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Abstract

Data assimilation (DA) plays a pivotal role in diverse applications, ranging from climate predictions and weather forecasts to

trajectory planning for autonomous vehicles. A prime example is the widely used ensemble Kalman filter (EnKF), which relies

on linear updates to minimize variance among the ensemble of forecast states. Recent advancements have seen the emergence

of deep learning approaches in this domain, primarily within a supervised learning framework. However, the adaptability

of such models to untrained scenarios remains a challenge. In this study, we introduce a novel DA strategy that utilizes

reinforcement learning (RL) to apply state corrections using full or partial observations of the state variables. Our investigation

focuses on demonstrating this approach to the chaotic Lorenz ’63 system, where the agent’s objective is to minimize the root-

mean-squared error between the observations and corresponding forecast states. Consequently, the agent develops a correction

strategy, enhancing model forecasts based on available system state observations. Our strategy employs a stochastic action

policy, enabling a Monte Carlo-based DA framework that relies on randomly sampling the policy to generate an ensemble

of assimilated realizations. Results demonstrate that the developed RL algorithm performs favorably when compared to the

EnKF. Additionally, we illustrate the agent’s capability to assimilate non-Gaussian data, addressing a significant limitation of

the EnKF.
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Abstract17

Data assimilation (DA) plays a pivotal role in diverse applications, ranging from climate18

predictions and weather forecasts to trajectory planning for autonomous vehicles. A prime19

example is the widely used ensemble Kalman filter (EnKF), which relies on linear up-20

dates to minimize variance among the ensemble of forecast states. Recent advancements21

have seen the emergence of deep learning approaches in this domain, primarily within22

a supervised learning framework. However, the adaptability of such models to untrained23

scenarios remains a challenge. In this study, we introduce a novel DA strategy that uti-24

lizes reinforcement learning (RL) to apply state corrections using full or partial obser-25

vations of the state variables. Our investigation focuses on demonstrating this approach26

to the chaotic Lorenz ’63 system, where the agent’s objective is to minimize the root-27

mean-squared error between the observations and corresponding forecast states. Con-28

sequently, the agent develops a correction strategy, enhancing model forecasts based on29

available system state observations. Our strategy employs a stochastic action policy, en-30

abling a Monte Carlo-based DA framework that relies on randomly sampling the pol-31

icy to generate an ensemble of assimilated realizations. Results demonstrate that the de-32

veloped RL algorithm performs favorably when compared to the EnKF. Additionally,33

we illustrate the agent’s capability to assimilate non-Gaussian data, addressing a signif-34

icant limitation of the EnKF.35

Plain Language Summary36

Reliable forecasts of the state of chaotic systems, such as environmental flows, require37

combining observational data and dynamical model outputs through a process called data38

assimilation. The ensemble Kalman filter (EnKF) is the most commonly adopted algo-39

rithm for this task, however, is subject to some limitations when applied to nonlinear/non-40

Gaussian systems. Recently, there has been interest in using deep learning (DL), par-41

ticularly within a supervised learning setup, for DA. However, making DL models work42

well in new situations that differ from those experienced during training is challenging.43

In this work, we propose a new DA approach that leverages reinforcement learning (RL).44

RL helps the system make corrections to its predictions based on observed data, even45

if the model hasn’t been trained for those specific scenarios. Compared to the state of46

the art DA algorithms, RL offers a novel framework for nonlinear corrections of the fore-47

cast using the incoming observations. Numerical results show that the proposed RL al-48

gorithm outperforms the EnKF and demonstrates the RL agent’s ability at addressing49

some shortcomings of the EnKF.50

1 Introduction51

Assimilating observational data is essential for improving predictability and under-52

standing complex dynamics in chaotic and dynamic physical systems. Chaotic dynam-53

ical systems, such as those describing climate and weather, involve inherent imperfec-54

tions and extreme sensitivity to initial conditions, whereas the observational data avail-55

able for such systems often carry significant uncertainties (Eckmann & Ruelle, 1985). To56

address the associated challenges, data assimilation (DA) combines real-world observa-57

tions with numerical model outputs, continually refining model predictions by aligning58

them with newly acquired observations to enhance the accuracy and reliability of the pre-59

dictions (Ott et al., 2004). DA techniques are broadly categorized as variational and fil-60

tering methods (Le Dimet & Talagrand, 1986; Ghil & Malanotte-Rizzoli, 1991; Lorenc,61

2003; Hoteit et al., 2018). The ensemble Kalman filter (EnKF) represents one of the most62

popular filtering DA techniques, especially in the context of large-scale nonlinear sys-63

tems (Evensen, 2003). Operating within a Bayesian probabilistic framework, the EnKF64

squentially splits the filtering (state estimation) process into cycles that alternate be-65

tween forecast steps, driven by the system’s dynamical model, and analysis steps, which66
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updates the forecast with incoming data (Evensen, 2003). This approach enables Gaussian-67

based Monte Carlo (MC) approximations of both state forecast and analysis distribu-68

tions through an ensemble of state samples (Hoteit et al., 2008).69

EnKF schemes are considered as the gold standard when assimilating uncertain ob-70

servations of the system states across diverse fields due to their robustness, capacity to71

handle complex and high-dimensional systems, and computational efficiency (Houtekamer72

& Mitchell, 1998). However, their applicability is not without constraints, particularly73

when the underlying assumptions are compromised. In particular, challenges may arise74

from the EnKF’s inherent linear assumption, and the necessity for maintaining a Gaus-75

sian distribution within the ensemble, both of which become challenging in the presence76

of strong nonlinearities (Kalnay, 2002; Hoteit et al., 2008). Additionally, whereas the Gaus-77

sian assumption for both model and observational noise offers convenience, it may not78

universally hold in real-world scenarios, thereby limiting EnKF’s performance, especially79

when errors deviate significantly from Gaussian patterns. In such cases, it is necessary80

to explore alternative approaches that are better suited for these scenarios; e.g. van Leeuwen81

