
P
os
te
d
on

10
D
ec

20
23

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
70
22
45
76
.6
4
95
95
29
/v

1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Radiocarbon analysis reveals underestimation of soil organic carbon
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Abstract

Reflecting recent advances in our understanding of soil organic carbon (SOC) turnover and persistence, a new generation of

models increasingly makes the distinction between the more labile soil particulate organic matter (POM) and the more persistent

mineral-associated organic matter (MAOM). Unlike the typically poorly defined conceptual pools of traditional SOC models, the

POM and MAOM pools can be directly measured for their carbon content and isotopic composition, allowing for pool-specific

data assimilation. However, the new-generation models’ predictions of POM and MAOM dynamics have not yet been validated

with pool-specific carbon and 14C observations. In this study, we evaluate 5 influential and actively developed new-generation

models (CORPSE, Millennial, MEND, MIMICS, SOMic) with pool-specific and bulk soil 14C measurements of 77 mineral

topsoil profiles in the International Soil Radiocarbon Database (ISRaD). We find that all 5 models consistently overestimate

the 14C content (Δ14C) of POM by 67of the 5 models also strongly overestimate the Δ14C of MAOM by 74average, indicating

that the models generally overestimate the turnover rates of SOC and do not adequately represent the long-term stabilization

of carbon in soils. These results call for more widespread usage of pool-specific carbon and 14C measurements for parameter

calibration, and may even suggest that some new-generation models might need to restructure their simulated pools (e.g. by

adding inert pools to POM and MAOM) in order to accurately reproduce SOC dynamics.
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Key Points:8

• New-generation soil models generally overestimate 14C content in topsoil.9

• This may be because new-generation models have too fast turnover rates and do10
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Abstract14

Reflecting recent advances in our understanding of soil organic carbon (SOC) turnover15

and persistence, a new generation of models increasingly makes the distinction between16

the more labile soil particulate organic matter (POM) and the more persistent mineral-17

associated organic matter (MAOM). Unlike the typically poorly defined conceptual pools18

of traditional SOC models, the POM and MAOM pools can be directly measured for their19

carbon content and isotopic composition, allowing for pool-specific data assimilation. How-20

ever, the new-generation models’ predictions of POM and MAOM dynamics have not21

yet been validated with pool-specific carbon and 14C observations. In this study, we eval-22

uate 5 influential and actively developed new-generation models (CORPSE, Millennial,23

MEND, MIMICS, SOMic) with pool-specific and bulk soil 14C measurements of 77 min-24

eral topsoil profiles in the International Soil Radiocarbon Database (ISRaD). We find25

that all 5 models consistently overestimate the 14C content (∆14C) of POM by 67‰ on26

average, and 3 out of the 5 models also strongly overestimate the ∆14C of MAOM by27

74‰ on average, indicating that the models generally overestimate the turnover rates28

of SOC and do not adequately represent the long-term stabilization of carbon in soils.29

These results call for more widespread usage of pool-specific carbon and 14C measure-30

ments for parameter calibration, and may even suggest that some new-generation mod-31

els might need to restructure their simulated pools (e.g. by adding inert pools to POM32

and MAOM) in order to accurately reproduce SOC dynamics.33

1 Introduction34

The terrestrial carbon reservoir sequesters an estimated 29% of anthropogenic CO235

emissions each year (Friedlingstein et al., 2022), significantly reducing the accumulation36

rate of CO2 in the atmosphere and thus slowing down climate change. However, the fu-37

ture role of the terrestrial carbon reservoir as a net CO2 sink is uncertain, as Earth Sys-38

tem Models (ESMs) produce a wide range of projections for the net land-atmosphere car-39

bon flux over the course of the 21st century, partly due to high uncertainties in the carbon-40

climate feedback (Friedlingstein et al., 2014; Arora et al., 2020). Moreover, a study by41

He et al. (2016) using the radiocarbon (14C) isotope suggests that some of the most widely42

used CMIP5 (Coupled Model Intercomparison Project Phase 5) ESMs may be system-43

atically overestimating the future land carbon sink, further casting doubt on the relia-44

bility of future land sink predictions. All five ESMs tested in their study strongly un-45

derestimated the 14C age of soil organic carbon, which indicates an overestimation of the46

simulated carbon cycling rates, particularly in the most stable soil carbon pools. After47

He et al. (2016) adjusted the soil carbon cycling rates to fit the observed 14C data, the48

ESMs ended up predicting 40±27% lower carbon sequestration by the terrestrial sink49

in the 21st century than with their default parameters. This result puts into question50

the ability of current ESMs to accurately model soil carbon dynamics, and highlights the51

importance of validating model predictions with 14C data.52

Almost all ESMs rely on soil organic carbon (SOC) modules that are ultimately53

based either on the Century model (Parton et al., 1987) (e.g., CESM2, Danabasoglu et54

al., 2020) or the RothC model (Coleman & Jenkinson, 1996) (e.g., JULES, Clark et al.,55

2011). Even though Century and RothC have been used for many decades to predict SOC56

dynamics in various landscapes with moderate success (Leifeld et al., 2008; Leifeld, 2008;57

Leifeld et al., 2009; Abramoff et al., 2022; H. Zhang et al., 2020), both modeling frame-58

works were developed in the 1980s, and thus reflect the comparatively limited understand-59

ing of soil carbon cycling of that time. Indeed, the model design of RothC is inspired by60

the now obsolete humification theory (Lehmann & Kleber, 2015; Schmidt et al., 2011),61

and neither RothC nor Century explicitly simulate specific processes of SOC cycling, such62

as physico-chemical protection of SOC or adsorption and desorption of dissolved organic63

carbon, because their mechanisms were previously not understood well enough.64
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According to our current understanding, the most important control on SOC sta-65

bility is not so much the molecular composition or “quality” of organic matter, but rather66

its protection from microbial and abiotic decomposition through occlusion in aggregates67

and mineral association (Kleber et al., 2011; Dungait et al., 2012; Lehmann & Kleber,68

2015; Lavallee et al., 2020). When SOC gets enclosed into aggregates or stabilized onto69

soil mineral surfaces through the action of pedogenic oxides, in particular iron, aluminum70

and calcium associated with clay particles (Rasmussen, Heckman, et al., 2018; Rowley71

et al., 2018; Vogel et al., 2014), it becomes less accessible to decomposers and thus sig-72

nificantly increases its residence time in soils (Basile-Doelsch et al., 2020; Schrumpf et73

al., 2013; Doetterl et al., 2015). A new generation of SOC models is now being devel-74

oped to incorporate the theory of SOC protection through occlusion and interactions with75

soil minerals into our carbon cycle predictions. A common feature of new-generation soil76

models is their distinction between particulate organic matter (POM) and mineral-associated77

organic matter (MAOM). The POM pool largely consists of partially decomposed lit-78

ter fragments smaller than 2 mm (Lavallee et al., 2020; Basile-Doelsch et al., 2020), which79

are usually covered with a thin mineral coating (Wagai et al., 2009). On the other hand,80

the MAOM pool contains organic matter chemically adsorbed onto reactive mineral sur-81

faces, as well as strongly bound micro-aggregates formed around sand, silt, or clay par-82

ticles (Basile-Doelsch et al., 2020; Lavallee et al., 2020). Unlike the carbon pools of RothC83

and Century, the POM and MAOM pools of the new-generation models can be opera-84

tionally defined with experimental protocols by which they can be separated from soil85

samples and then analyzed individually for their elemental and isotopic composition (von86

