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Abstract

Ongoing efforts to characterize underwater dunes have led to a considerable number of freely available tools that identify these

bedforms in a (semi-)automated way. However, these tools differ with regard to their research focus and appear to produce

results that are far from unequivocal. We scrutinize this assumption by comparing the results of five recently published dune

identification tools in a comprehensive meta-analysis. Specifically, we analyse dune populations identified in three bathymetries

under diverse flow conditions and compare the resulting dune characteristics in a quantitative manner. Besides the impact of

underlying definitions, it is shown that the main heterogeneity arises from the consideration of a secondary dune scale, which

has a significant influence on statistical distributions. Based on the quantitative results, we discuss the individual strengths and

limitations of each algorithm, with the aim of outlining adequate fields of application. Yet, the concerted bedform analysis and

subsequent combination of results have another benefit: the creation of a benchmarking data set which is inherently less biased

by individual focus and therefore a valuable instrument for future validations. Nevertheless, it is apparent that the available

tools are still very specific and that end-users would profit by their merging into a universal and modular toolbox.
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Abstract 28 

Ongoing efforts to characterize underwater dunes have led to a considerable number of freely 29 

available tools that identify these bedforms in a (semi-)automated way. However, these tools 30 

differ with regard to their research focus and appear to produce results that are far from 31 

unequivocal. We scrutinize this assumption by comparing the results of five recently published 32 

dune identification tools in a comprehensive meta-analysis. Specifically, we analyse dune 33 

populations identified in three bathymetries under diverse flow conditions and compare the 34 

resulting dune characteristics in a quantitative manner. Besides the impact of underlying 35 

definitions, it is shown that the main heterogeneity arises from the consideration of a secondary 36 

dune scale, which has a significant influence on statistical distributions. Based on the 37 

quantitative results, we discuss the individual strengths and limitations of each algorithm, with 38 

the aim of outlining adequate fields of application. Yet, the concerted bedform analysis and 39 

subsequent combination of results have another benefit: the creation of a benchmarking data set 40 

which is inherently less biased by individual focus and therefore a valuable instrument for future 41 

validations. Nevertheless, it is apparent that the available tools are still very specific and that 42 

end-users would profit by their merging into a universal and modular toolbox. 43 

Plain Language Summary 44 

In this paper, we present a comparison of several recently published bedform analysis tools that 45 

were created to measure the size and shape of underwater dunes. We compare these tools and 46 

how they performed on three different seabed elevation maps that detail dunes in a river, an 47 

estuary, and a laboratory flume. We focus on the resulting measurements of dune morphology, 48 

such as dune height and length. We show that the consideration of a secondary dune scale has a 49 

significant influence on the statistical distributions that describe the dune populations measured. 50 

With this knowledge, we offer a discussion of the strengths and limitations of each tool and 51 

examples of their proper application. We also offer the combination of the measurements from 52 

each tool as a benchmarking dataset that can be used for future tool creations and method 53 

validation. Finally, we recommend each tool be used with specific needs in mind and a universal 54 

and modular toolbox should be created that incorporates all available options for dune 55 

identification. 56 

1 Introduction 57 

Underwater dunes and ripples are a particular type of planetary landform. These so-called 58 

bedforms develop at the interface of a flow field and a movable sediment layer. They can be 59 

observed in the most diverse environments on Earth and other planetary bodies: from the deep-60 

sea and continental shelves (Cukur et al., 2022; Franzetti et al., 2013; Reeder et al., 2011) over 61 

tidally-constrained basins (Armstrong et al., 2021; Hu et al., 2021) to inland streams and rivers 62 

(Le Guern et al., 2021; Wu et al., 2021) and even across the barren landscapes of Mars and Titan 63 

(Breed et al., 1979; Lorenz et al., 2006). The formation and dynamic behavior of underwater 64 

dunes have wide implications for hydrological and morphological processes. For instance, they 65 

can allow conclusions about local flow conditions at present (Lefebvre et al., 2011a; Parsons et 66 

al., 2005) and, through paleo-hydraulic analyses, the conditions of ancient environments (Hartley 67 

& Owen, 2022; Myrow et al., 2018). Their migration is an indicator of downstream bed load 68 

transport, which represents a critical component in the balance of erosion and accretion as 69 

sediment is transported from the highlands to the lowlands of our world (Jordan et al., 2019; 70 

Nittrouer et al., 2008). Furthermore, bedforms run the risk of interfering with man-made 71 
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structures, such as offshore pipelines, navigation channels, transportation tunnels or bridge piers 72 

(Amsler & Garcia, 1997; Bruschi et al., 2014; Huizinga, 2017; Scheiber et al., 2021a; Xu et al., 73 

2010). Last but not least, the natural flow and grain size variation within dune fields adds value 74 

to marine ecosystems and is therefore an important part of habitat mapping (Greene et al., 2020; 75 

Meijer et al., 2022). On these grounds, bedforms are of interest to a diverse community of 76 

researchers from both natural and applied sciences (Lefebvre & Winter, 2021).  77 

Most of our knowledge of bedforms stems from experimental flows in laboratory flumes, 78 

where crests (and troughs) tend to be perpendicular to the main flow direction and the measuring 79 

of bedform characteristics is therefore straightforward, but dunes in the field typically have a 80 

more complex shape (Best, 2005). For instance, multiple scales of bedforms can co-exist in so-81 

called compound dunes, where smaller bedforms are superimposed on larger primary dunes 82 

(Ashley, 1990). Other cases of complex bathymetric processes are dune amalgamation or calving 83 

(Bradley & Venditti, 2021). The observation of such processes is possible by growing amounts 84 

of three-dimensional bathymetric data, obtained via high-resolution multibeam echo-sounding 85 

(MBES) through support of federal or scientific surveys. Early methodologies to study 86 

underwater dunes can be differentiated into two main categories: geostatistical assessments of 87 

bed elevation profiles (Simons et al., 1965) and spectral analyses that translate rhythmic 88 

bedforms into sinusoidal or wavelet components (Nordin & Algert, 1966). Since then, the rapid 89 

increase in computational power during the last decades has fueled the publication of numerous 90 

methodologies for a (semi-)automated identification and characterization of bedforms. Table 1 91 

shows a selection of recent publications in this respect, of which several build on a combination 92 

of the two aforementioned approaches. More recently, attempts have also been made to integrate 93 

geomorphometric and object-based methods (Pike, 2000), yet focusing on mathematical surface 94 

properties rather than describing individual bedforms. It should be noted that many identification 95 

methods are only designed to analyze specific data sets and therefore not provided for further 96 

use. 97 

Table 1. Automated bedform analyses - (non-exhaustive) list of recent publications 98 

presenting computer-aided routines for the identification and characterization of bedforms 99 

from bathymetric data. Those publications with an asterisk are considered in the meta-100 

analysis that is the basis of this study. 101 

Spectral / 

wavelet-based 

Spatial /  

geo-statistical 

Geomorphometric / 

Object-based 

Combined 

Winter and 

Ernstsen (2007) 

Wilbers and 

Brinke (2003) 

Ogor (2018) van Dijk et al. 

(2008) 

Lefebvre et al. 

(2011b) 

van der Mark et al. 

(2008) 

Di Stefano and Mayer 

(2018) 

Cazenave et al. 

(2013) 

Gutierrez et al. 

