Bridging adsorption behavior of confined methane across scales (H53H-06 2023 AGU Fall Meeting)

Lingfu Liu 1 and Saman Aryana 1

¹University of Wyoming

December 21, 2023

CMC - UF

CENTER FOR MECHANISTIC CONTROL OF WATER-HYDROCARBON-ROCK INTERACTIONS IN UNCONVENTIONAL AND TIGHT OIL FORMATIONS

Bridging adsorption behavior of confined methane across scales

<u>Lingfu Liu</u> Saman Aryana

University of Wyoming

lliu1@uwyo.edu

Outline

□ Research goals

1) investigate adsorption behavior

2) Scale-translating simulation from micro- to meso-scale

Outline

□ Research goals

1) investigate adsorption behavior

2) Scale-translating simulation from micro- to meso-scale

Research method

Phase Behavior

(Equation of state)

Molecular simulations (reveal confined physics at micro-scale)

Outline

□ Research goals

1) investigate adsorption behavior

2) Scale-translating simulation from micro- to meso-scale

Research method

Molecular simulations (reveal confined physics at micro-scale)

Lattice Boltzmann method (mimic physics at meso-scale)

6

2

9

GCMC simulations

Grand Canonical Monte Carlo (GCMC) method

Exchanges of molecules in Mont Carlo simulations

(1) Insertion (2) Deletion (3) Rotation (4) Translation

Validation of GCMC in bulk conditions

Exchanges of molecules in Mont Carlo simulations

(1) Insertion (2) Deletion (3) Rotation (4) Translation

Validation of GCMC in bulk conditions

□ Soave-Benedict-Webb-Rubin (SBWR)-EoS

$$Z = \frac{Pv}{RT} = 1 + \frac{B}{v} + \frac{D}{v^4} + \frac{E}{v^2} \left(1 + \frac{F}{v^2}\right) e^{-\frac{F}{v^2}} \qquad E_{ij} = 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}}\right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}}\right)^{12} \right]$$

Fugacity coefficient (FC), ϕ , and fugacity, f, :

$$\ln\varphi = \ln\frac{f}{P} = (Z-1) - \ln Z + \beta\psi + \frac{1}{4}\delta\psi^4 + \frac{\epsilon}{\phi} \left[\left(1 + \frac{1}{2}\phi\psi^2\right)e^{-\phi\psi^2} - 1 \right]$$

*Soave, Giorgio S. Fluid Ph. Equilib. 164.2: 157-172, 1999.

□ Peng-Robinson (PR)-EOS*

$$P = \frac{RT}{v-b} - \frac{a\alpha}{v^2 + 2bv - b^2}$$

Fugacity coefficient (FC), $\boldsymbol{\varphi}$, and fugacity, f, :

$$\ln\varphi = \ln\frac{f}{P} = (Z-1) - \ln\left[\frac{(v-b)P}{RT}\right] + \frac{a\alpha}{\sqrt{8}bRT}\ln\left[\frac{v+(1+\sqrt{2})b}{v+(1-\sqrt{2})b}\right]$$

**Peng, D.Y. and Robinson, D.B. Ind. Eng. Chem. Fundam. 15: 59-64, 1976.

A pure CH₄ system of a 5*5*5 nm³ box with periodic boundary conditions

(TraPPE-UA force field) (nvt ensemble + GCMC)

Validation of GCMC in bulk conditions

Adsorption density distributions

Molecule distributions of CH₄ in a 5nm pore connected to a non-confined pore at 10MPa and 333K

Adsorption density distributions

Molecule distributions of CH₄ in a 5nm pore connected to a nonconfined pore at 10MPa and 333K

Adsorption density distributions

5nm pore connected to a nonconfined pore at 10MPa and 333K

Lattice Boltzmann method

□ Lattice Boltzmann equation

 $g_i(\mathbf{x} + \vec{c}_i \delta t, t + \delta t) = g_i(\mathbf{x}, t) + \Omega_i^C(g_i(\mathbf{x}, t)) + \delta t F_i(\mathbf{x}, t)$

