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Abstract

We examined the effect of snow-ice formation on SnowModel-LG snow depth and density products. We coupled SnowModel-LG,

a modeling system adapted for snow depth and density reconstruction over sea ice, with HIGHTSI, a 1-D thermodynamic sea

ice model, to create SnowModel-LG HS. Pan-Arctic model simulations spanned from 1 August 1980 through 31 July 2022.

In SnowModel-LG HS, domain average snow depth decreased by 20%, and snow density increased by 2% when compared

to SnowModel-LG, with largest differences in the Atlantic sector. Averaged across the CryoSat-2 era (2011–2022), domain

average April sea ice thickness retrievals from CryoSat-2 decreased by 7.7% when snow-ice was accounted for. Evaluation

of SnowModel-LG HS against snow depth, snow-ice, and sea ice thickness observations highlighted the importance of snow

redistribution over deformed sea ice. The findings suggest that neglecting snow and sea ice interactions in models can lead to

substantial overestimation of snow depth over level ice.
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Key Points:7

• We examined the changes in modeled snow depth and density over sea ice caused8

by snow-ice formation.9

• Accounting for snow and sea ice interactions markedly reduces snow depth on level10

ice.11

• Sea ice thickness retrievals from radar altimetry change on average by 7.7% when12

snow products account for snow-ice.13
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Abstract14

We examined the effect of snow-ice formation on SnowModel-LG snow depth and den-15

sity products. We coupled SnowModel-LG, a modeling system adapted for snow depth16

and density reconstruction over sea ice, with HIGHTSI, a 1-D thermodynamic sea ice17

model, to create SnowModel-LG HS. Pan-Arctic model simulations spanned from 1 Au-18

gust 1980 through 31 July 2022. In SnowModel-LG HS, domain average snow depth de-19

creased by 20%, and snow density increased by 2% when compared to SnowModel-LG,20

with largest differences in the Atlantic sector. Averaged across the CryoSat-2 era (2011–21

2022), domain average April sea ice thickness retrievals from CryoSat-2 decreased by 7.7%22

when snow-ice was accounted for. Evaluation of SnowModel-LG HS against snow depth,23

snow-ice, and sea ice thickness observations highlighted the importance of snow redis-24

tribution over deformed sea ice. The findings suggest that neglecting snow and sea ice25

interactions in models can lead to substantial overestimation of snow depth over level26

ice.27

Plain Language Summary28

The amount of snow on sea ice is important for monitoring sea ice thickness, which29

is one of the key factors in a changing climate. Recent advances in snow-on-sea-ice mod-30

eling have made it possible to simulate snow depth and density over Arctic sea ice. How-31

ever, these simulations often do not consider how much snow is lost to snow and sea ice32

interactions, such as snow-ice formation. Snow-ice forms when snow becomes part of the33

sea ice, after seawater floods the sea ice surface and freezes inside the snow. In this study,34

we combined a snow model with a sea ice model to understand how snow changes when35

snow-ice forms. Our results show that when snow-ice forms, snow depth decreases, and36

snow density commonly increases. The differences are highest in the Atlantic sector of37

the Arctic, where snow-ice is more likely to form due to high annual snowfall.38

1 Introduction39

Arctic sea ice is going through unprecedented changes, decreasing dramatically both40

in extent (e.g. Stroeve et al., 2014) and in thickness (Kwok et al., 2009; Maslanik et al.,41

2007), and transitioning from a multiyear ice to a seasonal, first-year ice system (Meier42

et al., 2014). The role of snow cover over thinner, seasonal sea ice is amplified in many43

ways. First, the thermal resistance of snow cover becomes a dominant control over the44

atmosphere-ocean heat fluxes, regulating sea ice growth in winter. Second, the snow load45

becomes more likely to submerge thinner ice underneath the water level, creating neg-46

ative freeboard conditions. If sea water floods at the ice/snow interface and freezes there,47

snow-ice is formed, that is a mixture of frozen seawater and snow (e.g. Leppäranta, 1983).48

Snow-ice is a common phenomenon in seas that are seasonally covered by ice (i.e., Baltic49

Sea, Sea of Okhotsk), but it was not commonly observed in drifting Arctic sea ice un-50

til the Norwegian Young Sea ICE (N-ICE2015) expedition (Granskog et al., 2017; Provost51

et al., 2017). Snow-ice is a sink for snow, and it can contribute significantly to the sea52

ice mass balance (Merkouriadi et al., 2017, 2020). Therefore, it is essential to consider53

it for improving Arctic sea ice forecasts.54

Satellite altimetry is the most common method for monitoring sea ice thickness,55

providing nearly full coverage of the Arctic Ocean (Landy et al., 2022; Laxon et al., 2003;56

Markus et al., 2017). Information on the snow load exerted on sea ice is crucial for al-57

timetry retrievals of sea ice thickness, because radar and laser altimeters, in principle,58

measure ice or snow freeboard; the elevation of the ice or snow surface from the water59

surface. Snow depth and density are required to convert freeboard to sea ice thickness60

information (e.g. Kurtz et al., 2009). According to Giles et al. (2007), uncertainties in61

snow depth and density contribute 48% and 14%, respectively, to the total error of sea62

ice thickness retrievals from radar altimetry. A more recent study by Landy et al. (2020)63
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estimated these uncertainties at 11% for snow depth and 16% for density. Similarly, snow64

depth and density uncertainties were found to contribute 70% and 30–35%, respectively,65

to the total error of sea ice thickness retrievals from laser altimetry (Zygmuntowska et66

al., 2014).67

Snow depth and density estimates used in altimetry applications are often derived68

from snow climatologies or their modified versions. The most widely used snow-on-sea-69

ice climatology is compiled from a snow depth and density data set collected decades ago70

mostly over multiyear ice (Warren et al., 1999). In a changing Arctic sea ice system, snow71

conditions are expected to change as well (Blanchard-Wrigglesworth et al., 2015; Web-72

ster et al., 2014), and these changes are not captured by the Warren et al. (1999) clima-73

tology. In addition to the long-term changes, climatology overlooks the spatio-temporal74

differences and interannual variability of snow conditions in the Arctic, which are evi-75

dently strong (Webster et al., 2019). Addressing the imperative need for better repre-76

sentation of snow on sea ice, efforts have focused on reanalysis-based snow depth and77

density reconstructions (e.g. Blanchard-Wrigglesworth et al., 2018; Kwok & Cunning-78

ham, 2008; Petty et al., 2018). A recent contribution was SnowModel-LG, a state-of-the-79

art Lagrangian snow evolution model (Liston, Itkin, et al., 2020). Compared to other80

reanalysis-based products, SnowModel-LG implemented higher resolution Lagrangian81

parcel tracking and included an improved representation of snow evolution physics. It82

has been bias-corrected and validated against a wide observation framework, and yielded83

good agreement, especially with in situ measurements (Stroeve et al., 2020). However,84

neither SnowModel-LG nor any of the above-mentioned snow products account for snow85

losses due to snow and sea ice interactions, such as snow-ice formation.86

This study aims to examine snow loss through snow-ice formation, and its effect87

in SnowModel-LG snow depth and density simulations over the Arctic Ocean, from 1 Au-88

gust 1980 through 31 July 2022. To investigate this, we coupled SnowModel-LG with89

the High-Resolution Thermodynamic Sea Ice model (HIGHTSI) (Launiainen & Cheng,90

1998) to produce SnowModel-LG HS. In HIGHTSI, snow-ice forms when the sea ice sur-91

face is depressed below the water surface (negative freeboard), with the assumption that92

all negative freeboard will result in flooding and, consequently, snow-ice formation. We93

investigated the effect of both snow depth and density products (SnowModel-LG and94

SnowModel-LG HS) on sea ice thickness retrievals from satellite radar altimetry (CryoSat-95

2). We discuss the results in light of an evaluation exercise we performed using obser-96

vations from airborne campaigns and drifting ice mass balance buoys (IMBs).97

2 Materials and Methods98

2.1 SnowModel-LG99

SnowModel is a collection of snow distribution and snow evolution modeling tools,100

applicable to any environment experiencing snow, including sea ice applications (Liston101

& Elder, 2006a). SnowModel-LG is adapted for snow depth and density reconstruction102

over sea ice (Liston, Itkin, et al., 2020). It is implemented in a Lagrangian framework103

to simulate snow properties on drifting sea ice. SnowModel-LG accounts for physical snow104

processes such as sublimation from static surfaces and blowing snow, snow melt, evolu-105

tion of snow density and temperature profiles, energy and mass transfers within the snow-106

pack, and superimposed ice formation in a multi-layer configuration.107

At each time step (3-hour here), SnowModel-LG performs a mass-budget calcula-108

tion, where snow water equivalent (SWE) depth (m) is defined by snow mass gains, losses,109

and ice parcel dynamics,110

dSWE

dt
=

1

ρw
[(Pr + Ps)− (Sss + Sbs +M) +D] (1)111
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where t (s) is time; ρw = 1,000 kgm−3 is the water density; Pr (kgm−2 s−1) and Ps (kgm−2 s−1)112

are the water-equivalent rainfall and snowfall fluxes, respectively; Sss (kgm−2 s−1) and113