(2009).82

Reinforcement Learning (RL) is a paradigm of artificial intelligence that deals with83

how an agent can learn to make decisions through interactions with an environment, namely84

to achieve a specific objective (Recht, 2019). It is inspired by behavioral psychology and85

focuses on learning how to take actions in an environment to maximize some notion of86

cumulative reward. Within the RL framework, an agent engages in trial-and-error ex-87

ploration, testing various actions and observing their outcomes (Mnih et al., 2015). The88

agent’s goal is to formulate an optimal strategy, often referred to as a policy, that guides89

its actions to maximize the cumulative reward over a time horizon. It is noteworthy to90

point out that the RL framework is inherently different from the supervised learning ap-91

proaches because the latter require a pre-computed reference database for training, which92

in this context consists in minimizing a global objective function (Glorot & Bengio, 2010;93

Karniadakis et al., 2021). RL finds extensive applications in domains necessitating dy-94

namic control and decision-making capabilities, encompassing fields such as robotics (Kober95

et al., 2013), gaming (Mnih et al., 2013; Vinyals et al., 2019), autonomous navigation96

(Sallab et al., 2017), fluid dynamics (Novati et al., 2021; Bae & Koumoutsakos, 2022),97

and beyond.98

In this work, we introduce a novel DA formalism utilizing RL as a strategy to ac-99

tively update a nonlinear forecast correction scheme with the incoming data. The RL100

agent learns through interactions with the environment, adapting to its changes, and ac-101

tively applies nonlinear corrections to handle complex processes. Numerical experiments102

were conducted with the Lorenz ’63 chaotic system (Lorenz, 1963), and the RL agent’s103

performance was benchmarked against the EnKF algorithm using a large cardinality en-104

semble under various experimental conditions. These include tracking a reference solu-105

tion and assimilating normally-distributed noisy observations at various noise levels and106

observation frequencies. Furthermore, we investigate the performance of the RL agent107

at assimilating observations with different noise distribution models, namely uniform,108

log-normal and Gaussian noise. We further explore the RL agent’s effectiveness at as-109

similiating partial state observations.110

The remaining of the manuscript is organized as follows. Section 2 introduces the111

RL-DA framework. The RL methodology for DA is then described in Section 3, where112

a comprehensive overview of the RL framework is first introduced, accompanied by a de-113

scription of the Lorenz ’63 system and the EnKF algorithm. Sections 4 and 5 present114

our numerical results. Finally, Section 6 summarizes the main conclusions of this study.115
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Figure 1. Schematic of the proposed reinforcement learning-based data assimilation frame-

work using the Lorenz ’63 as the main example. The plot illustrates the Lorenz ’63 solution

trajectory (black curve) with an arbitrary assimilation window start time t (red triangle) and

corresponding end time t + δto (green square) when a new observation is available and assimi-

lated. The three dimensional state variables (x) of the model are shown at every model time step

δt (blue circles). At the last time step, the noisy observational data point (y) is shown (inverted

purple triangle) alongside the different evolution trajectories (orange curves) following several

corrections (F(st)) sampled from the policy function πθ(at|st). The policy πθ(at|st) considers as
input state vector the extended state vector composed of the concatenation of the forecast state

variables (x) and their time derivatives (ẋ) at each time step δt between t and t + δto alongside

the innovation term, defined as the difference between the observation and its correspondent fore-

cast. The concatenation operation is denoted by ⊕, and for the sake of conciseness, concatenation

of x and ẋ at each δt is represented by the sub- and super-scripts of [x, ẋ]. Since a stochastic

policy is considered in the DA framework, an ensemble of F(st) correction terms are sampled

from πθ(at|st) when a noisy observation is available. Note that the state variables might not be

fully observed, hence H projects the forecast onto the observation space. Moreover, the observa-

tion y is considered to be a noisy estimate of the forecast with no restriction on the distribution

of the additive noise.
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2 Reinforcement Learning For Data Assimilation116

In RL, agents make sequential decisions to achieve specific goals, with the focus117

on maximizing cumulative rewards over time (Sutton & Barto, 2018; Bertsekas, 2019).118

This aligns with decision-making scenarios where actions have consequences, and objec-119

tives must be met. RL is particularly relevant to control systems (Azouani & Titi, 2014;120

Kalantarov & Titi, 2018), where agents learn control policies to influence the behavior121

of systems (Silver et al., 2014). The key concept in RL is the trade-off between explo-122

ration, where the agent experiments with new actions, and exploitation, where the agent123

chooses known actions with high rewards, mirroring real-world decision-making challenges124

(Sallab et al., 2017). RL agents learn from feedback, adapt to changing environments,125

and generalize knowledge to make decisions in new situations.126

DA is an essential process used in scientific fields such as meteorology, oceanogra-127

phy, and environmental modeling to guide the state of complex systems with incoming128

observations (Ghil & Malanotte-Rizzoli, 1991; Hoteit et al., 2008). It involves merging129

observational data with numerical models to enhance predictions once observational in-130

formation is available (Kalnay, 2002). This process continuously drives the computed131

system state to align with observations, thereby ensuring accurate and robust state es-132

timates. DA accounts for model and observational uncertainties, offering more reliable133

predictions for chaotic systems, making it indispensable for tasks such as weather fore-134

casting (Rabier, 2005) and climate modeling (Pedatella et al., 2014). Hence, adopting135

an RL framework for DA is a natural progression in the domain, enabling for a nonlin-136

ear correction scheme that is also free from restrictive assumptions on the statistics of137

the observations and model.138

In RL, an agent exists in an environment that is described by a set of dynamical139

rules characterizing its evolution, for example, a system of differential equations (Sutton140

