259

tion refined near shorelines such that no cell overlaps land. This is shown in (c). This260

can be done by recursively splitting the cells of the base (coarsened) mesh in four equal261

parts until no cell overlaps land. The result is a mesh with 9,422 cells. A secondary ad-262

vantage of this technique is that modelling around shorelines at a higher resolution may263

be of interest to port operators or local communities. For shipping and freight purposes264

in Hudson Bay, there is a keen interest in knowing the state of the ice near shipping ports265

since some operations might required ice free conditions. However, large areas of nav-266

igable waters do not require the same high degree of spatial resolution since vessels have267

the possibility to slightly change their routes, thus a coarser resolution is sufficient.268

To convert gridded data from a grid representation X ∈ RW×H×C for data with269

C channels and W ×H spatial dimensions to a mesh representation G ∈ RC×N with270

N cells, we first construct a sparse mapping tensor M ∈ RN×W∗H where entry (n, p)271

is assigned 1 if the pth pixel of the flattened grid Y ∈ RC×W∗H should be mapped to272

cell n. We also construct a tensor P ∈ RN which stores the number of pixels which are273

mapped to each cell. Then, to convert a sample from a grid to a mesh representation,274

for each node we find the mean value of each of its constituent pixels with275

G = YMT ⊘ P (1)
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Figure 3: Input images are represented as graphs by relating each neighbouring pixel
with edges. In this figure, a spatially irregular mesh is used to represent SIC in Hudson
Bay, where red dots represent graph nodes and black lines represent edges.

where ⊘ represents an element-wise or Hadamard division. G can be converted back to276

a grid representation by splitting the cells back into its constituent pixels as277

Ŷ = GM. (2)

Since Equation 1 takes the mean of the constituent pixels of each cell, it cannot be per-278

fectly reverted, instead Equation 2 simply assigns the cell value to each of its constituent279

pixels. Formulating these transformations as matrix multiplications allows for greater280

GPU acceleration which is important if the input meshes are re-meshed dynamically dur-281

ing training, although this is not done in this study.282

A graph can then be defined based on this mesh by assigning a node to each cell283

and placing edges between any two neighboring cell as in Figure 3. To preserve spatial284

awareness, the positions of each node and size of each cell are added as node features,285

and the length and angle of the edges are stored as edge features. The edges are there-286

fore considered to be directed edges as the edge features are direction-dependent, that287

is, for two nodes xi and xj , the edge from xi to xj (eij)) is not equivalent to the edge288

from xj to xi (eji))289

4.3 Model Architecture290

The proposed model uses graph convolutional long-short term memory (GCLSTM)291

modules within a sequence-to-sequence architecture. The GCLSTM module and the over-292

all architecture are shown in Figure 4, and described in the subsections below.293

4.3.1 GCLSTM294

The graph convolutional long-short term memory (GCLSTM) module used in this295

work is a modified version of the model from Seo et al. (2018), which is in turn inspired296

by the ConvLSTM first proposed by X. Shi et al. (2015). The module closely resembles297

the peephole LSTM introduced by (Gers et al., 2002), with the only modification being298

the addition of graph convolution operators over the hidden and input states at each of299

the input, forget, cell and output gates in the place of weight matrices. This is repre-300

sented as the ∗G block in Figure 4b. The graph convolution operators allow information301

exchange between nodes through the directed edges. The model proposed by Seo et al.302

(2018) uses a single Chebyshev graph convolution (M. He et al., n.d.) which has limited303

spatial expressivity since a single convolution can only exchange information between304

–8–
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(a) Overall model architecture. The last hidden (ht) and cell (ct) states of the encoder act as

the context vectors and are used as the initial states of the decoder. The encoder learns features

from the n input timesteps, and the last hidden (ht) and cell (ct) states are retained as the con-

text vector used to initiate the decoder, which unrolls over the fixed m desired output timesteps.

The initial input to the decoder Xt is the ice channel of the last input timestep. GNNenc and

GNNout, used to encode climatology at each output timestep (nt o) and reduce the dimension-

ality of the output (ot o), respectively, are stacked spatial convolutions with leaky ReLU activa-

tions.

(b) Graph convolutional long-short term memory (GCLSTM) module. The module is based on

the peephole LSTM (Gers et al., 2002), with the addition of K stacked graph convolutions ap-

plied to both the hidden states and input.

Figure 4: Model architecture showing (a) overall encoder-decoder architecture, and (b)
a single graph convolutional long-short term memory (GConvLSTM) cell.

⊕
represents

element-wise addition, and
⊗

represents element-wise multiplication.
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immediate neighbors. Since the processes dominating ice formation and break-up are phys-305

ical processes occurring across space, we wish to increase the model’s ability to recog-306

nize spatial patterns, and therefore use K stacked convolutions followed by leaky ReLU307

activations, which provides information exchange over K hops. The peephole variant of308

the LSTM is used here as it has been shown to outperform the vanilla LSTM (Joshi et309

al., 2022), particularly for video understanding (Srivastava et al., 2015). The convolu-310

tion operator taking the place of GraphConv in Figure 4b can be arbitrarily selected from311

the myriad graph convolution operators that have been proposed. In this work, we eval-312

uate both the graph transformer convolution from Y. Shi et al. (2021), and the more ba-313

sic Graph Convolutional Network (GCN) first proposed by Kipf and Welling (Kipf & Welling,314

2017).315

In the graph transformer convolution, the feature vector of a given node i, xi, is316

updated by aggregating information from its neighbors j ∈ N (i), and the node itself,317

using edge features from i to j, eij . The governing equation for the graph transformer318

convolution is319

x′
i = W1xi +

∑
j∈N (i)∪i

αij(W2xj +W3eij) (3)

where N (i) denotes the neighbors of node i, W are weight matrices that project the in-320

puts to their latent representation where the attention coefficients αij are given by321

αij = softmax

(
(W4xi)

T (W4xj +W3eij)√
d

)
(4)

