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Abstract

We introduce an innovative method to distinguish soil nitrogen oxides (NOx=NO+NO2) emissions from satellite-based total

NOx emissions using its seasonal characteristics. To evaluate the approach, we compare the deviation between the tropospheric

NO2 concentration observed by satellite and two atmospheric composition model simulations driven by the newly estimated

soil NOx emissions and the Copernicus Atmosphere Monitoring Service (CAMS) inventory. The estimated average soil NOx

emissions in Europe are 2.5 kg N ha-1 yr-1 in 2019, and the annual soil NOx emissions is approximately 2.5 times larger than

that of the CAMS inventory. Our method can easily be extended to other regions at middle or high latitudes with similar

seasonal characteristics of soil emissions. The soil emissions are subtracted from the total NOx emissions yielding realistic

anthropogenic NOx emissions. We further show this also yields realistic anthropogenic CO2 emissions using known CO2/NOx

factors from bottom-up inventories.
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Abstract    18 

We introduce an innovative method to distinguish soil nitrogen oxides (NOx=NO+NO2) 19 

emissions from satellite-based total NOx emissions using its seasonal characteristics. To evaluate 20 

the approach, we compare the deviation between the tropospheric NO2 concentration observed 21 

by satellite and two atmospheric composition model simulations driven by the newly estimated 22 

soil NOx emissions and the Copernicus Atmosphere Monitoring Service (CAMS) inventory. The 23 

estimated average soil NOx emissions in Europe are 2.5 kg N ha
-1

 yr
-1

 in 2019, and the annual 24 

soil NOx emissions is approximately 2.5 times larger than that of the CAMS inventory. Our 25 

method can easily be extended to other regions at middle or high latitudes with similar seasonal 26 

characteristics of soil emissions. The soil emissions are subtracted from the total NOx emissions 27 

yielding realistic anthropogenic NOx emissions. We further show this also yields realistic 28 

anthropogenic CO2 emissions using known CO2/NOx factors from bottom-up inventories. 29 

 30 

Plain Language Summary 31 

Soil nitrogen oxide emissions (NOx = NO + NO2) are an important source of air pollution, 32 

accounting for about 15% of global NOx emissions. Unfortunately, soil emissions are not always 33 

accurately described by current bottom-up inventories. Accurate quantification is beneficial for 34 

clarifying the contribution of biogenic sources to air quality and developing more targeted air 35 

quality measures. We present an innovative method for estimating soil NOx emissions from 36 

satellite-based total NOx emissions. The newly estimated annual emissions in Europe are about 37 

2.5 times higher than reported in previous studies. The method is evaluated by comparing the 38 

deviation between the simulated and satellite observed tropospheric NO2 concentrations. This 39 

method can also be extended to other regions around the world with similar seasonal 40 

characteristics of soil NOx emissions. Anthropogenic NOx emissions are determined by 41 

subtracting the soil NOx emissions from total NOx emissions. We further show these 42 

anthropogenic NOx emissions can be converted into realistic CO2 emissions by using known 43 

CO2/NOx emission factors. 44 

 45 

1 Introduction 46 

Nitrogen oxides (NOx = NO + NO2) are important pollutants and their subsequent oxidation 47 

products have detrimental impacts on human health and crop production (Skalska et al., 2010). 48 

Soil NOx emissions are the largest contributor to the NOx budget besides combustion sources, 49 

contributing up to ~15% of global NOx emissions (Hudman et al., 2012; Vinken et al., 2014; 50 

Weng et al., 2020). The relative contribution of soil NOx to total NOx emissions is gradually 51 

increasing due to steadily declining anthropogenic NOx emissions as a result of successful 52 

emission reduction strategies in, e.g., China (van der A et al., 2017; Lu et al., 2021), the USA 53 

(Zhang et al., 2003; Silvern et al., 2019), and Europe (Rafaj et al., 2015; Skiba et al., 2020). 54 