(2013) 

Ganti et al. (2013) 

? 

Cassol et al. (2022) Wang et al. 

(2020)* 

Lisimenka and 

Kubicki (2017) 

Cisneros et al. 

(2020)* 

Hansen et al. (2022) Lefebvre et al. 

(2022)* 

Gutierrez et al. 

(2018) 

Schippa and 

Cavalieri (2021) 

Lebrec et al. (2022) Zomer et al. 

(2022)* 

Lee et al. (2021)? Scheiber et al. Cassol et al. (2021)  
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(2021a)* 

 Lee et al. (2021) Núñez-González et al. 

(2021) 

 

 Lebrec et al. 

(2022) 

  

It is generally praiseworthy that so many researchers have contributed to the automation 102 

of bedform analyses and continue to provide access to readily applicable algorithms. This allows 103 

practitioners from both public authorities and neighboring fields of research to focus on their 104 

objectives more specifically. However, the sheer amount of options leaves end users with the 105 

agony of choice as to what tool should be used under which conditions, and even more so, 106 

because different algorithms have been found to produce significantly different results (Scheiber 107 

et al., 2021b). To address this shortcoming in current research and, hopefully, enhance future 108 

bedform studies, we have designed a meta-analysis, in which five identification tools are applied 109 

to three bathymetric benchmarking data sets. Based on this methodology, our meta-analysis aims 110 

to:  111 

i. quantify the range of differences in obtainable results, 112 

ii. discuss inherent biases resulting from different focuses, 113 

iii. recommend fields of application for future end users. 114 

This paper begins with a short description of the specificities in dune identification, a 115 

definition of all relevant dune characteristics and a presentation of the assessed bathymetries. 116 

Following this methodological section 2, we present statistical analyses that epitomize the 117 

heterogeneity of dune tracking outputs with regard to sampling sizes, dune scales and geometries 118 

(section 3 Results). Thereafter, we investigate possible causes and jointly derive guidelines for 119 

the sound application of individual tools in section 4 Discussion. Finally, key findings are 120 

summarized in 5 Conclusions and a short outlook is given addressing implications of this study 121 

and further research needs. 122 

2 Materials and Methods 123 

In order to systematically compare the available options for an automated detection of 124 

bedforms and their characterization, we teamed up in an international working group. To ensure 125 

correct usage, each co-author, who represents one of five recently published identification 126 

methods, applied their respective method to three independent bathymetries. These 127 

benchmarking data sets comprise dunes that formed in uniform river flow, under tidally-128 

constrained conditions and in flume experiments, thus representing a wide range of 129 

environments, flow directions and scales.  130 

2.1 Bedform identification 131 

The methods applied in this study comprise both spectral and statistical approaches. They 132 

generally follow the explanations given in the independent research articles, where they have 133 

first been published. However, they can be differentiated depending on their specific objectives 134 

and the way that crests and troughs are identified (Table 2). 135 
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Table 2. Overview of recently published dune identification algorithms considered in this 136 

meta-analysis listed in chronological order. 137 

Publication Main focus Crest identification 

Cisneros et al. (2020) scale separation; 

dune shape 

 

local extremes and resolution scale 

slope changes (local aspect changes) 

 

Wang et al. (2020) scale separation; 

compound dunes 

max. between zero-crossing 

(spectral/wavelet analysis; filtering) 

Scheiber et al. (2021a) compound dunes local extremes (findpeaks.m) 

Lefebvre et al. (2022) dune shape local extremes (min. curvature;  

min. elevation) 

Zomer et al. (2022) scale separation max. between zero-crossing  

(after LOESS filtering) 

In particular, two of the publications focus especially on the shape of dunes and their 138 

spatial variability, i.e. ensuring a correct delineation of the flow-traverse crests and troughs that 139 

define a dune (Cisneros et al., 2020; Lefebvre et al., 2022). However, the two methods differ in 140 

terms of how crests and troughs are identified in a given bathymetric map. For instance, Cisneros 141 

et al. (2020) start by calculating a matrix of aspect directions from a 3x3 moving window and 142 

then identify changes from stoss- to lee-side. Lefebvre et al. (2022), in contrast, build upon the 143 

detection of continuous crest objects, which have a minimum curvature below a certain 144 

threshold. A second focus can be seen in the separation of bedform scales as inherent to 145 

compound dunes. In the case of Wang et al. (2020), this is accomplished by applying an initial 146 

two-dimensional Fourier transform, followed by wavelet analysis and multiple filtering 147 

techniques including circular high-pass and robust spline filtering applied to rotated bed 148 

elevation profiles (BEPs). The subsequent zero-crossing analysis is comparable to the one 149 

employed by Zomer et al. (2022). However, Zomer et al. (2022) use a different method to 150 

separate bedform scales. In this approach, the primary bedform morphology is fitted using a 151 

“locally estimated scatter plot smoothing” (LOESS) algorithm, combined with a sigmoid 152 

function to correctly fit the steep lee slopes of primary dunes. The tool by Scheiber et al. (2021a) 153 

focuses on exactly these compound bed features, but relies on an iterative identification of local 154 

extremes in order to describe bedforms on all existing scales and as thoroughly as possible. All 155 

of the methods are implemented in Mathworks’ MatLab and were operated, here, by the 156 

respective developer. They can be obtained from the corresponding authors or from different 157 

online repositories as listed in the data availability statement. 158 

2.2 Bedform characteristics 159 

Once crests and troughs have been delineated across the bathymetry under investigation, the 160 

dimensions of the corresponding dunes can be measured. In this context, it is most common that 161 

each dune is defined by one distinct crest and its two neighboring troughs. Although other 162 

definitions exist, e.g. by two crests or two slopes, these variants were not regarded as useful for 163 

the objectives of this study. Moreover, as bedforms typically show an asymmetric shape, one can 164 

further distinguish between the stoss side, i.e. the slope facing the formative flow, and the lee 165 
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side downstream (see Figure 1). On this basis, several characteristics can be calculated describing 166 

the size and shape of the dune, first and foremost its height H and length L (also called spacing 167 

or wavelength). Besides these Latin descriptors, the Greek letters η and λ are used by many 168 

authors. Even if these characteristics seem intuitive, the current literature features a wide variety 169 

of possible definitions (Figure 1). 170 

 171 

  172 

Figure 1. HEIGHT/LENGTH DEFINITIONS - An asymmetric dune as classically defined 173 

by one distinct crest and two adjacent troughs. Similar to dune length, the calculation of 174 

dune heights can allow for the general inclination of a bedform or not. 175 

The diversity in geometric definitions is also reflected in the identification tools 176 

considered in this study. Specifically, Lefebvre et al. (2022) and Zomer et al. (2022) calculate 177 

dune height as the average vertical depth between the defining crest and the adjacent troughs (H3 178 

in Figure 1), whereas Wang et al. (2020) and Scheiber et al. (2021a) opted for an orthogonal 179 

distance between the crest and a baseline between the troughs (H2 in Figure 1). Cisneros et al. 180 

(2020), in contrast, use the height difference between crest and downstream trough to define 181 

dune height. In addition to these height definitions, Error! Reference source not found. 182 

incorporates the respective lengths and gives information about the corresponding descriptors. 183 

To understand the implications of this methodological difference, we conducted an independent 184 

sensitivity study before the actual meta-analysis (Scheiber & Lefebvre, 2023).  185 

Table 3. List of candidate dune identification tools and their geometric definition of dune 186 

height and length. Also note that not only two characteristics are inconsistent among the 187 

participants, but even the corresponding descriptors. 188 

Publication Height definition Length definition Descriptor 

Cisneros et al. 