.322

The attention weights allow the model to selectively attend to a given node’s neigh-323

bors based on their node and edge feature vectors. The inclusion of edge features and324

an edge specific weight matrix allows the model to learn to relate the edge features to325

better reflect anisotropic evolution of the model state.326

We compare the transformer convolution with the Graph Convolutional Network327

(GCN) proposed by Kipf and Welling (2017), as it is a commonly used and simpler con-328

volution operator. The GCN operator is defined by the equation329

x′
i = WT

∑
j∈N (i)∪i

eij√
d̂j d̂i

xj (5)

where X is a weight matrix, d̂i = 1 +
∑

j∈N (i) eij and eij are the edge weights from i330

to j. Since eij must be a scalar, here we use the normalized distance between nodes as331

the edge weights. Note that this limits the spatial awareness of the model as it does not332

receive information about the nodes’ relative positions, unlike the transformer convolu-333

tion.334

4.3.2 Sequence-to-Sequence Architecture335

The GCLSTM module is used within a sequence-to-sequence encoder-decoder struc-336

ture to learn features from the inputs and evolve the sea ice state forward in time. The337

overall architecture is shown in Figure 4a. Since navigation and offshore operations are338

affected at various degree by the presence and concentration of sea ice, our model fore-339

casts both SIC and SIP as a multi-task learning approach. Although sea ice presence—defined340

as any pixel where SIC is greater than 15%—can be derived from the forecasted SIC val-341

ues, a model trained without the secondary SIP forecasts would not be optimized for this342

15% threshold. It was also found through experimentation that including SIP as a sec-343

ondary task improved SIC forecasts in the break-up and freeze-up seasons.344
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The encoder is responsible for learning rich spatiotemporal features from the in-345

put sequence while the decoder is responsible for evolving the state forward in time from346

these learned features. The encoder therefore acts as an information bottleneck, mean-347

ing it is crucial that the encoder is sophisticated enough to distill the inputs into a con-348

text vector with sufficient information for the decoder to use in the unrolling process.349

Given a sufficiently rich context vector, the decoder does not necessarily need to learn350

additional spatial features within the context vector, nor during the unrolling process.351

Therefore, in this work we use a spatiotemporal GCLSTM module in the encoder block,352

and a simple LSTM in the decoder block. Although the decoder block also contains graph353

convolutions (e.g., in GNNout), the distinction between the two is that the GCLSTM354

in the encoder block integrates graph convolutions within the temporal model allowing355

for simultaneous spatial and temporal modelling, while the decoder block models tem-356

poral and spatial dynamics separately, with GNNout being used mainly for dimension-357

ality reduction. Using an LSTM rather than a GCLSTM module in the decoder block358

also greatly reduces training time in the case where there are fewer input timesteps than359

output timesteps. Note that experiments with a GCLSTM in the decoder were also run360

but showed no improvements over using an LSTM.361

The encoder processes each input timestep sequentially, updating the hidden and362

cell states at each timestep with layer normalization (Ba et al., 2016) applied to the hid-363

den and cell states after each timestep to increase model stability. The final hidden and364

cell states are the high-dimensional vectors that are taken as the context vectors that365

contain the learned features from the input and are used to initialize the hidden and cell366

state of the decoder. The last input ice state is used as the initial input to the decoder367

(or start token) since we wish to evolve the state forward from this initial state. The de-368

coder is run recurrently for the desired number of output timesteps in a similar fashion369

to the encoder but using the last step’s prediction (yt−1) as the input for the current step370

(yt).371

Since sea ice is highly seasonal, the model is susceptible to a form of modal collapse372

wherein the model converges to a local minimum, predicting only the average sea ice con-373

ditions for a particular day of the year. These daily averages are known as the climate374

normals or climatology. For long-term forecasting of climatological variables, climatol-375

ogy can perform reasonably well compared to dynamic or statistical models due to strong376

seasonality. Since we wish to outperform climatology and expect the model to learn to377

use it as a heuristic, we choose to include it as an input such that model can focus on378

learning departures from normal conditions. This was shown to be beneficial for sea ice379

forecasting in a previous study (Asadi et al., 2022). Climate normals are calculated as380

the mean ice concentration values for each day of the year over the entire training set381

and are encoded into latent space using a shallow multi-layer GNN before being com-382

bined with the decoder output by element-wise addition. The result is then fed through383

a multi-layer GNN with leaky ReLU activations to reduce the dimensionality to two, and384

finally through a hyperbolic tangent activation to map the values between -1 and 1. This385

output represents the change in sea ice conditions and is added to the last timestep’s pre-386

diction. Since both SIC and SIP should be bound between 0 and 1, the output is passed387

through a sigmoid layer that produces the final predictions.388

4.4 Experimental set-up389

4.4.1 Mesh Definition390

To illustrate the advantage of using graph networks, experiments were designed to391

demonstrate the ability to produce forecasts over an irregular mesh. To this end, exper-392

iments were run on an irregular mesh as well as the coarsened regular mesh described393

in Section 4.2 and shown in Figure 2b and Figure 2c. The irregular mesh is refined to394

a higher resolution at the land edges by splitting the base 1/3◦ mesh if a cell intersects395
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Figure 5: Monthly sea ice concentration anomalies in Hudson Bay from 1993-2020. High-
lights periods of higher and lower-than-average sea ice concentrations.

a one-cell buffer around land. This buffer is used since near-shore dynamics can be par-396

ticularly complex. By extending high-resolution meshing slightly beyond the immedi-397

ate land-water interface, the model may be better equipped to capture these complex398

dynamics occurring in these more critical regions. The resulting irregular mesh contains399