Lützow et al., 2007). This allows for a closer look into the processes governing soil car-87

bon stabilization and for potentially much larger datasets for model calibration and val-88

idation. However, the use of pool-specific measurements to validate models is still lim-89

ited, even for new-generation models (Y. Zhang et al., 2021, Table S1).90

The theory that protection and accessibility are the most important controls on91

SOC stability is strongly supported by 14C studies (Gaudinski et al., 2000; Schrumpf et92

al., 2013, 2021), which could indicate that new-generation SOC models might perform93

better with 14C than the traditional SOC models integrated into ESMs. 14C is an effec-94

tive carbon cycle tracer because it is chemically indistinguishable from the other carbon95

isotopes and therefore participates in the same carbon exchange mechanisms as the more96

abundant 12C and 13C isotopes. Over the past century, the atmospheric 14C levels have97

undergone dramatic changes, most notably as a result of thermonuclear weapons tests98

in the 1950s and ’60s, which have almost doubled the amount of atmospheric 14CO2 in99

the Northern Hemisphere (see Figure 2). As this bomb-derived 14CO2 spreads into the100

terrestrial carbon reservoirs through photosynthesis and into oceans through air-sea gas101

exchanges (Graven et al., 2020), the level of enrichment in bomb-derived 14C across dif-102

ferent terrestrial and oceanic carbon reservoirs helps to evaluate the speed and magni-103

tude of carbon exchanges with the atmosphere on annual and decadal scales. Meanwhile104

for slower-cycling reservoirs such as deep soils or permafrost, the level of 14C depletion105

due to radioactive decay (half-life of 5700±30 years (Roberts & Southon, 2007)) helps106

to estimate the time scales of carbon stabilization in those reservoirs on the order of cen-107

turies and millennia. 14C is therefore a powerful tool to study the exchanges and stor-108

age of carbon from decadal to millennial time scales. However, new-generation models109

do not generally implement 14C simulations, and only a handful have systematically as-110

similated observed 14C data (e.g., Tipping & Rowe, 2019; Braakhekke et al., 2014; Ahrens111

et al., 2020).112

In this study, we use 14C measurements of the organic carbon in the mineral top-113

soil to evaluate the performance of five new-generation SOC models: CORPSE (Sulman114

et al., 2014), MEND-new (G. Wang et al., 2022), Millennial v2 (Abramoff et al., 2022),115

MIMICS-CN v1.0 (Kyker-Snowman et al., 2020), and SOMic 1.0 (Woolf & Lehmann,116

2019). These models were chosen because they are open source, actively developed, and117

influential in the soil modeling community. Leveraging the measurability of their pools,118
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we compare these models’ predictions to 14C measurements of POM and MAOM, in ad-119

dition to the total soil 14C. This provides a detailed picture of the modeled SOC dynam-120

ics and enables us to carry out an in-depth analysis of the models’ performances.121

2 Methods122

Throughout this paper, we report the 14C content of a given carbon sample as ∆14C,123

which is the deviation of the sample’s 14C/12C ratio from the “modern” standard, cor-124

responding to the pre-industrial atmospheric 14CO2/12CO2 ratio (Trumbore et al., 2016).125

2.1 Pool-specific carbon and radiocarbon measurements126

We compare model predictions to three types of measured data for the topsoil: (1)127

the total SOC stocks in the topsoil, (2) the relative mass contributions of POM and MAOM128

to the total SOC stocks, and (3) the ∆14C of POM, MAOM, and bulk SOC.129

For this study, we will use the International Soil Radiocarbon Database (ISRaD)130

(Lawrence et al., 2020) for carbon and 14C measurements of POM and MAOM obtained131

from soil samples using a combination of density fractionation and ultra-sonication. Den-132

sity fractionation with ultra-sonication is currently one of the most effective and com-133

monly employed methods for separating POM and MAOM (Golchin et al., 1994; Griepen-134

trog et al., 2015, 2014; Cerli et al., 2012; von Lützow et al., 2007; Poeplau et al., 2018).135

This method separates the soil into three “density fractions” – the free light fraction, oc-136

cluded light fraction, and heavy fraction – in a three step process: (1) obtain the free137

light fraction from the soil sample by density fractionation; (2) in the remaining sam-138

ple, destroy loosely-bound aggregates with ultra-sonication, thus releasing the occluded139

fraction; (3) isolate the occluded light fraction from the relatively denser heavy fraction140

by density fractionation. The resulting free and occluded light fractions correspond ap-141

proximately to the POM pool, while the heavy fraction is a good proxy for the MAOM142

pool (Mikutta et al., 2019; Lavallee et al., 2020). We will from now on refer to the soil143

density fractions (light and heavy) by the names of the corresponding pools (POM and144

MAOM, respectively).145

ISRaD provides carbon and 14C data for the bulk soil, and the free light, occluded146

light, and heavy fractions. We derive the relative carbon contributions and ∆14C of POM147

with a weighted average of the free and occluded light fractions, and we directly asso-148

ciate MAOM with the heavy fraction in ISRaD. When the ∆14C of the bulk soil is not149

measured or reported in ISRaD, we calculate it with a weighted average of POM ∆14C150

and MAOM ∆14C. Since most of the available 14C data is for the topsoil, we will eval-151

uate models only for the top 5 cm or top 10 cm of the mineral soil. The current version152

of ISRaD (v 2.5.5.2023-09-20) contains complete 14C datasets of the POM and MAOM153

density fractions in the topsoil of 77 soil profiles spread across 39 sampling sites, cover-154

ing forests, shrubland, cultivated landscapes, and rangeland and grassland. Almost all155

of the sampling sites are in North America and Europe, and the remaining sites are lo-156

cated in Hawaii and Puerto Rico (see map in Figure 1). The dataset does not contain157

any permafrost, thermokarst, peatland, or wetland soils, and 75 of the 77 samples are158

from 1997-2015, with only one sample from 1949 and one sample from 1978. As shown159

in Figure 2, most datapoints bear a positive ∆14C value, demonstrating an enrichment160

in bomb-derived 14C in the topsoil.161

2.2 Selection of new-generation models162

We reviewed the literature to find new-generation models whose pools are fully com-163

patible with the observed POM and MAOM density fractions, and that have already been164

tested with a range of soil types and environments. Table 1 gives an overview of the fea-165

tures and capabilities of such new-generation models, almost all of which have been de-166
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Figure 1. Map of selected topsoil sampling sites from ISRaD (Lawrence et al., 2020). 37 of
the 39 sites are located in North America and Europe, and the two remaining sites are in Hawaii
and Puerto Rico. All sites have a complete 14C dataset for bulk soil and all density fractions
for the top 5 or 10 cm of the mineral soil. The map also shows two of the most important en-
vironmental controls on soil carbon persistence: soil temperature (at 4 cm depth, averaged over
1970-2010 period, 1 degree horizontal resolution) from the CESM2 Large Ensemble product
(Rodgers et al., 2021) on the map background, and clay content in the topsoil from ISRaD or
SoilGrids (Poggio et al., 2021) for each sampling site.

veloped starting in the 2010s. Many new-generation SOC models also explicitly repre-167

sent the microbial biomass as a separate carbon pool, since microbes are the main drivers168

of SOC turnover (Crowther et al., 2019; Basile-Doelsch et al., 2020; Schimel, 2023). The169

newest version of the MEND model simulates a variety of microbial exo-enzyme pools170

in addition to its microbial biomass pools (G. Wang et al., 2022). About half of the mod-171

els listed in Table 1 have already been implemented with 14C. However, none of them172

have systematically assimilated fraction-specific 14C data, instead relying on 14C data173

of bulk SOC or 14CO2 data from soil respiration.174

For this 14C study, we chose to evaluate the following models, as their code is open-175

source and they have produced successful SOC predictions for a variety of ecosystems:176