(2020) 

Downstream vertical 

depth 

Horizontal distance Latin 

Wang et al. (2020) Inclined distance Inclined distance  Greek 

Scheiber et al. 

(2021a) 

Inclined distance Inclined distance  Greek 

Lefebvre et al. Average vertical Horizontal distance Latin 
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(2022) depth 

Zomer et al. (2022) Average vertical 

depth 

Horizontal distance Greek 

Besides dune height and length, another typically assessed characteristic is the aspect 189 

ratio H/L, which can be used to describe the general steepness of a bedform. The longitudinal 190 

section in Figure 1, however, makes clear why this measure should not be mistaken for an 191 

average or even maximum dune side slope. The inclination of stoss (upstream) and lee sides 192 

(downstream length) is also dependent on their length ratio; measures for the corresponding 193 

relationship are known as dune asymmetry. Although the definitions of dune asymmetry differ as 194 

well, they always relate to the relational positions of crests and troughs and are therefore 195 

neglected in the following statistical comparison of dune identification results. 196 

2.3 Bathymetries 197 

Most dune identification tools are developed with a particular target region in mind or 198 

their algorithms are, at least to some degree, shaped by the character of the calibration data. 199 

Because this may cause a considerable bias when comparing the different methods, we compiled 200 

a benchmarking data set, which is meant to represent a variety of typical environments for 201 

bedform analyses. This includes unidirectional river flow, reversing tidal currents and controlled 202 

flume experiments (Table 4). In detail, the bed elevation data used in this study stem from a field 203 

campaign in the Rio Paraná in Argentina (Parsons et al., 2005), navigational safety surveys along 204 

the Weser tidal inlet channel in Germany (Lefebvre et al., 2022), and from the River Dynamics 205 

Laboratory at Simon Fraser University in Canada (Bradley & Venditti, 2019), respectively. 206 

Table 4. Overview of benchmarking data sets: The chosen bathymetries represent three 207 

typical environments for bedform analyses, including unidirectional river flow from the 208 

Rio Paraná, tidally-constrained conditions from the Weser and data from flume 209 

experiments at the Simon Fraser University. The table also contains the reference of the 210 

first publication and the assessed spatial resolution as well as the corresponding physical 211 

constraints. 212 

Waterbody Paraná River Weser Estuary Laboratory Flume 

First publication Parsons et al. (2005) Lefebvre et al. 

(2022) 

Bradley and Venditti 

(2019) 

Location Argentina Germany Canada 

Flow conditions Unidirectional river 

flow 

Reversing tidal 

currents 

Uniform laboratory 

flow 

Spatial resolution 0.25 m 2 m 0.03 m 

Median grain size 220 µm 400 µm 550 µm 

Average depth 5-12 m 16-12 m 0.15 m 

Average velocity 1.3 m/s 1.0 m/s 0.6 m/s 

After analysing the original data sets in an initial performance test, the spatial extents of 213 

all three bathymetries were limited to a subset of 450 x 100 m for the field data and 450 x 214 
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100 cm for the flume data, respectively. In some of the following comparative statistics, the 215 

flume data was assumed to be scaled by a factor of 1:100, i.e. centimetre extents were treated as 216 

metres, to improve readability. Figure 2 juxtaposes the bathymetric subsets and gives an 217 

impression of how unlike the contained bedforms can be in size and shape. While the 218 

longitudinal section of the Rio Paraná shows strongly asymmetric dunes of a rounded shape 219 

(Figure 2 a), the Weser bathymetry (of the same length) is characterized by much less 220 

asymmetric or in some cases even symmetrical and sharp-crested dunes (Figure 2 b). The 221 

bedforms in the flume data set are least homogenous in shape, which may be attributed to the 222 

rather short-term hydraulic forcing (Figure 2 c and Table 4). Compound dunes consisting of 223 

large-scale primary dunes and multiple, superimposed secondary dunes can be observed in the 224 

Parana and flume data. Based on visual inspection, the Weser bathymetry does not feature a 225 

secondary dune scale – possibly due to the lower data resolution. A summary of physical 226 

constraints, in particular median sediment grain size, average depth and flow velocities, is given 227 

in Table 4. 228 

 229 

Figure 2. BATHYMETRIC DATA - Surface elevation plot (top) and longitudinal section 230 

along the red dashed line in the middle (bottom) of the three benchmarking data sets. 231 

These bathymetries comprise (a) round-shaped river dunes from the Rio Paraná. 232 

Argentina, (b) steep and tidally-constrained dunes from the Weser Estuary, Germany, and 233 

(c) scaled bedforms from the River Dynamics Laboratory at Simon Fraser University, 234 

Canada. The vertical exaggeration for all longitudinal sections is x:z = 1:10. 235 

2.4 Comparative statistics 236 

Given that all three bathymetries were assessed with five independent dune identification 237 

algorithms, we yield a total of 15 results data sets. These include the location of the crests and 238 

troughs that define the identified dunes as well as their heights and lengths. All other 239 

characteristics are based on and can be derived from these parameters. Moreover, combinations 240 

of height and length are assumed to be specific enough (if saved with sufficient accuracy) to 241 

retrace individual bedforms across the data sets. For this reason, the statistical comparison listed 242 

as the first objective of this study focuses on the probability distributions of dune heights and 243 

lengths, which is accomplished in both one- and two-dimensional statistics (distribution of 244 

heights or lengths vs. distribution of height/length pairs). The differences between these 245 

distributions are furthermore quantified by applying two statistical measures: the Wasserstein 246 

metric (WS) and the Jensen–Shannon divergence (JSD). The WS is a well-established way to 247 

measure the (dis-)similarity between different probability distributions. Also known as “earth 248 
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mover’s distance”, it combines the distance and volume under two probability curves (by 249 

analogy, two piles of earth) into one “effort” function valid if one is transformed into the other. 250 

The resulting “minimum effort” is the Wasserstein distance between the two probability 251 

functions (Hitchcock, 1941). The JSD, in contrast, draws on the concept of relative entropies to 252 

express how well a probabilistic function describes a target function (Briët & Harremoës, 2009). 253 