Furthermore, soil NOx emissions play a non-negligible role in rural air pollution especially 55 

during summer time while fossil fuel combustion emissions are relatively constant over the year 56 

(Fortems‐Cheiney et al., 2021; Wang et al., 2022). The precise quantification of soil NOx 57 

emissions is therefore essential for assessing emission control strategies and a better 58 

understanding of air quality.     59 
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Two microbial processes, nitrification and denitrification, are the main sources of soil NOx and 60 

they occur in agricultural and natural ecosystems (Hall et al., 1996; Pilegaard, 2013). Key factors 61 

that regulate NOx emissions from soil are: temperature, soil moisture and texture, soil pH, 62 

nutrient availability, ecosystem types, agricultural management and ambient atmospheric NOx 63 

concentration (Hall et al., 1996; Butterbach-Bahl et al., 2013; Medinets et al., 2015). Chamber 64 

studies and field measurements are commonly employed to investigate the response of soil NOx 65 

emissions to rewetting of dry soils (Garcia-Montiel et al., 2003; Hickman et al., 2021), fertilizer-66 

induced change (Liu et al., 2017; Song et al., 2020; Hui et al., 2023) and atmospheric deposition 67 

(Hall and Matson, 1999; Venterea et al., 2003; Koehler et al., 2009; Eickenscheidt and Brumme, 68 

2012). Global and regional soil NOx emissions are generally estimated by three different model-69 

based methods: simple scaling (Davidson and Kingerlee, 1997), empirical models (Yienger and 70 

Levy II, 1995; Yan et al., 2005; Weng et al., 2020; Simpson and Darras, 2021) and process-71 

oriented models (Butterbach-Bahl et al., 2009; Molina-Herrera et al., 2017). However, these 72 

models in general disagree about the soil NOx quantities and their spatial patterns.     73 

Satellite-based observations provide an alternative method to derive soil NOx emissions. Bertram 74 

et al. (2005) and Zörner et al. (2016) found that SCIAMACHY (Scanning Imaging Absorption 75 

spectroMeter for Atmospheric CHartographY) observations captured the brief, high-intensity soil 76 

NOx pulses in response to fertilizer application or rainfall events in agricultural regions and semi-77 

arid ecosystems. Other studies constrained soil NOx emissions top-down using retrieved NO2 78 

vertical column densities (VCDs) from the Ozone Monitoring Instrument (OMI) for East China 79 

(Lin, 2012) and globally (Vinken et al., 2014) . Huber et al. (2020) used the unprecedented 80 

spatiotemporal resolution of the TROPOMI NO2 product to quantify soil-driven contributions of 81 

cropland to regional NOx emissions by a box model on daily to seasonal scales for the U.S. 82 

Southern Mississippi River Valley. Furthermore, other studies estimate NOx emissions by 83 

analyzing the relationship between observed NO2 concentrations and NOx emissions with 84 

inversion techniques that consider the transport process of NOx (Mijling and van der A, 2012; 85 

Miyazaki et al., 2012). However, such methods estimate only total NOx emissions, encompassing 86 

both natural and anthropogenic sources. 87 

In this study, we introduce a new method for estimating soil NOx emissions in individual grid 88 

cells based on its seasonal variations. This method is a post-processing of the total NOx 89 

emissions derived by the inverse algorithm DECSO (Daily Emission estimation Constrained by 90 

Satellite Observations, Mijling and van der A, 2012; Ding et al., 2017a) applied to NO2 91 

observations over Europe by TROPOspheric Monitoring Instrument (TROPOMI) on Sentinel 5 92 