Sbs (kgm−2 s−1) are the water-equivalent sublimation from static-surface and blowing-114

snow processes, respectively; M (kgm−2 s−1) is melt-related mass losses; and D (kgm−2 s−1)115

is mass losses and gains from sea ice dynamics processes (i.e., parcels being created and116

lost with ice motion, divergence, and convergence).117

Snow depth hs (m) is related to SWE through the ratio of snow (ρs), and water118

(ρw) densities,119

SWE =
ρs
ρw

hs. (2)120

Therefore, the evolution of snow depths and densities are calculated by121

d (ρshs)

dt
= (Pr + Ps)− (Sss + Sbs +M) +D. (3)122

In SnowModel-LG, snow density evolves and changes in response to compaction (weight123

of the above snow layers), wind force, freezing of liquid water, and vapor flux through124

the snowpack. Additional information on the components and the configuration of SnowModel-125

LG are provided in detail in Liston, Itkin, et al. (2020). The model configuration in this126

study is identical to the one used in Liston, Itkin, et al. (2020), only here we have ex-127

tended the simulation for another four years. According to Stroeve et al. (2020), SnowModel-128

LG performed well in capturing the spatial and seasonal variation of snow distributions,129

when evaluated against several Arctic data sets.130

In the simulations presented herein, Lagrangian parcel tracking began on 1 August131

1980. The first simulation year assumes no snow atop the sea ice; the following years carry132

available snow from 31 July to 1 August. Essential inputs are atmospheric reanalysis es-133

timates of near-surface air temperature, relative humidity, precipitation, wind speed and134

direction, and sea ice motion and concentration products.135

2.2 HIGHTSI136

HIGHTSI is a 1-D thermodynamic sea ice model designed to simulate the evolu-137

tion of snow and sea ice thickness and temperature profiles (Launiainen & Cheng, 1998)138

by solving the heat conduction equation for multiple ice and snow layers. The sea ice139

thermal conductivity is parameterized following Pringle et al. (2007). HIGHTSI simu-140

lates snow-ice formation following Saloranta (2000).141

HIGHTSI has been widely used in process studies and validated extensively against142

observations (Cheng, Zhang, et al., 2008; Cheng et al., 2013; Merkouriadi et al., 2017,143

2020; Wang et al., 2015). In this study, we used a model configuration that is derived144

from validation studies on Arctic sea ice. The model’s vertical resolution has been found145

to be critical for its performance in the Arctic (Cheng, Vihma, et al., 2008). Here, we146

used 20 layers in the ice which is considered optimal for capturing internal thermody-147

namic processes (Cheng, Vihma, et al., 2008; Cheng, Zhang, et al., 2008; Cheng et al.,148

2013; Wang et al., 2015). Detailed information on model parameterizations is given in149

Table S1 in the supporting information (Briegleb et al., 2004; Cheng, Vihma, et al., 2008;150

Granskog et al., 2017; Grenfell & Maykut, 1977; Liston, Itkin, et al., 2020; Maykut &151

Untersteiner, 1971; Perovich, 1996; Pringle et al., 2007; Wang et al., 2015; Zuo et al., 2019).152

Merkouriadi et al. (2020) implemented HIGHTSI in a Lagrangian framework to ex-153

amine pan-Arctic snow-ice distributions. In the study presented herein, HIGHTSI was154

modified further, so that snow depth and density evolution were simulated by SnowModel-155

LG in a 25-layer configuration.156
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2.3 SnowModel-LG HS157

We performed two separate snow-on-sea-ice simulations. First, we simulated snow158

depth and density with SnowModel-LG (i.e. Liston, Itkin, et al., 2020). Second, SnowModel-159

LG’s snow depth and density evolution were coupled with HIGHTSI’s snow-ice and ther-160

modynamic ice growth representations. The coupled modeling products are hereafter re-161

ferred to as being created by SnowModel-LG HS.162

For the SnowModel-LG HS runs, snow density was simulated following Appendix163

C of Liston, Itkin, et al. (2020), with the vertical density profile parameterized as be-164

ing a linear fit between densities that are 20% greater than the mean at the top of the165

snowpack (assumed to be wind slab), and 20% less at the bottom of the snowpack (as-166

sumed to be depth hoar). These percentages are consistent with snow-pit measurements167

made during the Multidisciplinary drifting Observatory for the Study of Arctic Climate168

(MOSAiC) expedition (Macfarlane et al., 2023). This approach was chosen to provide169

a best-possible fit to available snow density observations, as opposed to relying completely170

on SnowModel-LG’s representation of the vertical density evolution. To account for changes171

in snow density in response to snow-ice formation, when snow-ice was formed, the cor-172

responding snow-depth amount was removed from the bottom layers of the snowpack,173

and the bulk density was recalculated based on the depth and density of the remaining174

snow. Additional model specifications are presented in the supporting information (Ta-175

ble S1).176

2.4 Input Data Sets177

Daily ice concentrations (15–100%) by DiGirolamo et al. (2022) were used to de-178

fine whether an ice parcel existed and whether snow could accumulate on that parcel.179

Ice motion vectors from the National Snow and Ice Data Center (NSIDC) (Tschudi et180

al., 2019, 2020) gridded over 25-km spatial resolution were used as Lagrangian ice par-181

cel tracks. NASA’s Modern Era Retrospective Analysis for Research and Application Ver-182

sion 2 (MERRA-2; Gelaro et al., 2017; Global Modeling And Assimilation Office (GMAO),183

2015a, 2015b) was used as atmospheric forcing to SnowModel-LG HS. Specifically, SnowModel-184

LG HS was forced with 10-m wind speed and direction, 2-m air temperature and rela-185

tive humidity, and total water-equivalent precipitation from MERRA-2. During these186

simulations, MicroMet (Liston & Elder, 2006b) provided the required liquid and solid187

precipitation, and the downwelling shortwave and longwave radiation following Liston,188

Itkin, et al. (2020).189

We applied the same bias-correction in MERRA-2 reanalysis as in Liston, Itkin,190

et al. (2020), where observations from NASA Operation IceBridge (OIB; 2009–2016) were191

used to scale the precipitation inputs. In Liston, Itkin, et al. (2020), 8-year averages of192

precipitation scaling factors were calculated and they were applied over all ice parcels193

and through the whole simulation period, making the results of MERRA-2 and the Eu-194

ropean Centre for Medium-Range Weather Forecasts (ECMWF) ReAnalysis-5th Gen-195

eration (ERA5; Hersbach et al., 2020) model runs similar. Scaling factors were 1.37 for196

MERRA-2 and 1.58 for ERA5, indicating the need to increase the precipitation inputs197

in order to match the OIB observations. The same scaling factors were used in this study198

for the results to be comparable with the publicly available SnowModel-LG snow depth199

and density data set (Liston, Stroeve, & Itkin, 2020).200

For the ocean boundary forcing, at the ice/ocean interface, we used ocean heat flux201

from the Ocean Reanalysis System 5 (ORAS5) provided at the ECMWF (Zuo et al., 2019).202

ORAS5 resolution is eddy-permitting (0.25◦ latitude and longitude) horizontally and 1m203

vertically. ORAS5 includes five ensemble members and covers the period from 1979 on-204

ward. In our study, we used the ensemble mean, providing one unique value on a 1◦ grid205

for each simulation day.206
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2.5 Model Configuration and Outputs207

The simulations began on 1 August 1980 and ran through 31 July 2022. Tempo-208

ral resolution was 3 h to capture diurnal variations, and the parcel-specific outputs (e.g.209

snow depth, snow density, and snow-ice thickness) were saved at the end of each day. Ice210

parcel trajectories were linearly interpolated from weekly to 3-hourly time steps. On 1211

August of each year (except in the first year), the multi-year ice thicknesses were cal-212

culated from the sea ice thickness distribution on 31 July. The 1 August 1980 ice thick-213

ness initial condition was defined by performing a one-year simulation with a domain-214

wide initial condition of 1m, and then using the ice thickness distribution at the end of215

the first simulation year as the initial condition for the beginning of the 42-year simu-216

lation (i.e., the model ran the first year twice and assumed the 31 July 1981 ice thick-217

ness distribution equaled the 1 August 1980 distribution). In addition, any snow remain-218

ing at 00:00 UTC on 1 August (the last time step on 31 July) was used as the initial con-219

dition for the following simulation year that started at 03:00 UTC on 1 August (these220

are the standard procedures implemented in Liston, Itkin, et al. (2020)).221

The daily simulation outputs for each parcel (approximately 61,000 parcels each222

year) were gridded to the 25 km × 25 km Equal-Area Scalable Earth (EASE) grid, pro-223

vided by NSIDC. The location of each parcel was used to calculate the overlap between224

that parcel and the EASE grid cell, i.e. the fractional area of the EASE grid cell that225

was occupied by the parcel. The fractional area was then multiplied by the sea ice con-226

centration of the parcel, and the result was used to weigh the parcels’ contribution to227

each EASE grid cell. This procedure of area- and concentration-weighted averages within228

the EASE grid cells conserved the examined parameters, similar to Merkouriadi et al.229