• Millennial v2 (with Michaelis-Menten kinetics), Abramoff et al. (2022),177

• SOMic 1.0, Woolf and Lehmann (2019),178

• MEND-new (with default equations), G. Wang et al. (2022),179

• CORPSE (version from GitHub repository bsulman/CORPSE-fire-response), first180

described in Sulman et al. (2014),181

• MIMICS-CN v1.0, Kyker-Snowman et al. (2020).182

Figure 3 shows the general structure of the above models. All the selected mod-183

els have pools which we can associate to the POM and MAOM fractions (see section S2184

in the Supporting Information for details on how we associate the pools to each fraction),185

and they all have at least one microbial biomass pool. We generally chose to evaluate186

the most recent version of each model. However, we found an error in the 14C implemen-187

tation of the most recent version of MIMICS (Y. Wang et al., 2021) (see section S4.2 in188

the Supporting Information), so we chose to use the coupled carbon-nitrogen version MIMICS-189

CN published one year prior in Kyker-Snowman et al. (2020). See section S1 and Fig-190

ures S1-S5 in the Supporting Information for more details on the exact versions and im-191

plementations of each model.192
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Figure 2. Measured ∆14C data of the POM and MAOM density fractions and total soil or-
ganic carbon (SOC) at the selected topsoil profiles from ISRaD (Lawrence et al., 2020), overlaid
on the atmospheric ∆14CO2 curve of the Northern Hemisphere (Graven et al., 2017). All POM
and MAOM fractions shown here were produced using the method of density fractionation with
ultra-sonication. These ISRaD data were originally published in Baisden et al. (2002); Berhe et
al. (2012); Harden et al. (2002); Heckman (2010); Heckman et al. (2018); Lybrand et al. (2017);
Marín-Spiotta et al. (2008); McFarlane et al. (2013); Meyer et al. (2012); Rasmussen, Throckmor-
ton, et al. (2018); Schrumpf et al. (2013).

Note that the MIND model (Fan et al., 2021) would have been a great candidate193

for evaluation, too, but only a subset of the modeled pools was run globally, so some of194

its parameters (e.g. Vmax,P and KM,P ) do not have fitted values outside of 4 experimen-195

tal test cases.196

Figure 3. General structure of the new-generation models which we chose for this study. The
MIMICS and CORPSE models additionally feature a CO2 flux leaving MAOM and POM, which
depends on the carbon use efficiency of the microbes. The SOMic and CORPSE models do not
allow any flux from the DOM, Microbe, or MAOM pools back into the POM pool. More detailed
diagrams for the MEND, Millennial, SOMic, CORPSE, and MIMICS models can be found in the
Supporting Information (Figures S1-S5). Abbreviations: POM = particulate organic matter ;
MAOM = mineral-associated organic matter ; DOM = dissolved organic matter.

2.3 Model input data197

For each measurement site, the models are run with local environmental forcing198

data from 1850 to 2014. The initial conditions in 1850 are found by spinning up the mod-199

els, looping over a “pre-industrial” year, where the forcing data is averaged over the 1850-200

1879 period, until the system reaches equilibrium, i.e. does not experience any signifi-201
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Table 1. Summary of features and capabilities of new-generation models. All of the listed
models are compatible with the distinction between POM and MAOM and have been used to
produce predictions for a variety of soil profiles. The models selected for evaluation with 14C in
this study are indicated with an asterisk (∗). The first two columns are the year of the first pub-
lication and, if applicable, the year of the latest published revision of each model at the time of
writing. The “Open-source,” “Implements 14C,” and “Explicitly models” columns are checkmarked
if at least one version of the model has open-source code, implements 14C simulations, or explic-
itly models a specified pool or feature, respectively. In the “Vertical mixing” subcolumn, models
with a downward arrow (↓) simulate any kind of downward transport or leaching for at least one
of their pools, often in dissolved form, and sometimes using an advection equation. Models fea-
turing an up-down arrow (↕) additionally implement vertical mixing for at least one of their pools
with a diffusion equation.
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Notes

∗ Millennial 1 2018 2022 ✓ ✓ ✓ ↓

∗ SOMic 2 2019 ✓ ✓ ✓ ✓ ↓

∗ MEND 3 2013 2022 ✓ ✓ ✓ ✓ ✓ 14C only in 2015

∗ CORPSE 4 2014 2020 ✓ ✓

∗ MIMICS 5 2014 2021 ✓ ✓ ✓ ↓↕ 14C and ↓↕ only in 2021

MIND 6 2021 ✓ ✓

AggModel 7 2013 ✓ incubation model

JSM 8 2020 (✓) ✓ ✓ ✓ ↓↕ source code accessible upon
request

COMISSION 9 2015 2020 ✓ ✓ ✓ ↓↕ 14C introduced in v2.0

Tipping & Rowe 10 2019 ✓ ✓ ↓

MEMS 11 2019 2021 ✓ ✓ ↓↕ ↕ introduced in v2.0

SOMPROF 12 2011 2014 ✓ ↓↕ 14C introduced in 2014

CAST 13 2013 ↓

Struc-C 14 2009

PROCAAS 15 2020 incubation model

Explicitly models

1Abramoff et al. (2018, 2022) ; 2Woolf and Lehmann (2019) ; 3G. Wang et al. (2013, 2015,
2022) ; 4Sulman et al. (2014, 2017); Salazar et al. (2018); Hicks Pries et al. (2018); Moore et al.
(2020) ; 5Wieder et al. (2014, 2015); H. Zhang et al. (2020); Kyker-Snowman et al. (2020); Y. Wang
et al. (2021) ; 6Fan et al. (2021) ; 7Segoli et al. (2013) ; 8Yu et al. (2020) ; 9Ahrens et al. (2015,
2020) ; 10Tipping and Rowe (2019) ; 11Robertson et al. (2019); Y. Zhang et al. (2021) ; 12Braakhekke
et al. (2011, 2013, 2014) ; 13Stamati et al. (2013) ; 14Malamoud et al. (2009) ; 15Liu et al. (2020)

cant inter-annual variability. More details on the spinup methods for each model are given202

in section S1 in the Supporting Information.203
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The selected models require a number of constant and time-dependent forcing data204

to be run at each study site. We assume that soil properties such as sand, clay and silt205

content, soil density, and land use are time-invariant since pre-industrial times. Where206

these site-specific soil properties are not reported in ISRaD, they are taken from the Soil-207

Grids database (Poggio et al., 2021). The MIMICS model also requires the lignin con-208

tent of litter inputs, which we set to be a constant value depending only on the land use209

type. We assume that the lignin content is 25% for forest litter and 7% for shrubland210

litter (Rahman et al., 2013, Table 1). For grassland and cultivated landscapes, we as-211

sume a lignin content of 9% based on measurements of grasses at the seeding stage (Armstrong212

et al., 1950, Table 1). Weather-dependent and other dynamic environmental properties,213

such as soil temperature and 14C influx, are taken from global model predictions with214

monthly time resolution. We use the monthly averaged CESM2 Large Ensemble (CESM2-215