& Barto, 2018). The agent’s responsibility is to make decisions affecting its environment141

in a way that it maximizes the cumulative reward, or achieves a particular goal. The ul-142

timate outcome of the RL’s training procedure is an agent policy πθ(at|st), a mapping143

from the observation space to the action space, which is evaluated to actively control the144

behavior of the agent at state st in a dynamical system. The policy function is gener-145

ally characterized by a neural network parameterized with θ. Policy functions can be cat-146

egorized as either deterministic or stochastic; in a deterministic policy, the action with147

the highest probability is chosen, whereas a stochastic policy relies on random sampling148

to select an action. In the present framework, a stochastic policy was adopted from which149

the DA correction term was sampled, where actions are sampled from a Gaussian pol-150

icy (Schulman et al., 2017). Hence, after training, a policy function is obtained that could151

be used to sample potential correction terms from a distribution that adapts to the agent’s152

state, and allowing to generate an ensemble of states via MC sampling. In contrast with153

most efforts put for developing efficient DA schemes; eg. (Lermusiaux, 2007; Farchi et154

al., 2021; Buizza et al., 2022), the RL machinery relies on a nonlinear neural network to155

provide a correction without being restricted to a pre-computed dataset for supervising156

its training. Furthermore, the RL agent does not require any assumption on the noise157

distribution of the observational errors nor restrictive assumptions on the model.158

In this study, the chaotic Lorenz ’63 system of differential equations was consid-159

ered to examine the performance of RL at DA for a chaotic dynamical system (Lorenz,160

1963). The system describes the solution of a three-dimensional state vector, x = [x, y, z];161

it is characterized by a chaotic attractor, where the solution is sensitive to initial con-162

ditions and experiences a nonperiodic behavior (Eckmann & Ruelle, 1985; Bakarji et al.,163

2023). In this setting, the agent receives information, in the form of an extended state164

vector describing the system, denoted by states, that includes the forecast states and their165

derivatives xf and ẋf , respectively, at each model time step δt starting from the time166

t of the previous observation till the next observational time step t + δto, and the in-167

novation term y−Hxf . Here, H represents the observation operator that projects the168
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model forecast x onto the observation space and y denotes a noisy observation of the169

system state.170

The agent interacts with the environment to change its course of evolution and adapts171

to these changes to maximize the cumulative reward, as later defined, gathered over some172

period of time (Silver et al., 2014). This interaction is formulated mathematically as:173

xa = xf + F (st) , (1)

where the corrected state vector, denoted by a superscript a for analysis, xa is the sum174

of the model forecast, xf , and the correction term F (st), which is sampled from πθ(at|st).175

Note that this form of the update is similar to that of the Kalman Filter and the EnKF176

algorithm, however, the latter rely on a linear update term (Kalman, 1960). In the cur-177

rent configuration, the RL agent is not provided with statistical information regarding178

the noisy observations. Instead, it employs an MC strategy, using an RL agent that em-179

ploys random stochastic policy sampling. This approach generates an ensemble of as-180

similated solutions, which are subsequently averaged to produce an improved estimate181

of the system state, denoted by RL-50 in the following sections.182

The training cycle is defined by specifying the reward function (Lillicrap et al., 2015).183

We test out several reward functions in our preliminary investigation, where the agent’s184

performance was evaluated using the mutual information, negative of the root-mean-squared185

error (RMSE) and RMSE−1. While these reward functions are mathematically similar186

(Seidler, 1971; Guo et al., 2005), the associated training stability is different. Accord-187

ingly, the agent was trained to maximize the negative of the RMSE, which strikes a sat-188

isfactory balance between interpretability, computational cost and agent’s performance.189

3 Methods190

3.1 Reinforcement Learning191

The framework for RL involves training an agent through several interactions with192

the environment, in the present context, the dynamical system. Training an RL agent193

requires a large number of interactions with the environment and consequently a large194

unavoidable computational load often several orders of magnitude greater than solving195

the underlying differential equations. However, the field of RL has become more acces-196

sible in recent times, thanks to open-source libraries like smarties (Novati & Koumout-197

sakos, 2019) and stable baselines3 (Raffin et al., 2021), among others. In this work,198

we leverage the capabilities of stable baselines3, a high-performance RL software de-199

signed to exploit parallel computing, distributing the training process across multiple200

computational nodes. In the present configuration, each node simulates a distinct tra-201

jectory of the Lorenz ’63 system, providing a large set of agent-environment interactions202

that are used to train the agent. In this parallelized setup, each computational node ac-203

cumulates experiences by independently interacting with various instances of the envi-204

ronment. These experiences are then structured into episodes defined as:205

τ = {st, rt, at, st+1}0:T , (2)

where τ is the ordered set of interactions across a time horizon, t represents the time at206

which the environment is at state st, at is the action the agent takes at that time, rt is207

the reward the agent receives from performing action at and st+1 is the subsequent state.208