Precursor (S5-P) satellite. We evaluate the performance of our method by comparing the 93 

deviation of the tropospheric NO2 concentrations between atmospheric chemistry model 94 

simulations and observations by TROPOMI. Finally, we explore the potential to use the 95 

difference between total satellite-derived NOx emissions and soil NOx emissions for indirectly 96 

estimating fossil-fuel CO2 emissions. 97 

2 Materials and Methods 98 

2.1 NOx emissions from DECSO 99 

NOx emissions are derived by the state-of-the-art inverse algorithm DECSO (Daily Emission 100 

estimation Constrained by Satellite Observations, Mijling and van der A, 2012; Ding et al., 101 

2017a). DECSO is specifically developed for daily updates of emissions of short-lived 102 
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atmospheric constituents using satellite observations. The algorithm solves the sensitivity of 103 

concentrations to emissions using a single forward run of the chemical transport model 104 

CHIMERE v2020 (Menut et al., 2021) and a simplified 2D trajectory analysis. An extended 105 

Kalman filter is used for assimilation of the observed column concentrations in the inversion step. 106 

DECSO is able to provide total emissions from biogenic (originating from soil for NOx) and 107 

anthropogenic sources for short-lived chemical species and it can detect new emission sources 108 

that may be missing in bottom-up inventories. It has been validated (Ding et al., 2017b) and 109 

successfully applied to different regions using OMI and TROPOMI observations (Ding et al., 110 

2015; Ding et al., 2018; Ding et al., 2020; van der A et al., 2020; Ding et al., 2022). In this study, 111 

monthly NOx emissions in 2019 over Europe (10°W-30°E, 35-55°N) are derived from 112 

TROPOMI NO2 observations using DECSO on a spatial resolution of 0.2° × 0.2°. These total 113 

emissions are used as input to isolate soil NOx emissions in a post-processing step, which is 114 

explained below.  115 

2.2 Soil NOx emissions estimates 116 

Several studies have shown that soil NOx emissions are significantly influenced by land use type 117 

(Valente and Thornton, 1993; Verchot et al., 1999; Yan et al., 2005). The soil emissions in our 118 

study area originate from four main land use types: forest, croplands, shrub and grassland (Figure 119 

S1). Here we merged shrub and grassland into one category (called “other biogenic”) considering 120 

their limited occurrence in the study area (Table S1c).  121 

We use the following five steps (see flow chart in Figure S2) to separate soil NOx emissions 122 

from total NOx emissions: 123 

(1) We select pixels dominated by the biogenic sector using the proportion of each land use type. 124 

The minimum thresholds of the three land use ratios (forest, crop, and other biogenic sources) 125 

are set to 0.5 for individual grid cells to make sure the cell is dominated by one of the biogenic 126 

source sector types. For these pixels, the fraction of urban coverage is required to be less than 127 

0.02 to eliminate the interference of anthropogenic emissions as much as possible. The selected 128 

pixels are referred to as biogenic pixels. 129 

(2) To exclude the remaining anthropogenic emissions in the selected grid cells, we subtract 130 

CAMS anthropogenic NOx emissions (version 5.3, called CAMS-ant) from the DECSO total 131 

NOx emissions. Note that this is only done for the selected biogenic pixels. If negative values 132 

occur after subtraction, they are set to zero. A sensitivity analysis with respect to this step is 133 

described in Section 3.1.  134 

(3) In order to better reflect the spatial heterogeneity of soil emissions, we divide the research 135 

area equally into 5 subregions in the latitude direction by 2 subregions in the longitude direction. 136 

In each of these 10 subregions, the average monthly emissions of the selected pixels are fitted 137 

with a Gaussian function  𝒇(𝒙) = 𝑨 𝒆
−(𝒙−𝑩)𝟐

𝟐𝑪𝟐  over one year. We chose a Gaussian function as soil 138 

NOx emissions in Europe vary slowly with season with typically a winter minimum and summer 139 

maximum. The fitting parameters A, B, and C are obtained for pixels dominated by each of the 140 

land use types separately (see step 1). A represents the maximum soil NOx emissions in a year, B 141 

represents the month when the maximum soil emissions occur, and C determines the width of the 142 

Gaussian curve and thus the length of the season, which also affects the amount of winter soil 143 

NOx emissions. Examples of the Gaussian fitting can be found in Figure S3. 144 
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(4) Since the parameters obtained in step 3 represent soil emissions with a specific land use ratio 145 

larger than 0.5 (set in step 1) but still with mixed land use types, we use the solution of formula 146 

S2 to obtain the typical parameters of pure pixels, i.e. the land use ratio of one of the three types, 147 

either forest, crop, or other biogenic sources, equals 1. In this way, we obtain 30 sets of 148 

parameters (A, B, and C) representing soil emissions for three land-use types and 10 subregions 149 

separately. To smooth the transitions between subregions, we perform a two-dimensional 150 

interpolation to obtain the parameters for each land-use type and for each grid cell separately.   151 

(5) We assume that the land use ratio directly determines the proportion of soil NOx emissions. 152 

The monthly soil emissions per grid cell is calculated by multiplying the ratio of the three land 153 

use types by the three Gaussian functions of the corresponding soil emission types, and adding 154 

them together.  155 

(6) If the soil emission calculated at a certain grid cell is larger than the total emission of DECSO 156 

in a certain month, the soil emission of this month is set to be equal to this total emission of 157 

DECSO. In this way the total of the derived DECSO emissions remain conserved. The end 158 

product will be called DECSO-soil from here. 159 

Figure S4 shows the three key parameters A, B, and C that depict the seasonal characteristics of 160 

soil NOx emissions for the three different land use types, with significant zonal and meridional 161 

differentiation. The value of parameter A, representing the maximum soil NOx emissions during 162 

the year, for forests and croplands are generally similar (Figure S4 a-c). The month of the 163 

maximum soil emissions (parameter B) occurs a bit later in forest areas (July - August) than in 164 

croplands areas (June - July) (see Figure S4 d-f). The parameter C represents the width of the 165 

Gaussian fit and this also affects winter soil NOx emissions. For all three land use types, 166 

parameter C shows a clear decreasing trend with increasing latitude (Figure S4 g-i). This is 167 

because the higher the latitude, the lower the winter temperature, and the lower the microbial 168 

activity, resulting in a shorter active season. 169 

2.3 Emission inventories and land use dataset 170 

In this study, three emission inventories are used for comparison with our estimates. They are the 171 

CAMS soil emissions inventory (CAMS-GLOB-SOIL version 2.4, henceforth called CAMS-172 

soil), the Harvard-NASA Emissions Component (HEMCO) soil emissions inventory (version 173 

2021, called HEMCO-soil) and the National Long-range Transboundary Air Pollution (LRTAP) 174 

NOx emissions (called LRTAP-NOx). CAMS-soil provides gridded global monthly soil NO 175 

emissions as total values and for separate source sectors at spatial resolution of 0.5°×0.5° . It is 176 

based on empirical formulas and process parameter models (Simpson and Darras, 2021). 177 

HEMCO-soil provides global hourly soil NOx emissions at a horizontal resolution of 0.25° lat. × 178 

0.3125° lon. (Weng et al., 2020), (Keller et al., 2014). LRTAP-NOx provide country level yearly 179 

NOx emissions for agriculture and other sectors and is provided by the European Environment 180 

Agency. Global monthly bottom-up anthropogenic NOx (version 5.3, called CAMS-ant) and CO2 181 

emissions (version 4.2, called CAMS-CO2) inventories are both obtained from the Copernicus 182 

Atmosphere Monitoring Service (CAMS) at a 0.1°×0.1°  horizontal resolution (Soulie et al., 183 

2023). All emission data are for 2019 and are regridded to the same domain and resolution of 184 

DECSO (0.2° × 0.2°). The land use data Land Cover are obtained from the Copernicus Global 185 

Land Service (version3.0.1, Buchhorn et al., 2020). The original 23 land use classes of the Land 186 