LE) product (Rodgers et al., 2021) for vertically resolved soil temperature and moisture,216

above- and below-ground net primary production (NPP), total gross primary produc-217

tivity (GPP), and the carbon-to-nitrogen ratio and ∆14C of total litter carbon from 1850218

to 2014 with 1 degree spatial resolution. Since the below-ground NPP from the CESM2-219

LE output is not vertically resolved, we derive the topsoil portion of the below-ground220

NPP using the exponential function model from Xiao et al. (2023). For nitrogen depo-221

sition rates, we use monthly data simulated by the NCAR Chemistry-Climate Model Ini-222

tiative (CCMI) on a 0.5 degree grid from 1860 to 2016 (Tian et al., 2018). We extend223

this data back to 1850 by setting the monthly nitrogen deposition rates for the 1850-1860224

period to be equal to the average monthly rates over the 1860-1870 period.225

Since none of the selected models represent lateral carbon transport or upward ver-226

tical mixing of soil carbon, the simulated topsoil systems receive all of their carbon ex-227

clusively from vegetation inputs. We can therefore estimate the carbon influx into the228

soil with the NPP, and the ∆14C of the influx with the ∆14C of litter from the CESM2-229

LE product. In the case of the MEND model, we use GPP instead of NPP as a model230

input, as prescribed by MEND’s developers.231

3 Results232

We produced carbon and 14C predictions with the MEND, Millennial, SOMic, CORPSE233

and MIMICS models for the 77 selected soil profiles, and compared them to the observed234

carbon and 14C data from ISRaD. Our main performance metrics are the root mean squared235

error (RMSE) and mean bias of the predictions with respect to the 6 observational datasets236

described in Section 2.1. Table 2 gives a summary of the model performances, and Fig-237

ures S8-S12 in the Supporting Information show plots of predictions against observations238

for each variable and each model. Note that the MEND model failed to run on 12 of the239

77 selected soil profiles due to some numerical instability, and was unable to produce 14C240

data for 3 other profiles. Note also that the SOC stocks for 17 of the 77 selected profiles241

are not available in ISRaD.242

3.1 Carbon stocks and partitioning between pools243

The SOMic, Millennial, and CORPSE models tend to overestimate the topsoil SOC244

stocks of the selected soil profiles, while MEND and MIMICS underestimate the SOC245

stocks, as shown in Figure 4a. In their predictions of SOC partitioning into POM and246

MAOM, the new-generation models generally fail to cover the full range of variability247

in the observations, with the exception of the MIMICS model (see Figure 4b-c). The CORPSE248

and MIMICS models perform the best, and both have a RMSE of around 20 percent-249

age points, and a bias of around 10 points or less in magnitude. Meanwhile, the remain-250

ing models have an average RMSE of 35 points and an average absolute bias of around251

25 points in their predictions of POM and MAOM contributions to total SOC stocks (see252

Table 2).253
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Table 2. Root mean squared error (RMSE) and mean bias for each model and each dataset.
In the case of the MEND model, the RMSE and bias were calculated based on results of n = 62

profiles for the ∆14C rows, n = 52 for SOC stocks, and n = 65 for the rows of POM and MAOM
contributions. For all other models, n = 77 for all rows, except SOC stocks, where n = 60.

MEND Millennial SOMic CORPSE MIMICS Average

Bulk SOC ∆14C (‰)
RMSE 84 115 101 90 80 94
Bias +59 +69 +46 +35 0 +42

POM ∆14C (‰)
RMSE 94 120 100 119 129 112
Bias +50 +63 +56 +86 +80 +67

MAOM ∆14C (‰)
RMSE 103 117 102 83 74 96
Bias +83 +82 +57 -3 -39 +36

SOC stocks (kgC/m2)
RMSE 4.1 3.8 3.2 6.2 2.3 3.9
Bias −1.3 +2.7 +1.9 +4.0 −1.6 +1.1

POM contribution (%)
RMSE 35 40 32 23 17 29
Bias +24 −33 −22 +11 −2 −4

MAOM contribution (%)
RMSE 35 41 30 21 21 30
Bias −24 +35 +20 −9 −9 +2
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Figure 4. Observed and modeled total SOC stocks in the topsoil (top 5 or 10 cm of mineral
soil) plotted on a log-transformed axis in subplot (a), and contributions of the POM and MAOM
pools to the topsoil SOC stocks in subplots (b) and (c), respectively. Black diamonds are outliers.
In (a), n = 60 for the boxplot of observed data, n = 65 for MEND, and n = 77 for all other
models. In (b) and (c), n = 77 for all boxplots, except for MEND, where n = 65.

3.2 Performance with 14C254

With the notable exception of MIMICS, the new-generation models consistently255

overestimate the ∆14C of bulk SOC, and their 14C predictions do not capture the full256

variability of the observations (see Figure 5a). This is reminiscent of the ESMs’ 14C pre-257

dictions (He et al., 2016), which also overestimate the ∆14C of SOC and underestimate258

its variability. Therefore, our results could suggest that the new generation of soil mod-259

els may be facing similar issues as the traditional SOC models incorporated into ESMs.260

The pool-specific 14C results, shown in Figure 5b-c, shed a more critical light on261

the performance of MIMICS with the ∆14C of bulk SOC. MIMICS overestimates the ∆14C262
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of POM by 80‰ and underestimates the ∆14C of MAOM by around 40‰ on average,263

and these biases happen to cancel out in such a way that MIMICS produces very good264

predictions for the ∆14C of bulk SOC with a RMSE of just 80‰ and no bias, the best265

performance among the evaluated models (see Table 2). All five models overestimate the266

∆14C of POM, with an average positive bias of 67‰, and SOMic, Millennial, and MEND267

also overestimate MAOM ∆14C by 74‰ on average. CORPSE is good at predicting the268

∆14C of MAOM with effectively no bias, but its POM ∆14C predictions have the largest269

bias (+119‰) among all the models. On average, the evaluated models have a positive270

bias between 36‰ and 67‰, and a RMSE around 100‰ in their ∆14C predictions for271

the POM, MAOM, and bulk SOC (see Table 2 for more details).272
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Figure 5. Observed and modeled ∆14C of total SOC (a), POM (b), and MAOM (c) in the
topsoil (top 5 or 10 cm of mineral soil). Black diamonds are outliers. Note that some extreme
outliers are outside of plotting range. To have a uniform and consistent 14C dataset, we excluded
the 1949 and 1978 samples so that we end up with more compact data spanning only 18 years
at the tail end of the bomb spike. Therefore, n = 75 for all boxplots, except for MEND’s, where
n = 62.