1/12◦, 1/6◦ and 1/3◦ sized cells. To show that the complexities introduced by this ir-400

regular mesh is not a detriment to the model, a separate experiment is conducted by train-401

ing the same model over the regular 1/3◦ mesh. This should be an easier task than the402

irregular mesh, therefore showing similar performance over either meshes is sufficient to403

demonstrate that the model is resolution-agnostic.404

4.4.2 Data Partitioning405

The Hudson Bay region, including Hudson Strait, James Bay and Foxe Basin, un-406

dergoes a cyclical transformation in its ice cover characterized by complete freezing dur-407

ing the winter months and total melt in the summer, with some multi-year ice possible408

in Foxe Basin. This seasonal cycle is subject to considerable inter-annual variability, both409

in terms of the rate at which these processes occur and the timing of these transitions.410

Figure 5 illustrates this variability by showing monthly SIC anomalies between 1993 and411

2020. These anomalies are computed as the mean differences between observed SIC and412

the long-term average concentration for each corresponding month. The data reveals dis-413

tinct periods of anomalous behavior in SIC. Specifically, the years 1993 to 1997 were marked414

by higher-than-average SIC, indicating that during these years, Hudson Bay experienced415

an earlier freeze-up and a delayed break-up season. In contrast, the period from 2010416

to 2012 exhibited anomalously low SIC, characterized by a late onset of freeze-up and417

an earlier melting season. Including data from both these anomalous periods along with418

years that exhibit more typical ice conditions is critical for enhancing model robustness419

in the face of varying environmental conditions. This is particularly important in the con-420

text of climate change, where shifts in temperature and weather patterns could further421

exacerbate the variability in sea ice conditions. The data is therefore partitioned into422

a sequential 20-year, 3-year, 3-year split, wherein data from 1993-2013 is used for train-423

ing, 2013-2016 is used for validation, and 2016-2019 is used for testing. Note however424

that the test period only includes years with normal or lower-than-usual ice conditions.425

Although this bias may not be optimal, lower-than-normal ice conditions may be more426

representative of future ice conditions in the Hudson region (J. Stroeve & Notz, 2018)427

One model is trained for each month of the year, each denoted as a ‘monthly model’.428

Each monthly model was trained using data from the respective month with a 15-day429

buffer before and after the beginning and end of the month respectively. For example,430

the April model is trained with input data for each day between March 16 and May 15431
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over all training years. A longer buffer of one month was tested but did not lead to sig-432

nificant improvements in model performance. In inference mode, each model is used only433

to produce a forecast with inputs from its respective month. For example, to generate434

90 day forecasts for April, a 90 day forecast is launched for each day between April 1 and435

April 30. Training separate model for each month of the year was done since we expect436

the dynamics that must be learned for one time of the year to be sufficiently different437

from other times of the year such that each model will have greater accuracy by concen-438

trating efforts in learning specific ice dynamics (Asadi et al., 2022). As a secondary ben-439

efit, this also allows training to be carried out more efficiently as each monthly model440

can be trained in parallel.441

4.4.3 Input Features442

Sea ice concentration data from GLORYS12 serve as the target variable, while at-443

mospheric variables from ERA5, combined with oceanographic variables from GLORYS12,444

are used as input features. Sea ice dynamics are primarily influenced by factors such as445

air and sea temperature (Wang et al., 2019), wind (Stammerjohn et al., 2003), heat fluxes446

(Ivanov et al., 2012), and ocean salinity (Yao et al., 2000), thus we include these vari-447

ables as input features. The 10 chosen input variables are listed in Table 1, along with448

the rationale for their selection. It should be noted that ERA5 hourly variables are re-449

gridded from their original 0.25◦ grid to match the GLORYS12 1/12◦ grid, and resam-450

pled to match the GLORYS12 daily temporal resolution. This is achieved through spa-451

tial linear interpolation and aggregation from an hourly to a daily resolution using a sim-452

ple mean. The input sequence length is 10 days and the spatial domain as a grid is 229×453

361. Since the model operates over the mesh domain rather than the grid domain, the454

dimensionality of the inputs to the encoder as (input steps, number of nodes, input fea-455

tures) is 10 × 9, 422 × 10 for the irregular mesh and 10 × 2, 425 × 10 for the regular456

mesh. The input to the decoder is the context vectors provided by the encoder as well457

as the climatology for each forecast day. The output dimensionality is 90× 9, 422× 2458

for the irregular mesh, and 90× 2, 425× 2 for the regular mesh.459

4.4.4 Baseline Model460

As a baseline model with which to compare the model, we use a combination of two461

common statistical baselines: persistence and climatology. Persistence refers to persist-462

ing the most recent sea ice conditions and tends to perform well at very short forecast463

lengths particularly outside of the freezing and melting seasons. Climatology refers to464

the pixel-wise average SIC for each day of the year where the average is taken over the465

historical period of interest. Climatology tends to perform best relative to forecast mod-466

els at longer lead times. For forecasts produced over a seasonal scale, a stronger base-467

line than either persistence and climatology can be derived by combining the two using468

a weighted average with the relative weights varying by lead time, where more weight469

is given to persistence than climatology at short lead times and more weight is given to470

climatology than persistence at long lead times. The form chosen for the baseline model471

is472

F = (1− γ)P + γC, (6)

where473

γ(t) = γ0 × e−λt. (7)

γ0 is set to 1 since we know persistence to be a strong predictor at short lead times, and474

λ is optimized by minimizing the mean squared error over the training dataset for each475

month. The resulting weights are shown as a heatmap in Figure 6.476
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Table 1: Selected input variables to the encoder, data source and rationale for inclusion.

Short
Name

Full Name Source Rationale for Inclusion

sic Sea ice concentration GLORYS12 Direct measure of what is being
forecasted; crucial for temporal
dynamics and initial conditions.

sit Sea ice thickness GLORYS12 Provides insights into the resiliency
and robustness of the ice, affecting
its likelihood to melt or deform.

siuv Sea ice velocities GLORYS12 Indicates the direction and speed
of sea ice movement.

so Sea water salinity GLORYS12 Salinity affects the freezing point of
sea water and is crucial in the dy-
namics of ice formation and melt.

sst Sea surface temperature GLORYS12 The temperature of surrounding
sea water directly affects ice melt
and formation rates.

t2m 2-meter temperature ERA5 Air temperature can provide ad-
ditional context for the thermal
conditions affecting the sea ice sur-
face.

u10/v10 10-meter wind velocity ERA5 Influences the motion and deforma-
tion of sea ice.

sshf Surface sensible heat
flux

ERA5 Surface sensible heat flux is an
indicator of the heat exchange
between the atmosphere and the
sea surface, affecting ice melt and
formation.

x x-position of each node — Provides the latitudinal spatial
context for each data point.

y y-position of each node — Provides the longitudinal spatial
context for each data point.

doy Day of the year — Provides temporal context.
csize Cell size — Provides the relative size of the

area covered by each cell for addi-
tional spatial context.