The RL agent’s training objective is to maximize the expected cumulative discounted209

reward function, defined as:210

–6–
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Rt =

T∑
t=0

γtrt, (3)

where γ ∈ [0, 1) is the discount factor. In our specific setting, a smaller value of γ proves211

advantageous, given the random noise sampling. This choice of reducing the emphasis212

on distant future rewards results in a more stable agent performance.213

The policy function πθ is a mapping between the agent’s state and the action space,214

which can be structured either as a set of discrete actions or as a probability distribu-215

tion function for continuous actions. As previously mentioned, policy functions are ei-216

ther deterministic, the action to most likely result in the highest reward is chosen, or stochas-217

tic, where actions are randomly sampled from a distribution that is typically approxi-218

mated by a surrogate model. Here, the policy πθ is represented as a densely connected219

multi-layer perceptron (Chen & Chen, 1995) parameterized by θ. Furthermore, actions220

assume continuous values, leading πθ to output a probability distribution over possible221

actions. Hence, the agent’s actions can be either sampled from this distribution, allow-222

ing the agent to explore the environment and seek potentially rewarding outcomes, oth-223

erwise, the action with the highest probability can be chosen.224

3.2 Proximal Policy Optimization225

In the present framework, we adopt the Proximal Policy Optimization (PPO) al-226

gorithm (Schulman et al., 2017) and briefly describe it here for completeness. PPO trains227

an agent using two key components, each parameterized by distinct neural networks: an228

actor network that takes the environment’s state as input and produces the correspond-229

ing action, and a critic network that also takes the environment’s state as input and pre-230

dicts the discounted reward (Mnih et al., 2016). In our study, both the actor and critic231

networks are represented by multi-layer perceptrons, each composed of two hidden lay-232

ers, each containing 128 neurons.233

The essence of the PPO algorithm revolves around optimizing the actor network234

to maximize the cumulative reward obtained by the agent, and the critic network to min-235

imize the mean squared error between the predicted and actual expected cumulative re-236

wards, starting from a given state. This optimization can be mathematically expressed237

through two distinct loss functions. The actor network is optimized by maximizing the238

actor’s objective function:239

Jactor = E
[
min

(
qt (θ) Ât, clip (qt (θ) , 1− ϵ, 1 + ϵ) Ât

)]
, (4)

where qt(θ) = πθ(at|st)/πold(at|st) is the ratio of the probability of adopting an action240

at at state st using πθ to that of the previous policy πold. Furthermore, the present set-241

ting relies on policy clipping with an ϵ = 0.2 (Schulman et al., 2017), where qt(θ) ∈242

[1− ϵ, 1 + ϵ]. This policy clipping mechanism helps maintain policy stability during pa-243

rameter updates, stabilizing the training process. On the other hand, the critic loss is244

given as:245

Lcritic = E
[
Â2

]
, (5)

where, E is the expectation operator and Â is the advantage (Mnih et al., 2016), which246

quantifies how favorable the observed outcome of selecting a particular action is com-247

pared to the estimated discounted reward of the current state. The advantage is described248

as:249

Â = Vtarget − Vθ,old, (6)
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where, Vtarget =
∑T−1

i=0 riγ
i + γTVθ,old(sT ) is the discounted reward computed using250

the agent’s interactions with the environment and Vθ,old is the discounted reward pre-251

dicted by the critic network.252

3.3 Lorenz ’63253

The Lorenz ’63 is a set of three deterministic ordinary nonlinear differential equa-254

tions developed to simulate simplified atmospheric convection (Lorenz, 1963). This sys-255

tem is renowned for its manifestation of chaotic behavior, where even minuscule pertur-256

bations in initial conditions lead to substantially divergent solution trajectories over time257

(Eckmann & Ruelle, 1985). The Lorenz equations have been extensively studied in chaos258

theory and nonlinear dynamics, and have been the fundamental benchmark to develop259

new data assimilation techniques (Foias et al., 2001; Hayden et al., 2011). The Lorenz260

’63 equations are given by:261

ẋ = σ(y − x), (7)

ẏ = x(ρ− z)− y, (8)

ż = xy − βz, (9)

where, σ, ρ and β are typically positive constants. This system is known to exhibit a chaotic262

attractor for σ = 10, ρ = 28 and β = 8/3. In this study, the system of equations were263

solved using an 2nd order Runge-Kutta scheme with a time step δt = 0.001, which of-264

fers a suitable balance between solution accuracy and computational time for the appli-265

cation at hand.266

3.4 Data assimilation using Reinforcement Learning267

The present study explores a novel data assimilation framework that leverages RL268

to assimilate noisy observations of the system states and improve estimates of the sys-269

tem states. In this investigation, the environment is represented by the chaotic Lorenz270

’63 system (Lorenz, 1963). The RL agent receives noisy information about the system’s271

state variables, and its policy, πθ(at|st) that is contingent upon the environment’s state272

st takes an action according to the preassigned strategy. The state upon which the agent’s273

policy is evaluated consists of the extended vector composed by the concatenation
[
xf , ẋ

]f
t
⊕274 [

xf , ẋ
]f
t+δt

⊕...
[
xf , ẋ

]f
t+δto

⊕
[
yt+δto −Hxf

t+δto

]
. Notably, this selection preserves the275

Markovian assumption inherent in the EnKF, as F
(
x|t+δto

t

)
= F (x(t+ δto)). How-276

ever, including forecast information from previous steps significantly enhances training277

stability, even though it comes at the cost of a higher dimensional input. This gives rise278

to the question of how long back-in-time should forecast states be considered.279

In this context, we introduce an RL agent responsible for correcting model fore-280

casts of the dynamical system states using the update equation:281

xa
t+δto = xf

t+δto + Fθ

(
x|t+δto

t , ẋ|t+δto

t ,yt+δto −Hxf
t+δto

)
, (10)

where, Fθ represents the RL agent’s policy, parameterized by θ. The policy takes as in-282

put the state vector x and the first-order derivatives ẋ at all time steps from t to t+283

δto at δt increments, as well as the innovation term y − Hxf . Since a stochastic pol-284

icy function is considered, the study examines the performance of a single RL agent by285

taking maximum probability action, and the performance of an ensemble of agents by286

randomly sampling the policy function for actions.287
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3.5 Training the DA agent288

