Preliminary Analysis of a Retrogressive Thaw Slump Multi-Source Database for the West Siberian Arctic

Nina Nesterova^{1,2}, Ilya Tarasevich^{3,4}, Marina Leibman^{3,4}, Alexander Kizyakov⁵, Ingmar Nitze¹, and Guido Grosse^{1,2}

¹Alfred-Wegener-Institute for Polar and Marine Research ²University of Potsdam, Institute of Geosciences ³University of Tyumen ⁴Earth Cryosphere Institute ⁵Lomonosov Moscow State University

December 27, 2023

Preliminary Analysis of a Retrogressive Thaw Slump Multi-Source Database for the West Siberian Arctic

Nina Nesterova^{1,2}, Ilya Tarasevich^{3,4}, Marina Leibman^{3,4}, Alexander Kizyakov⁵, Ingmar Nitze¹, Guido Grosse^{1,2}

Alfred-Wegener-Institute for Polar and Marine Research, Potsdam, Germany
University of Potsdam, Institute of Geosciences, Potsdam, Germany
University of Tyumen, Tyumen, Russia
Earth Cryosphere Institute, Tyumen, Russia
Lomonosov Moscow State University, Moscow, Russia

THERMOTERRACE

nina.nesterova@awi.de

Background & Study area

Morphology

Spatial aggradation

Retrogressive thaw slump (RTS) is a cryogenic landform due to ice-rich permafrost thawing or massive ground ice melting:

- Significantly altering the environment: vegetation, topography and carbon emissions
- Vulnerable to the temperature fluctuations
- Polycyclic nature: active or stabilized (or ancient)

The aim

Further detailed investigation of RTS occurrence and environmental factors

Materials & Methods

- Mapped RTS points by Nesterova et al. 2021, Nitze et al., 2018 and Yang et al., 2023
- Manual collection of RTS points based on: ESRI satellite base map, Google map satellite, Yandex map satellite
- Classification

THERMOCIRQUE

ice

• Complex features: multiage zones within one landform

West Siberian Arctic: Continuous permafrost + tabular massive ground ice close to the surface \rightarrow widespread RTS occurrence

How does RTS look in West Siberia?

Thermocirque
Thermoterrace

Combination of morphologies (2 in 1)

Undefined mass movement

Single landform
Complex landform

ice

→ No

River Ice wedge degradation Lake Gully Thermokarst subsidence

Results

4390 points collected

- 3150 are morphologically Thermocirques
- 828 combined morphologies and only 160 Thermoterraces
- 2139 complex and 1999 single forms

Most common RTS: single thermocirque at the lakeshore (with thermokarst subsidence and thermoerosion)

Outlook

In relation to data on:

- Geology
- Ground ice content
- Climate
- Landcover
- Other environmental parameters

More figures, statistics & References