4.4.5 Model Hyperparameter Configurations and Implementation477

This study evaluates three distinct models, listed in Table 2. Our primary focus478

is the GraphSIFNet-Att model, which incorporates three TransformerConv spatial con-479

volutions in the GCLSTM block and is trained on the irregular mesh described in Sec-480

tion 4.2 for 35 epochs. That is, in Figure 4b, ∗G uses the TransformerConv as the Graph-481

Conv block with K = 3. For comparison, we examine the GraphSIFNet-Att-Reg model482

which is identical in architecture but trained on the coarsened regular mesh from Sec-483

tion 4.2 for 35 epochs. Additionally, we compare with the GraphSIFNet-GCN model,484

which employs six GCN convolutions within the GCLSTM module, that is, the Graph-485

Conv block is the GCN with K = 6. GraphSIFNet-GCN is trained over the irregular486

mesh for 45 epochs. Each of these models have the same number of parameters (approx-487

imately 123,000).488
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Figure 6: Gamma values for the baseline model (Equation 6) showing the balance
between persistence and climatology by the month of the launch date and lead time.
Gamma values near 0 favor persistence while values near 1 favor climatology. Less vari-
able ice seasons such as January/February and August/September rely more on persis-
tence for longer lead times.

Each model uses a 10-day input sequence to predict the subsequent 90 days. A hid-489

den dimension size of 32 is used for each of the hidden state and cell state of the encoder490

and decoder LSTMs, as well as in all graph convolutional layers. The GNN used to en-491

code climatology (GNNenc) is comprised of a single graph convolution layer, and the out-492

put GNN (GNNout) is comprised of 3 stacked convolution layers with leaky ReLU ac-493

tivations. The hidden size, number of spatial convolutions and number of GCLSTM/LSTM494

layers were chosen based on small-scale experiments which aimed to keep the model sim-495

ple yet effective. The optimizer is the Adam optimizer with an initial learning rate of496

0.001 reducing by 10% every 5 epochs. An L2 regularization value of 0.01 is applied to497

the weights reduce the risk of overfitting, and gradient clipping with a value of 1.0 is ap-498

plied to mitigate the risk of gradient explosion due to the extended forecast length. Early499

stopping was used if no improvement in the validation loss was observed for 10 epochs.500

Since the model produces two outputs, a custom loss function was used that combines501

a mean square error (MSE) loss from the continuous SIC prediction and binary cross-502

entropy (BCE) loss from the probabilistic SIP prediction. The BCE loss is scaled by a503

factor of 0.1 and added to the MSE loss before back-propagation. Since losses are cal-504

culated over a mesh with cells of varying physical sizes, the losses are also scaled by the505

size of each cell. This prevents the model from over-valuing correct predictions in areas506

of higher spatial resolution. The models are implemented in Pytorch using the pytorch-507

geometric (Fey & Lenssen, 2019) package and trained on a single Tesla V100 GPU hosted508

by the Digital Research Alliance of Canada. A summary of models tested and training509

times is given in Table 2.510

5 Results511

In this section, the GraphSIFNet-Att model is evaluated by comparing its perfor-512

mance with the statistical baseline and contrasting with the two other configurations:513

GraphSIFNet-Att-Reg and GraphSIFNet-GCN. Using GraphSIFNet-Att, insights from514

the attention weights, the results of a variable importance experiment, and an evalua-515

tion of its ability to predict break-up and freeze-up dates are also presented.516
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Table 2: Summary of developed model configurations. The models differ in their spatial
convolutions and their underlying meshes, with the aim of contrasting the attention-based
transformer convolution with the graph convolutional network, as well as demonstrating
the model’s ability to model over an irregular mesh.

Name
Convolution

(# stacked layers)

Mesh Approximate

training time

GraphSIFNet-Att TransformerConv (3) Irregular (1/12◦ - 1/3◦) 10h (30 epochs)

GraphSIFNet-Att-Reg TransformerConv (3) Regular (1/3◦) 8h (30 epochs)

GraphSIFNet-GCN GCN (6) Irregular (1/12◦ - 1/3◦) 10h (45 epochs)

Baseline N/A N/A N/A

5.1 Baseline Performance517

The performance of the baseline statistical model defined by Equation 6 for both518

the SIC and SIP forecasting task is shown in Figure 7a and Figure 7b, respectively. These519

heatmaps are generated by calculating the spatial average of the root mean squared er-520

ror (RMSE) over the domain using only the test years (2016-2019). The errors are grouped521

by the month of the launch dates and lead times. For instance, the value in the top right522

corner of the error heatmaps (January, 90-day lead time) indicates the mean RMSE for523

all 90-day forecasts launched in January, that is, forecasts for dates spanning April 1st524

to May 1st. The two clearly visible bands of higher RMSE values correspond to the break-525

up and freeze-up seasons, the former normally spanning from the beginning of May to526

mid-July and the latter normally spanning from the beginning of November to the end527

of December. These seasons are the most difficult to forecast as the timing and pattern528

of the break-up and freeze-up vary between years. Conversely, August to beginning of529

October are largely ice-free, thus the errors are near zero. In the winter months, that530

is, mid-December to the beginning of April, ice is present throughout the Hudson Bay531

system though some open water can sporadically be found around shorelines, for exam-532

ple due to offshore winds, thus SIC RMSE values during the winter months are small533

but not zero.534

(a) Baseline SIC performance (b) Baseline SIP performance

Figure 7: Performance of the baseline statistical model on SIC (a) and SIP (b) over the
test years aggregated by the month of the launch date and lead time.
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5.2 GraphSIFNet-Att Performance535

(a) GraphSIFNet-Att (b) ∆(GraphSIFNet-Att, Baseline)

Figure 8: RMSE heatmaps for the SIC forecasting task by month and lead time for the
GraphSIFNet-Att model (a), and the RMSE differences between GraphSIFNet-Att and
the baseline (b) where negative values (blue) indicate a reduction in model error relative
to the baseline.