Other than the WS distance, the JS divergence can yield values between 1 and 0 with smaller 254 

values indicating a higher resemblance between two functions. For an overview of these and 255 

other available measures to describe probabilistic differences, interested readers may be referred 256 

to the summary of Liu and Xiao (2022). The combination of WS and JSD is a useful means to 257 

quantify differences in a direct comparison of individual results data sets and thus understand 258 

which identification tools perform in a similar manner. 259 

3 Results 260 

This meta-analysis elucidates the heterogeneity of dune identification outputs from 261 

several perspectives. After a short evaluation of the effects of geometrical definitions, we 262 

compare the general performance of the considered tools in terms of the number of identified 263 

bedforms and corresponding computation times. In the second step, statistical variations 264 

regarding the frequency of heights and lengths are discussed. After that, we directly compare the 265 

results of all five algorithms by juxtaposing their height/length distributions in systematic 266 

difference plots and by the corresponding WS and JSD values. By harmonizing the number of 267 

outputs through resampling, we are finally able to summarize all results into one synthesis data 268 

set. The benefits of this summary data and its potential for future studies are discussed 269 

afterwards. 270 

3.1 Sensitivity to height and length definitions 271 

Before the actual comparison of dune identification results, we first assessed how 272 

sensitive the statistical characteristics of a given dune field are with regard to the different ways 273 

to calculate height and length (Scheiber and Lefebvre. 2023). In this sensitivity study, we 274 

assessed an independent data set and compared the corresponding results for the most common 275 

geometric definitions. In particular, we compared vertical with averaged dune heights and 276 

horizontal with inclined dune lengths, respectively. The two histograms in Figure 3 illustrate the 277 

divergence of these options in terms of the relative (percentage) difference. The three shades of 278 

blue color represent different dune scales as proposed by Ashley (1990). According to this study 279 

case, dune lengths are hardly impacted by the differentiation between horizontal and inclined 280 

distances between troughs (cf. Figure 3 a). More than 9 out of 10 dunes show a relative length 281 

difference below 1.1% and virtually no length results differ by more than 10%. This is also 282 

reflected in the mean values which differ only by 3 cm. 283 
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 284 

Figure 3. DEFINITIONAL SENSITIVITY – Relative (percentage) difference of vertical 285 

versus average dune height (left) and horizontal versus inclined dune length (right), 286 

respectively. Three shades of blue color represent dune scales, from small over medium to 287 

large dunes according to the nomenclature by Ashley (1990); light and dark grey patches in 288 

the background represent 50 and 90% intervals, respectively. 289 

Dune heights, in contrast, show a much larger variation depending on whether they are 290 

calculated as the vertical distance between crest and trough baseline or as the average crest-291 

trough distance. For instance, the 90% interval spans from –112.9% to +6.18% and the 50% 292 

interval from -41.2% to +6.2%, respectively. The difference in overall mean heights amounts to 293 

16.7 cm, which is in the order of magnitude of a small dune. To avoid any bias resulting from the 294 

different geometric definitions, we standardized all dune characteristics. That is, all lengths were 295 

(re-)calculated using horizontal lengths (consistent with L1) and dune heights using average 296 

heights (consistent with H3), respectively, before proceeding with the comparative statistics.  297 

3.2 General performance 298 

The first evident difference in the analytical outputs is the absolute number of identified 299 

bedforms (Figure 4). It should be noted that this initial performance test included bathymetries 300 

larger than the presented extent. While the smallest amount of bedforms in the Paraná data is 301 

found by Lefebvre, it is Wang who found the least bedforms in the Weser and Lefebvre again in 302 

the flume data set. In contrast, the highest number of bedforms is found by Scheiber in all cases. 303 

Taking the results of all three study sites into account, the number of bedforms identified by this 304 

algorithm is about 25-times higher than the amount from Lefebvre with this ratio being even 305 

higher for individual data sets. This finding already points to the different focuses inherent to the 306 

compared methods, in particular the consideration of different dune scales. Regarding their 307 

computational effort, the methods also vary considerably (Figure 4 b). For most data sets, the 308 

calculations by Scheiber show the shortest relative computation times, i.e. average time needed 309 

to identify and measure a single bedform. On the other hand, Wang required the longest 310 

computation times per bedform indicating a more sophisticated workflow. Notwithstanding that 311 

each analysis was carried out using different hardware setups and that, therefore, we cannot rule 312 

out an influence of computational capacities, the individual methods doubtlessly rely on 313 
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processing steps of different number and complexity. These methodological differences, which 314 

are mainly determined by the scientific focus, are also reflected in the statistical variation of dune 315 

characteristics. 316 

 317 

Figure 4. GENERAL PERFORMANCE - a) Absolute numbers of identified bedforms for 318 

each of the three bathymetries. b) Relative computation times in milliseconds/bedform 319 

indicate the varying computational complexity of the five identification tools under 320 

consideration.  321 

3.3 Statistical variation 322 

Although applied to the same bathymetric data sets, the five dune identification tools 323 

produced significantly different statistical results. Besides the sampling sizes, the two most 324 

essential dune characteristics, dune heights and lengths, varied in their distribution. This can be 325 

perceived from Figure 5, which displays the statistical variation of height and length results from 326 

all three bathymetries as a combination of box plots and violins. In the box plots, black 327 

horizontal lines represent median values and lower and upper box edges refer to 25/75th 328 

percentiles, respectively. When contrasting the median heights (H50) and lengths (L50) of the 329 

methods, we can observe two groups regarding the results for Rio Paraná (Figure 5; left panel). 330 

While the median heights of Lefebvre, Zomer and Wang are in the order of 1.5 m and the 331 

corresponding L50 is 58 m, the values from Cisneros and Scheiber are H50≈0.2 m and L50≈7 m, 332 

respectively. What is interesting is that results from the first three methods are mainly limited to 333 

dune lengths greater than 30 m, but the latter two methods did identify both small and large 334 

bedforms. Similarly, 50% height intervals in the case of the flume bathymetry (Figure 5; right 335 

panel) range from 2.5 m to 5.5 m for Lefebvre, Zomer and Wang, but from 0.5 m to 1.5 m for 336 

Cisneros and Scheiber – a strong indication that different dune scales were considered. Only for 337 

the Weser bathymetry, where no compound dunes were visible, box plot ranges are a bit more 338 

homogeneous except that Cisneros reports relatively smaller but longer bedforms. 339 
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 340 

Figure 5. STATISTICAL DISTRIBUTIONS - Variation of dune heights (a) and dune 341 

lengths (b) displayed as a combination of box plots and violins. The 25/75th percentiles are 342 

shown as box edges and median values as black horizontal levels in between. The shape of 343 

the surrounding violins, stretching between minimum and maximum values, represents the 344 

probability density of identified dune characteristics. Please note that results for the flume 345 

bathymetry were scaled by a factor of 100 for better readability here. The visualization is 346 

based on the “daviolinplot” function provided by Karvelis (2023). 347 

The corresponding violin shapes represent the continuous probability density of identified 348 

bedforms and thus extend to the most extreme values. Based on these extents and assuming that 349 

no algorithm produced a considerable number of artefacts, we can conclude that two dune scales 350 

are present in the Paraná (Figure 5; left panel). The algorithms differ in so far as Lefebvre, 351 