(2020).230

2.6 Altimetry Applications231

To study the impact of snow-ice formation in a wider context, we tested the SnowModel-232

LG HS snow estimates in sea ice thickness retrievals from satellite altimetry. From the233

European Space Agency’s (ESA) CryoSat-2 satellite, we processed Baseline-D (Baseline-234

E for winter 2021–2022) Level 1B Synthetic Aperture Radar (SAR) and SAR Interfer-235

ometric files (European Space Agency, 2019a, 2019b, 2019c, 2019d) for the full winter236

season (September to May), starting in November 2010 and continuing through May 2022,237

using the python library pysiral (Hendricks et al., 2021). For the necessary auxiliary data238

in the sea ice thickness retrieval, we used the mean dynamic topography product by the239

Danish Technical University (DTU22MDT; Knudsen et al., 2022); for sea ice concentra-240

tion and type, we used the European Organisation for the Exploitation of Meteorolog-241

ical Satellites (EUMETSAT) Ocean and Sea Ice Satellite Application Facility (OSI SAF)242

products 401-b and 403-d, respectively (OSI SAF, 2017a, 2017b).243

The SnowModel-LG and SnowModel-LG HS snow depths and densities were ap-244

plied to preprocessed Level 1B files, and the processor was run first to produce Level 2245

(along-track) and then to grid those to Level 3 (monthly gridded) files. For this study,246

we used the monthly gridded files.247

2.7 Evaluation Exercise248

To evaluate modeled snow depth and sea ice thickness, we compared them against249

independent airborne data from NASA OIB and Alfred Wegener Institute’s (AWI) Ice-250

Bird campaigns conducted during late-winter over the western Arctic. Snow depth data251

were derived from airborne snow radars similar on both OIB (99 flights in 2009–2019;252

Kurtz et al., 2015, 2016; MacGregor et al., 2021) and IceBird campaigns (11 flights in253

2017 & 2019; Jutila et al., 2021a, 2021b; Jutila, King, et al., 2022), whereas sea ice thick-254

ness could be simultaneously and independently observed only on IceBird with a towed255
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electromagnetic sounding instrument (Jutila et al., 2021a, 2021b; Jutila, Hendricks, et256

al., 2022). We averaged the airborne measurements over the same EASE grid when more257

than 50 values were present in a grid cell. For sea ice thickness, we included only level258

ice measurements using the flag in the data product that implements a total thickness259

gradient threshold of 4 cm within an along-track distance of 1m.260

In addition, we evaluated temperature profile and heating cycle data from thermis-261

tor strings of Snow Ice Mass Balance Apparatus (SIMBA) buoys (Jackson et al., 2013)262

deployed in the Arctic in 2012–2020 to detect flooding (Grosfeld et al., 2016; Lei et al.,263

2021, 2022, 2023). Changes in thermal diffusivity, temperature, and heat propagation264

distinguish the temporal evolution of different layers and their thicknesses (e.g. Provost265

et al., 2017).266

3 Results267

In this section, we present two snow depth and density products. The first prod-268

uct is based on the original SnowModel-LG model, without accounting for snow-ice for-269

mation. We refer to it as SMLG. SMLG is identical to the one described in Liston, Itkin,270

et al. (2020), only here the SnowModel-LG run was extended for four more years (1 Au-271

gust 1980 to 31 July 2022). The second product accounts for snow-ice formation through272

the coupling of SnowModel-LG with HIGHTSI (SnowModel-LG HS). We refer to this273

simulation as SMLG HS. In what follows, we compare snow depth and density derived274

by the two different products, and we use both to retrieve sea ice thickness from CryoSat-275

2.276

The model results indicated that snow-ice has the potential to form every year in277

the Arctic Ocean, and it is characterized by strong seasonal and regional variations. The278

seasonality and long-term trends of snow-ice thickness calculated in this study were con-279

sistent with earlier findings (Merkouriadi et al., 2020), as expected. The seasonal and280

interannual evolution of all simulated parameters is presented in Figure S1. Our coupled281

SMLG HS simulation presented herein investigated the impact of snow-ice formation on282

snow depth and density (Figures 1a–c and d–f, respectively). Snow-ice formation occurred283

throughout the 42-year simulation period (1980–2022), and it was more prominent in the284

Atlantic sector of the Arctic Ocean, north of Svalbard, across the east coast of Green-285

land, and over the Lincoln Sea. Here, we show results averaged across the 42-year pe-286

riod on the day of maximum snow-on-sea-ice volume.287

The date of maximum snow-on-sea-ice volume occurred on average on 21 April with288

a standard deviation of 14 d. There was no significant long-term trend of that date across289

the simulation period. The snow depth and density differences (SMLG HS minus SMLG)290

were calculated on the date of maximum snow volume and averaged over the 42-year pe-291

riod (e.g., Figures 1c and f). Across the Arctic Ocean, accounting for snow-ice forma-292

tion produced a 20% snow depth decrease and a 2% snow density increase, correspond-293

ing to 4 cm of snow depth and 6.6 kgm−3 of snow density. Regional variations were strong,294

yielding over 85 cm decrease in snow depth, and 209 kgm−3 increase in snow density, when295

compared to the original SMLG product.296

Sea ice thickness retrievals from CryoSat-2 were performed using both SMLG and297

SMLG HS. Averaged results from April are plotted together with the differences in sea298

ice thickness in Figure 1g–i. SMLG HS represents less snow load on sea ice, resulting in299

thinner sea ice thickness retrievals by 7.7% (domain average) across the CryoSat-2 era300

(2011–2022). Even though there are regional and inter-annual variations, the differences301

were more prominent in the Atlantic sector of the Arctic Ocean and over the Lincoln Sea302

(Figure 1g–i), i.e. in regions that are more prone to snow-ice formation (Merkouriadi et303

al., 2020). The differences regionally exceed 1m in April, highlighting the sensitivity of304

the altimetry retrievals to snow load.305
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Figure 1. Snow depth (top) and snow density (middle) on the day of maximum snow-on-sea-

ice volume (42-year average) as well as sea ice thickness (bottom) based on CryoSat-2 retrievals

in April 2011–2022 from (a, d, g) SMLG, (b, e, h) SMLG HS, and (c, f, i) the difference between

the two products (SMLG HS minus SMLG).
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4 Discussion and Conclusions306

We investigated the effect of snow-ice formation in snow depth and density recon-307

structions over Arctic sea ice in a modeling study. We did this by coupling SnowModel-308

LG snow depth and density evolution with HIGHTSI thermodynamic sea ice and snow-309

ice growth. When snow-ice was accounted for, snow depth decreased markedly and, in310

most cases, snow density increased. Averaged across the entire Arctic Ocean on the day311

of maximum snow-on-sea-ice volume, and for the period 1980–2022, snow depth given312

by SMLG HS was 20% lower than SMLG, and snow density was 2% higher, correspond-313

ing to 4 cm of snow depth and 6.6 kgm−3 of snow density. Due to the large regional vari-314

ations of snow-ice formation, snow depth decreased over 85 cm and density increased over315

209 kgm−3 locally. The largest differences were found in the Atlantic sector of the Arc-316

tic Ocean, where snow-ice has the highest potential to form (Merkouriadi et al., 2020).317