The models produce contrasting predictions for the evolution of soil 14C over the273

second half of the 20th century. In the example of an alpine pasture (Figure 6), we can274

see that the CORPSE, SOMic and MIMICS models predict ∆14C curves for POM which275

are distinct from MAOM, while the MEND and Millennial models produce similar ∆14C276

dynamics for POM and MAOM. That is because the Millennial and MEND models have277

faster turnover rates than the other models, and their pools rapidly exchange carbon be-278

tween themselves.279

3.3 Role of environmental parameters280

We further investigate how simulations depend on soil temperature and clay con-281

tent, as these are considered some of the most important factors controlling SOC turnover282

and persistence (Basile-Doelsch et al., 2020; Leifeld et al., 2009).283

Higher soil temperatures enhance microbial activity and generally increase the turnover284

rate of carbon in soils (German et al., 2012; Leifeld et al., 2009; Sierra et al., 2015). While285

the observed SOC stocks and POM and MAOM contributions are not correlated with286

temperature (Figure 7a-c), the observed ∆14C of POM, MAOM, and bulk SOC signif-287

icantly increase with higher temperature (Figure 7d-f), probably due to shorter carbon288

residence times in warmer soils. In contrast, the predicted ∆14C of POM, MAOM, and289

bulk SOC are either uncorrelated or negatively correlated with soil temperature. All of290
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Figure 6. Observed and predicted ∆14C of POM, MAOM, and bulk SOC in the top 10 cm
of the mineral soil of a pasture in the Matsch valley, Italy. The observed 14C data from 2008 are
published in Meyer et al. (2012). The atmospheric ∆14CO2 of the Northern Hemisphere (Graven
et al., 2017) is shown for reference. With the SOMic, CORPSE and MIMICS models, the pre-
dicted ∆14C of POM is distinct from the predicted ∆14C of MAOM. On the other hand, the
POM and MAOM pools in MEND and Millennial have very similar ∆14C signals throughout the
bomb-spike period.

the selected models modify carbon decomposition rates with a temperature-dependent291

scaling factor (Abramoff et al., 2022; Woolf & Lehmann, 2019; Kyker-Snowman et al.,292

2020; G. Wang et al., 2022; Sulman et al., 2014), but these results could indicate that293

they may need to increase or change the effect of temperature on carbon turnover rates.294

In Figure 8c, the clay content of the sampled topsoils seems to be a decisive fac-295

tor controlling the observed contribution of MAOM carbon to the total SOC stocks, with296

higher clay content correlating with higher MAOM contribution. This is also true for297

the MAOM contributions predicted by the MIMICS and CORPSE models, which pro-298

duce the most accurate predictions of MAOM contribution (see Table 2). However, MIM-299

ICS appears to struggle with correctly simulating the effects of increased clay content300

on overall SOC dynamics, as evidenced by the inaccurate relationships of SOC stocks301

and ∆14C with clay (see Figure 8a and Figure 8d-f). It appears that MIMICS correctly302

reproduces the evolution of MAOM contribution with clay content by increasing the res-303

idence time of carbon in MAOM, which in turn lowers the ∆14C of MAOM and increases304

SOC stocks, contrary to the observations.305

4 Discussion306

The comparison of new-generation model predictions with 14C observations reveals307

inaccuracies in the estimations of the time scales of carbon exchanges and stabilization308

in soils. Just like ESMs, most new-generation models overestimate the ∆14C of bulk soil309

organic carbon (SOC) and they, too, may therefore be overestimating the effectiveness310

of soils as a net atmospheric CO2 sink in the 21st century (He et al., 2016). The biases311

in the predictions of the repartition of SOC between particulate organic matter (POM)312

and mineral-associated organic matter (MAOM) may also affect the accuracy of future313

projections. POM and MAOM have been shown to have different sensitivities to envi-314
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Figure 7. Relationship of observed and predicted carbon and ∆14C data with respect to
mean annual temperature of the topsoil (averaged over the 1970-2010 period). Circles are data-
points, and lines are best linear fits through the points. The observed ∆14C of bulk SOC, POM,
and MAOM have a strong positive relationship with temperature. Meanwhile, the predicted
∆14C are more weakly and sometimes negatively correlated with temperature. The linear fit line
of CORPSE in subplot (c) is completely covered by the linear fit line of MIMICS. Note that we
once again excluded the 1949 and 1978 samples for these plots.
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Figure 8. Relationship of observed and predicted carbon and ∆14C data with respect to clay
content in the topsoil. Circles are datapoints, and lines are best linear fits through the points.
CORPSE and MIMICS successfully reproduce the positive relationship between topsoil clay
content and the observed MAOM contribution to total SOC stocks in subplot (c). However, in
subplot (f), MIMICS has a strong negative correlation of MAOM ∆14C with clay content, unlike
the observations, which do not show a correlation. The linear fit line of CORPSE in subplot (f)
overlaps with that of the observations. Note that we once again excluded the 1949 and 1978 sam-
ples for these plots.
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ronmental variables such as temperature and are thus expected to react differently to315

a changing climate (Hicks Pries et al., 2017; Kleber et al., 2011). Therefore, if models316

do not correctly partition SOC into POM and MAOM and misrepresent their 14C, they317

will probably produce inaccurate predictions of SOC dynamics under climate change.318

We identify three likely reasons why the new-generation models generally under-319

perform with 14C, and discuss how these problems could potentially be solved:320

1. Insufficient datasets for the calibration of carbon turnover rates,321

2. Lack of a “passive” pool with very slow turnover to account for inert SOC com-322

ponents,323

3. Modeled pools do not capture the full range of SOC turnover rates.324

The last point raises questions on the effectiveness of the new-generation models325

and the POM-MAOM distinction as a whole. This invites further research on the sta-326

bility of the different constituents of SOC and a discussion on the most effective way to327

partition SOC into representative measurable pools.328

4.1 Insufficient calibration datasets329

Our 14C results suggest that the new-generation models selected for this study over-330

estimate some carbon turnover rates. The most extreme case is Millennial v2, which gives331

its micro-aggregate pool and mineral-adsorbed carbon pool turnover times of just a few332

months (see section S5 of supplement). On the other hand, 14C-based studies find that333

the MAOM fraction, which includes micro-aggregates and mineral-adsorbed carbon, typ-334

ically turns over on time scales of many decades or centuries (Gaudinski et al., 2000; Schrumpf335

& Kaiser, 2015; van der Voort et al., 2017; Baisden et al., 2002). The overestimation of336

turnover rates may be due to inadequate or insufficient data for the calibration of the337

models’ turnover parameters. Even though new-generation models have measurable pools,338

they do not usually assimilate pool-specific carbon and 14C data, probably because such339

data are currently very sparse. The only models in our evaluation to calibrate their pa-340

rameters with pool-specific carbon data are CORPSE (with data from only 2 soil pro-341

files, according to Y. Zhang et al., 2021, Table S1) and Millennial (as described in Abramoff342

et al., 2022), and none of them assimilated pool-specific 14C data. Instead, new-generation343

models primarily rely on less informative bulk soil data, as well as some soil incubation344

results, for parameter optimization. However, as the dataset of fraction-specific carbon345

and 14C measurements is growing larger, new-generation models should start to take full346

advantage of the measurability of their pools and assimilate those highly informative data.347

4.2 Lack of passive pool348

Another explanation for the consistent overestimation of soil ∆14C by new-generation349

models is the inability of the models to account for the presence of practically inert com-350

pounds in the soil, which negatively offset the bulk ∆14C. For example, some soils with351

a history of wildfires may contain a considerable fraction of pyrogenic carbon, which is352

composed of highly durable aromatic compounds and can remain in soils over thousands353

of years (Eckmeier et al., 2009; Hajdas et al., 2007; Leifeld, 2008). Due to its extreme354

longevity, pyrogenic carbon is depleted in 14C as a result of radioactive decay, bringing355

down the overall ∆14C of both POM (van der Voort et al., 2017) and MAOM (Soucémarianadin356

et al., 2019). In deeper soils, the ∆14C of SOC can be even further depleted due to a larger357

proportion of petrogenic carbon, which is devoid of 14C (van der Voort et al., 2019). Whereas358

the two major traditional SOC models explicitly account for such extremely old com-359

ponents with a “passive” pool (1000 year turnover time) in the Century model (Parton360

et al., 1987) and an “inert organic matter” pool (no turnover at all) in the RothC model361

