Quantification of Climate Change impacts on the Srepok River, Mekong River basin

Thanh-Nhan-Duc Tran¹, Binh Quang Nguyen¹, Vinh Ngoc Tran¹, Manh-Hung Le¹, John Bolten¹, Son Kim Do¹, Van Binh Doan¹, Hong Xuan Do¹, Arfan Arshad¹, Sameh A. Kantoush¹, and Venkatamaran Lakshmi¹

¹Affiliation not available

December 27, 2023

Quantification of Climate Change impacts on the Srepok River, Mekong River Basin

Abstract

Quantifying the extent of drought and flood magnitude and frequency under the climate change impacts is essential for an effective water resource management. In this study, we utilize the Soil and Water Assessment Tool (SWAT) hydrological model, drought indices as well as the Interquartile Range (IQR) method for a comprehensive analysis of the river flow response to projected climate change scenarios.

Four General Circulation Models (GCMs) Shared under two Socioeconomic Pathways (SSP2-4.5 and 5-8.5) have been used for our analysis (2023-2090). Our objective is to reveal the future projected drought and flood events in terms of intensity, frequency, and potential consequences for local livelihoods in the Srepok River basin (SRB), a tributary of the Mekong River basin (MRB), Southeast Asia. Our findings serve as the scientific basis for stakeholders and decisionmakers to develop adaptative strategies and sustainable plans to promote the region's resilience.

Motivation

Fig. 1. Patterns of temperature (a) and percent precipitation change (b) normalized by global average temperature change (averaged across CMIP6 models and all Tier 1 plus SSP1-1.9 scenarios)^[1].

Data and Methods

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6)^[2], Soil & Water Assessment Tool (SWAT)^[3] model, and Interquartile Range (IQR)^[4] method

Drought frequency	SPI/SSI values
Extreme wet	$Index \ge 2$
Severe wet	$1.5 \le \text{Index} \le 2$
Moderate wet	$1.0 \le \ln dex \le 1.5$
Near normal/mild wet	$0 \le \text{Index} \le 1.0$
Near normal/mild drought	$-1.0 \le \text{Index} \le 0$
Moderate drought	$-1.5 \le \text{Index} \le -1.0$
Severe drought	$-2.0 \le \text{Index} \le 1.5$
Extreme drought	$Index \le -2.0$

Standardized Precipitation Index (SPI) & Standardized Streamflow **Index (SSI)** would be used for drought analysis in pre-defined future periods, including near future (2023-2044), mid future (2045-2069), far future (2070-2090).

SPI, SSI-3 & SPI, SSI-12 month: seasonal and annual meteorological and hydrological drought

Arfan Arshad⁶, Manh-Hung Le⁷, Sameh A. Kantoush², John Bolten⁷, Venkatamaran Lakshmi¹

1. University of Virginia, Virginia, United States 2. Kyoto University, Kyoto, Japan 3. Vietnamese-German University, Ho Chi Minh, Vietnam 4. Nong Lam University, Ho Chi Minh, Vietnam

Srepok River basin

Lak province in the Central Highlands of Vietnam (2) Biological importance and key routes for fish migration, home of over 2 million people

- (3) Hydropower and agriculture potential
- (4) River's length: 406 450 km; area: ~18,200 km²

SPI-12 and represent SSI-12 values of the ensemble model.

Near future: 2-45 wet trend (2030-2042), 5-85 dry trend (2029-2038)

Findings

weather patterns

References

55(4), 1491–1508.

Mid future: 2-45 dry trend (2045-2062), 5-85 wet trend (2050-2067) **Far future:** 2-45 & 5-85 light to severe wet trend (2070-2071; 2080-2083; 2088-2089)

[4] Wan et al. (2014). Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. In BMC Medical Research Methodology (14). http://www.biomedcentral.com/1471-2288/14/135

Substantial shifts in weather patterns are found, leading to more drought and flood events

Prolonged durations of meteorological, hydrological drought and flooding are indicated from a transition towards more humid seasonal

[1] Tebaldi et al. (2020). Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth System Dynamics, 12(1), 253–293. https://doi.org/10.5194/esd-12-253-

[2] Thrasher et al. (2022). NASA Global Daily Downscaled Projections, CMIP6. Scientific Data, 9(1), 1– 6. https://doi.org/10.1038/s41597-022-01393-4

[3] Arnold et al. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE,