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Abstract

We examine tropical rainfall from Geophysical Fluid Dynamics Laboratory’s Atmosphere Model version 4 (GFDL AM4) at

three horizontal resolutions of 100 km, 50 km, and 25 km. The model produces more intense rainfall at finer resolutions, but a

large discrepancy still exists between the simulated and the observed frequency distribution. We use a theoretical precipitation

scaling diagnostic to examine the frequency distribution of the simulated rainfall. The scaling accurately produces the frequency

distribution at moderate-to-high intensity ([?]10 mm day -1). Intense tropical rainfall at finer resolutions is produced primarily

from the increased contribution of resolved precipitation and enhanced updrafts. The model becomes more sensitive to the

grid-scale updrafts than local thermodynamics at high rain rates as the contribution from the resolved precipitation increases.

On the contrary, the observed tropical precipitation extremes do not show a strong sensitivity to the grid-scale updrafts.
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Key Points:7

• Increasing horizontal resolution yields more intense tropical rainfall but not the8

accurate frequency distribution.9

• Theoretical precipitation scaling accurately captures the frequency distribution10

of the simulated precipitation at moderate-to-high intensity11

• Simulated precipitation extremes are more sensitive to the grid-scale updrafts than12

observed precipitation extremes13
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Abstract14

We examine tropical rainfall from Geophysical Fluid Dynamics Laboratory’s At-15

mosphere Model version 4 (GFDL AM4) at three horizontal resolutions of 100 km, 5016

km, and 25 km. The model produces more intense rainfall at finer resolutions, but a large17

discrepancy still exists between the simulated and the observed frequency distribution.18

We use a theoretical precipitation scaling diagnostic to examine the frequency distribu-19

tion of the simulated rainfall. The scaling accurately produces the frequency distribu-20

tion at moderate-to-high intensity (≥10 mm day−1). Intense tropical rainfall at finer res-21

olutions is produced primarily from the increased contribution of resolved precipitation22

and enhanced updrafts. The model becomes more sensitive to the grid-scale updrafts than23

local thermodynamics at high rain rates as the contribution from the resolved precip-24

itation increases. On the contrary, the observed tropical precipitation extremes do not25

show a strong sensitivity to the grid-scale updrafts.26

Plain Language Summary27

State of the art global scale climate models have horizontal resolutions of the or-28

der of tens of kilometers. However, these resolutions are much lower than the scales re-29

quired to resolve tropical convection. This study investigates whether a resolution in-30

crease from 100 km to 25 km leads to any notable improvements in tropical rainfall sim-31

ulation. Higher resolution simulations capture more intense rainfall events that are missed32

by their coarser counterparts. However, they struggle to capture the accurate frequency33

distribution of intense rainfall events. In addition, intense precipitation events in higher34

resolution simulations have different environmental conditions than the observed intense35

precipitation events. Results reported in this study underscore the importance of scru-36

tinizing and carefully interpreting the outcomes of high-resolution climate model sim-37

ulations.38

1 Introduction39

The representation of tropical rainfall is severely limited by the horizontal resolu-40

tion of climate models, which is usually at the order of 100 km, whereas typical widths41

of upward motion in mature convective systems are in order of a few hundred meters to42

several kilometers (LeMone & Zipser, 1980; Matsuno, 2016). Convective systems inter-43

act with atmospheric circulation at various scales ranging from mesoscale to planetary-44

scale motions (Tomassini, 2020). Though many efforts have been made to count for the45

unresolved convection via the cumulus parameterization, these schemes are far from per-46

fect and suffer large uncertainties. Therefore, increasing the resolution and improving47

cumulus parameterization remain the major focus areas of model development.48

Though increasing horizontal resolution has model-dependent impacts, some com-49

mon features are shared by a variety of general circulation models. They include increased50

contribution from the resolved precipitation, an intensified mean hydrological cycle and51

a higher frequency of precipitation extremes (Pope & Stratton, 2002; Demory et al., 2014;52

Hertwig et al., 2015; Terai et al., 2018; Herrington & Reed, 2020). Studies have also re-53

ported improved simulations of tropical and extratropical cyclones as the horizontal res-54

olution increases (Zhao et al., 2009; Jung et al., 2012; Bacmeister et al., 2014; Demory55

et al., 2014). High-resolution (∼50 km) versions of the Geophysical Fluid Dynamics Lab-56

oratory’s (GFDL) gerneral circulation model have shown significant improvements in sim-57

ulations of tropical cyclones, atmospheric rivers, mesoscale convective systems and pre-58

cipitation extremes (Zhao et al., 2009; Murakami et al., 2020; Zhao, 2020, 2022; Dong59

et al., 2023; Jong et al., 2023).60
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Finer scales of resolved motions and a better representation of orography in high61

resolution simulations are recognized to improve the representation of precipitation ex-62

tremes. Studies show that stronger vertical motions result in strengthening of precip-63

itation (eg., Terai et al. (2018); Herrington and Reed (2020)). However, a recent study64

using aquaplanet simulations at resolutions ranging from 50 km to 6 km (Lin et al., 2022)65

show that increasing vertical motion do not fully explain the changes in precipitation in-66

tensity in high resolution simulations. Donner et al. (2016) highlight the need to assess67

the influence of vertical motions in examining the impacts of changing resolution and68

simulating convection in the models. Precipitation extremes over land, the global mean69

precipitation rates, their patterns and evaporation rate do not always show consistent70

improvement as the model resolution increases (Bador et al., 2020; Pope & Stratton, 2002;71

Hourdin et al., 2013; Bacmeister et al., 2014; Hertwig et al., 2015). Therefore, it is es-72

sential to develop a process-based understanding of how increasing resolution changes73

the simulation of rainfall. In the present work, we use GFDL’s AM4 model to examine74

tropical rainfall distribution for three different resolutions viz., 100 km, 50 km and 2575

km. We assess the frequency distribution of rainfall rates using the theoretical precip-76

itation scaling diagnostic proposed by O’Gorman and Schneider (2009).77

2 Data and methods78

We use the GFDL atmospheric model version 4 (AM4) (Zhao et al., 2018a, 2018b)79

at three horizontal resolutions. The default GFDL AM4 utilizes a cubed-sphere topol-80

ogy for the atmospheric dynamical core with 96×96 grid boxes (c96) per cube face re-81

sulting in a horizontal resolution of ∼100 km. Here, we use two additional high resolu-82

tion AM4 versions with 192×192 (c192) and 384×384 (c384) grid boxes per cube face,83

corresponding to horizontal resolutions of ∼50 km and ∼25 km, respectively. The de-84

fault GFDL AM4.0 (Zhao et al., 2018a, 2018b) serves as the atmospheric component of85

GFDL’s physical climate model (CM4, Held et al. (2019)), which participated in phase86

6 of the Coupled Model Intercomparison Project (CMIP6, Eyring et al. (2016)). c192AM487

(Zhao, 2020) participated in the CMIP6 High Resolution Model Intercomparison Project88

(HighResMIP, Haarsma et al. (2016)). All three resolutions share the same atmospheric89

parameter setting as c192AM4 to remove uncertainties due to tuning. The parameter90

setting is documented in Zhao (2020). The default AM4 model’s performance is reported91

in Zhao et al. (2018a) and Zhao et al. (2018b). The performance of c192AM4 in simu-92

lating the mean precipitation and precipitation extremes is documented in detail in Zhao93

(2020) and Zhao (2022).94

The global mean precipitation in three different resolutions viz., c96, c192, and c38495

are 2.92 mm day−1, 2.96 mm day−1, and 2.99mm day−1, respectively for the period 1980-96

2000. The global mean precipitation increases progressively as the horizontal resolution97

of the model increases. Earlier studies (Duffy et al., 2003; Terai et al., 2018; Herrington98

& Reed, 2020) have noted a similar effect of horizontal resolution on simulated precip-99

itation. These values are higher than the observed global mean precipitation of 2.67 mm100

day−1 obtained using the the Global Precipitation Climatology Project (GPCP) dataset101

one degree daily dataset (1DD) Version 1.3 (Huffman et al., 2001) over the same period.102

Disagreement in the net longwave and shortwave fluxes at the surface (Supplementary103

Table 1) compared to observations (Trenberth et al., 2009) hint towards the differences104

in the mean simulated precipitation than the observed values. However, it is also impor-105

tant to note that the reliability of the GPCP dataset has been controversial (Gehne et106

al., 2016) and the radiative fluxes at the surface in the model lie within the range of dif-107

ferent observational estimates (Trenberth et al., 2009; Stephens et al., 2012; Wild et al.,108

2015; L’Ecuyer et al., 2015). The excessive precipitation in the Western Pacific near the109

Philippines (also known as the “‘Philippines hotspot” bias) and the dry biases over the110

eastern Atlantic and the Indian Ocean for c96 (Supplementary Fig. 1a) are reduced in111

c192 and c384 (Supplementary Fig. 1 b,c). However, the maritime continents (Supple-112
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mentary Fig. 1 b,c) and the eastern Pacific Inter Tropical Convergence Zone (ITCZ) move113

towards a wetter bias as the resolution increases. Tuning the model could improve some114

of the flux biases and thereby the mean precipitation biases. Zhao et al. (2018b) has in-115

vestigated the effect of tuning on GFDL’s AM4 precipitation in detail.116

The model runs are analyzed for the historical period (1980-2000) at the daily fre-117

quency. We use daily precipitation dataset from the Tropical rainfall measurement mis-118

sion (TRMM) version 3B42 (Huffman et al., 2007) and GPCP (Huffman et al., 2001) to119

compare the model performance with observations. The comparison of the model runs120

with observations are done for a common period of 1998-2000 over the tropics (30◦S-30◦N).121

In addition, we use the daily mean of the European Centre for Medium-Range Weather122

Forecasts (ECMWF) Reanalysis v5 (ERA5) (Hersbach et al., 2020) data at a horizon-123

tal resolution of 1◦×1◦ for tropospheric temperature and winds. All model and obser-124

vational variables are regridded to 1◦×1◦ horizontal resolution using conservative remap-125

ping algorithm (python-cdo, (Schulzweida, 2022)). Histograms are normalized by a to-126

tal number of data points that includes both rainy and non-rainy days.127

3 Results128

3.1 Rainfall intensity and frequency distribution129

Figure 1 shows the normalized histogram of total daily precipitation intensity from130

the model at three resolutions (c96, c192, and c384) and observations (TRMM and GPCP).131

The normalized histogram (Fig. 1a) shows the most frequent nonzero rain rate. The sim-132

ulated tropical rainfall peaks at ∼ 1 mm day−1. On the other hand, GPCP has a peak133

near ∼10-15 mm day−1. All three resolutions produce more frequent rainfall than ob-134

servations at lower rainrates (≤ 10 mm day−1). This too frequent too light precipitation135

bias (also known as drizzle bias) is a shared problem in the most general circulation mod-136

els (Sun et al., 2006; Wilcox & Donner, 2007; Stephens et al., 2010; Pendergrass & Hart-137

mann, 2014). It is also important to note that the observations suffer from the under-138

estimation of light rainfall (Behrangi et al., 2012). TRMM has a broad frequency dis-139

tribution without any clear peak. Precipitation radar aboard TRMM has a minimum140

detectable signal of 17 dBz, making it poorly suited for detection of light rainfall (Behrangi141

et al., 2012; Kummerow et al., 1998). The discrepancy in the frequency of light rainfall142

is therefore partly attributed to the observational uncertainty.143

The impact of horizontal resolution is evident at moderate rainfall rates. Interest-144

ingly, c384 has a notable reduction in the frequency near the secondary peak for c96 and145

c192 (∼ 3−10 mm day−1). The bimodal frequency distribution of rainfall in c96 and146

c192 becomes monomodal in c384. The removal of a secondary peak in c384 is mainly147

due to the reduction in parameterized rainfall in c384 at these rainrates (Fig. 1c). All148

three resolutions produce less frequent rainfall at moderate rainfall rates (20−40 mm149

day−1) compared to observations. On the contrary, the frequency of heavy rainfall (≥150

100 mm day−1) is overestimated compared to GPCP in all three resolutions. The fre-151

quency of high precipitation events in the model is closer to TRMM than GPCP. The152

retrieved precipitation in TRMM is shown to be more reliable than GPCP at higher rain153

rates (Behrangi et al., 2012). The frequency of heavy rainfall in c384 and c192 is over-154

estimated compared to TRMM, whereas it is underestimated in c96.155

The normalized histogram with a linear rainfall intensity scale (Fig. 1b) highlights156

the upper tail of rainfall distribution. The model produces progressively more frequent157

high rainfall events as the resolution increases. A few rare events with very high inten-158

sity (≥ 300 mm day−1) are captured by c384 and c192 but not by c96. The observed159

precipitation tail goes up to 1000 mm day−1, which is not captured by either resolution.160

On the contrary, it is also important to note that the frequency of high precipitation events161

(∼200-400 mm day−1) is overestimated in high resolution simulations (c192 and c384)162
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Figure 1. Normalized histogram of the daily mean rainfall (a) over logarithmic-scaled bins

(rainfall intensity in mm day−1), (b) over a linear-scaled bins (rainfall intensity) and a loga-

rithmic scale for y-axis (normalized histogram) to highlight the upper end of the distribution.

Normalized histogram for (c) convective rainfall, (d) resolved/large-scale rainfall. The simulated

(c96, c192, c384) and observed (TRMM and GPCP) precipitation datasets are regridded to

1◦×1◦ horizontal resolution using conservative remapping algorithm. Histograms are normalized

by a total count of datapoints considering both rainy and nonrainy days. The figure is plotted

for an overlap period of 1998-2000 for the model runs and observations over the tropics (30◦S-

30◦N).

compared to the observations. This analysis shows that the model produces intense trop-163

ical rainfall with the increasing horizontal resolution, but it overestimates the frequency164

of precipitation extremes.165

3.2 Factors affecting the rainfall intensity distribution166

Increasing the horizontal resolution changes the partitioning between precipitation167

produced by the convection scheme (parameterized precipitation, prec conv) and the large-168

scale scheme (resolved precipitation, prec ls). The contribution of resolved precipitation169

to the mean precipitation in the tropics increases from about 30% in c96 to more than170

50% in c384 (Supplementary Fig. 2). The normalized frequency distribution for convec-171

tive rainfall shifts towards lower intensity as the horizontal resolution increases (Fig. 1c).172

It is indicated by a progressively higher peak of normalized histogram at low convective173
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Figure 2. (a) 2D bin mean of normalized count (shading) and mean precipitation intensity (in

mm day−1 indicated by contours) as a function of convective (prec conv) and large-scale (prec ls)

rainfall. (b) 2D bin mean precipitation intensity (mm day−1) as a function of low-level moisture

(q850) and mid-tropospheric pressure velocity (ω500). The figure is plotted for model simulations

over a historical period of 1980-2000.

rainfall rates (≤2 mm day−1) and a reduction in the frequency at higher rainrates as the174

horizontal resolution increases (Fig. 1c). On the other hand, the frequency of large-scale175

rainfall exhibit a reduction in the peak at low rainfall rates and an increase at high rain176

rates for high resolution runs (Fig. 1d). This shows that the large-scale scheme progres-177

sively does more work at high rainfall intensities as the horizontal resolution increases.178

Figure 2 a-c shows the joint distribution of the resolved and the parameterized precip-179

itation. The shading represents the 2D bin mean normalized count and the contours show180

the mean precipitation intensity. The count is normalized by a total number of datapoints181

considering both rainy and non-rainy days. For c96, both parameterized and large-scale182

schemes contribute almost equally at all precipitation intensities. However, the parti-183

tioning between parameterized and resolved precipitation changes in c192 and c384. In-184

tense rainfall in c192 and c384 comes mainly from the large-scale scheme. Convective185

rainfall in c96 contributes up to a maximum intensity of 300 mm day−1. However, it de-186
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Figure 3. Normalized histogram of the model simulated mean daily rainfall (solid lines) and

rainfall obtained from the theoretical precipitation scaling (marked-dotted lines) using equation

(1). The histograms are plotted for the model runs over a historical period of 1980-2000.

creases below 200 mm day−1 in c192 and it decreases even further in c384 (below 120187

mm day−1).188

Two important ingredients to understand the rainfall intensity distribution are mois-189

ture and updraft velocity. We look at the 2D distribution of precipitation intensity as190

a function of low level moisture (q850) and mid-tropospheric updraft velocity (ω500) for191

three different resolutions (Fig. 2). As expected, rainfall intensity increases as moisture192

content and vertical velocity increase. The range of moisture content in three resolutions193

is not much different, however, the maximum vertical velocity increases by a factor of194

∼ 1.7 from c96 to c192, and about ∼2.3 from c96 to c384. Intense rainfall at finer res-195

olutions mainly occurs at high updraft velocity (Fig. 2 e, f). In addition, the sensitiv-196

ity of the precipitation intensity to high updraft velocity is contributed mainly by the197

resolved precipitation (Supplementary Fig. 3). In all three resolutions, large-scale pre-198

cipitation shows a more sensitivity to updrafts than moisture (Supplementary Fig. 3 d-199

f). The parameterized precipitation instead shows sensitivity to low-level moisture un-200

like the resolved precipitation (Supplementary Fig. 3 a-c). Qualitative similarities be-201

tween the total rainfall intensity distribution (Fig. 2 d-f) and the resolved precipitation202

(Supplementary Fig. 3 d-f) suggests that the sensitivity of precipitation intensity to the203

updraft velocity at high rainrates comes primarily from the resolved precipitation. This204

analysis indicates that as the horizontal resolution increases, the increase in rainfall in-205

tensity is associated primarily with the enhanced updraft velocity rather than the mois-206

ture content, and these changes come mainly from resolved (large-scale) precipitation.207

3.3 Precipitation scaling208

To further understand the impact of horizontal resolution on the rainfall frequency209

distribution, we use the precipitation scaling diagnostic proposed by O’Gorman and Schnei-210

der (2009). This diagnostic has been used primarily to study the changes in precipita-211

tion extremes with warming (O’Gorman, 2012; Singh & O’Gorman, 2014; Pfahl et al.,212

2017; Nie et al., 2018). The scaling is given by213

P ≈ −
{
ω
∂qs
∂p
|θ∗
}

(1)

where precipitation intensity (P ) is calculated from a column integrated product of pres-214

sure velocity (ω) and the vertical derivative of saturation specific humidity taken along215

a moist adiabat profile( ∂qs
∂p |θ∗). The right hand side of the equation (1) corresponds to216

the column integrated condensation rate. The condensation maintains saturation of the217
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rising air parcel. This scaling assumes that precipitation efficiency is ∼ 1 and all of the218

condensed water vapor falls as rainfall. The diabatic effects other than latent heating219

are neglected (θ∗ is conserved; shown by Muller et al. (2011)). This scaling is expected220

to work better at higher precipitation intensities when air parcels are nearly saturated.221

However, we test it at all intensities.222

The scaling captures the spatial distribution of deep convective areas of the trop-223

ics quite well, but it underestimates the intensity of the mean rainfall (Supplementary224

Fig. 4). Despite the assumptions mentioned earlier, the scaling captures the frequency225

distribution of rainfall at moderate to high intensity remarkably well in all three reso-226

lutions (Fig. 3 a). The scaling does not capture the model drizzle. We will discuss the227

possible reasons for it shortly. The frequency distribution of rainfall obtained by the scal-228

ing is monomodal. It peaks near 5-8 mm day−1 for all three resolutions, which is close229

to the secondary peak of rainfall frequency distribution in c96 and c192. The scaling ac-230

curately produces this peak and captures the increasing magnitude from c384 to c96. Af-231

ter this peak, the precipitation scaling closely follows the frequency of simulated precip-232

itation in all three resolutions. At moderate and high rainfall intensities, it overestimates233

the frequency of model simulated precipitation. However, the scaling captures the over-234

all shape at high rain rates, including a peak in c384 near 50 mm day−1.235

As the contribution from radiative fluxes other than latent heat is non-negligible236

(θ∗ is not conserved) at low rainfall intensity, the scaling is not expected to work at low237

rain rates. In addition, the model drizzle mainly comes from the subsaturated regions238

(q � qs) (Terai et al., 2016). Earlier work suggests that a crude representation of pa-239

rameterized convection could be the cause of drizzle bias in the models (Suzuki et al.,240

2013; Stephens et al., 2010). As we use grid-scale (resolved) variables to estimate the pre-241

cipitation scaling, it can not capture subgrid scale convective processes. The above rea-242

sons possibly explain why precipitation scaling does not reproduce an accurate frequency243

of the model drizzle. In addition, the above scaling formulation does not include precip-244

itation efficiency. The large-scale precipitation efficiency is affected by several factors such245

as mid level moisture, Convective available potential energy (CAPE), convective organ-246

ization and microphysical processes (Muller & Takayabu, 2020; Zhao et al., 2016; Singh247

& O’Gorman, 2014). The overestimation of high rain rates by the scaling is likely due248

to the omission of precipitation efficiency in the calculations.249

We plot the 2D bin mean of normalized precipitation intensity as a function of column-250

integrated vertical velocity ({ω}) and the column-integrated vertical derivative of sat-251

urated specific humidity (
{
∂qs
∂p |θ∗

}
) (Fig. 4). As the maximum precipitation intensity252

in simulations and observations vary over a large range (Fig. 1 b), we normalize precip-253

itation intensity by the maximum 2D bin mean value for each dataset. The precipita-254

tion intensity distribution without normalizing has similar features (Supplementary Fig.255

5). The increase in precipitation intensity at higher resolution comes mainly from the256

changes in updraft velocity rather than changes in thermal stratification (
{
∂qs
∂p |θ∗

}
) as257

the horizontal resolution increases (Fig. 4 a-c). Intense precipitation events in the model258

are strongly tied to the grid-scale updrafts unlike observations (Fig. 4 e-f). We see that259

observed heavy precipitation events can occur even at moderate updrafts if the thermal260

stratification (Fig. 4 e-f, Supplementary Fig. 5 e-f) or low-level moisture (Supplemen-261

tary Fig. 6 e-f) is high. Interestingly, ERA5 precipitation is also tied to stronger grid-262

scale updrafts but relatively to a lesser extent than GFDL’s AM4 model. In c384, the263

grid-scale updrafts are much more intense than the reanalysis updrafts. The maximum264

grid-scale updraft at 500 hPa in c384 is about two times the maximum grid-scale updraft265

in ERA5 (Supplementary Fig. 6). It should be noted that the updrafts in reanalysis datasets266

suffer from uncertainties (Uma et al., 2021). Nonetheless, observational studies have noted267

the importance of local thermodynamics for tropical rainfall and the onset of precipi-268

tation (Houze Jr, 1989; Bretherton et al., 2004; Neelin et al., 2022). A typical size of up-269

drafts in tropical convective systems is in order of a few kilometers (LeMone & Zipser,270

–8–
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Figure 4. 2D bin mean of normalized precipitation intensity as a function of column-

integrated pressure velocity {ω} and the column-integrated vertical derivative of saturated

specific humidity along the moist adiabat
{
∂qs
∂p
|θ∗
}

. Precipitation intensity (in mm day−1) is

normalized by maximum 2D bin value for each subplot. The figure is plotted using the data for

an overlap period of 1998-2000.

1980; Matsuno, 2016), we would expect the cancellation of updrafts and downdrafts when271

averaged over an area of ∼ 1◦×1◦. In turn, we expect to see a less dependence of grid-272

scale updrafts for observed precipitation extremes.273

Intense precipitation in c384 and c192 are closely tied to strong updrafts. The sen-274

sitivity of the simulated precipitation to the grid-scale updraft velocity mainly comes from275

the resolved precipitation and not from the parameterized precipitation (Supplementary276

Fig. 3). In this regard, tropical precipitation extremes in high resolution simulations ex-277

hibit similarities to grid-scale storms (Held et al., 2007). This suggests that even though278

the model is able to capture high intensity events as the horizontal resolution increases,279

with the increased contribution from the resolved precipitation, it comes at the expense280

of the model being overly sensitive to the grid-scale updraft velocity.281
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4 Discussion282

We examine the distribution of tropical rainfall using GFDL’s AM4 model at three283

horizontal resolutions viz., c96 (∼100 km), c192 (∼50 km) and c384 (∼25 km). As the284

horizontal resolution increases, we observe a progressive increase in the upper percentile285

of rainfall (precipitation extremes), increased contribution from the resolved precipita-286

tion and enhanced vertical velocities. These features are similar to earlier studies using287

different general circulation models (eg., Terai et al. (2018); Herrington and Reed (2020)).288

The model overestimates the frequency of light rainfall (drizzle bias) and underestimates289

the moderate rainfall in all three simulations. At finer resolutions (c192 and c384), the290

model produces more intense rainfall, but it overestimates the frequency of occurrence291

of heavy rainfall events compared to observed datasets (Fig. 1). The increase in precip-292

itation extremes at high resolution is primarily contributed by the resolved precipitation293

and mainly comes from enhanced updrafts (Fig. 2).294

We use theoretical precipitation scaling proposed by O’Gorman and Schneider (2009)295

to assess the frequency distribution of tropical rainfall. The scaling utilizes the grid-scale296

vertical velocity and temperature profiles to estimate an approximate precipitation in-297

tensity. Despite this simple formulation, the scaling produces the frequency distribution298

of model simulated precipitation remarkably well at moderate to high rain rates (Fig-299

ure 3). Earlier studies have used the scaling to examine changes in precipitation extremes300

(O’Gorman, 2012; Singh & O’Gorman, 2014; Pfahl et al., 2017; Nie et al., 2018). In the301

GFDL model, the scaling reproduces the frequency distribution of tropical rainfall even302

at moderate rainfall rates (≥ 10 mm day−1). This could be a model dependent result,303

but it would be interesting to check the scaling for the other general circulation mod-304

els.305

Precipitation extremes in the model are closely tied to the grid-scale intense up-306

drafts and relatively less sensitive to thermal stratification (Figure 4 a-c) and low-level307

moisture (Supplementary Fig. 6 a-c). In observed datasets, however, intense precipita-308

tion events can occur at moderate updraft velocities if thermal stratification (Figure 4309

e-f) and low-level moisture are high (Supplementary Fig. 6 e-f). This high sensitivity310

of the model to updrafts comes mainly from the resolved precipitation (Supplementary311

Fig. 3). Convective precipitation shows sensitivity to local thermodynamics mimicking312

the observed tropical precipitation behavior closely (Bretherton et al., 2004; Neelin et313

al., 2022). On the other hand, resolved precipitation has been shown to capture geograph-314

ical patterns and rain rates (Kooperman et al., 2018) better than parameterized precip-315

itation. Convective precipitation also struggles to capture the accurate diurnal cycle of316

precipitation (Zhao et al., 2018a). This study suggests that the amount of rainfall ob-317

tained from the resolved precipitation and its sensitivity to the grid-scale vertical mo-318

tion should be examined carefully atleast until the updrafts and downdrafts in convec-319

tive systems are resolved explicitly. We reiterate the suggestion by Donner et al. (2016)320

on the importance of recognizing the dependence of resolved vertical velocity on reso-321

lution and utilizing it to understand the impacts of resolution realistically. Our results322

suggest that additional process-based evaluation is necessary to assess the performance323

of both parameterized and resolved precipitation.324
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