Largest differences in altimetry-derived sea ice thickness were found in the Atlantic318

sector and the Lincoln Sea, and they were consistent with the snow-ice contribution. In319

some years, the differences were notable in the central Arctic as well. Domain average320

sea ice thicknesses for the CryoSat-2 in April 2011–2022 were 7.7% lower when using SMLG HS321

compared to SMLG. It is worth mentioning that the effect of snow salinity on the altime-322

try signals becomes relevant when seawater floods the bottom of the snowpack (Willatt323

et al., 2010). SMLG HS does not yet handle snow salinity and wicking in response to324

seawater flooding at the snow/ice interface. In addition to this, there is no temperature325

dependency in snow-ice formation in SMLG HS. The model assumes that flooding —326

or negative freeboard — at the snow/ice interface corresponds to snow-ice formation in327

winter.328

Due to the lack of information regarding several aspects of snow on sea ice, this study329

comes with some limitations. First, we assumed that a negative freeboard always results330

in snow-ice formation. In reality, for flooding to occur, water pathways such as sea ice331

thermal cracks or leads are required. Even though these pathways become increasingly332

common in a thinner and more dynamic icescape (Kwok et al., 2013; Rampal et al., 2009),333

our assumption likely resulted in overestimation of snow-ice formation. Second, we did334

not account for snow blowing into leads. Recent observations from the MOSAiC expe-335

dition demonstrated that this is likely an insignificant snow sink in winter, due to quick336

refreeze of the leads (Clemens-Sewall et al., 2023). This is further supported by the ar-337

guments put forth by Liston, Itkin, et al. (2020). Third, we assumed that snow accumu-338

lates on level ice, and we did not account for snow redistribution over deformed ice. Sea339

ice deformation features such as pressure ridges, are prominent in the Arctic Ocean, es-340

pecially under a thinner and more dynamic sea ice regime (Itkin et al., 2017; Rampal341

et al., 2009). Snow tends to accumulate on the lee side of pressure ridges and other rough-342

ness elements (e.g. Liston et al., 2018), resulting in uneven snow load over a sea ice floe.343

SMLG HS snow depth fit well to both OIB and IceBird observations (Figures 2a–344

d), with reduced root-mean-square-errors and biases compared to SMLG (Figure S2).345

However, SMLG HS constantly underestimated sea ice thickness of level ice, when com-346

pared to IceBird observations (Figures 2e–h and S3). We hypothesize that the sea ice347

thickness underestimation resulted from overestimation of the snow accumulation over348

level ice. Even though the total snow depth (over both deformed and level ice) matched349

well with the observations, not accounting for snow redistribution over deformed ice re-350

sulted in overestimation of snow depth over level ice. This additional snow decelerated351

thermodynamic ice growth, resulting in thinner sea ice that was more prone to snow-ice352

formation. Mid-winter flooding events at the snow/ice interface detected by IMBs sup-353

ported our simulations of snow-ice formation (Figure S4). However, IMBs are point mea-354

surements and do not necessarily reflect the situation over larger spatial domains.355

Although snow depth, and the associated snow-ice formation, have decreased Arctic-356

wide, modeling studies have indicated increasing trends in snow depth (Webster et al.,357
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Figure 2. Panels a)–d) show the evaluation of modeled snow depth from SMLG and

SMLG HS against airborne radar-derived snow depth measurements from the AWI IceBird

survey flight on 30 March 2017. Panels e)–h) show the evaluation of thermodynamically-grown

(TD-grown) sea ice and snow-ice modeled with SMLG HS against airborne sea ice thickness

measurements over level ice from the AWI IceBird survey flight on 2 April 2017.

2019) and snow-ice (Merkouriadi et al., 2020) regionally in the Atlantic sector of the Arc-358

tic Ocean, especially along the east coast of Greenland, north of Svalbard, and at the359

Lincoln Sea since the 1980s. The increase is significant and it is associated with the in-360

tensification of storms that bring more precipitation to this part of the Arctic (Graham361

et al., 2017; Rinke et al., 2017; Woods & Caballero, 2016). When snow models do not362

account for snow sinks caused by snow and sea ice interactions, such as snow-ice forma-363

tion or snow redistribution over sea ice deformation features, they overestimate snow depth364

on level ice. Uneven snow-on-sea-ice load within a sub-grid area will result in biases in365

altimetry retrievals of sea ice thickness by overestimating level ice and underestimating366

deformed ice thickness. Regarding sea ice modeling applications, spatial variability in367

snow depth will impact sea ice thermodynamic growth in winter and will affect meltpond368

formation in summer. Therefore, snow-on-sea-ice reconstructions should be used with369

caution depending on the application requirements. This study emphasizes the need to370

account for snow and sea ice interactions to improve the representation of snow on sea371

ice in both numerical modeling and remote sensing applications.372

Data Availability Statement373

Model input374

Sea ice concentration data are available at DiGirolamo et al. (2022). Sea ice mo-375

tion vectors are available at Tschudi et al. (2019). Atmospheric forcing data are avail-376

able at Global Modeling And Assimilation Office (GMAO) (2015a, 2015b). Daily ocean377

heat flux data were downloaded from ECMWF.378
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Model output379

Interannual variations of EASE-grid snow depth, snow density, and snow-ice thick-380

ness from 1 August 1980 through 31 July 2022 presented in this paper are available at381

Merkouriadi et al. (2023).382

Altimetry input383

CryoSat-2 Level 1B Baseline D/E SAR and SARIn data are available at European384

Space Agency (2019a, 2019b, 2019c, 2019d). Mean dynamic topography data are avail-385

able at Knudsen et al. (2022). Sea ice concentration and type data are available at OSI386

SAF (2017a, 2017b), respectively. Python processing library pysiral is available at Hendricks387

et al. (2021).388

Evaluation389

Airborne data are available at Jutila et al. (2021a, 2021b); Jutila et al. (2021a, 2021b)390

for AWI IceBird and at Kurtz et al. (2015, 2016) for NASA OIB. SIMBA buoy data were391

obtained from https://www.meereisportal.de and Lei et al. (2021, 2022, 2023).392
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Cheng, B., Mäkynen, M., Similä, M., Rontu, L., & Vihma, T. (2013). Modelling414

snow and ice thickness in the coastal Kara Sea, Russian Arctic. Annals of415

Glaciology , 54 , 105–113. doi: 10.3189/2013AoG62A180416

Cheng, B., Vihma, T., Zhanhai, Z., Zhijun, L., & Huiding, W. (2008). Snow and417

sea ice thermodynamics in the Arctic: Model validation and sensitivity study418

against SHEBA data. Advances in Polar Science, 19 , 108-122. Retrieved from419

https://aps.chinare.org.cn/EN/Y2008/V19/I2/108420

Cheng, B., Zhang, Z., Vihma, T., Johansson, M., Bian, L., Li, Z., & Wu, H. (2008).421

Model experiments on snow and ice thermodynamics in the Arctic Ocean with422

CHINARE 2003 data. Journal of Geophysical Research, 113 , C09020. doi:423

10.1029/2007JC004654424

Clemens-Sewall, D., Polashenski, C., Frey, M. M., Cox, C. J., Granskog, M. A., Mac-425

–11–



manuscript submitted to Geophysical Research Letters

farlane, A. R., . . . Perovich, D. (2023). Snow Loss Into Leads in Arctic Sea426

Ice: Minimal in Typical Wintertime Conditions, but High During a Warm and427

Windy Snowfall Event. Geophysical Research Letters, 50 , e2023GL102816. doi:428

10.1029/2023GL102816429

Crameri, F. (2023). Scientific colour maps. Zenodo. doi: 10.5281/ZENODO430

.1243862431

DiGirolamo, N., Parkinson, C., Cavalieri, D., Gloersen, P., & Zwally, H. (2022). Sea432

Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive433

Microwave Data, Version 2 [data set]. NASA National Snow and Ice Data434

Center Distributed Active Archive Center. (Accessed: 2 April 2023) doi:435

10.5067/MPYG15WAA4WX436

European Space Agency. (2019a). L1b SARin Precise Orbit. Baseline D. [data set].437

(Accessed: 29 October 2023) doi: 10.5270/cr2-u3805kw438

European Space Agency. (2019b). L1b SARin Precise Orbit. Baseline E. [data set].439

(Accessed: 29 October 2023) doi: 10.5270/CR2-6afef01440

European Space Agency. (2019c). L1b SAR Precise Orbit. Baseline D. [data set].441

(Accessed: 29 October 2023) doi: 10.5270/cr2-2cnblvi442

European Space Agency. (2019d). L1b SAR Precise Orbit. Baseline E. [data set].443

(Accessed: 29 October 2023) doi: 10.5270/CR2-fbae3cd444
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snow products account for snow-ice.13
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Abstract14

We examined the effect of snow-ice formation on SnowModel-LG snow depth and den-15

sity products. We coupled SnowModel-LG, a modeling system adapted for snow depth16

and density reconstruction over sea ice, with HIGHTSI, a 1-D thermodynamic sea ice17

model, to create SnowModel-LG HS. Pan-Arctic model simulations spanned from 1 Au-18

gust 1980 through 31 July 2022. In SnowModel-LG HS, domain average snow depth de-19

creased by 20%, and snow density increased by 2% when compared to SnowModel-LG,20

with largest differences in the Atlantic sector. Averaged across the CryoSat-2 era (2011–21