Cover database were first grouped into 8 new main classes, comprising ocean, urban, cropland, 187 
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grassland, bare land, inland water, forest, and shrub defined in Table S1. The land use ratio for 188 

each class was calculated by re-gridding the original 100m resolution Land Cover product to the 189 

DECSO grid of 0.2°. 190 

2.4 Evaluation of derived soil emissions by comparing modelled concentrations to satellite 191 

observations 192 

We conduct two comparative experiments to simulate tropospheric NO2 columns, which use 193 

either CAMS soil emissions or DECSO soil emissions. We evaluate the performance of the 194 

newly estimated soil emissions in this study by comparing the Root Mean Square Error (RMSE) 195 

between the simulated tropospheric NO2 concentration and the TROPOMI observed tropospheric 196 

NO2 concentration of these two comparative experiments). The tropospheric NO2 columns were 197 

simulated by an extended version of ECMWF's Integrated Forecasting System (IFS) called “IFS-198 

COMPO” (Flemming et al., 2015; Huijnen et al., 2019). IFS-COMPO is part of the global 199 

component of the Copernicus Atmosphere Monitoring Service (CAMS) and has been employed 200 

to supply global analyses and forecasts of atmospheric composition in an operational mode 201 

starting from 2014. The version of IFS-COMPO employed here is based on IFS CY48R1 202 

(ECMWF, 2023), but with only tropospheric chemistry activated. Its default anthropogenic 203 

emissions, based on CAMS-GLOB-ANT v5.3 (Soulie et al., 2023) are adopted. The model is 204 

driven by our newly estimated soil NOx emissions, and CAMS soil NOx emissions (version 2.4, 205 

Simpson and Darras, 2021) for reference. IFS-COMPO was run for the year 2019 at a horizontal 206 

resolution of approximately 40 km with 137 vertical layers and 900s time steps and with a one-207 

month spin up period. When we compare TROPOMI NO2 observations with the IFS-COMPO 208 

simulation, only observations with a quality flag above 0.75 are used to avoid retrievals for 209 

ground pixels covered with snow, ice or high cloud radiance fraction, as well as problematic 210 

retrievals. The model outputs are interpolated to the local overpass time of TROPOMI and the 211 

averaging kernel is applied to the modelled NO2 profile. The collocated observation-model pairs 212 

are re-gridded to a regular latitude–longitude grid with a 0.25° resolution using an area-weighted 213 

averaging considering the area of the TROPOMI-pixel if the coverage of the grid cell is above 214 

50% (Douros et al., 2023). The only difference between the two comparative model experiments 215 

is the input of soil NOx emissions.  216 

3 Results 217 

3.1 Comparison of Soil NOx emissions with CAMS 218 

Figure 1 shows the spatial distribution of calculated soil NOx emissions for each sector (forests 219 

and croplands sectors) in the study area during summer (May-August). The yearly averaged soil 220 

NOx emissions for the entire domain from forests, croplands, and other biological sources are 2.6, 221 

2.6 and 2.0 kg N ha
-1

 yr
-1 

respectively (in May-August shown in Figure 1 they are on average 3.7, 222 

3.6 and 2.9 kg N ha
-1

 yr
-1

), which fall within the estimated range of forest emissions (0.35 to 15.9 223 

kg N ha
-1

 yr
-1

 in Saxony of Germany; Molina-Herrera et al. 2017) and are of the same order of 224 

magnitude for croplands as estimated by Yan et al. (1.08 kg N ha
-1

 yr
-1 

 globally; 2005). Regions 225 

with high CAMS-soil emissions, such as the Castile-León plain in Spain and the Po River plain 226 

in Italy, display strong similarities with the spatial distribution of DECSO-soil NOx emissions of 227 

the croplands sector (Figure 1 c-d). Furthermore, the CAMS soil NOx emission inventory has 228 

very low emissions in forest areas resulting in lower emission estimates in the northwestern 229 