The present experimental setup encompasses various hyper-parameters that require289

tuning to achieve satisfactory performance. The parameters subjected to tuning include290

the learning rate, γ, number of assimilation steps per episode (na,train), total number291

of episodes, value function coefficient (vf ), gradient clipping coefficient. Experiences have292

shown that the performance of a stable agent is most sensitive to γ, vf and gradient clip-293

ping.294

The process of hyper-parameter optimization commenced with a Latin hypercube295

sampling strategy to establish a baseline assessment of the acceptable range of values296

for these parameters. Subsequently, the training process is repeated using a new set of297

hyperparameters selected from within a finer-scale parameter space. For all experiments298

conducted, we employed the ADAM stochastic optimization algorithm (Kingma & Ba,299

2017) to optimize the loss function for the parameters of the actor and critic networks.300

The parameters utilized for training the agents, which underpin the results presented in301

this study, are detailed in Supplementary Table 1.302

The RL agent’s training objective centered on maximizing the cumulative rewards303

accrued over a specific time horizon. At each assimilation step, the reward was calcu-304

lated as the negative RMSE between the observation and the forecast generated by the305

preceding action. This choice was made because minimizing the RMSE is equivalent to306

maximizing the mutual information between the compared quantities and because the307

RMSE is ultimately the measure that is used to evaluate the performance of the agent.308

More specifically, since the experiments in this study feature a well-defined reference so-309

lution, we report the RMSE of both the RL and EnKF solutions with respect to the noise-310

free reference solution. The RMSE hence provides quantitative estimates that help ex-311

amine the assimilated solution in terms of forecast and analysis.312

3.6 Ensemble Kalman Filter313

The EnKF algorithm is commonly employed to estimate a discrete-time state pro-314

cess, denoted as x = {xn}n∈N, based on observations from a corresponding process y =315

{yn}n∈N. These processes are conventionally connected through a state-space system de-316

scribed as follows:317

{
xt = M(xt−1) + ut

yt = H(xt) + vt,
, (11)

where M represents the nonlinear dynamical model, that advances the system state from318

time t to t+δt, and Ht the observation operator that projects xt from the state space319

onto the observation space. Here, we make the simplifying assumption that H is linear,320

although EnKF algorithms can readily accommodate cases with nonlinear H. The noise321

terms, u = {ut}t∈N and v = {vt}t∈N are respectively the model and observation pro-322

cess noises. The EnKF algorithm assumes ut and vt to follow Gaussian distributions with323

zero means and covariances Qt and Rt, respectively. Furthermore, u and v are assumed324

to be independent, jointly independent and independent of the initial state x0.325

The filtering problem involves estimating the state, xt, based on observations up326

to time t. EnKF algorithms are primarily designed to provide a MC approximation of327

the system state distribution using an ensemble of system state realizations. From this328

ensemble, empirical estimates of the posterior mean state and associated error covari-329

ances are derived, typically in the form of sample means and covariances. The process330

starts with an analysis ensemble of size Nens denoted as {xa,i
t }

Nens

i=1 available at time t.331

Subsequently, the forecast ensemble at the next time step t+δt is computed by advanc-332

ing each member xa,i
t−1 forward in time using the dynamical model, described as:333
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xf,i
t+δt = M(xa,i

t ) + ηi, (12)

where ηi ∼ N (0,Qt). Upon receiving a new observation yt, each member of the fore-334

cast ensemble is adjusted using the Kalman gain Kt to generate the analysis ensemble335

{xa,(i)
t }

Nens

i=1 according to:336

xa,i
t = xf,i

t +Kt(y
i
t −Htx

f,i
t ), (13)

Kt = Pf
t HT

t (HtP
f
t HT

t +Rt)
−1, (14)

where Pf
t denotes the sample forecast error covariance computed from the forecast mem-337

bers in (12) and yi
n represents perturbed observations, i.e., yi

t = yt + µi
t with µi

t is a338

random noise sampled from the observational error distribution.339

4 Tracking Reference Solutions340

The RL-DA framework is systematically assessed under different experimental con-341

ditions. In the first scenario, an RL agent was trained to track a reference solution us-342

ing coarse-in-time, noise-free observations of all state variables. Given the stochastic na-343

ture of the agent’s policy function, the assimilated solution was not expected to precisely344

match the observations. Rather, the objective here was to investigate whether the cor-345

rections could maintain a reasonably close solution in comparison to the reference, and346

prevent them from diverging. Three training regimes were explored, involving observa-347

tions every 5, 50, and 100 δt, corresponding to δto of 0.005, 0.05, and 0.1 time units, re-348

spectively. Evolution curves of the RMSEs of the RL solutions are presented in the top349

row of Figure 2. The average RMSE is represented by a solid black line, encircled by a350

shaded region denoting one standard deviation (±σ), based on 50 repetitions of the ex-351

periment involving different reference solutions. The plots indicate that the RMSE is on352

average approximately 0.025 for an assimilation frequency T = δto/δt values of 5 and353

50, and increase to 0.05 for T = 100. Furthermore, the top row of Figure 3 illustrates354

RL and reference solutions for the z-variable in the Lorenz ’63 system, based on randomly355

selected reference trajectories. These curves highlight strong agreement between the RL356

solution and the reference, further corroborating the results presented in Figure 2.357

5 Assimilating Noisy Observations358

In a more realistic scenario, an ensemble of noisy observations are assimilated to359

improve the model forecast. This investigation explores the influence of noise levels (σ),360

T , statistical noise distribution, and partial state observability on the RL agent’s per-361

formance. Moreover, we conduct a comparative analysis by benchmarking the outcomes362

of the RL approach with those of the EnKF, which assimilates data from a relatively large363

ensemble comprising 50 realizations. To ensure robustness and statistical significance,364

each of the RL and EnKF experiments was repeated 50 times using different reference365

solutions, providing a statistically significant estimate of the RMSE.366

5.1 Noise Level367

We examine the scenario of fully observed state available at regular intervals of T =368