2022), domain average April sea ice thickness retrievals from CryoSat-2 decreased by 7.7%22

when snow-ice was accounted for. Evaluation of SnowModel-LG HS against snow depth,23

snow-ice, and sea ice thickness observations highlighted the importance of snow redis-24

tribution over deformed sea ice. The findings suggest that neglecting snow and sea ice25

interactions in models can lead to substantial overestimation of snow depth over level26

ice.27

Plain Language Summary28

The amount of snow on sea ice is important for monitoring sea ice thickness, which29

is one of the key factors in a changing climate. Recent advances in snow-on-sea-ice mod-30

eling have made it possible to simulate snow depth and density over Arctic sea ice. How-31

ever, these simulations often do not consider how much snow is lost to snow and sea ice32

interactions, such as snow-ice formation. Snow-ice forms when snow becomes part of the33

sea ice, after seawater floods the sea ice surface and freezes inside the snow. In this study,34

we combined a snow model with a sea ice model to understand how snow changes when35

snow-ice forms. Our results show that when snow-ice forms, snow depth decreases, and36

snow density commonly increases. The differences are highest in the Atlantic sector of37

the Arctic, where snow-ice is more likely to form due to high annual snowfall.38

1 Introduction39

Arctic sea ice is going through unprecedented changes, decreasing dramatically both40

in extent (e.g. Stroeve et al., 2014) and in thickness (Kwok et al., 2009; Maslanik et al.,41

2007), and transitioning from a multiyear ice to a seasonal, first-year ice system (Meier42

et al., 2014). The role of snow cover over thinner, seasonal sea ice is amplified in many43

ways. First, the thermal resistance of snow cover becomes a dominant control over the44

atmosphere-ocean heat fluxes, regulating sea ice growth in winter. Second, the snow load45

becomes more likely to submerge thinner ice underneath the water level, creating neg-46

ative freeboard conditions. If sea water floods at the ice/snow interface and freezes there,47

snow-ice is formed, that is a mixture of frozen seawater and snow (e.g. Leppäranta, 1983).48

Snow-ice is a common phenomenon in seas that are seasonally covered by ice (i.e., Baltic49

Sea, Sea of Okhotsk), but it was not commonly observed in drifting Arctic sea ice un-50

til the Norwegian Young Sea ICE (N-ICE2015) expedition (Granskog et al., 2017; Provost51

et al., 2017). Snow-ice is a sink for snow, and it can contribute significantly to the sea52

ice mass balance (Merkouriadi et al., 2017, 2020). Therefore, it is essential to consider53

it for improving Arctic sea ice forecasts.54

Satellite altimetry is the most common method for monitoring sea ice thickness,55

providing nearly full coverage of the Arctic Ocean (Landy et al., 2022; Laxon et al., 2003;56

Markus et al., 2017). Information on the snow load exerted on sea ice is crucial for al-57

timetry retrievals of sea ice thickness, because radar and laser altimeters, in principle,58

measure ice or snow freeboard; the elevation of the ice or snow surface from the water59

surface. Snow depth and density are required to convert freeboard to sea ice thickness60

information (e.g. Kurtz et al., 2009). According to Giles et al. (2007), uncertainties in61

snow depth and density contribute 48% and 14%, respectively, to the total error of sea62

ice thickness retrievals from radar altimetry. A more recent study by Landy et al. (2020)63
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estimated these uncertainties at 11% for snow depth and 16% for density. Similarly, snow64

depth and density uncertainties were found to contribute 70% and 30–35%, respectively,65

to the total error of sea ice thickness retrievals from laser altimetry (Zygmuntowska et66

al., 2014).67

Snow depth and density estimates used in altimetry applications are often derived68

from snow climatologies or their modified versions. The most widely used snow-on-sea-69

ice climatology is compiled from a snow depth and density data set collected decades ago70

mostly over multiyear ice (Warren et al., 1999). In a changing Arctic sea ice system, snow71

conditions are expected to change as well (Blanchard-Wrigglesworth et al., 2015; Web-72

ster et al., 2014), and these changes are not captured by the Warren et al. (1999) clima-73

tology. In addition to the long-term changes, climatology overlooks the spatio-temporal74

differences and interannual variability of snow conditions in the Arctic, which are evi-75

dently strong (Webster et al., 2019). Addressing the imperative need for better repre-76

sentation of snow on sea ice, efforts have focused on reanalysis-based snow depth and77

density reconstructions (e.g. Blanchard-Wrigglesworth et al., 2018; Kwok & Cunning-78

ham, 2008; Petty et al., 2018). A recent contribution was SnowModel-LG, a state-of-the-79

art Lagrangian snow evolution model (Liston, Itkin, et al., 2020). Compared to other80

reanalysis-based products, SnowModel-LG implemented higher resolution Lagrangian81

parcel tracking and included an improved representation of snow evolution physics. It82

has been bias-corrected and validated against a wide observation framework, and yielded83

good agreement, especially with in situ measurements (Stroeve et al., 2020). However,84

neither SnowModel-LG nor any of the above-mentioned snow products account for snow85

losses due to snow and sea ice interactions, such as snow-ice formation.86

This study aims to examine snow loss through snow-ice formation, and its effect87

in SnowModel-LG snow depth and density simulations over the Arctic Ocean, from 1 Au-88

gust 1980 through 31 July 2022. To investigate this, we coupled SnowModel-LG with89

the High-Resolution Thermodynamic Sea Ice model (HIGHTSI) (Launiainen & Cheng,90

1998) to produce SnowModel-LG HS. In HIGHTSI, snow-ice forms when the sea ice sur-91

face is depressed below the water surface (negative freeboard), with the assumption that92

all negative freeboard will result in flooding and, consequently, snow-ice formation. We93

investigated the effect of both snow depth and density products (SnowModel-LG and94

SnowModel-LG HS) on sea ice thickness retrievals from satellite radar altimetry (CryoSat-95

2). We discuss the results in light of an evaluation exercise we performed using obser-96

vations from airborne campaigns and drifting ice mass balance buoys (IMBs).97

2 Materials and Methods98

2.1 SnowModel-LG99

SnowModel is a collection of snow distribution and snow evolution modeling tools,100

applicable to any environment experiencing snow, including sea ice applications (Liston101

& Elder, 2006a). SnowModel-LG is adapted for snow depth and density reconstruction102

over sea ice (Liston, Itkin, et al., 2020). It is implemented in a Lagrangian framework103

to simulate snow properties on drifting sea ice. SnowModel-LG accounts for physical snow104

processes such as sublimation from static surfaces and blowing snow, snow melt, evolu-105

tion of snow density and temperature profiles, energy and mass transfers within the snow-106

pack, and superimposed ice formation in a multi-layer configuration.107

At each time step (3-hour here), SnowModel-LG performs a mass-budget calcula-108

tion, where snow water equivalent (SWE) depth (m) is defined by snow mass gains, losses,109

and ice parcel dynamics,110

dSWE

dt
=

1

ρw
[(Pr + Ps)− (Sss + Sbs +M) +D] (1)111
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where t (s) is time; ρw = 1,000 kgm−3 is the water density; Pr (kgm−2 s−1) and Ps (kgm−2 s−1)112

are the water-equivalent rainfall and snowfall fluxes, respectively; Sss (kgm−2 s−1) and113

Sbs (kgm−2 s−1) are the water-equivalent sublimation from static-surface and blowing-114

snow processes, respectively; M (kgm−2 s−1) is melt-related mass losses; and D (kgm−2 s−1)115

is mass losses and gains from sea ice dynamics processes (i.e., parcels being created and116

lost with ice motion, divergence, and convergence).117

Snow depth hs (m) is related to SWE through the ratio of snow (ρs), and water118

(ρw) densities,119

SWE =
ρs
ρw

hs. (2)120

Therefore, the evolution of snow depths and densities are calculated by121

d (ρshs)

dt
= (Pr + Ps)− (Sss + Sbs +M) +D. (3)122

In SnowModel-LG, snow density evolves and changes in response to compaction (weight123

of the above snow layers), wind force, freezing of liquid water, and vapor flux through124

the snowpack. Additional information on the components and the configuration of SnowModel-125

LG are provided in detail in Liston, Itkin, et al. (2020). The model configuration in this126

study is identical to the one used in Liston, Itkin, et al. (2020), only here we have ex-127

tended the simulation for another four years. According to Stroeve et al. (2020), SnowModel-128

LG performed well in capturing the spatial and seasonal variation of snow distributions,129

when evaluated against several Arctic data sets.130

In the simulations presented herein, Lagrangian parcel tracking began on 1 August131

1980. The first simulation year assumes no snow atop the sea ice; the following years carry132

available snow from 31 July to 1 August. Essential inputs are atmospheric reanalysis es-133

timates of near-surface air temperature, relative humidity, precipitation, wind speed and134

direction, and sea ice motion and concentration products.135

2.2 HIGHTSI136

HIGHTSI is a 1-D thermodynamic sea ice model designed to simulate the evolu-137

tion of snow and sea ice thickness and temperature profiles (Launiainen & Cheng, 1998)138

by solving the heat conduction equation for multiple ice and snow layers. The sea ice139

thermal conductivity is parameterized following Pringle et al. (2007). HIGHTSI simu-140

lates snow-ice formation following Saloranta (2000).141

HIGHTSI has been widely used in process studies and validated extensively against142

observations (Cheng, Zhang, et al., 2008; Cheng et al., 2013; Merkouriadi et al., 2017,143