(a) GraphSIFNet-Att (b) ∆(GraphSIFNet-Att, Baseline)

Figure 9: Accuracy heatmaps for the SIP forecasting task by month and lead time for
the GraphSIFNet-Att model (a), and the difference between GraphSIFNet-Att and the
baseline (b) where positive values (red) in the difference plots indicate an increase in
model accuracy relative to the baseline.

The performance of GraphSIFNet-Att model and the difference in performance rel-536

ative to the baseline model is shown in Figure 8 and Figure 9 for SIC and SIP forecasts,537

respectively. Since persistence and climatology are usually used as baselines seperately,538

the difference in performance relative to both are shown in Section Appendix A. Mod-539

els are evaluated against GLORYS12 SIC and SIP on the full-resolution 1/12◦ GLORYS12540

grid.541

For the majority of the months and lead times, the GraphSIFNet-Att model ex-542

hibits improvements in SIC forecasts over the baseline, with minor exceptions. The model543
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Figure 10: Difference in monthly SIC RMSE [%SIC] and SIP [%]accuracy between
GraphSIFNet-Att-Reg and GraphSIFNet-GCN relative to GraphSIFNet-Att averaged
over all 90 forecast days. Negative RMSE differences and positive accuracy differences
indicate better performance on the part of GraphSIFNet-Att relative to the other models.

exhibits the largest improvements over the baseline in its short- to medium-term fore-544

casts of the break-up season (lead times 5 to 45 launched in May to July). These show545

up to a 10% improvement over the baseline. At longer timesteps, the improvements over546

the baseline during the break-up period (launched in March and April) are less pronounced,547

hovering around 2-3%. However at these long lead times even small improvements demon-548

strate forecast skill and can provide value to users of the system. During the winter months549

when the region is almost entirely frozen, the model still exhibits a 2-3% improvement550

over the baseline at all lead times. This suggests that the model may be able to better551

capture the effects of off-shore winds mechanically creating open water regions along the552

shoreline. During freeze-up, the model only shows skill over the baseline at short lead553

times from 0 to 25 days. Longer forecasts beyond 25 days perform on par with the base-554

line or only marginally better. Forecasts launched in November with a 30 to 55 day lead555

time perform worse than the baseline, indicating difficulty in capturing the final stages556

of ice formation.557

The SIP accuracy heatmaps in Figure 9 show similar patterns, with increases in558

accuracy of up to 20% from the GraphSIFNet-Att model over the baseline during the559

break-up process, and more modest increases during the freeze-up process. Notably, how-560

ever, GraphSIFNet-Att outperforms quite significantly (> 10%) even at long lead times.561

This indicates that although the model may struggle to forecast the precise SIC at these562

lead times, it still has skill in forecasting the point at which the ice will completely melt563

or break up.564

5.3 Comparison Between Model Configurations565

Differences in both SIC RMSE and SIP accuracy between the GraphSIFNet model566

configurations, averaged for all timesteps for each month, are shown in Figure 10. GraphSIFNet-567

GCN and GraphSIFNet-Att-Reg demonstrate comparable performance relative to GraphSIFNet-568

Att, with differences being largely insignificant when aggregated across the entire region.569

To better understand the differences in their capabilities, spatial monthly SIC RMSE570

maps for the 15-, 30-, and 60-day lead times for forecasts launched in May and Novem-571

ber are presented in Figure 11. These correspond to parts of the break-up and freeze-572

up periods, respectively. Panels a) and c) show the impact of the convolution operator,573

while panels b) and d) show the impact of the mesh resolution.574

Early (15-day) forecasts in the Northwest region of Hudson Bay, launched in May,575

are best captured by GraphSIFNet-Att-Reg. This region is characterized by a latent heat576

polynya, suggesting that the coarser uniform resolution mesh may aid the model in fore-577

casting the formation and behavior of the polynya. Using a finer resolution mesh in this578

region might cause the model to overemphasize local variations in sea ice concentration579

and thickness, potentially obscuring the broader spatial patterns crucial for accurate polynya580

forecasting. Both GraphSIFNet-GCN and GraphSIFNet-Att-Reg outperform GraphSIFNet-581
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Att in the 15- and 30-day forecasts launched in November in Hudson Strait. The freeze-582

up in Hudson Strait is characterized by rapid changes in ice formation and movement583

influenced by strong ocean currents. These conditions create a highly dynamic and chal-584

lenging environment for sea ice prediction. Since all three models exhibit similar perfor-585

mance, the additional interpretability granted by the attention weights in GraphSIFNet-586

Att motivates the use of GraphSIFNet-Att over the others.587

5.4 Attention Maps588

The use of transformer convolution in the model enhances its interpretability. By589

examining the attention weights in the encoder’s first layer of graph convolutions, insights590

can be gleaned into how the model encodes the input data. According to Equation 3 and591

Equation 4, each node is assigned attention weights for its neighboring nodes based on592

learned weight matrices in each transformer layer. The softmax function ensures that593

the sum of all attention weights for a given node’s neighbors equals 1. Consequently, the594

node is updated using a weighted average of its neighbors’ features, which are projected595

into a latent space. Due to the large number of edges, visualizing these weights on a sim-596

ple map is challenging. A simpler approach for visualization involves calculating the pri-597

mary direction from which each node is updated. This can be done by summing the at-598

tention weights as vectors (α values in Equation 3 with the direction of their respective599

edges) for each node. These can be represented by arrows, the magnitude of which is pro-600

portional to the difference in weights. For example, a node with evenly distributed at-601

tention weights among eight neighbors would be represented as a single dot, whereas a602

node with a dominant westward neighbor would have a large arrow pointing westward.603