50, with additive noise drawn from a Gaussian distribution characterized by zero mean369

and standard deviation σ. We investigate the influence of varying σ on the assimilated370

solution by computing the RMSE for the complete trajectory, encompassing both fore-371

cast and analysis phases. We compare the results obtained from a single RL agent, an372

average solution derived from 50 distinct RL trajectories with actions randomly sam-373

pled from the agent’s policy, and the EnKF solution based on an ensemble comprising374
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(a) (N/A, 5, Id, 3x3) (b) (N/A, 50, Id, 3x3) (c) (N/A, 100, Id, 3x3) 

(d) (𝒩(0, 1), 50, Id, 3x3) (e) (𝒩(0, 2), 50, Id, 3x3) (f) (𝒩(0, 3), 50, Id, 3x3) 

(j) (𝒩(0, 1), 50, Id, 3x3) (k) (ℒ(0, 1), 50, Id, 3x3) (l) (𝒰(0, 1), 50, Id, 3x3) 

(g) (𝒩(0, 1), 5, Id, 3x3) (h) (𝒩(0, 1), 50, Id, 3x3) (i) (𝒩(0, 1), 100, Id, 3x3) 

(m) (𝒩(0, 1), 50, diag(1,0,0)) (n) (𝒩(0, 1), 50, diag(1,1,0)) 

 

(o) (𝒩(0, 1), 50, diag(1,0,1)) 

 

Figure 2. Evolution of the mean RMSE (solid lines) and its ±σ (shadowed) based on 50 ex-

periment repetitions. Plotted are results for different experiments (a)-(c) tracking a noise-free

reference solution, and for assimilating noisy observations in the case of (d)-(f) varying noise lev-

els using normally-distributed noise, (e)-(i) different assimilation window lengths, (j)-(l) different

noise distributions and (m)-(o) partial observability. The captions beneath each subplot describes

the experimental condition in the order of noise distribution, δto/δt the observation frequency

and H the observation operator.
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50 realizations. Note that this comparison places the RL agent at a slight disadvantage,375

as it was trained without any statistical information about the response of the system376

to observation noise. Nonetheless, we believe that the comparison with the EnKF pre-377

diction is meaningful as it represents the primary benchmark against which DA algorithms378

are evaluated, despite the more suitable comparison with the Kalman Filter. Notably,379

our algorithm consistently outperforms the Kalman Filter across all experiments and hence380

not shown.381

The second row of Figure 2 presents the RMSE evolution over time for the assim-382

ilated solution, resulting from RL and EnKF under different σ values. The plots suggest383

that, across all σ values considered, the EnKF solution exhibits slightly lower RMSE val-384

ues than those of a single RL agent, and slightly larger RMSEs than the RL solution ob-385

tained by averaging 50 action realizations. This observation yields two significant insights:386

firstly, the potential computational efficiency gain from employing a single RL agent for387

DA, reducing computational overhead by a factor of at least Nens, where Nens repre-388

sents the ensemble size. Secondly, using a single RL agent with a stochastic policy al-389

lows for sampling a diverse set of forecast corrections, yielding a new ensemble of state390

estimates that when averaged, generally results in a lower RMSE compared to an EnKF391

solution produced using an equivalent ensemble size.392

Figure 4 illustrates the transition of the PDF after the correction is made along-393

side the distribution of the corrections for the RL and EnKF. The results indicate that394

the RL distribution is wider and covers more of the observations points than the EnKF,395

meaning that the RL ensemble is richer in terms of information it provides even though396

individual realizations perform poorer than the EnKF solution. On the other hand, the397

mean of the RL solutions is closer to the reference solution than the average EnKF so-398

lution, aligning well with the results obtained earlier. The plot also shows the distribu-399

tion of the corrections, indicating that the distribution for the RL corrections is wider400

than that of the EnKF and suggesting that the EnKF is conservative when performing401

updates. Similar results for the remaining experiments are analyzed in the Supplemen-402

tary.403

As σ increases, noticeable high-amplitude, abrupt variations in RMSE are observed404

in the assimilated solutions, and the time-averaged RMSE increases. In the second row405

of Figure 3, we present the RL and reference evolution curves corresponding to the z-406

variable. The results demonstrate that the RL solution closely follows the reference so-407

lution for all σ values considered. However, as σ increases, slight deviations between the408

RL solution and the reference become evident, particularly at the peaks and troughs of409

the curves. Nevertheless, the RL agent successfully assimilates noisy data, at high noise410

levels.411

5.2 Assimilation Frequency412

Observational data may often become available at varying time frequencies, neces-413

sitating a DA scheme capable of accommodating different observation rates. In light of414

this requirement, we trained an RL agent to assimilate noisy data for distinct T , thereby415

examining the influence of high-frequency (T = 5), medium-frequency (T = 50), and416

low-frequency (T = 100) observations. The middle row of Figure 2 depicts the progres-417

sion of RMSE under varying T . Across all considered T , the results suggest that a sin-418

gle RL agent exhibits slightly larger RMSE compared to those achieved by the 50-member419

EnKF solution. For all cases, the 50 RL agent-averaged solution demonstrates a lower420

time-averaged RMSE in contrast to the 50-member averaged EnKF solution. This in-421

dicates that even when the RL agents do not communicate among each other, an MC422

averaged solution achieves lower RMSEs than the EnKF solution with 50 members. Nev-423

ertheless, these results underscore the need to develop more sophisticated RL approaches,424
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(a) (N/A, 5, Id, 3x3) (b) (N/A, 50, Id, 3x3) (c) (N/A, 100, Id, 3x3) 