Lattice Boltzmann method

□ Lattice Boltzmann equation

 $g_i(\mathbf{x} + \vec{c}_i \delta t, t + \delta t) = g_i(\mathbf{x}, t) + \Omega_i^C(g_i(\mathbf{x}, t)) + \delta t F_i(\mathbf{x}, t)$

LB free energy model

 $\boldsymbol{F} = -\tilde{\rho}\nabla\mu + c_s^2\nabla\rho$

 μ is chemical potential, $\tilde{\rho}$ is mole density

 $-\tilde{\rho}\nabla\mu$ is the physical thermodynamic driven force, $\nabla\mu = RT\nabla\ln f$ at constant T (R is 8.314 J /mol/K)

 $c_s^2 \nabla \rho$ is used to cancel the ideal gas pressure induced by the collision-streaming process of the LBE.

Lattice Boltzmann method

□ Lattice Boltzmann equation

 $g_i(\mathbf{x} + \vec{c}_i \delta t, t + \delta t) = g_i(\mathbf{x}, t) + \Omega_i^C(g_i(\mathbf{x}, t)) + \delta t F_i(\mathbf{x}, t)$

LB free energy model

 $\boldsymbol{F} = -\tilde{\rho}\nabla\mu + c_s^2\nabla\rho$

 μ is chemical potential, $\tilde{\rho}$ is mole density

 $-\tilde{\rho}\nabla\mu$ is the physical thermodynamic driven force, $\nabla\mu = RT\nabla\ln f$ at constant T (R is 8.314 J /mol/K) $c_s^2\nabla\rho$ is used to cancel the ideal gas pressure induced by the collision-streaming process of the LBE.

□ Soave-Benedict-Webb-Rubin (SBWR)-EoS

$$Z = \frac{P}{RT\tilde{\rho}} = 1 + B\tilde{\rho} + D\tilde{\rho}^4 + E\tilde{\rho}^2(1 + F\tilde{\rho}^2)e^{-F\tilde{\rho}^2}$$

Fugacity, f,:

$$\ln f = \ln P + (Z - 1) - \ln Z + \beta \psi + \frac{1}{4} \delta \psi^4 + \frac{\epsilon}{\Phi} \left[\left(1 + \frac{1}{2} \Phi \psi^2 \right) e^{-\Phi \psi^2} - 1 \right]$$

Force schemes in LB

Discretization of gradient term

General form of calculating $\nabla \mu$

$$\nabla \mu(\boldsymbol{x}) = \sum_{i}^{N} \omega_{F,i}(\boldsymbol{x} + c\boldsymbol{e}_{i}\delta t)\mu(\boldsymbol{x} + c\boldsymbol{e}_{i}\delta t)\boldsymbol{e}_{i}$$

Force schemes in LB

General form of calculating $\nabla \mu$

$$\nabla \mu(\boldsymbol{x}) = \sum_{i}^{N} \omega_{F,i}(\boldsymbol{x} + c\boldsymbol{e}_{i}\delta t)\mu(\boldsymbol{x} + c\boldsymbol{e}_{i}\delta t)\,\boldsymbol{e}_{i}$$

Treatment of fluid-wall interactions

 $\mu(i-1) = \frac{\textit{G}_{fs}}{\textit{G}_{fs}} * \mu(i),$ (0 < $\frac{\textit{G}_{fs}}{\textit{G}_{fs}}$ < 1 represent attractive force)

Density profiles comparison in nano-slits

Density comparison between GCMC-MD reference data and LB simulation results with various pore size and pressure conditions.

Obtained values of $G_{\rm fs}$

2MPa	5MPa	10MPa
0.809	0.803	0.700

Higher pressure Larger attractive force Smaller values of $G_{\rm fs}$

□ Bridging adsorption behavior of confined methane across scales

ACKNOWLEDGEMENTS

CENTER FOR MECHANISTIC CONTROL OF WATER-HYDROCARBON-ROCK INTERACTIONS IN UNCONVENTIONAL AND TIGHT OIL FORMATIONS

This work was supported as part of the Center for Mechanistic Control of Unconventional Formations (CMC-UF), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science under *DOE (BES) Award DE-SC0019165.*

Thank you!

lliu1@uwyo.edu