(Coleman & Jenkinson, 1996), the new-generation models effectively force virtually in-362
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ert components to fit into their actively cycling carbon pools. By creating a passive pool363

to account for inert compounds such as pyrogenic carbon, the new-generation models364

would be able to lower the overall ∆14C of POM and MAOM, and more accurately re-365

produce the measured 14C data.366

4.3 Search for more representative measurable pools367

Finally, the underperformance of the models with respect to 14C may also be due368

to a choice of pools which are not truly representative of the full spectrum of turnover369

rates of the different SOC components. Whereas traditional models simply define the370

number and turnover rates of their SOC pools such that they can reproduce observed371

SOC dynamics while minimizing degrees of freedom, new-generation models also need372

to make sure their pools are at once easily measurable and representative of the various373

time scales of soil carbon persistence. If a measurable pool contains two or more com-374

ponents with very different turnover rates, the model may not be able to correctly re-375

produce the ∆14C of that pool because it assumes a single, homogeneous turnover rate376

for the entire carbon pool. Although some models already split POM into various sub-377

pools with contrasting turnover times (e.g., soluble and insoluble litter pools in SOMic,378

or oxidizable and hydrolysable POM pools in MEND), they miss the most recalcitrant379

POM pool of pyrogenic carbon, which even in minute amounts can significantly alter the380

∆14C and apparent turnover of POM (Leifeld, 2008). Some new-generation models sub-381

divide the MAOM pool into micro-aggregates and mineral-adsorbed carbon (e.g., Mil-382

lennial), or into an active layer of adsorbed DOC and a more stable MAOM component383

(e.g., MEND). However, those MAOM subpools might still not be homogeneous enough384

in their turnover times for effective 14C simulations. Recent 14C studies determining the385

stability of MAOM under the action of peroxide oxidation show that it may be neces-386

sary to further split clay-sized MAOM into two measurable subpools which are decom-387

posable or resistant to microbial exo-enzymes (Schrumpf et al., 2021; Jagadamma et al.,388

2010). Additionally, “continuous” SOC fractionation methods such as ramped pyroly-389

sis oxidation (Stoner et al., 2023) could provide a much higher resolution of the SOC turnover390

rate spectrum. However, the resulting measurable pools are more difficult to interpret391

in terms of their role in the soil carbon cycle, and their incorporation into mechanistic392

SOC models is therefore less straightforward.393

4.4 Limitations of this study394

The accuracy of our model evaluation is affected by multiple factors. Though we395

took care to accurately match the modeled pools to the measured fractions (see section396

S2 in Supporting Information), the correspondences are imperfect and further compli-397

cated by non-standardized definitions and density cut-offs for the light and heavy frac-398

tions published on ISRaD. Nevertheless, this does not change the overall overestimation399

of soil ∆14C by most models. The use of forcing data from possibly inaccurate CESM2-400

LE and CCMI outputs with low spatial resolution may also affect the accuracy of our401

model evaluation. Furthermore, the ∆14C of the carbon inputs from the CESM2-LE prod-402

uct could be inaccurate, especially in soils with a thick organic layer, which pre-ages the403

carbon before it enters the mineral soil. However, the consistency and magnitude of the404

models’ overestimation of the topsoil’s ∆14C with respect to observed data indicate that405

this overestimation is evidently a real pattern among the studied models. Finally, it is406

also important to note that our study only produces an incomplete picture of model per-407

formances on a global scale, since most of the measured datapoints represent North Amer-408

ican and European forest ecosystems.409
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5 Summary410

Despite their incorporation of the latest advances in soil sciences, new-generation411

soil organic carbon (SOC) models currently show similar discrepancies with 14C data as412

the traditional SOC models. The new-generation models’ consistent overestimation of413

the ∆14C in both particulate organic matter (POM) and mineral-associated organic mat-414

ter (MAOM) and their inaccurate partitioning of SOC between POM and MAOM sug-415

gest that these models underestimate the time scales of carbon storage in soils and might416

produce unreliable future predictions under climate change. To improve their predictions,417

new-generation models should take advantage of the measurability of their pools and cal-418

ibrate their parameters with the rapidly growing dataset of pool-specific carbon and 14C419

measurements in addition to incubation and bulk soil data. They may also have to re-420

consider their model design and simulate measurable pools which better capture the full421

spectrum of carbon turnover rates present in the soils. In particular, the consideration422

of highly persistent soil carbon such as pyrogenic carbon could significantly improve 14C423

predictions. As more effective measurable pools are being discovered and the dataset of424

pool-specific 14C data is expanding, new-generation soil models have the potential to even-425

tually supersede the traditional SOC models employed by ESMs if they take full advan-426

tage of the measurability of their pools and assimilate the available data.427

6 Open Research428

The source code to download the input data, run the models, and reproduce all the429

results presented in this manuscript is available on our GitHub repository https://github430

.com/asb219/evaluate-SOC-models.431

Our final implementations of Millennial, CORPSE, MIMICS, and the 14C compo-432

nent of MEND are available as python modules in our repository. For the carbon and433

nitrogen components of MEND, the Fortran source code is in https://github.com/asb219/434

MEND (forked from https://github.com/wanggangsheng/MEND), which is added as a “git435

submodule” to our repository. We use the install_github function of the devtools pack-436

age in R to compile the C++ code of the SOMic model released as “v1.1-asb219” in https://437

github.com/asb219/somic1 (forked from https://github.com/domwoolf/somic1) and438

install it as an R package. We download data from SoilGrids with the soilgrids python439

package (https://github.com/gantian127/soilgrids).440
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Introduction

This document provides further information on the specific model versions and imple-

mentations used in this study (section S1, Figures S1-S5), and specifies which simulated

pools were associated to which measured soil fraction (section S2, Table S1). It also ex-

plains how we re-implemented non-isotopic models with 14C (section S3), and why the

14C implementation of SOMic and the newest version of MIMICS are incorrect (section

S4, Figures S6-S7). Section S5 gives some more details on Millennial’s turnover times. Fi-

nally, Figures S8-S12 at the end of this document show plots of model predictions against

observations for each model.
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S1. Further information on model versions and implementations

The source codes of all the selected model versions are openly available. By having

direct access to the code with which the model developers produced their results, we can

be more confident that we test an implementation of the models as intended by their

respective authors.

Our final implementations of the Millennial, CORPSE, and MIMICS models are

available as python modules on our GitHub repository https://github.com/asb219/

evaluate-SOC-models. Our slightly modified implementation of the MEND model in

https://github.com/asb219/MEND is added to our repository as a git submodule. Fi-

nally, we installed the SOMic model’s R package directly from our forked https://

github.com/asb219/somic1 GitHub repository.

S1.1. Millennial

We use Millennial V2 with Michaelis-Menten kinetics as described in Abramoff et al.

(2022). We re-implemented the model with 14C in Python based on the original R code in

the https://github.com/rabramoff/Millennial repository under the tag “v2” (commit

e95bca9 from September 2021). We used the model equations from file R/models/derivs

_V2_MM.R in the repository and ran the model with the fitted parameter values from the file

Fortran/MillennialV2/simulationv2/soilpara_in_fit.txt in the repository. The

initial condition for both carbon and 14C stocks is found by first solving for a pre-industrial

steady state, similarly to the model tutorial R/simulation/model_tutorial.Rmd in the

repository, and then running the model from steady state for 200 years using time-varying

pre-industrial forcing data featuring a seasonal cycle. The final state of that spinup is
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then used as the initial condition for the final run of the model over the 1850-2014 period.

The model runs with daily time steps, and though the model tutorial uses the 4th order

Runge-Kutta integration method, we integrate the equations simply with the forward

Euler method, which is stable and precise enough with daily time steps.