Zomer and Wang focus on primary dunes, whereas Cisneros and Scheiber additionally 352 

considered a significant number of secondary dunes in their assessment, whose abundance 353 

results in spinner-shaped violins with a thin spike at high and a distinct bulge at low values, 354 

respectively. In this connection, it should be noted that Zomer deliberately excluded secondary 355 

bedforms in the Parana (and the flume) dune fields considering the data resolution not sufficient 356 

to resolve secondary bedforms. The dune heights reported by Lefebvre, Zomer and Wang show a 357 

distinct peak between 1 m and 2 m, whereas the distributions by Cisneros and Scheiber peak 358 

below 0.25 m. The lower diagram, in contrast, suggests that most of these (secondary) dunes 359 

have a length below 10 m, with a considerable number of primary dunes included in a long upper 360 

tail. In the results by Lefebvre, Zomer and Wang, lengths peak between 50 m and 80 m, but all 361 

three distributions show a positive, i.e. leftward skew. A similar grouping can be reported for the 362 

flume data (Figure 5; right panel) with the exception that Cisneros seems to identify only small 363 

and medium dunes here. These are constrained to about 3 m in height and 80 m in length, while 364 

the remaining four algorithms report significantly higher values. In particular, peaks in the range 365 

of 2-7 m and 50-150 m pertain to larger primary dunes, whereas smaller secondary dunes can be 366 

expected below 1 m in height and 20 m in length, respectively. It is interesting to see here that 367 
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only the results by Scheiber include both primary and secondary bedforms, whereas Cisneros 368 

only reports the smaller and Lefebvre, Zomer and Wang focus on the larger bedform scale. It 369 

should be noted again that all dimensions in the flume data are actually in centimetre scale and 370 

were only converted to allow comparability. Regarding the Weser bathymetry (Figure 5; middle 371 

panel), the violins paint again a more homogeneous picture than the other dune fields with 372 

generally wider distributions peaking between 0.9-2.1 m and 15-55 m, respectively. Most of 373 

these distributions show a left skew as well. However, the results by Zomer are in this case more 374 

comparable to the ones by Scheiber, because they suggest relatively smaller geometries than 375 

Lefebvre and Wang. Only the length results by Cisneros include three peaks which rather 376 

suggests statistical gaps than multiple dune scales. All in all, the depicted relative frequencies 377 

corroborate the notion of major heterogeneities in the identification results, yet also provide 378 

evidence about their causes. While the methods by Lefebvre and Wang clearly focus on the 379 

identification of primary dunes, Cisneros, Scheiber and partially Zomer allow for the co-380 

existence of primary and secondary dunes. These two dune scales appear nearly evenly 381 

distributed in the data of Zomer, whereas Cisneros and Scheiber found significantly more 382 

secondary dunes. Although this juxtaposition helps to understand the inherent research focus that 383 

influenced the development of individual identification tools, the illustration is mainly limited to 384 

a visual comparison. 385 

To assess the quantitative differences between individual dune identification results, a 386 

direct and comprehensive comparison is needed. This can be achieved by combining height and 387 

length results for all three bathymetries into one two-dimensional probability density plot for 388 

each identification method. Following the double-logarithmic scatter diagram by Flemming 389 

(1988), the resulting probability functions relate to surfaces constructed by merging the height 390 

and length distributions. Along the main diagonal of Figure 6, the shapes or, more precisely, the 391 

peaks of these functions are depicted in the form of contour lines. In the second step, this 392 

presentation allows us to directly compare pairs of probability distributions through difference 393 

plots below the main diagonal. The recurring red-to-blue colormaps in this visualization express 394 

the residual surface when subtracting the probability function to the right from the one at the top 395 

as written in the respective panel titles. It therefore highlights any disagreement between the 396 

compared probabilities by bright red (more abundant at the top) and bright blue (more abundant 397 

at the right distributions) colour. Above the main diagonal, in turn, this agreement/disagreement 398 

is quantified by means of the Jensen-Shannon divergence (JSD) and the Wasserstein metric 399 

(WS), where smaller values correspond with higher agreement and vice versa. Both metrics are 400 

referred to dune height and length individually in order to ensure an independent interpretation of 401 

these two dimensions.  402 
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 403 

Figure 6. DIRECT COMPARISONS – The main diagonal (a1-a5) gives a double-404 

logarithmic presentation of dune height/ length pairs for each of the five assessed 405 

identification methods. The depicted contour lines describe the shape of the corresponding 406 

probability density functions. Below that main diagonal, red-to-blue colored plots (b1-b10) 407 

illustrate the differences when subtracting the results to the right from the ones on top of 408 

the respective subplot. Above the main diagonal, analogous comparisons (above vs. left 409 

method) are quantified by two statistical metrics (c1-c10): the Jensen-Shannon divergence 410 

(JSD) and the Wasserstein metric (WS). Both metrics refer to dune heights and lengths 411 

independently. Unlike in the previous two illustrations, flume results are no longer scaled 412 

here. 413 

In general, all previously reported dune populations of the individual bathymetries can be 414 

retraced in this combined data set. According to the contour plots (a1-a5) aligned along the main 415 
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diagonal of Figure 6, the smallest scale of dunes (L≈1 m, H≈1 cm) is reported by Scheiber, 416 

directly followed by the lower of two peaks in the results by Zomer and by Wang (L≈1 m, 417 

H≈3 cm). Medium dunes (3 m<L<10 m, 10 cm<H<30 cm), in turn, are visible in the results by 418 

Cisneros and Scheiber. Finally, large to very large dunes (20 m<L<200 m, 50 cm<H<200 cm) 419 

cause a distinct peak in all distributions but the one from Scheiber. Moreover, this visualization 420 

indicates which size of dunes was most abundant according to the individual identification 421 

method. However, it should be noted that this illustration highlights frequency peaks rather than 422 

allowing for the complete spectrum of results. When directly comparing these distributions based 423 

on the difference plots below the main diagonal (b1-b10), the best congruence can be observed 424 

for Zomer versus Wang, directly followed by Lefebvre versus Zomer and by Lefebvre versus 425 

Wang. Apparently, these three algorithms produce very similar results, which is also reflected in 426 

the corresponding metrics above the main diagonal (c1-c10). In this regard, the JSD gives a good 427 

indication of the similarity between the distribution shapes, whereas the WS also accounts for the 428 

volume below the probability functions. Both metrics are in the same order of magnitude for the 429 

three methods. The highest values apply to Lefebvre versus Scheiber whose results consequently 430 

appear least congruent. Overall, it becomes evident that the five identification methods mainly 431 

differ depending on their direct (scale-separation) or indirect (detection limit) consideration of 432 

small-scale secondary dunes. The analyses focussing on large-scale primary dunes (either 433 

determined by the algorithm itself or by user-defined settings), i.e. those by Lefebvre, Zomer and 434 

Wang, generally identify bedforms on a comparable co-domain. To some degree, the same holds 435 

true for the comparison of Cisneros versus Scheiber who both included a high number of 436 

secondary dunes, with the latter reporting about 10-times more bedforms than the former. The 437 

presented analyses suggest that it makes a crucial difference, in which way secondary bedforms 438 

are considered, because their occurrence may significantly affect statistical outcomes. Given that 439 

half of the assessed algorithms gave special attention to the smaller dune scale, while the other 440 

focused on primary dunes, a synthesis of identification results can give robust insights into and 441 

allow a more profound interpretation of the overall composition of natural bedforms as contained 442 

in a combined data set. 443 

3.4 Synthesis of results 444 

The bathymetries of Rio Paraná, Weser and Simon Fraser University flume represent a 445 

diverse data set with regard to dune scales, physical forcing and measurement resolution. The 446 

independent but concerted assessment of such a comprehensive data set, however, is an 447 

unprecedented endeavour. Their combination provides the opportunity for a statistical analysis of 448 

bedform composition, which is significantly less biased by the proficiency and expectations of 449 

single authors than conventional investigations. To this end, and to some extent as a mere by-450 

product of the presented meta-analysis, Figure 7 contains the data from all three flow 451 

environments and all five methods as transparent probability contours. Building on the diagram 452 

of dune height and length pairs by Flemming (1988), panel (a) synthesizes this data into one 453 

combined probability distribution, visualized by a 99% contour with a solid black outline. Due to 454 

the diversity of the assessed bathymetries, this contour spans from approximately 5 cm to 100 m 455 

in length and 0.2 cm to 5 m in height. This is also visible in the two adjacent panels Figure 7 (b) 456 

and (c), which have to be seen as the lateral projections of the two-dimensional probability 457 

density function from (a). 458 
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 459 