2020; Wang et al., 2015). In this study, we used a model configuration that is derived144

from validation studies on Arctic sea ice. The model’s vertical resolution has been found145

to be critical for its performance in the Arctic (Cheng, Vihma, et al., 2008). Here, we146

used 20 layers in the ice which is considered optimal for capturing internal thermody-147

namic processes (Cheng, Vihma, et al., 2008; Cheng, Zhang, et al., 2008; Cheng et al.,148

2013; Wang et al., 2015). Detailed information on model parameterizations is given in149

Table S1 in the supporting information (Briegleb et al., 2004; Cheng, Vihma, et al., 2008;150

Granskog et al., 2017; Grenfell & Maykut, 1977; Liston, Itkin, et al., 2020; Maykut &151

Untersteiner, 1971; Perovich, 1996; Pringle et al., 2007; Wang et al., 2015; Zuo et al., 2019).152

Merkouriadi et al. (2020) implemented HIGHTSI in a Lagrangian framework to ex-153

amine pan-Arctic snow-ice distributions. In the study presented herein, HIGHTSI was154

modified further, so that snow depth and density evolution were simulated by SnowModel-155

LG in a 25-layer configuration.156
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2.3 SnowModel-LG HS157

We performed two separate snow-on-sea-ice simulations. First, we simulated snow158

depth and density with SnowModel-LG (i.e. Liston, Itkin, et al., 2020). Second, SnowModel-159

LG’s snow depth and density evolution were coupled with HIGHTSI’s snow-ice and ther-160

modynamic ice growth representations. The coupled modeling products are hereafter re-161

ferred to as being created by SnowModel-LG HS.162

For the SnowModel-LG HS runs, snow density was simulated following Appendix163

C of Liston, Itkin, et al. (2020), with the vertical density profile parameterized as be-164

ing a linear fit between densities that are 20% greater than the mean at the top of the165

snowpack (assumed to be wind slab), and 20% less at the bottom of the snowpack (as-166

sumed to be depth hoar). These percentages are consistent with snow-pit measurements167

made during the Multidisciplinary drifting Observatory for the Study of Arctic Climate168

(MOSAiC) expedition (Macfarlane et al., 2023). This approach was chosen to provide169

a best-possible fit to available snow density observations, as opposed to relying completely170

on SnowModel-LG’s representation of the vertical density evolution. To account for changes171

in snow density in response to snow-ice formation, when snow-ice was formed, the cor-172

responding snow-depth amount was removed from the bottom layers of the snowpack,173

and the bulk density was recalculated based on the depth and density of the remaining174

snow. Additional model specifications are presented in the supporting information (Ta-175

ble S1).176

2.4 Input Data Sets177

Daily ice concentrations (15–100%) by DiGirolamo et al. (2022) were used to de-178

fine whether an ice parcel existed and whether snow could accumulate on that parcel.179

Ice motion vectors from the National Snow and Ice Data Center (NSIDC) (Tschudi et180

al., 2019, 2020) gridded over 25-km spatial resolution were used as Lagrangian ice par-181

cel tracks. NASA’s Modern Era Retrospective Analysis for Research and Application Ver-182

sion 2 (MERRA-2; Gelaro et al., 2017; Global Modeling And Assimilation Office (GMAO),183

2015a, 2015b) was used as atmospheric forcing to SnowModel-LG HS. Specifically, SnowModel-184

LG HS was forced with 10-m wind speed and direction, 2-m air temperature and rela-185

tive humidity, and total water-equivalent precipitation from MERRA-2. During these186

simulations, MicroMet (Liston & Elder, 2006b) provided the required liquid and solid187

precipitation, and the downwelling shortwave and longwave radiation following Liston,188

Itkin, et al. (2020).189

We applied the same bias-correction in MERRA-2 reanalysis as in Liston, Itkin,190

et al. (2020), where observations from NASA Operation IceBridge (OIB; 2009–2016) were191

used to scale the precipitation inputs. In Liston, Itkin, et al. (2020), 8-year averages of192

precipitation scaling factors were calculated and they were applied over all ice parcels193

and through the whole simulation period, making the results of MERRA-2 and the Eu-194

ropean Centre for Medium-Range Weather Forecasts (ECMWF) ReAnalysis-5th Gen-195

eration (ERA5; Hersbach et al., 2020) model runs similar. Scaling factors were 1.37 for196

MERRA-2 and 1.58 for ERA5, indicating the need to increase the precipitation inputs197

in order to match the OIB observations. The same scaling factors were used in this study198

for the results to be comparable with the publicly available SnowModel-LG snow depth199

and density data set (Liston, Stroeve, & Itkin, 2020).200

For the ocean boundary forcing, at the ice/ocean interface, we used ocean heat flux201

from the Ocean Reanalysis System 5 (ORAS5) provided at the ECMWF (Zuo et al., 2019).202

ORAS5 resolution is eddy-permitting (0.25◦ latitude and longitude) horizontally and 1m203

vertically. ORAS5 includes five ensemble members and covers the period from 1979 on-204

ward. In our study, we used the ensemble mean, providing one unique value on a 1◦ grid205

for each simulation day.206
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2.5 Model Configuration and Outputs207

The simulations began on 1 August 1980 and ran through 31 July 2022. Tempo-208

ral resolution was 3 h to capture diurnal variations, and the parcel-specific outputs (e.g.209

snow depth, snow density, and snow-ice thickness) were saved at the end of each day. Ice210

parcel trajectories were linearly interpolated from weekly to 3-hourly time steps. On 1211

August of each year (except in the first year), the multi-year ice thicknesses were cal-212

culated from the sea ice thickness distribution on 31 July. The 1 August 1980 ice thick-213

ness initial condition was defined by performing a one-year simulation with a domain-214

wide initial condition of 1m, and then using the ice thickness distribution at the end of215

the first simulation year as the initial condition for the beginning of the 42-year simu-216

lation (i.e., the model ran the first year twice and assumed the 31 July 1981 ice thick-217

ness distribution equaled the 1 August 1980 distribution). In addition, any snow remain-218

ing at 00:00 UTC on 1 August (the last time step on 31 July) was used as the initial con-219

dition for the following simulation year that started at 03:00 UTC on 1 August (these220

are the standard procedures implemented in Liston, Itkin, et al. (2020)).221

The daily simulation outputs for each parcel (approximately 61,000 parcels each222

year) were gridded to the 25 km × 25 km Equal-Area Scalable Earth (EASE) grid, pro-223

vided by NSIDC. The location of each parcel was used to calculate the overlap between224

that parcel and the EASE grid cell, i.e. the fractional area of the EASE grid cell that225

was occupied by the parcel. The fractional area was then multiplied by the sea ice con-226

centration of the parcel, and the result was used to weigh the parcels’ contribution to227

each EASE grid cell. This procedure of area- and concentration-weighted averages within228

the EASE grid cells conserved the examined parameters, similar to Merkouriadi et al.229

(2020).230

2.6 Altimetry Applications231

To study the impact of snow-ice formation in a wider context, we tested the SnowModel-232

LG HS snow estimates in sea ice thickness retrievals from satellite altimetry. From the233

European Space Agency’s (ESA) CryoSat-2 satellite, we processed Baseline-D (Baseline-234

E for winter 2021–2022) Level 1B Synthetic Aperture Radar (SAR) and SAR Interfer-235

ometric files (European Space Agency, 2019a, 2019b, 2019c, 2019d) for the full winter236

season (September to May), starting in November 2010 and continuing through May 2022,237

using the python library pysiral (Hendricks et al., 2021). For the necessary auxiliary data238

in the sea ice thickness retrieval, we used the mean dynamic topography product by the239

Danish Technical University (DTU22MDT; Knudsen et al., 2022); for sea ice concentra-240

tion and type, we used the European Organisation for the Exploitation of Meteorolog-241

ical Satellites (EUMETSAT) Ocean and Sea Ice Satellite Application Facility (OSI SAF)242

products 401-b and 403-d, respectively (OSI SAF, 2017a, 2017b).243

The SnowModel-LG and SnowModel-LG HS snow depths and densities were ap-244

plied to preprocessed Level 1B files, and the processor was run first to produce Level 2245

(along-track) and then to grid those to Level 3 (monthly gridded) files. For this study,246

we used the monthly gridded files.247

2.7 Evaluation Exercise248

To evaluate modeled snow depth and sea ice thickness, we compared them against249

independent airborne data from NASA OIB and Alfred Wegener Institute’s (AWI) Ice-250