S1.2. CORPSE

The CORPSE model was originally described in Sulman, Phillips, Oishi, Shevliakova,

and Pacala (2014). There are currently at least six publicly available versions of CORPSE.

Since we are mostly interested in carbon dynamics, the lead developer Benjamin Sulman

recommended we use the most up-to-date carbon-only implementation in https://github

.com/bsulman/CORPSE-fire-response (latest commit at time of writing: 19ee2c7 from

February 2021). We reimplemented CORPSE with 14C based on the equations in file

CORPSE_array.py and using the parameter values from file Whitman_sims.py in that

repository. However, the equation for the clay-related rate modifying factor is taken from

file code/CORPSE_integrate.py in repository https://github.com/bsulman/CORPSE-N,

since the model seems to be working more reliably with that version of the equation. Like

in Millennial, the initial condition is found by solving for a pre-industrial steady state and

spinning up for 200 years from that steady state. If the solver is unable to find a steady

state, the model is spun up for 4000 years. The model runs with daily time steps and

uses the forward Euler integration method.

S1.3. SOMic

We use version 1.0 of the SOMic model as described in (Woolf & Lehmann, 2019).

The original code is available on the GitHub repository https://github.com/domwoolf/
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somic1 (hash of latest commit at time of writing: be34e56 from June 2019). However,

we forked the repository to https://github.com/asb219/somic1 in order to fix a minor

issue in its 14C implementation (see reason in section S4.1), and used the version released

under the tag “v1.1-asb219” to produce our results. We spin up the model for 5000 years

to get the initial carbon and 14C stocks. The model runs with monthly time steps and

uses the forward Euler integration method.

S1.4. MEND

We use the latest version of the default MEND model with carbon-nitrogen coupling as

described in G. Wang et al. (2022). Our 14C re-implementation is based on the code from

commit 92323c7 (from February 2022) of the GitHub repository https://github.com/

wanggangsheng/MEND. We forked the repository from that commit to https://github

.com/asb219/MEND so we could adapt the model input and output to our purposes. We use

all the default model settings and the optimized parameter values provided in the Fortran

namelist file MEND_namelist.nml in the repository. The pre-industrial soil carbon and

nitrogen stocks are found by initializing the model with the default initial state from file

userio/inp/SOIL_ini.dat and spinning up for 400 year with pre-industrial forcing data.

The pre-industrial soil 14C levels are found by running the spun-up model for another 1000

years with pre-industrial forcing data. The model runs with hourly time steps and uses

the forward Euler integration method.

S1.5. MIMICS

We use the MIMICS-CN v1.0 model, as published in (Kyker-Snowman et al., 2020),

because the latest version of MIMICS (Y. Wang et al., 2021) did not correctly imple-
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ment 14C (see section SS4.2). The original R code of MIMICS-CN v1.0 is available on

https://zenodo.org/records/3534562. It already implements stable isotope tracers,

but no radioactive isotopes such as 14C, so we re-implemented the model with 14C in

python. Like for Millennial and CORPSE, we spin up for 200 years from the pre-industrial

steady-state solution. If no steady state can be found, we spin up for 4000 years. The

model runs with hourly time steps and uses the forward Euler integration method.
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S2. Correspondences between pools and measurable fractions

This section explains how we associate the simulated pools of each model with either

the POM (particulate organic matter) fraction or the MAOM (mineral-associated organic

matter) fraction. See Table S1 for a summary of the correspondences between the modeled

pools and the POM and MAOM fractions.

We assume that the POM fraction (corresponding to the “light fraction” resulting from

density fractionation) is composed of fragmented and partially processed plant litter which

is not stabilized in the soil matrix through mineral association. We assume that the

MAOM fraction (corresponding to the “heavy fraction” resulting from density fractiona-

tion) is composed of soil organic carbon which is enclosed in stable aggregates or strongly

adsorbed to minerals. Since the live microbial biomass and dissolved organic carbon gen-

erally represent a small fraction of soil organic carbon, we can neglect them, so we assume

they belong to neither POM nor MAOM.

S2.1. MEND

We assume that the POM fraction is composed of the POMO and POMH pools, and

that the MAOM fraction is composed of the MOM and QOM pools.

List of organic carbon pools in the MEND-new (2022) model by G. Wang et al. (2022)

(also see Figure S1):

• POMO and POMH (particulate organic matter decomposed by oxidative and hydrolytic

enzymes, respectively).

• MOM (mineral-associated organic matter).

• QOM: “active layer of MOM” which can exchange carbon with DOM through adsorption

and desorption (G. Wang et al., 2022).
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• DOM (dissolved organic matter).

• MBA and MBD (active and dormant microbial biomass, respectively).

• EPO, EPH, EM: various microbial exo-enzymes.

Note that the “Litter” pool in the MEND model diagram in Figure S1 is not explicitly

modeled as a pool, and therefore does not feature in the above list of organic carbon pools.

S2.2. Millennial

We assume that the measured MAOM fraction is the sum of the Aggregate C and

MAOM pools, and that the POM fraction is entirely composed of the POM pool.

List of organic carbon pools in Millennial v2 by Abramoff et al. (2022) (see also Figure

S2):

• POM (particulate organic carbon).

• Aggregate C: “stable microaggregates which remain after dispersion in the larger particle

size fraction (>50–60µm)” (Abramoff et al., 2022), so this corresponds to the coarse heavy

fraction.

• MAOM (mineral-associated organic carbon): consists of organic matter associated to

minerals through sorption (Abramoff et al., 2022).

• Microbial Biomass: live microbial biomass.

• LMWC (low molecular weight carbon): “LMWC could be analogous to dissolved organic

C (DOC) if there is enough moisture in the soil matrix, and if we do not consider DOC

molecules that are too large to be taken up by microbes” (Abramoff et al., 2022).
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S2.3. SOMic

The MAOM fraction is composed of the MAC pool, and the POM fraction is composed

of the SPM and IPM pools.

List of organic carbon pools in SOMic 1.0 by Woolf and Lehmann (2019) (also see

Figure S3):

• SPM and IPM (soluble and insoluble plant matter, respectively).

• MAC (mineral-associated carbon): “mineral-sorbed or -occluded SOC” (Woolf &

Lehmann, 2019).

• DOC (dissolved organic carbon).

• MB (microbial biomass).

S2.4. CORPSE

We associate the MAOM fraction with the SPCp, CPCp, and MNp pools, since they

represent mineral-adsorbed and micro-aggregated carbon (Moore et al., 2020). We asso-

ciate the POM fraction with the SPCu and CPCu pools, but not the microbial MNu pool,

because POM is mostly composed of unprotected plant-derived carbon.

List of organic carbon pools in the CORPSE-fire-response version of the CORPSE

model, first published in Sulman et al. (2014) and last updated in Moore et al. (2020) (see

also Figure S4):

• SPCu, CPCu, and MNu (Unprotected simple plant carbon, Unprotected complex plant

carbon, and Unprotected microbe necromass, respectively).

• SPCp, CPCp, and MNp (Protected simple plant carbon, Protected complex plant carbon,

and Protected microbe necromass): “protected organic matter is inaccessible to microbial
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decomposition through chemical sorption to mineral surfaces or occlusion within microag-

gregates” (Moore et al., 2020).

• LMB (live microbial biomass).

S2.5. MIMICS

According to Kyker-Snowman et al. (2020), the SOMc pool corresponds to the POM

fraction, and the SOMp pool corresponds to the MAOM fraction.