(d) (𝒩(0, 1), 50, Id, 3x3) (e) (𝒩(0, 2), 50, Id, 3x3) (f) (𝒩(0, 3), 50, Id, 3x3) 

(j) (𝒩(0, 1), 50, Id, 3x3) (k) (ℒ(0, 1), 50, Id, 3x3) (l) (𝒰(0, 1), 50, Id, 3x3) 

(g) (𝒩(0, 1), 5, Id, 3x3) (h) (𝒩(0, 1), 50, Id, 3x3) (i) (𝒩(0, 1), 100, Id, 3x3) 

(m) (𝒩(0, 1), 50, diag(1,0,0)) (n) (𝒩(0, 1), 50, diag(1,1,0)) 

 

(o) (𝒩(0, 1), 50, diag(1,0,1)) 

 

Figure 3. Evolution of the z-variable for a sample RL solution (solid blue lines) and corre-

sponding reference (dashed red line). Plotted are results for different experiments (a)-(c) tracking

a noise-free reference solution, and for assimilating noisy observations in the case of (d)-(f) vary-

ing noise levels using normally-distributed noise, (e)-(i) different assimilation window lengths,

(j)-(l) different noise distributions and (m)-(o) partial observability. The captions beneath each

subplot describes the experimental condition in the order of noise distribution, T the observation

frequency and H the observation operator.
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potentially utilizing multi-agent RL (Albrecht et al., 2023), that incorporate ensemble425

information when performing the correction step.426

5.3 Noise Distribution427

A major limitation of the EnKF is its reliance on normally-distributed observations428

of system states. We investigate the impact of different statistical distributions of ob-429

servations on the DA performance of the RL agent. Specifically, we examine cases in-430

volving unbiased standard Gaussian, strongly positively biased standard log-normal, and431

weakly positively biased standard uniform observational noise. The 4th row of Figure432

2 presents the evolution curves of the RMSE for various observational noise distributions.433

The plots illustrate that for the case of standard Gaussian noise, both the single RL agent434

and EnKF solutions effectively assimilate noisy observational data with a slightly lower435

RMSE value achieved by the EnKF solution. On the other hand, the 50-realization av-436

eraged RL solution yields a lower RMSE compared to the 50-member EnKF solution.437

For log-normal and uniform noise distributions, the EnKF experiences large errors when438

assimilating noisy observations. Conversely, a single RL agent successfully assimilates439

these noisy observations, providing an assimilated solution that is close to the reference440

solution. Further improvements are observed when averaging the solutions obtained through441

policy sampling across 50 different realizations. The penultimate row of Figure 3 presents442

the RL and reference evolution curves for the z-variable. The plots indicate that the RL443

solution follows the reference solution reasonably well for all the noise distributions that444

were considered. The curves clearly illustrate that the RL agent is able to assimilate non-445

Gaussian noisy observations even when observations are perturbed with biased noise.446

5.4 Partial Observability447

The practicality of DA lies in its ability to assimilate observations that partially448

or even indirectly characterize the evolution of state variables within a dynamical sys-449

tem. This is particularly valuable when the full system state cannot be directly observed,450

such as in real-world climate and weather applications. To examine this setting, an RL451

agent was trained to assimilate noisy observations of select state variables–specifically,452

the x-variable alone, the x- and y-variables, and the x- and z-variables. The final row453

of Figure 2 portrays the evolution of RMSE of the aforementioned experiments. The curves454

demonstrate that, in all cases, the RL agent provides a suitable correction that adequately455

guides the evolution of the full state. It is noteworthy that the RMSE of the solution ob-456

tained using a single RL agent is comparable to, albeit slightly higher than that of the457

EnKF with an ensemble of 50 realizations. As observed in previous experiments, the av-458

eraged RL solution exhibits a lower average RMSE compared to the EnKF. To provide459

a tangible illustration of the assimilated solution’s behavior, the final row of Figure 3 presents460

curves depicting the temporal evolution of the z-variable for the case with partial sys-461

tem states observability. These plots depict that the RL assimilated solution generally462

tracks the reference, with occasional discrepancies that typically occur at the peaks and463

troughs, as expected.464

6 Discussion465

This paper introduces RL as a novel approach for learning DA corrections. Through466

extensive experimentation on the Lorenz ’63 dynamical system across various scenarios,467

we showcase the potential of the proposed approach. Our investigation encompasses both468

deterministic and stochastic settings, where RL agents are adeptly trained to track ref-469

erence solutions and assimilate noisy data under varying conditions of assimilation win-470

dow lengths, observational noise distributions, noise levels, and observed state variables.471
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(a) (𝒩(0, 1), 50, Id, 3x3) (b) (𝒩(0, 2), 50, Id, 3x3) (c) (𝒩(0, 3), 50, Id, 3x3) 

Figure 4. PDFs of the z-variable before (top) and after (middle) the correction step at time

t = 45 alongside the PDF of the correction (bottom) for the EnKF and RL solutions. The plots

are presented for the experiment analyzing the sensitivity of the data assimilation algorithms to

noise level.