Iberian Peninsula, the forest areas of Romania and the south-central France (Figure 1 a-d). Note 230 
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the high correlation (R
2
 = 0.53 in Figure S6) between the DECSO forest emissions (Figure 1a) 231 

and the difference map shown in Figure 1b. 232 

 233 

Figure 1. The spatial distribution of the derived soil NOx emissions during summer represented 234 

by the average emissions from May to August in 2019 from (a) forest and (c) croplands. (d) 235 

shows the CAMS-soil NOx emissions in Europe during summer. The difference between CAMS-236 

soil and DECSO-soil is shown in (b). The soil emissions calculated from DECSO total emissions 237 

are regridded to the resolution of CAMS-soil, which is 0.5° × 0.5°.  238 

We compared the sum of all DECSO soil to sum of all CAMS soil emissions in our study 239 

domain.  Our derived total annual soil NOx emissions are 1.1 Tg N yr
-1

, which is more than 2.5 240 

times larger than the total of CAMS-soil (0.4 Tg N yr
-1

) and about 2.3 times higher than 241 

HEMCO (0.5 Tg N yr
-1

) (Figure S7). The average soil NOx emissions in the study area are 2.5 kg 242 

N ha
-1 

yr
-1

 in 2019. Figure 2a shows that the obtained typical monthly time profile of soil NOx 243 

emissions is similar to that of CAMS. The spatial distribution and the amount of the DECSO 244 

cropland emissions are comparable to the CAMS soil emissions. CAMS-soil and LRTAP NOx 245 

emissions from agriculture sector are also consistent for national total numbers (Figure 2b). 246 

Furthermore, we found that the discrepancy with CAMS is more significant in countries with a 247 

large proportion of forest area, such as the Spain (138 Gg N yr
-1 

for DECSO-soil and 48 Gg N yr
-

248 
1
 for CAMS-soil) and France (130 Gg N yr

-1 
for DECSO-soil and 64 Gg N yr

-1
 for CAMS-soil). 249 

And the deviation is smaller in countries with a large proportion of non-forest area (Figure 2b), 250 

such as the Netherlands (about 8 Gg N yr
-1 

for both DECSO-soil and CAMS-soil) and Belgium 251 

(7 Gg N yr
-1 

for DECSO-soil and 5 Gg N yr
-1

 for CAMS-soil). Figures 2c and S8 show that after 252 

excluding soil emissions, the difference between anthropogenic NOx emissions derived with 253 

DECSO based on satellite observations and CAMS anthropogenic emissions becomes noticeably 254 
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smaller (DECSO anthropogenic NOx is 4.9 kg N ha
-1 

yr
-1 

and CAMS-anthropogenic is 4.8 kg N 255 

ha
-1 

yr
-1

). 256 

 257 
Figure 2. (a) Monthly comparison of derived soil NOx emissions for three land use types with 258 

CAMS-soil. The estimated upper limit and the lower limit of emissions as described in below are 259 

shown by the dashed line.  (b) National soil NOx emissions from DECSO-soil and CAMS-soil. 260 

(c) The monthly proportion of anthropogenic and soil NOx emissions of DECSO and CAMS.  261 

(d) The spatial distributions of DECSO-soil emissions in 2019 during summer (May to August).  262 

3.2 Uncertainty analysis 263 

The biggest uncertainty in our method is caused by the correction for anthropogenic emissions in 264 

the selected biogenic grid cells (step 2 in Section 2.2). Therefore, we estimated the upper and 265 

lower limit of the calculated soil emissions, by performing a sensitivity test. We first assume all 266 

selected biogenic grid cells are without remaining anthropogenic emissions, resulting in an upper 267 

limit of the derived soil emissions. On the other hand, the lower limit of emissions is obtained by 268 

assuming that the emissions of the selected biogenic grid cells are completely anthropogenic in 269 

wintertime as biogenic activity is at a minimum in Europe during winter. Thus we replaced the 270 

anthropogenic emissions of CAMS (used in step 2 of Section 2.2) by the average of the DECSO 271 

total emissions in January and December. This results in an upper limit of about 33% higher 272 

emissions and a lower limit that is about 14% lower than the calculated DECSO-soil emissions 273 