These arrows can be interpreted as indicating the direction of information flow through604

the graph as the model processes the input maps.605

Figure 12 provides examples of attention weights of the input gate for a single in-606

put image during both freeze-up (Figure 13a) and melting (Figure 13b) seasons. Although607

the attention mechanism is applied to the hidden and input tensors at each of the LSTM608

gates, it is most informative to visualize the weights that are applied to the inputs since609

the inputs are physically interpretable. Note that attention weights at land interfaces610

are omitted for visual clarity, as they are numerous and the lack of nodes on land means611

the dominant direction is always away from the shore. In the freeze-up condition, the612

model directs information flow generally from the southeast to the northwest. This sug-613

gests that the model learns the importance of understanding the sea ice and atmospheric614

conditions of nodes to the northwest, aligning with the direction of freezing. It it is log-615

ical that a node that contains water should know the condition of its 3-hop neighbor to616

the northwest, as if this neighbor is frozen, it is likely that this node will freeze in the617

near future. Conversely, during the melting season, arrows point towards open water,618

indicating that nodes with icy conditions but with water-containing neighbors should619

consider these neighbors important as they indicate the node is likely to melt soon. No-620

tably, the magnitude of the arrows is larger at the ice edge and nearly zero in the con-621

solidated ice region, which could reflect the localized nature of the break-up process com-622

pared to the more gradual freeze-up. That is, the break-up process is largely confined623

to the ice edge, while freeze-up gradually occurs across the region, as seen by changes624

in sea ice concentration. Nodes in the open water region during the melting season are625

less likely to change and, therefore, do not require attention to specific neighbors. Note626

that although the weights are visualized on the sea ice concentration inputs, they ap-627

ply indiscriminately to all input features. Interestingly, the model appears to prioritize628

sea ice thickness over concentration, evidenced by the larger attention weights where thick-629

ness drops more dramatically than concentration in Figure 13b. This is logical given the630

importance of thickness in determining the rate at which the ice will melt or break up.631

Additionally, the attention weights in the open-water region during the freeze-up con-632

dition appear to be influenced by surface sensible heat flux, suggesting its significance633

as an input feature.634
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(a) May — ∆(GraphSIFNet-Att, GraphSIFNet-GCN)

(b) May — ∆(GraphSIFNet-Att, GraphSIFNet-Att-Reg)

(c) November — ∆(GraphSIFNet-Att, GraphSIFNet-GCN)

(d) November — ∆(GraphSIFNet-Att, GraphSIFNet-Att-Reg)

Figure 11: Comparison of SIC RMSE for GraphSIFNet-Att, GraphSIFNet-Att-Reg, and
GraphSIFNet-GCN models at 15-, 30-, and 60-day forecast lead times, initiated in May
and November. The figure shows the difference in RMSE between GraphSIFNet-Att and
both GraphSIFNet-Att-Reg and GraphSIFNet-GCN. Negative values indicate a reduction
in error in the GraphSIFNet-Att relative to the other indicated model.
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(a) December 1, 2014 (b) July 1, 2014

Figure 12: Visualization of attention weights of the input gate applied to the input ten-
sors during the freeze-up (a) and melting (b) seasons overlaid on the sea ice concentration
input. Arrows indicate the primary direction and magnitude of information flow based
on the learned attention weights. Attention weights at the land interfaces are omitted for
clarity. The attention weights appear to be largely influenced by sea ice concentration,
but other input variables also influence the weights, for example surface sensible heat flux
in (a), and sea ice thickness in (b).

5.5 Variable Importance635

The models are trained with a number of input variables (refer to Table 1), which636

we anticipated the model might utilize to make its predictions. However, these variables637

may not contribute equally to the resulting predictions. In this section, we explore the638

significance of each feature by feature ablation through omission (Fong & Vedaldi, 2017).639

Specifically, we produce forecasts using the trained GraphSIFNet-Att model by substi-640

tuting each input variable, one at a time, with white Gaussian noise generated using the641

mean and standard deviation of the real inputs. Figure 13 shows the resulting difference642

in RMSE when re-generating predictions on the test years using the June and Decem-643

ber models when each variable is replaced with noise.644

During the break-up process (June model), the model largely relies on the input645

sea ice concentration and sea ice thickness to make its predictions, but also considers the646

ice velocities, sea surface temperature and sea salinity to a smaller degree. Other vari-647

ables do not significantly affect the resulting predictions. The model appears to use sea648

ice concentrations to inform near-term forecasts (days 0 through 20), and sea ice thick-649

ness to inform its medium-term forecasts (days 0 through 35). This makes intuitive sense650

as thickness is an indicator of the ice cover’s longevity making it relevant at longer fore-651
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(a) June model feature importance (b) November model feature importance

Figure 13: Feature ablation with noise injection for the June and November
GraphSIFNet-Att models. Positive values indicate an increase in RMSE when each re-
spective variable is replaced with noise.

cast steps, while sea ice concentration is more important for immediate predictions since652

lower ice concentrations are normally associated with ice parcels that are already break-653

ing up. Note that at forecast steps larger than 35 days, forecasts launched in June are654

largely forecasting periods where Hudson Bay is fully open water, thus none of the in-655

put features contribute to the resulting forecasts.656

Similarly, during the freeze-up process, the model relies on sea ice thickness, sea657

ice concentration, sea ice velocity and sea surface temperature to make its predictions.658

Again, the model largely considers sea ice concentration to make its shorter term fore-659

casts (days 10 through 25), while considering ice velocity and thickness for medium-term660

forecasts (days 15 through 40). Ice velocity may be indicating areas where ice migrates,661

thereby creating space for new ice formation. The difference between the vertical and662

horizontal ice velocity component (usi and vsi) may indicate that they offer redundant663

information, thus it is sufficient for the model to consider one of the components. Again,664