Figure 7. COMBINED RESULTS - All dune height/length pairs identified for all three 460 

study sites and all five methods as well as their combined distribution. Subplot (a) follows 461 

the double-logarithmic scatter diagram by Flemming (1988) and is complemented by filled 462 

contours. The prominent area with a black outline represents the synthesis of all individual 463 

results. This synthesis data is further described by a power law included in red. In 464 

addition, parallel dotted lines represent the 5/95th percentiles of this steepness relationship. 465 

Subplot (b) is the lateral projection of the two-dimensional probability function in (a) and 466 

thus visualizes the distribution of dune heights with five peaks Analogously, subplot (c) 467 

shows the distribution of dune lengths, which includes five peaks as well. Finally, subplot 468 

(d) provides the distribution of dune steepness according to the red power function parallel 469 

to the historic Hmax. It also features the 5/95th percentiles, which frame this unimodal 470 

distribution.  471 

Like in the top view, both graphs contain the individual results as transparent shapes and 472 

their synthesis with a black outline in the front. Median values are given as fine horizontal and 473 

vertical lines, respectively. The inspection of these height and length distributions reveals the 474 

peaks of four distinct (and one concealed) bedform populations contained in this combined data 475 

set. From small to large, these peaks are (1) secondary and (2) primary dunes in the flume, (3) 476 

secondary dunes in the Paraná, (4) non-compound dunes in the Weser amalgamating with (5) 477 

primary dunes in the Paraná, respectively. It is interesting to see that the combination of these co-478 

domains spans the full spectrum between the smallest ripples and very large dunes as defined by 479 

Ashley (1990). What is more, they basically cover the co-domain of bedforms evaluated by 480 

Flemming (1988) and their upper boundary is well confined by the maximum regression line 481 

(upper dashed line) suggested in this classical reference (Hmax = 0.16 ∙ L
0.84

 according to 482 
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Flemming (1988)). Acknowledging that this function describes a universal relationship for the 483 

natural limitation of dune steepness, we suggest adding a new perspective on bedform 484 

geometries by evaluating this steepness in panel (d). This steepness is not the same as the aspect 485 

ratio H / L but follows the relationship S = H / L
0.84

 included in panel (a). Similar to the 486 

projections of dune height (b) and length (c), this rotated axis shows the projected distribution of 487 

dune steepness. This steepness appears to be nearly symmetric and the median S for the 488 

combined data set amounts to 0.0491. It is worth noting that the classic aspect ratio H/L is of 489 

comparable size in this case amounting to 0.0416 on average. Transferring this value back to the 490 

top view of height/length pairs (panel a: solid red line), we can see that in this case, the global 491 

mean regression line by Flemming (1988) lies very close but slightly higher, suggesting the 492 

presence of dunes which are not fully developed. The negligible skewness, only discernible by 493 

the 5/95
th

 percentiles in the steepness distribution (panel d: dotted red lines), points in the same 494 

direction. Unlike dune heights and lengths, whose statistical description is necessarily distorted 495 

as a result of the different dune scales, the distribution in this top right panel appears almost 496 

normally distributed, which gives strong evidence about the natural development of dunes that 497 

grow until a universal equilibrium steepness is reached. 498 

4 Discussion 499 

The comparison of five exemplary dune identification tools allowed us to estimate the 500 

range of their sampling sizes, computation times and bedform characteristics – in other words, 501 

the heterogeneity of expectable outputs. After their quantitative description in the previous 502 

section, these findings will be interpreted and contextualized in the following. Subsequently, 503 

methodological differences, resulting from the distinct focus of each identification tool, as well 504 

as individual strengths and limitations will be summarized in order to indicate fields of 505 

application. At the end, opportunities for a transfer of the findings from this meta-analysis are 506 

discussed and some open research questions are raised. 507 

4.1 Interpretation and deductions 508 

Although best efforts have been made to standardize the inputs and outputs for this meta-509 

analysis, it is obvious that significant differences exist not only in terms of the individual 510 

methodology for dune identification but also regarding the assumptions that define our 511 

understanding of these bedforms. First of all, the existing identification methods are inconsistent 512 

regarding the geometric definitions of even the most basic characteristics, such as dune heights 513 

and lengths. The arising differences are neglectable in the case of horizontal vs. inclined lengths 514 

due to sufficiently small inclination angles, but definitely considerable when comparing vertical 515 

with average heights. In this case, and especially if asymmetric inclined dunes are measured, 516 

determined heights can nearly double. Detailed investigations regarding this influence of 517 

geometric definitions were conducted by Scheiber and Lefebvre (2023) and the reported 518 

sensitivity should be taken into account in any bedform-related analysis. However, given that all 519 

of the implemented definitions are based on clear reasoning, we can only emphasize that 520 

definitions should always be chosen in due consideration of the specific research question and, 521 

even more importantly, that such decisions are documented and discussed openly. This was also 522 

considered in the presented meta-analysis, where we standardized all individual identification 523 

results before comparing height and length data.  524 
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In the initial performance test, the sheer number of individually identified bedforms and 525 

even more so the relative computation times differed significantly enough to require a 526 

logarithmic scale for visualization. This epitomizes the heterogeneity that was present throughout 527 

our analyses. One essential explanation for this finding is the different consideration of 528 

compound dunes, i.e. bedforms that consist of multiple scales of dunes. It should be noted that 529 

small-scale secondary bedforms populating the stoss-side (upstream) slope of larger primary 530 

dunes are naturally more abundant than their host, simply because they require less space. As a 531 

consequence, researchers who include these secondary bedforms in their algorithm will detect 532 

significantly more dunes. This, in turn, will lead to completely different frequency distributions 533 

and corresponding statistics, which puts into question the validity of a direct comparison between 534 

these two perspectives and quantitative bedform statistics in general. Given that three out of five 535 

algorithms in our meta-analysis include a separation of scales, while two algorithms do not, it 536 

was not possible to allow for this issue in a balanced manner. 537 

In the presented results, two groups formed depending on the prevalence of secondary 538 

dunes. Specifically, the results from Lefebvre, Zomer and Wang as well as the ones from 539 

Scheiber and Cisneros were strongly connected in the case of compound dunes. Accordingly, the 540 

results for the non-compound Weser dunes appeared most homogeneous. But even for the other 541 

two bathymetries, the relative differences of median values within the two groups did not exceed 542 

25%, which is less than could be expected from preliminary tests. However, some uncertainty 543 

arises from the model scale of the flume experiments, because individual methods are trained for 544 

specific aspect ratios which are far from natural here. An elegant way of addressing the co-545 

existence of primary and secondary dunes is implemented in the algorithms by Zomer and by 546 