Bird campaigns conducted during late-winter over the western Arctic. Snow depth data251

were derived from airborne snow radars similar on both OIB (99 flights in 2009–2019;252

Kurtz et al., 2015, 2016; MacGregor et al., 2021) and IceBird campaigns (11 flights in253

2017 & 2019; Jutila et al., 2021a, 2021b; Jutila, King, et al., 2022), whereas sea ice thick-254

ness could be simultaneously and independently observed only on IceBird with a towed255
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electromagnetic sounding instrument (Jutila et al., 2021a, 2021b; Jutila, Hendricks, et256

al., 2022). We averaged the airborne measurements over the same EASE grid when more257

than 50 values were present in a grid cell. For sea ice thickness, we included only level258

ice measurements using the flag in the data product that implements a total thickness259

gradient threshold of 4 cm within an along-track distance of 1m.260

In addition, we evaluated temperature profile and heating cycle data from thermis-261

tor strings of Snow Ice Mass Balance Apparatus (SIMBA) buoys (Jackson et al., 2013)262

deployed in the Arctic in 2012–2020 to detect flooding (Grosfeld et al., 2016; Lei et al.,263

2021, 2022, 2023). Changes in thermal diffusivity, temperature, and heat propagation264

distinguish the temporal evolution of different layers and their thicknesses (e.g. Provost265

et al., 2017).266

3 Results267

In this section, we present two snow depth and density products. The first prod-268

uct is based on the original SnowModel-LG model, without accounting for snow-ice for-269

mation. We refer to it as SMLG. SMLG is identical to the one described in Liston, Itkin,270

et al. (2020), only here the SnowModel-LG run was extended for four more years (1 Au-271

gust 1980 to 31 July 2022). The second product accounts for snow-ice formation through272

the coupling of SnowModel-LG with HIGHTSI (SnowModel-LG HS). We refer to this273

simulation as SMLG HS. In what follows, we compare snow depth and density derived274

by the two different products, and we use both to retrieve sea ice thickness from CryoSat-275

2.276

The model results indicated that snow-ice has the potential to form every year in277

the Arctic Ocean, and it is characterized by strong seasonal and regional variations. The278

seasonality and long-term trends of snow-ice thickness calculated in this study were con-279

sistent with earlier findings (Merkouriadi et al., 2020), as expected. The seasonal and280

interannual evolution of all simulated parameters is presented in Figure S1. Our coupled281

SMLG HS simulation presented herein investigated the impact of snow-ice formation on282

snow depth and density (Figures 1a–c and d–f, respectively). Snow-ice formation occurred283

throughout the 42-year simulation period (1980–2022), and it was more prominent in the284

Atlantic sector of the Arctic Ocean, north of Svalbard, across the east coast of Green-285

land, and over the Lincoln Sea. Here, we show results averaged across the 42-year pe-286

riod on the day of maximum snow-on-sea-ice volume.287

The date of maximum snow-on-sea-ice volume occurred on average on 21 April with288

a standard deviation of 14 d. There was no significant long-term trend of that date across289

the simulation period. The snow depth and density differences (SMLG HS minus SMLG)290

were calculated on the date of maximum snow volume and averaged over the 42-year pe-291

riod (e.g., Figures 1c and f). Across the Arctic Ocean, accounting for snow-ice forma-292

tion produced a 20% snow depth decrease and a 2% snow density increase, correspond-293

ing to 4 cm of snow depth and 6.6 kgm−3 of snow density. Regional variations were strong,294

yielding over 85 cm decrease in snow depth, and 209 kgm−3 increase in snow density, when295

compared to the original SMLG product.296

Sea ice thickness retrievals from CryoSat-2 were performed using both SMLG and297

SMLG HS. Averaged results from April are plotted together with the differences in sea298

ice thickness in Figure 1g–i. SMLG HS represents less snow load on sea ice, resulting in299

thinner sea ice thickness retrievals by 7.7% (domain average) across the CryoSat-2 era300

(2011–2022). Even though there are regional and inter-annual variations, the differences301

were more prominent in the Atlantic sector of the Arctic Ocean and over the Lincoln Sea302

(Figure 1g–i), i.e. in regions that are more prone to snow-ice formation (Merkouriadi et303

al., 2020). The differences regionally exceed 1m in April, highlighting the sensitivity of304

the altimetry retrievals to snow load.305
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Figure 1. Snow depth (top) and snow density (middle) on the day of maximum snow-on-sea-

ice volume (42-year average) as well as sea ice thickness (bottom) based on CryoSat-2 retrievals

in April 2011–2022 from (a, d, g) SMLG, (b, e, h) SMLG HS, and (c, f, i) the difference between

the two products (SMLG HS minus SMLG).
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4 Discussion and Conclusions306

We investigated the effect of snow-ice formation in snow depth and density recon-307

structions over Arctic sea ice in a modeling study. We did this by coupling SnowModel-308

LG snow depth and density evolution with HIGHTSI thermodynamic sea ice and snow-309

ice growth. When snow-ice was accounted for, snow depth decreased markedly and, in310

most cases, snow density increased. Averaged across the entire Arctic Ocean on the day311

of maximum snow-on-sea-ice volume, and for the period 1980–2022, snow depth given312

by SMLG HS was 20% lower than SMLG, and snow density was 2% higher, correspond-313

ing to 4 cm of snow depth and 6.6 kgm−3 of snow density. Due to the large regional vari-314

ations of snow-ice formation, snow depth decreased over 85 cm and density increased over315

209 kgm−3 locally. The largest differences were found in the Atlantic sector of the Arc-316

tic Ocean, where snow-ice has the highest potential to form (Merkouriadi et al., 2020).317

Largest differences in altimetry-derived sea ice thickness were found in the Atlantic318

sector and the Lincoln Sea, and they were consistent with the snow-ice contribution. In319

some years, the differences were notable in the central Arctic as well. Domain average320

sea ice thicknesses for the CryoSat-2 in April 2011–2022 were 7.7% lower when using SMLG HS321

compared to SMLG. It is worth mentioning that the effect of snow salinity on the altime-322

try signals becomes relevant when seawater floods the bottom of the snowpack (Willatt323

et al., 2010). SMLG HS does not yet handle snow salinity and wicking in response to324

seawater flooding at the snow/ice interface. In addition to this, there is no temperature325

dependency in snow-ice formation in SMLG HS. The model assumes that flooding —326

or negative freeboard — at the snow/ice interface corresponds to snow-ice formation in327

winter.328

Due to the lack of information regarding several aspects of snow on sea ice, this study329

comes with some limitations. First, we assumed that a negative freeboard always results330

in snow-ice formation. In reality, for flooding to occur, water pathways such as sea ice331

thermal cracks or leads are required. Even though these pathways become increasingly332

common in a thinner and more dynamic icescape (Kwok et al., 2013; Rampal et al., 2009),333

our assumption likely resulted in overestimation of snow-ice formation. Second, we did334

not account for snow blowing into leads. Recent observations from the MOSAiC expe-335

dition demonstrated that this is likely an insignificant snow sink in winter, due to quick336

refreeze of the leads (Clemens-Sewall et al., 2023). This is further supported by the ar-337

guments put forth by Liston, Itkin, et al. (2020). Third, we assumed that snow accumu-338

lates on level ice, and we did not account for snow redistribution over deformed ice. Sea339

ice deformation features such as pressure ridges, are prominent in the Arctic Ocean, es-340

pecially under a thinner and more dynamic sea ice regime (Itkin et al., 2017; Rampal341

et al., 2009). Snow tends to accumulate on the lee side of pressure ridges and other rough-342

ness elements (e.g. Liston et al., 2018), resulting in uneven snow load over a sea ice floe.343

SMLG HS snow depth fit well to both OIB and IceBird observations (Figures 2a–344

d), with reduced root-mean-square-errors and biases compared to SMLG (Figure S2).345

However, SMLG HS constantly underestimated sea ice thickness of level ice, when com-346

pared to IceBird observations (Figures 2e–h and S3). We hypothesize that the sea ice347

thickness underestimation resulted from overestimation of the snow accumulation over348

level ice. Even though the total snow depth (over both deformed and level ice) matched349

well with the observations, not accounting for snow redistribution over deformed ice re-350

sulted in overestimation of snow depth over level ice. This additional snow decelerated351

thermodynamic ice growth, resulting in thinner sea ice that was more prone to snow-ice352

formation. Mid-winter flooding events at the snow/ice interface detected by IMBs sup-353

ported our simulations of snow-ice formation (Figure S4). However, IMBs are point mea-354

surements and do not necessarily reflect the situation over larger spatial domains.355

Although snow depth, and the associated snow-ice formation, have decreased Arctic-356

wide, modeling studies have indicated increasing trends in snow depth (Webster et al.,357
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Figure 2. Panels a)–d) show the evaluation of modeled snow depth from SMLG and

SMLG HS against airborne radar-derived snow depth measurements from the AWI IceBird

survey flight on 30 March 2017. Panels e)–h) show the evaluation of thermodynamically-grown

(TD-grown) sea ice and snow-ice modeled with SMLG HS against airborne sea ice thickness

measurements over level ice from the AWI IceBird survey flight on 2 April 2017.