November forecasts at larger than 40 days are largely forecasting periods of full ice cover,665

therefore omitting input features does not impact the scores. It is also worth noting that666

in both cases, the model does not appear to consider the variables originating from ERA5.667

This could point to a mismatch between ERA5 and GLORYS12, which would be unsur-668

prising as GLORYS12 uses ERA-Interim as model forcing at the surface. Since the tar-669

get variables are derived from GLORYS12, the models therefore prioritize input features670

originating from GLORYS12.671

To illustrate the impact of these variables on the resulting predictions, a sample672

GraphSIFNet-Att forecast is shown in Figure 14, along with the same forecast when re-673

placing sea ice concentration and sea ice thickness (SIT) with noise as described above.674

Replacing either SIC or SIT with noise does not significantly affect the 1-day forecast,675

suggesting the model uses persistence as a heuristic at very short lead times. Beyond the676

10-day forecast, predictions are affected by the noise injections, with the model forecast-677

ing a quicker melt when sea ice thickness is replaced with noise, consistent with the the-678

ory that thickness is used as a signal of ice longevity. When SIC is replaced with noise,679

the model persists more of the ice in the 20-day forecast, suggesting that SIC is also im-680

portant for ice integrity.681

Although this technique offers some insight into feature importance, it should be682

noted that since the models are not re-trained, the observed changes in performance due683

to feature omission may not perfectly reflect the true importance of each feature. This684

is because the model has been optimized to make predictions based on the full set of fea-685

tures, therefore the omission of any one feature changes the input space in a way that686

the model was not specifically trained to handle. Moreover, the interdependencies be-687
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Figure 14: Sample 1-, 10-, 20-, and 30-day forecasts from GraphSIFNet-Att launched on
June 15, 2014. The climatology for each forecast day is shown for reference, and the re-
sults of running inference after replacing sea ice concentration (SIC) and sea ice thickness
(SIT) with noise is shown.
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tween features are not accounted for in this single-feature ablation approach. Variables688

in the dataset may interact in complex, non-linear ways that are not captured by exam-689

ining each variable in isolation. Despite these limitations, this feature ablation technique690

provides useful insights into the relative importance of the different input features used691

in these particular trained models (Fong & Vedaldi, 2017). Since we know which features692

the models are using, we know which input variables should be more closely monitored.693

5.6 Estimating Break-up and Freeze-up Dates694

A potential use-case for sea ice prediction in Hudson Bay is the estimation of break-695

up and freeze-up dates in key locations, as these dates have significant implications for696

maritime navigation and local communities. We evaluate the GraphSIFNet-Att model’s697

performance in estimating the freeze-up date at three key ports in Hudson Bay: the ports698

of Churchill, Quaqtaq and Inukjuak. The port of Churchill is mostly used to export grain699

while the ports of Quaqtaq and Inukjuak are regularly used for community resupply. These700

three ports were chosen as their locations are representative of the varying sea ice con-701

ditions found in the Hudson Bay region. In this study, the validation and test year (2014702

to 2019) serve as the period for assessing the predicted break-up and freeze-up dates. These703

dates are determined using the same criteria as the previous study, which follows the def-704

inition given by the Canadian Ice Service (CIS). That is, the freeze-up date at a given705

site is defined as the initial day when open water persists for 15 consecutive days, with706

open water being defined as a SIC of less than 15%. Conversely, the break-up date is de-707

fined as first day at which SIC exceeds 15% for 15 consecutive days. The 30-day and 60-708

day predicted break-up and freeze-up dates are determined using the same criteria, but709

with open water and ice conditions being defined as a sea ice presence probability less710

than and greater than 50%, respectively. For each port, we take the mean pixel value711

of a 3× 3 window around the nearest pixel to the port locations.712

Figure 15 displays the predicted dates of freeze-up/breakup at the three ports with713

30 and 60 days of lead time compared to the actual observed dates for the validation and714

test years along with the mean absolute error. Predicted dates falling within 7 days of715

the observed dates are considered correct, visualized by the pink shaded area. This def-716

inition of a correct forecast is in line with a previous study (Asadi et al., 2022). The 30-717

day forecasted break-up and freeze-up dates for Churchill are noticeably inferior to the718

other two ports, likely due to challenges presented by the latent heat polynya in the North-719

west of Hudson Bay. The uniform forecasts of freeze-up dates at Churchill can be inter-720

preted as an admission that the model does not have skill here and resorts to forecast-721

ing the same mean day every year. Break-up predictions at Inukjuak also pose a chal-722

lenge for the model, likely due to freshwater inflows from the James Bay area affecting723

the timing and rate of melt. Quaqtaq sees the most successful predictions, with all freeze-724

up dates falling within 7 days of the observed date.725

In Figure 16, the break-up and freeze-up accuracies are shown spatially for the en-726

tire region. These accuracies are calculated as the proportion of years with predicted break-727

up or freeze-up dates within 7 days of the observed date. These are compared to pre-728

dictions made using the climate normals. The model performs equally or better than cli-729

matology for most of the region in predicting break-up dates at both 30-days and 60-730

days of lead time. However, there is a strong pattern in the freeze-up maps where the731

model performs worse than climatology in the western half of the bay but still outper-732

forms climatology in the eastern half and in Hudson Strait. This is unsurprising as Hud-733

son Bay begins its freeze-up process in the northwest corner of the bay, thus the onset734

of that initial freezing is difficult to predict. Once the bay has begun freezing over, the735

model can better predict the timing of the rest of the bay. Although we might expect736

the model to use atmospheric conditions such as temperature to predict the onset of freeze-737

up, the model only has access those atmospheric conditions 30 or 60 days prior to the738
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(a) Break-up date estimates