(Figure S5).  274 

The derived soil NOx emissions are sensitive to uncertainties in the derived DECSO emissions. 275 

The DECSO emissions have a precision of about 30% for monthly emissions in a single grid cell. 276 

However, for this analysis on average soil emissions, the DECSO emissions are averaged over 277 

pixels over the whole region and thus strongly reduced compared to single grid cells. Therefore, 278 
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the error of the anthropogenic emission correction mentioned above is dominating, and we 279 

estimate the uncertainty on the average soil emissions to be about 30%. 280 

3.3 Assessment of the DECSO soil emissions using IFS-COMPO simulations 281 

Figure 3 shows the change of RMSE (ΔRMSE%) between the TROPOMI observations and the 282 

simulated tropospheric NO2 concentration in the IFS-COMPO model driven by the DECSO-soil 283 

and CAMS-soil emissions. The smaller the deviation, the higher the reliability of the soil 284 

emissions compared to TROPOMI. Figure 3a-d shows the spatial distribution and seasonal 285 

variation of ΔRMSE% calculated by formula S3. A negative ΔRMSE% represents that the model 286 

simulation deviation driven by DECSO-soil is smaller than that driven by CAMS-soil, meaning 287 

that the DECSO-soil are more consistent with TROPOMI observations than that of CAMS-soil. 288 

While we use the same TROPOMI NO2 observations as employed in the DECSO optimization 289 

procedure, the atmospheric composition modeling framework is fully independent to DECSO. 290 

We found that simulations driven by DECSO soil emissions performed significantly better than 291 

using CAMS soil over most of Eastern Europe, North Africa, and Spain (blue area in Figure 3), 292 

especially in spring and autumn (Figure S9), when the percentual emissions changes with respect 293 

to CAMS-Soil are largest. The spatial distribution of changes in ΔRMSE% in areas dominated 294 

by rural area, forest, and croplands area is shown in Figure S10-S12. Overall, the simulated 295 

RMSE% of DECSO soil is lower than that of CAMS soil, about 6% lower in spring and 2% 296 

lower in autumn (Figure S9). In general, the newly calculated soil emissions significantly reduce 297 

the error of the simulated and observed tropospheric NO2 concentrations, which shows the 298 

consistency of the DECSO-soil. The negative ΔRMSE% over forest shows that soil NOx 299 

emissions over forest are underestimated by CAMS. 300 

 301 

Figure 3. The deviation of observed and simulated tropospheric NO2 concentrations driven by 302 

DECSO-soil and CAMS-soil (a-d) represented by ΔRMSE%. The average of ΔRMSE% in (a) 303 

spring, (b) summer, (c) autumn and (d) winter calculated by formula S3. RMSE refers to the 304 

average difference between the simulated tropospheric NO2 concentration and the observed 305 

tropospheric NO2 concentration. Subtracting RMSE of experiment 2 from that of experiment 1 306 

yields ΔRMSE. Dividing ΔRMSE by the average of the simulated tropospheric NO2 307 

concentration results of the two experiments results in ΔRMSE%. A negative ΔRMSE% shown 308 
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in blue means that the DECSO-soil are more consistent with TROPOMI observations than that of 309 

CAMS-soil.  310 

3.4 Indirect estimates of anthropogenic CO2 emissions 311 

Since anthropogenic NOx and CO2 emissions are usually released simultaneously, several studies 312 

have used the NOx emissions retrieved from satellite observations to infer the anthropogenic CO2 313 

emissions of countries or regions by a top-down method (de Laat and van der A, 2019; Zheng et 314 

al., 2020; Li et al., 2023; Miyazaki and Bowman, 2023). However, these studies did not consider 315 

the fact that the NOx emissions retrieved based on satellite observations include non-316 

anthropogenic soil NOx emissions. After subtracting soil NOx emissions from the total NOx of 317 

