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GCMC simulations

O Grand Canonical Monte Carlo (GCMC) method
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Validation of GCMC In bulk conditions

U Soave-Benedict-Webb-Rubin (SBWR)-EoS
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*Soave, Giorgio S. Fluid Ph. Equilib. 164.2: 157-172, 1999.

O Peng-Robinson (PR)-EOS*
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Fugacity coefficient (FC), ¢, and fugacity, f, :
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**Peng, D. and Robinson, D.B. Ind. Eng. Chem. Fundam. 15: 59-64, 1976.



Validation of GCMC In bulk conditions

—_
\]

——NIST
[ X NPT
B GCMC-MD (FC from PR-EoS)
L & GCMC-MD (FC from SBWR-Eo
10 GCMC-MD (Optimized F

—_
o
L

(o]

S

Mole density, kmol/m3
[e)}

N
1

(e}
1

0 5 10 15 20 25 30
Input pressure, MPa

w
[}

——Linear

X NPT

N
wu

L GCMC-MD (FC from PR-EoS)
¢ GCMC-MD (FC from SBWR-EoS
O GCMC-MD (Optimized FC)

N
(e}

A pure CH, system
of a 5*5*5 nm3 box with
periodic boundary conditions

—_
o

Output pressure, MPa
—_
ol

€3}

Pure-fluid box with full periodic boundary condition
presents bulk fluids

(TraPPE-UA force field)

(nvt ensemble + GCMC) 0 5 10 15 20 25 30
Input pressure, MPa

o




Adsorption density distributions

5nm

Carbon sheet

Molecule distributions of CH, in a
5nm pore connected to a non-
confined pore at 10MPa and 333K



Adsorption density distributions

5nm

Carbon sheet

Molecule distributions of CH, in a
5nm pore connected to a non-
confined pore at 10MPa and 333K

Averaging
density
in time

= [y )
o Ul o

Mole density, kmol/m?3

o

0

T B ) " Rt &
| e d WHWS " AL U o > b
j 5‘;’ —o— Adsorption density distribution g j
) bl
‘| - - - Bulkdensity 1
P w o 9~ g »
4 a0 6 G-
p »
X )
P |
P | R
R | R
R K |
) e
2 )
4 )
) )
4 R
T R
R ?

25-2-15-1-050 05 1 15 2 25
Position, nm

Density profiles of CH, in @ 5nm pore
connected to a non-confined pore at
10MPa and 333K



Adsorption density distributions

5nm

Carbon sheet

Molecule distributions of CH, in a
5nm pore connected to a non-
confined pore at 10MPa and 333K

Averaging
density
in time

Mole density, kmol/m?3

0

104 4 { S
1 & —o— Adsorption density distribution ¢ ; J
O ) ()
L ‘| --- Bulkdensity 1
el oo © |
1 R
1
1 1
I |
[ 1
&/ y > 4
1 N
L 1
T 1
1 1
>/ |
>/ I >)
1 1
5)- “g.f
tx ' >;
>/ | ‘{ 4
1 |
{ il 1 L | — 1 1 'l 1 1 )
-25-2-15-1-050 05 1 15 2 25

Position, nm

Density profiles of CH, in @ 5nm pore
connected to a non-confined pore at
10MPa and 333K

Change
pressure

Change
pore size

Mole density, kmol/m?3
= = N N w w S
vl o ol o vl o Ul o

L 10nm N

™~ A

! B nm R !

|

: ” 5nm | I

[~ ] 1
—30MPa |

54 -3-2-10 12 3 4 5
Position, nm

Density profiles vary with pressure
and pore size is fixed at 333K



Adsorption in irregular nanopores

U Nanopores with triangle structure on surface U Nanopores with rectangle structure on surface
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Lattice Boltzmann method
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c2Vp is used to cancel the ideal gas pressure induced by the collision-streaming process of the LBE.
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Force schemes in LB

O Discretization of gradient term
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L Treatment of fluid-wall interactions
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Density profiles comparison in nano-slits
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Adsorption in irregular nanopores
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Adsorption in irregular nanopores
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Summary

U Bridging adsorption behavior of confined methane across scales

Intermolecular force LB LB
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