Cisneros, who both use separate output variables for the two dune scales. Nevertheless, 547 

differences remain with regard to the lower dune identification limit, i.e. the height and length of 548 

the smallest identifiable dune. The definition of this threshold is not only dependent on the 549 

research focus but also on data resolution and general physics. In signal processing, the smallest 550 

identifiable wavelength is determined by (the inverse of) the so-called Nyquist frequency, which 551 

is ½ of the sampling rate. In bedform studies, however, this theoretical threshold collides with 552 

the practical accuracy of bathymetric data typically obtained via echo-sounding devices from a 553 

floating vessel. In order to avoid mistaking artefactual noise for actual ripples, we suggest using 554 

a threshold of at least 5-times the available horizontal resolution. For published algorithms, easy-555 

to-change options should be provided which facilitate a manual adjustment of this threshold if 556 

different standards are required. It should also be noted that, for the present case, different 557 

thresholds were applied, which certainly had an impact on the presented statistics and their 558 

comparison.  559 

Moreover, some identification results can be neglected based on our physical 560 

understanding of bedforms. This refers to bedforms which are either extraordinarily steep or very 561 

flat. Both cases are physically questionable and, in this connection, a systematic limiting of 562 

frequency distributions may help alleviate this problem. For instance, the steepness distribution 563 

introduced in Figure 7 shows that in our study the 99% interval of the combined results data 564 

coincides fairly well with the maximum regression line established by Flemming (1988). The 565 

parallel steepness curve, in turn, is slightly below the historic mean value regression, which is a 566 

repeatedly reported finding in similar comparisons (e.g. Bartholdy et al., 2002; Lisimenka & 567 

Kubicki, 2017). Considering that the minor skewness visible in panel (d) does not hold for the 568 

Weser data set, we can deduce that dunes in this environment are closest to a maximum or 569 

equilibrium steepness suggesting the steadiest flow conditions. Moreover, the 5
th

 percentile line 570 
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is of great help in identifying unreasonably flat bedforms, which cannot be determined from 571 

height or length results alone. We therefore recommend considering dune steepness according to 572 

the above definition (S = H / L
0.84

) as a third key characteristic of bedform analyses, which can 573 

be useful when filtering preliminary identification results. 574 

4.2 Method distinction/clarifications 575 

In the pursuit of an automated and mostly objective description of bedforms from a given 576 

bathymetric map, we can differentiate five general processing steps: i) the determination of a 577 

dominant crest orientation, ii) the optional separation of different dune scales, iii) the 578 

identification of individual bedforms based on crests and troughs, iv) the calculation of 579 

corresponding geometric characteristics, such as heights and lengths, and v) the delineation of 580 

dune objects in all three dimensions. Although not all of these steps are required in every study 581 

and others can be conducted manually, they are still instrumental building blocks that can be 582 

found in the five methods compared in this meta-analysis. In the bid to outline guidelines for the 583 

correct utilization of these methods, the following paragraphs summarize their distinct working 584 

principles and objectives thus narrowing down potential fields of application. 585 

The identification tool presented by Lefebvre et al. (2021) focuses on the identification in 586 

2D (ii) and 3D (v) and the measurement of bedforms (iv). It was originally developed for 587 

bathymetric maps of a fairway channel in the Weser Estuary. No scale separation was needed 588 

because of a relatively coarse resolution of 2 m which prevents the recognition of small-scale 589 

bedforms. Because of the constrained environment, it is assumed that the main flow direction 590 

follows the channel, and the main crest direction is perpendicular to the main flow direction. The 591 

crestlines were detected as objects with a low curvature and the trough lines as minimum 592 

elevation between crestlines. That way, the crest and trough lines can be analysed (direction, 593 

variability, etc.). The method was developed to produce fast and not overly accurate results 594 

because a very large dataset had to be analysed. The method is particularly adapted to very large 595 

datasets with relatively low resolution. Furthermore, it is likely that the minimum curvature 596 

method is most accurate over sharp crests (such as those in estuaries) and might be less accurate 597 

for rounded crests (usually developing in unidirectional flows). 598 

The bedform separation and identification tool presented by Zomer et al. (2022) was 599 

developed to quantify the properties of large primary and smaller superimposed bedforms 600 

contained in bed elevation data from the Dutch Waal river. The separation of dune scales (ii) is 601 

performed by decomposition of the data using a LOESS algorithm. Steep lee slopes of primary 602 

dunes are preserved by implementing breaks in the LOESS fit and the steep slopes are 603 

subsequently approximated with a sigmoid function fit. Primary and secondary dune 604 

identification (iii) is done based on zero-crossing. Dune characteristics that can be calculated (iv) 605 

include height, length, steepness, and maximum lee-side slope angle. Results are grouped into 606 

secondary and primary bedforms and the tool also allows for filtering of the results based on 607 

user-defined conditions. The tool is appropriate for data sets with multiple (two or more) well-608 

defined bedform scales.  An important advantage of the method is that steep lee-side slopes of 609 

primary dunes are well preserved in the filtered signal. This is relevant for studies focusing on 610 

lee side slope characteristics or environments where secondary bedforms are present on the lee 611 

side of primary dunes. A user can also use either the bedform separation or identification and 612 

combine it with other methods, allowing flexible tailoring to both the data set and the purpose of 613 

analysis. 614 
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The Bedform Analysis Method for Bathymetric Information (BAMBI) was introduced by 615 

Cisneros et al. (2020) in order to analyse the slopes of dune lee sides in the world’s largest rivers. 616 

In the order of processing, BAMBI comprises iii) the identification of dunes based on local 617 

extremes, iv) the calculation of geometric characteristics, ii) the separation of dune scales, and to 618 

some extent v) the delineation of dunes as 3D objects. In contrast to many other approaches, 619 

morphological measurements from BAMBI encompass the mean and maximum lee side angle 620 

(steep slope) and the relative height of the steepest lee side slope for each dune. The tool is 621 

therefore particularly well-suited for analysing processes depending on the dune shape, such as 622 

nearfield hydrodynamics. Moreover, the investigations in this study have shown that BAMBI 623 

detects significantly more secondary dunes than formative primary dunes. The resulting left-624 

skewed height distribution can be assumed to reflect the natural inventory of morphological 625 

features, which makes the approach comparable to the one by Scheiber et al. (2021a).  626 

The Bedform Identification Algorithm (BIA) presented by Scheiber et al. (2021a) focuses 627 

on the identification (iii) and measurement of bedforms (iv). After a manual determination of the 628 

dominant dune orientation (i), it circumvents scale separation (ii) by an iterative assessment of 629 

longitudinal bed elevation profiles. Based on the length classes suggested by Ashley (1990) this 630 

process is repeated five times ensuring that dunes of all prevailing scales are identified before 631 

deleting duplicate values. The fact that this method yields bi-modal distributions in both 632 

bathymetries with compound dunes corroborates its advantages when information about the full 633 

spectrum of bedform scales is needed. However, other than in the methods explicitly aiming for 634 

scale separation (e.g. Cisneros et al., 2020; Zomer et al., 2022), results are not grouped in 635 

primary and secondary dunes by default but can be assigned to the underlying length classes if 636 

desired. The performance test in Figure 4 illustrates that this approach is particularly efficient 637 

when it comes to computational costs. It can therefore be of good use for assessments of very 638 

large data sets. Nevertheless, the consideration of secondary bedforms has a significant impact 639 

on statistical distribution as shown in this study. It therefore requires a careful definition of the 640 

lower detection limit, which should agree with the respective research objectives and allow for 641 

the inherent measurement inaccuracies.  642 

The automated procedure to calculate the morphological parameters of superimposed 643 

rhythmic bedforms presented by Wang et al. (2020) is probably the most sophisticated of the five 644 

compared algorithms. Combining Fourier, wavelet and zero-crossing analyses, the strength of 645 

this approach lies in its objectivity which is ensured by a complete automation of processing 646 

steps, including (i) the determination of dominant wavelengths and dune orientation, (ii) the 647 

separation of superimposed and primary dune scales and (iii) the identification of bedforms and 648 