DECSO, we can calculate the co-emitted CO2 emissions by multiplying DECSO anthropogenic 318 

NOx emissions with the NOx/CO2 emission factors obtained from CAMS inventory. The spatial 319 

pattern of CO2 emissions based on DECSO has a high overall consistency with the bottom-up 320 

CAMS emission inventory (Figure 4). The annual CO2 emissions derived from DECSO (called 321 

DECSO-CO2) in the study area in 2019 is 3.7 Gt, which is comparable with the 3.2 Gt of the 322 

CAMS inventory (called CAMS-CO2). Overall, this reflects the potential of using DECSO to 323 

indirectly infer fossil-fuel CO2 emissions, especially for regions where CO2 emissions are less 324 

well-known than in Europe. 325 

  326 

Figure 4. The spatial distributions of (a) estimated annual CO2 emissions using DECSO, and (b) 327 

bottom-up CO2 emission inventory CAMS. 328 

4 Conclusions 329 

We have developed a method for estimating soil NOx emissions based on their seasonal 330 

characteristics, which we derive from the non-urban regions in our study domain, in our case 331 

Europe. The method starts from satellite-based total NOx emissions derived with the DECSO 332 

emission inversion system. The estimated soil NOx emissions based on DECSO is 2.5 kg N ha
-1 

333 

yr
-1

 for Europe in 2019. We found that the existing widely used soil NOx emission inventories 334 

CAMS and HEMCO (based on empirical and statistical models) report lower soil NOx emissions 335 

by about 2.5 times. To assess the reliability of the derived DECSO soil NOx emissions, we tested 336 

them using IFS-COMPO simulations. The model-simulated tropospheric NO2 concentrations 337 

driven by DECSO soil NOx are closer to the NO2 concentrations observed by TROPOMI than 338 

the simulation driven by CAMS soil emissions. The improvement was especially observed in 339 

spring, with a RMSE% reduction of 6%. When checking the spatial distribution (Fig.2), it seems 340 

that the discrepancy originates mainly from the forests, where the DECSO derived soil emissions 341 

are much higher than those in the CAMS inventory. Possibly the soil NOx emissions from forests 342 
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in Europe are currently underestimated. Not many studies are yet performed to European forest 343 

emissions, but Molina-Herrera et al. (2017) concluded that for the state of State of Saxony, 344 

Germany both agricultural and forest area are significant sources of soil NOx . 345 

The seasonal characteristic of DECSO-soil is consistent with the European regional soil NOx 346 

emissions calculated by Simpson and Darras (2021) based on empirical formulas and process 347 

parameter models (see Figure S13b). Regions with similar seasonal patterns of soil NOx 348 

emissions as the European region are found at mid-latitudes including North America, North 349 

Africa, East Asia, Russia (Figure S13 from Simpson and Darras, 2021) making these regions 350 

suitable for deriving soil NOx emissions from satellite with the same approach. For mid-latitude 351 

regions in the southern hemisphere such as Australia, this method can also be used by shifting 352 

the peak parameter to wintertime. 353 

Our method exploits observations from satellites for a better understanding of the amount and 354 

spatiotemporal variation of soil NOx emissions. The method, starting from DECSO total 355 

emissions, is computationally fast and regionally consistent. After isolating the contribution of 356 

soil NOx, the remainder can be attributed to anthropogenic emissions and the total amount and 357 

spatial patterns of anthropogenic CO2 emissions can be indirectly estimated. The results for 358 

Europe are consistent with the bottom-up CO2 inventory, which demonstrate the potential for 359 

DECSO to expand its application to other regions in the world with less information on CO2 360 

emissions.  361 

 362 
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