(b) Freeze-up date estimates

Figure 15: Break-up and freeze-up dates predicted by GraphSIFNet-Att at Churchill,
Inukjuak, and Quaqtaq ports for lead times of 30 and 60 days for the years 2014 to 2019
compared to the observed dates from GLORYS12. The pink shaded area represents a
7-day buffer around a perfect forecast. Samples which fall within this buffer are deemed
correct forecasts. The annotated numbers in parentheses are the error for each year.
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forecast date. There may not be a strong enough signal in those initial conditions to al-739

low the model to accurately predict how quickly the temperatures will drop.740

6 Conclusion741

The study presented in this paper demonstrated the effectiveness of using a GNN-742

based spatiotemporal forecasting model for predicting daily sea ice concentration and743

sea ice presence in Hudson Bay over a 90-day time horizon. To demonstrate the ability744

of GNNs to handle spatially irregular meshes, models were trained on both a uniform745

regular mesh and an irregular mesh with higher resolution near shorelines. The proposed746

model uses an attention-based transformer spatial convolution to learn spatial features747

from the input, which was shown to have similar performance compared to the more ba-748

sic graph convolutional network. The attention-based convolution however has the ad-749

ditional benefit of increasing the model’s interpretability, motivating its use.750

Results from this study highlighted the model’s skill in predicting sea ice dynam-751

ics, with particular success noted in short- to medium-term forecasts during the break-752

up season when compared to a linear combination of persistence and climatology as a753

statistical baseline. The model performed as well or better on the irregular mesh as on754

the regular mesh, with the exception of some difficulty capturing the initial freeze-up in755

the Northwest region of Hudson Bay as well as the polynya formation at longer lead times.756

This suggests that improvements could be made in refining the model’s sensitivity to com-757

plex spatial features associated with irregular meshes, particularly in areas where ice dy-758

namics are highly variable. This could involve more sophisticated positional and spatial759

encoding, perhaps by projecting the positional, cell size, distance and angle encodings760

into higher dimensional latent space. The model showed similar overall performance be-761

tween the model using the transformer convolution and the GCN within the GCLSTM762

module, with some differences in performance in certain regions such as Hudson Strait.763

This suggested potential overfitting in the model using the spatial transformer convo-764

lution.765

The attention mechanism within the transformer convolution offered interpretabil-766

ity by highlighting the primary direction and magnitude of information flow in the en-767

coder, which aligned with known physical processes such as the direction of freezing and768

melting. A feature ablation experiment indicated the trained model’s reliance on sea ice769

concentration, thickness and velocities to inform its predictions. Other variables did not770

contribute significantlty to the resulting forecasts, which could explain the model’s poor771

performance in forecasting the Kivalliq latent heat polynya. A evaluation of the model’s772

ability to predict freeze-up and break-up dates was conducted, revealing the model’s lim-773

ited ability to forecast the onset of freeze-up in Hudson Bay, as well as the onset of break-774

up in the Northwest region which is influenced by the polynya. The model however still775

showed skill over the statistical baseline in these tasks.776

Several potential avenues for future work exist. In a GNN, each node is processed777

as a separate sample by the network. This has two major implications. First, one input778

image X ∈ RW×H×C does not necessarily need to be processed fully at once, instead,779

nodes could also be sampled in batches sequentially until the full sample has been pro-780

cessed. This would be helpful in the case where the region is large and modelling it in781

its entirety would be infeasible due to memory constraints. Second, since each node has782

its own hidden and cell states, cells can be combined by averaging the states or split by783

duplicating the states. This means that the underlying mesh could be dynamic in time,784

evolving as the underlying data changes (e.g. as the ice conditions evolves). For exam-785

ple, one could define a dynamic mesh which has a higher resolution at the ice edge where786

the ice conditions are known to be more dynamic. As the ice conditions evolve, so too787

would the underlying mesh. The advantages are two-fold. First, it allows for a reduc-788

tion in data volume with minimal information loss, contrary to the static mesh used in789
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(a) 30-day break-up date estimate map

(b) 60-day break-up date estimate map

(c) 30-day freeze-up date estimate map

(d) 60-day freeze-up date estimate map

Figure 16: Break-up and freeze-up date estimate maps from the climatological baseline
(a), GraphSIFNet-Att model predictions (b), and the difference between the two (c). Pos-
itive values in the difference plots indicate an increase in accuracy from the model relative
to the baseline, where accuracy is defined as the proportion of predictions falling within 7
days of the observed date for the years 2014 to 2019.
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this work which has information loss where the data has high spatial variance. Second,790

the dynamic mesh could help the model learn more sophisticated dynamics and is more791

consistent with physical simulation software. This idea was explored in (Pfaff et al., 2020).792

Another avenue for future work could be a deeper investigation of the adjacency matrix.793

In this study, edges were placed between any two directly spatially adjacent cells. How-794

ever, edges could also be placed between distant cells thereby widening the receptive field795

without adding convolutions. This could be investigated by transforming the adjacency796

matrix into a learnable matrix optimized during training. Furthermore, node sampling797

strategies could also be used to reduce training time. Specifically, adaptive sampling tech-798

niques could be employed where nodes in dynamic regions, such as the ice edges known799

for their fluctuating conditions, are sampled with higher frequency compared to the more800

static areas. Incorporating long-term weather forecasts from third party sources such as801

the Canadian Global Ice Ocean Prediction System (GIOPS) could also be beneficial, par-802

ticularly in forecasting freeze-up. Lastly, multi-resolution modelling either through an803

ensemble of models operating over meshes of different resolution or using multiple meshes804

of varying resolutions within a single model could be explored. This may help the model805

better capture both large-scale and small-scale phenomena.806

Appendix A Additional RMSE Heatmaps807

(a) Model (b) ∆(Model, Persistence) (c) ∆(Model, Climatology)

Figure A1: RMSE heatmaps for the SIC forecasting task by month and lead time for the
GraphSIFNet-Att model (a), and the RMSE differences between GraphSIFNet-Att and
persistence (b) and climatology (c) where negative values (blue) indicate a reduction in
model error relative to the baseline.
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