(iv) calculation of their characteristics. As shown in a validation case, this methodology succeeds 649 

even if superimposed bedforms were oriented almost perpendicular to the primary dunes. Even 650 

though this level of processing comes at a high computational cost, as illustrated in the 651 

comparison of general performances (section 3.2), the approach requires almost no (subjective) 652 

decisions by the user due to its complete automation and therefore bares the smallest risk for 653 

human bias or misapplication. 654 

4.3 Transferability and outlook 655 

It is surprising how differently the involved authors approached the task of bedform 656 

identification and how the individual methods performed. Fortunately, the resulting statistics of 657 

bedform height and length did not diverge disproportionately as long as we differentiate by the 658 
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(optional) consideration of secondary bedforms. The differences, which can be observed 659 

otherwise, are primarily a matter of statistical distortion. This explanation soothes the initial 660 

scepticism about heterogeneities in the available identification algorithms, which could finally be 661 

re-validated. 662 

Beyond this study, both the utilized bathymetries and the summary of individual 663 

identification results provide a unique data set and an added value on their own. We assume that 664 

the influence of remaining biases, which may accidentally have been built into the individual 665 

identification tools, is mitigated by the combination of their outputs. The final results should 666 

hence be closer to the objective truth and are therefore perfectly fit for future benchmarking 667 

efforts. To this end, we are happy to provide the complete data set as a supplement to this article.  668 

Future studies may also reconsider the importance of the upper regression line by 669 

Flemming (1988), which proved to be a universal maximum ratio between bedform heights and 670 

lengths. We argue that this ratio is inherent to all bedform populations and that, in fact, its 671 

parallel translation (by a factor of S = H / L
0.84

) can be an indicator of the stage of dune 672 

development towards the natural maximum steepness. For the presented benchmarking data, this 673 

approach showed better goodness of fit (R² = 0.60) than the historic mean regression line 674 

(R² = 0.58). Although custom power laws can (necessarily) capture the individual data even 675 

better, the definition of steepness as a comparable measure of dune growth can be of use beyond 676 

this study. The consideration of this additional geometric characteristic, besides height and 677 

length, not only helps to identify numerical artefacts. It can also be used to uncover bedform 678 

populations subject to unsteady morpho-dynamic conditions, if the steepness distribution is 679 

particularly skewed. This allows insights into the temporal development of bedform geometries 680 

derived from a single snapshot. 681 

What is more, all of the discussed methods work on a transect basis, that is they assess 682 

two-dimensional bed elevation profiles to calculate height and length. By evaluating multiple 683 

parallel profiles across a given bathymetry, it can be ensured that each bedform is sampled at 684 

different sections, which increases the robustness of these methods. The obtained distributions 685 

are certainly less prone to the impact of outliers, in spite of inevitable “edge effects” occurring at 686 

the transect ends (Gogolewski, 2020). However, average/representative characteristics are until 687 

now not associated with specific, three-dimensional dunes. This shortcoming is targeted by 688 

recent studies of object-based dune identification (Cassol et al., 2022; Lebrec et al., 2022). 689 

Nevertheless, the question remains which characteristics are representative of a laterally 690 

changing bedform. In our opinion, this can only be addressed by treating bedforms as the three-691 

dimensional entities they are but associating these objects with characteristics of a quantified 692 

variation. To this end, the reporting of 50% and 90% frequency intervals and the consideration of 693 

dune steepness can be useful elements of future studies. 694 

From the plethora of open-access dune identification tools, only five methods were 695 

compared in this study. However, our results have shown that there is a strong need to 696 

standardize the most useful approaches and centralize them, at best, in one universal and open-697 

access toolbox. This toolbox should facilitate seamless dune identification, allowing users to 698 

choose the most suitable approach for each of the individual processing steps in a modular way. 699 

This would enable both experts and non-experts to test and utilize different methods, while 700 

ensuring a unified approach to calculating dune characteristics. Ultimately, this standardization 701 

would facilitate the creation of comparable and consolidated data sets in order to dwell less on 702 
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methodological details and rather advance our understanding of the morphological processes that 703 

create and shape bedforms in all kinds of environments. 704 

5 Conclusions 705 

This study compared five recently published dune identification algorithms in a 706 

comprehensive meta-analysis. It was shown that the absolute number of bedforms detected by 707 

the available tools can differ by two orders of magnitude and the required computation times by 708 

four orders of magnitude, respectively. But also, the determined bedform characteristics, such as 709 

dune heights and lengths, differed significantly. Considering that even the underlying definitions 710 

of these characteristics are not identical in all tools (and resulting differences can sum up to the 711 

height of a small dune), an initial standardization was imperative. The subsequently determined 712 

statistical distributions for three benchmarking data sets from diverse flow environments 713 

revealed two groups among the considered approaches. Within these groups, the relative 714 

difference in median heights and lengths did not exceed 25%, but between the groups, statistics 715 

looked much more heterogeneous. The observed differences in bedform characteristics mainly 716 

originate from the unlike consideration of secondary dunes which are superimposed on larger 717 

primary dunes. Depending on whether this secondary (and naturally more abundant) dune scale 718 

is included in the identification process or not, statistical distributions tend to show a strong left 719 

skew. This general difference in dune identification affected all parts of the results and, 720 

consequently, was also visible when directly comparing the methods with each other. Based on 721 

two statistical metrics, the Jensen-Shannon divergence and the Wasserstein metric, we could 722 

show that a high (quantitative) resemblance is given between algorithms with the same 723 

perspective on secondary dunes. However, if secondary dunes are taken into account, it is 724 

essential to distinguish these from random measuring inaccuracies. In this respect, we 725 

recommend using a minimum detectable dune length of 5-times the horizontal measuring 726 

resolution. Apart from a mere quantification of differences, the concerted analysis of the three 727 

dune fields and subsequent synthesis of results generated a unique benchmarking data set. This 728 

by-product of our meta-analysis is inherently less subjected to the bias of individual focus and 729 

can therefore be of good use to any future identification algorithm. In addition, the distribution of 730 

these combined results aligns very well with the maximum regression line proposed by 731 

Flemming (1988), albeit at slightly smaller mean values. We acknowledge Hmax = S * L
0.84 

as a 732 

universal relationship between dune height and length but suggest including the distribution of 733 

steepness S as an additional proxy to describe dune growth in future bedform studies. In 734 

summary, the presented meta-analysis was able to provide insights into the performance of 735 

recent dune identification tools and quantify the heterogeneity of their outputs as well as clarify 736 

individual strengths and limitations that determine optimum fields of application. To support 737 

end-users in their analyses, we see the need for a universal toolbox which centralizes different 738 

approaches in one interface and allows experts and non-experts to detect and characterize 739 

bedforms in a unified yet modular way 740 
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