2019) and snow-ice (Merkouriadi et al., 2020) regionally in the Atlantic sector of the Arc-358

tic Ocean, especially along the east coast of Greenland, north of Svalbard, and at the359

Lincoln Sea since the 1980s. The increase is significant and it is associated with the in-360

tensification of storms that bring more precipitation to this part of the Arctic (Graham361

et al., 2017; Rinke et al., 2017; Woods & Caballero, 2016). When snow models do not362

account for snow sinks caused by snow and sea ice interactions, such as snow-ice forma-363

tion or snow redistribution over sea ice deformation features, they overestimate snow depth364

on level ice. Uneven snow-on-sea-ice load within a sub-grid area will result in biases in365

altimetry retrievals of sea ice thickness by overestimating level ice and underestimating366

deformed ice thickness. Regarding sea ice modeling applications, spatial variability in367

snow depth will impact sea ice thermodynamic growth in winter and will affect meltpond368

formation in summer. Therefore, snow-on-sea-ice reconstructions should be used with369

caution depending on the application requirements. This study emphasizes the need to370

account for snow and sea ice interactions to improve the representation of snow on sea371

ice in both numerical modeling and remote sensing applications.372

Data Availability Statement373

Model input374

Sea ice concentration data are available at DiGirolamo et al. (2022). Sea ice mo-375

tion vectors are available at Tschudi et al. (2019). Atmospheric forcing data are avail-376

able at Global Modeling And Assimilation Office (GMAO) (2015a, 2015b). Daily ocean377

heat flux data were downloaded from ECMWF.378
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Model output379

Interannual variations of EASE-grid snow depth, snow density, and snow-ice thick-380

ness from 1 August 1980 through 31 July 2022 presented in this paper are available at381

Merkouriadi et al. (2023).382

Altimetry input383

CryoSat-2 Level 1B Baseline D/E SAR and SARIn data are available at European384

Space Agency (2019a, 2019b, 2019c, 2019d). Mean dynamic topography data are avail-385

able at Knudsen et al. (2022). Sea ice concentration and type data are available at OSI386

SAF (2017a, 2017b), respectively. Python processing library pysiral is available at Hendricks387

et al. (2021).388

Evaluation389

Airborne data are available at Jutila et al. (2021a, 2021b); Jutila et al. (2021a, 2021b)390

for AWI IceBird and at Kurtz et al. (2015, 2016) for NASA OIB. SIMBA buoy data were391

obtained from https://www.meereisportal.de and Lei et al. (2021, 2022, 2023).392
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Text S1. Model parametrization. Table S1 is descriptive, and it includes the HIGH-

TSI model parameterization used in this study.

Text S2. Seasonality. Figure S1 shows the seasonal cycle of the modeled parameters

over 42 years. While snow, snow-ice, thermodynamically-grown sea ice, and total sea ice

are expressed in pan-Arctic volume (m3), snow density is the pan-Arctic average (kgm−3).

Text S3. Evaluation exercise. Figure S2 shows the results of the evaluation exercise,

where we compared modeled snow depth against gridded airborne radar-derived snow

depth measurements from the NASA Operation IceBridge campaigns in 2009–2019 and

the Alfred Wegener Institute’s (AWI) IceBird campaigns in 2017 & 2019.

Figure S3 shows the comparison of modeled sea ice thickness against airborne sea ice

thickness measurements over level ice from the AWI IceBird campaigns. Smaller values

of RMSE and mean bias in 2017 than in 2019 are due to the fact that the AWI IceBird

airborne surveys in 2017 covered only first-year ice.

Figure S4 shows a summary of the data from the Snow Ice Mass Balance Apparatus

(SIMBA) buoys, where we identified wintertime formation of snow-ice. The height of the

snow/ice interface shows a shift upward together with a decrease in snow depth at the

presence of modeled snow-ice formation.
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Table S1. Model parameters and constants used in this study.

Parameter Value Remarks/Source

Extinction coefficient of sea ice
(ki)

1.5–17m−1 adopted from the paper by
Grenfell and Maykut (1977)

Extinction coefficient of snow (ks) 15–25m−1 Perovich (1996)

Surface albedo (αs,i) Time dependent Briegleb et al. (2004)

Freezing point (Tf ) −1.8 ◦C

Sea ice volumetric heat capacity
(ρci)

Function of Ti, si Maykut and Untersteiner (1971)

Heat capacity of ice (ci) 2,093 J kg−1K−1

Latent heat of freezing (Li) 0.33× 106 J kg−1

Oceanic heat flux (Fw) Time dependent
ECMWF; Zuo, Balmaseda, Ti-
etsche, Mogensen, and Mayer
(2019)

Sea ice density (ρi) 910 kgm−3

Snow-ice density (ρsi) 850 kgm−3 Wang, Cheng, Wang, Gerland,
and Pavlova (2015)

Slush density (ρsl) 920 kgm−3 Wang et al. (2015)

Sea ice salinity (si) 1–6
Ice core measurement Granskog
et al. (2017)

Snow density (ρs) Time dependent Liston et al. (2020)

Surface emissivity (e) 0.97

Sea ice heat conductivity (ksi) Function of Ti, si
Pringle, Eicken, Trodahl, and
Backstrom (2007)

Thermal conductivity of ice (ki) 2.03Wm−2 Maykut and Untersteiner (1971)

Time step of model (t) 3 h

Initial temperature in snow and
ice

[−1.25 ◦C, −1.8 ◦C]
Cheng, Vihma, Zhanhai, Zhijun,
and Huiding (2008)

Number of layers in the ice 20

Number of layers in the snow 25
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Figure S1. Seasonal cycle of the modeled parameters: a) snow, b) snow density, c) snow-ice,

d) thermodynamically-grown (TD-grown) sea ice, and e) total sea ice. They are expressed in

volume summed over the Arctic (note the varying scale of the vertical axes), except for snow

density in panel b), which is a pan-Arctic average. Each individual greyscale line shows the daily

evolution through the year for each of the 42 simulated years, while the red dashed line shows

the mean of those 42 years.

December 14, 2023, 11:43am



MERKOURIADI ET AL.: ARCTIC SNOW-ICE FORMATION X - 7

December 14, 2023, 11:43am



X - 8 MERKOURIADI ET AL.: ARCTIC SNOW-ICE FORMATION

Figure S2. Evaluation of the modeled snow depth, compared against gridded airborne radar-

derived snow depth measurements. Panels with white background show the NASA Operation

IceBridge campaigns in 2009–2019 and the bottom panels with grey background show the AWI

IceBird campaigns in 2017 & 2019. Red color refers to the original SnowModel-LG and black

color to the new, coupled SnowModel-LG HS. The size of the data point reflects the relative

number of airborne measurements in the grid cell. Upper and lower right corners of each panel

show the statistics of the corresponding year: Pearson correlation coefficient r, root-mean-square

error (RMSE), and lastly mean bias in parenthesis.

December 14, 2023, 11:43am



MERKOURIADI ET AL.: ARCTIC SNOW-ICE FORMATION X - 9

Figure S3. Evaluation of the modeled sea ice thickness, compared against gridded airborne

sea ice thickness measurements over level ice from the AWI IceBird campaigns in 2017 & 2019.

Red color refers to only thermodynamically-grown (TD-grown) sea ice, black color indicates the

sum of TD-grown sea ice and snow-ice, i.e. total sea ice thickness. The size of the data point

reflects the relative number of airborne measurements in the grid cell. Upper and lower right

corners of each panel show the statistics of the corresponding year: Pearson correlation coefficient

r, root-mean-square error (RMSE), and lastly mean bias in parenthesis.
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Figure S4. Evaluation of the snow-ice formation using Snow Ice Mass Balance Apparatus

(SIMBA) buoys. The left panels show the pan-Arctic simulated snow-ice thickness with the buoy

location marked with a red dot on the day of identified flooding events. The middle panels show

the time series of the snow depth measured by the buoy (black solid line, left vertical axes), of

the snow/ice interface height derived from the buoy data (red solid line, right vertical axes), and

of the modeled snow-ice thickness of the nearest grid cell (red dashed line, right vertical axes)

around the time of identified flooding events. The buoy names are given as the titles. Note the

varying scales of the axes, both left and right vertical axes as well as the horizontal time axes.

The gray background indicates the day depicted in the maps. The right panels show the drift

track of the buoys with the start of the middle panel time series marked with a white dot and

the time of identified flooding with a white star. Note the varying scale: however, a single grid

cell is always 25 km × 25 km.
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