The proposed RL-DA framework offers a paradigm shift by introducing new de-472

grees of freedom to forecast-correction schemes, allowing for a nonlinear update term that473

satisfies a predefined optimal criteria, such as minimizing the root-mean-squared error474

in this study, hence, facilitating the discovery of novel correction strategies that are in-475

formed by the dynamical system through agent-environment interaction experiences. Fur-476

thermore, RL imparts robustness to correction strategies, rendering them stable even in477

the presence of noisy perturbations and compounding errors. In this work, the RL agent478

minimizes the ℓ2 norm of the innovation term, a formulation demonstrated to be equiv-479

alent to maximizing the mutual information between observed state variables and their480

forecast counterparts. Notably, this framework eliminates the need for a reference database481

as opposed to supervised learning approaches, which are commonly established through482

the assimilation of noisy observational data using methods such as the EnKF or vari-483

ational methods (Talagrand & Courtier, 1987).484

However, incorporating RL into DA raises critical questions warranting further ex-485

ploration. While we employed the negative of the ℓ2 norm of the innovation term as the486

reward function in this study, more sophisticated functions considering system dynam-487

ics or ensemble information could potentially enhance the RL agent’s performance. More-488

over, since the RL agent is trained using the system of differential equations describing489

the evolution of a dynamical system, we speculate that this would force the agent to adapt490

and overcome model errors, when present. An overarching concern pertains to the phys-491

ical validity of RL-derived solutions, which remains an open, fundamental question as492

is the case with other data-driven approaches when applied to physics-based applications.493

Although we did not directly encounter violations of physical constraints in our present494

setup, this avenue remains unexplored and in need for further exploration.495

7 Open Research496

All software and data used in the study will be made available upon acceptance497

at https://github.com/mhammoud115/DA-RL.498
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γ max grad norm vf na,train

(N/A, 5, Id,3×3) 0.9 0.9 0.7 100
(N/A, 50, Id,3×3) 0.1 0.8 0.7 100
(N/A, 100, Id,3×3) 0.1 0.9 0.7 100
(N (0, 1), 50, Id,3×3) 0.9 0.95 0.95 1000
(N (0, 2), 50, Id,3×3) 0.05 0.8 0.7 1000
(N (0, 3), 50, Id,3×3) 0.1 0.9 0.9 1000
(N (0, 1), 5, Id,3×3) 0.25 0.8 0.7 100
(N (0, 1), 50, Id,3×3) 0.9 0.95 0.95 1000
(N (0, 1), 100, Id,3×3) 0.05 0.95 0.9 1000
(N (0, 1), 50, Id,3×3) 0.9 0.95 0.95 1000
(L(0, 1), 50, Id,3×3) 0.8 0.85 0.95 100
(U(0, 1), 50, Id,3×3) 0.1 0.9 0.8 100
(N (0, 1), 50, diag(1, 0, 0)) 0.25 0.8 0.8 500
(N (0, 1), 50, diag(1, 1, 0)) 0.3 0.9 0.7 500
(N (0, 1), 50, diag(1, 0, 1)) 0.25 0.8 0.95 1000

Table 1: Table describing the hyperparameters used to train the RL agent using the proximal policy optimization
algorithm. The table outlines the hyperparameters for all 15 experiments considered in the study. All agents were
trained using the ADAM optimization algorithm with a learning rate of 10−3. Moreover, all actor and critic networks
are comprised of densely connected multilayer perceptrons with two hidden layers with 128 neurons each.
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(a)
(
N (0, 1), 5, Id,3×3

)
(b)

(
N (0, 1), 50, Id,3×3

)
(c)

(
N (0, 1), 100, Id,3×3

)
Figure 1: PDFs of the z-variable before (top) and after (middle) the correction step at time t = 45 alongside the PDF
of the correction (bottom) for the EnKF and RL solutions. The plots are presented for the experiment analyzing
the sensitivity of the data assimilation algorithms to assimilation frequency. As can be seen from the plots, the RL
distributions for the z-variable and the correction are wider than that of the EnKF. Nevertheless, the RL distribution
covers more of the noisy observations than the EnKF does. Furthermore, the mode of the RL ensemble is closer to
the reference solution in comparison to the EnKF.

(a)
(
N (0, 1), 50, Id,3×3

)
(b)

(
L(0, 1), 50, Id,3×3

)
(c)

(
U(0, 1), 50, Id,3×3

)
Figure 2: PDFs of the z-variable before (top) and after (middle) the correction step at time t = 45 alongside the PDF
of the correction (bottom) for the EnKF and RL solutions. The plots are presented for the experiment analyzing
the sensitivity of the data assimilation algorithms to the distribution of the observational noise. The plots indicate
that while both the EnKF and RL distributions admit a high probability near the reference solution for the case
of Gaussian noise, the RL solution is much closer to the reference solution than the EnKF solution in the case of
lognormal and uniform noise. Furthermore, in the case of nongaussian noise, the EnKF correction term appears to
be much more aggressive than that of RL and generally appears not to have a particular structure.
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(a) (N (0, 1), 50, diag(1, 0, 0)) (b) (N (0, 1), 50, diag(1, 1, 0)) (c) (N (0, 1), 50, diag(1, 0, 1))

Figure 3: PDFs of the z-variable before (top) and after (middle) the correction step at time t = 45 alongside the PDF
of the correction (bottom) for the EnKF and RL solutions. The plots are presented for the experiment analyzing the
sensitivity of the data assimilation algorithms to partial observability. For the case of H = (1, 0, 0) and (1, 1, 0), the
plots indicate that the RL and EnKF distributions are comparable, where both cover most of the noisy observations
and have the mode of the distribution close to the reference solution. Whereas for H = (1, 0, 1), the RL distribution
is wider covering more of the noisy observations, and has the mode of the distribution closer to the reference solution
in comparison to the EnKF solution.

Figure 4: Plot illustrating the RMSE of the ensemble averaged solution as a function of the ensemble size Nens. The
plot indicates that the RMSE of the EnKF solution saturates at an ensemble size of 10 meaning that an ensemble
size of 50 is considered as a large cardinality ensemble for the Lorenz ’63 system. On the other hand, the RMSE of
the RL solution appears to keep on decreasing as Nens increases, with a much lower RMSE for small ensembles. This
suggests that the RL framework offers huge computational savings with an adequately reliable solution, especially
when computational resources are scarse.
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