List of organic carbon pools in MIMICS-CN v1.0 by Kyker-Snowman et al. (2020) (see

also Figure S5):

• LITm and LITs (metabolic and structural litter, respectively): litter pools which are not

considered part of soil organic matter.

• SOMp (physicochemically protected soil organic matter): “is primarily composed of mi-

crobial products that are adsorbed onto mineral surfaces” and is “analogous to heavy

fraction or MAOM pools” (Kyker-Snowman et al., 2020).

• SOMc (chemically recalcitrant soil organic matter): “consists of decomposed or partially

decomposed litter” and is “analogous to light fraction or POM pools” (Kyker-Snowman et

al., 2020).

• SOMa (available soil organic matter): “the only SOM pool that is available for microbial

decomposition; it contains a mixture of fresh microbial residues, products that are des-

orbed from the SOMp pool (e.g., Jilling et al., 2018), as well as depolymerized organic

matter from the SOMc pool” (Kyker-Snowman et al., 2020). This pool is usually very

small and we associate it to neither POM nor MAOM.
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• MICr and MICK (“low-efficiency, r strategist” microbes and “high-efficiency, K strategist”

microbes, respectively): live microbial biomass pools.

Note that MIMICS-CN v1.0 also has a Dissolved Inorganic Nitrogen (DIN) pool, which

does not contain organic carbon.
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S3. Radiocarbon predictions with non-isotopic models

Among the new-generation models selected for this study, SOMic, MIMICS, and MEND

have already implemented 14C. However, the most recent and only open-source version

of MEND does not include 14C, and SOMic and MIMICS incorrectly implemented their

14C simulations (see section S4). Nevertheless, we can still produce 14C predictions with

non-isotopic models by individually tracking the carbon fluxes at every time step and

attaching a 14C signal to each flux. Since none of the models define an internal structure

for their pools, we will assume by default that the pools are well-mixed, which means

that the ∆14C of a pool’s outflux is equal to the pool’s ∆14C. This assumption is common

practice for 14C modeling in soils (Sierra et al., 2017).

We run all of the selected models using the forward Euler method to advance from one

time step to the next. The models either implicitly or explicitly produce the internal flux

matrix Φi at each time step i, where Φi
jk ≥ 0 is the flux of carbon from pool k into pool

j (with j ̸= k), and Φi
jj ≤ 0 is the total outflux of carbon out of pool j at time step

i. They also define the external influx vector I i such that I ij ≥ 0 is the influx of carbon

entering the modeled system through pool j at time step i. Matrix Φ contains all the

fluxes between the pools and out of the system, and vector I contains all the influxes of

carbon from outside the system into the modeled pools. We can therefore find the carbon

stocks Ci+1
j of pool j at time step i + 1 based on the Φi, I i, and Ci

j of the previous time

step i:

Ci+1
j = Ci

j + I ij +
∑
k

Φi
jk , (S1)
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where the summation of internal fluxes Φi
jk is performed over all donor pools k to get the

total internal carbon flux into pool j (when k ̸= j), subtracted by the flux out of pool j

(when k = j).

Assuming the pools are well-mixed, we can now produce 14C predictions by tagging

each flux Φjk with the 14C signal of pool k. We measure the 14C signal in terms of

the unitless “absolute Fraction Modern” (FMabs) as defined in Trumbore, Sierra, and

Hicks Pries (2016), such that FMabs = 1 + (∆14C/1000‰). The FMabs is proportional

to the 14C/12C ratio normalized to a δ13C of −25‰ (Trumbore et al., 2016), and is

thus proportional to the normalized ratio of 14C to total carbon (14C/C), considering the

negligible abundance of 14C compared to 12C and 13C. Therefore, if we know F i
j , the FMabs

of pool j at time step i, we can find F i+1
j at time step i + 1 with the following equation

(provided all the pools and the influx have comparable δ13C signals):

F i+1
j Ci+1

j = (1− λ)F i
jC

i
j + I ijF

i
influx +

∑
k

Φi
jkF

i
k , (S2)

where Ci+1
j is given by equation (S1), λ is the radioactive decay rate of 14C in units of

inverse time step size, and F i
influx is the FMabs of the external carbon influx at time step i

given by the forcing data. We can then recover the ∆14C at each time step i and for each

pool j with (F i
j − 1)× 1000‰.
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S4. Incorrect or inaccurate 14C implementations

S4.1. SOMic

The SOMic model (Woolf & Lehmann, 2019), as implemented on the GitHub reposi-

tory domwoolf/somic1 (commit be34e56 from June 2019), does not produce accurate 14C

predictions. Instead of working with the more typical ∆14C or absolute Fraction Mod-

ern (FMabs) units, this implementation tracks the 14C age, which we summarily define as

Age = − log (FMabs)λ
−1, where λ is the radioactive decay rate of 14C. This causes com-

plications when updating the 14C ages of the pools at each time step and when computing

the total 14C age of the soil from the 14C ages of the individual pools. Indeed, to find the

combined age AgeA+B of pools A and B, the implementation of SOMic takes a weighted

average over the ages, which is not entirely accurate:

AgeA+B =
CAAgeA + CBAgeB

CA + CB
, (S3)

where Agei and Ci are the 14C age and the carbon stocks, respectively, of pool i. This

weighted average formula is used to integrate the 14C ages of carbon fluxes into the pools

at each time step on lines 154-160, and to compute the 14C age of the total soil on line 210

of file src/SOMIC.cpp in the domwoolf/somic1 GitHub repository (commit be34e56).

In order to prove that equation (S3) is inaccurate, let us derive how to correctly add

the 14C ages of pools A and B. Let 14Ci denote the 14C stocks and Ci the total carbon

stocks of pool i. Then, by conservation of mass, we have

14CA+B = 14CA + 14CB and CA+B = CA + CB ⇒
14CA+B

CA+B
=

14CA + 14CB

CA + CB
. (S4)
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Since the FMabs is proportional to the 14C/C ratio (assuming pools A and B have a similar

13C content), the above is equivalent to

FA+B =
CAFA + CBFB

CA + CB
, (S5)

where Fi and Ci are the FMabs and carbon stocks, respectively, of pool i. It follows that

the combined 14C age of pools A and B is given by

AgeA+B = −λ−1 · log
(
CA exp (−λ · AgeA) + CB exp (−λ · AgeB)

CA + CB

)
. (S6)

Notice that equation (S3) is the first non-zero term of the above result’s Taylor expansion

around AgeA = 0, AgeB = 0. This means that equation (S3) works well for ages that are

close to zero, i.e. when the ∆14C is close to zero. However, it fails to accurately predict

the propagation of the bomb spike into the soil ecosystem in the latter half of the 20th

century, as shown in Figure S6. While the error induced by the incorrect implementation

exceeds 25‰ for the total soil ∆14C in the 1970s, the error in the 2000s and 2010s is only

around 10‰, which is relatively minor.

S4.2. MIMICS

The only MIMICS version already implemented with 14C is published in Y. Wang et

al. (2021), and the code is available at https://data.csiro.au/collection/csiro:

47942v1. However, this 14C implementation is incorrect (see Figure S7).

The time evolution of the carbon stocks in MIMICS is given by function f(C, t), which

depends on the carbon stocks vector C and time t. Function f is implemented as subrou-

tine modelx in the source file vsoilmic05f_ms25.f90. We can write function f in terms

of internal carbon transfer matrix A and carbon influx vector I:

dC/dt = f(C, t) = A(C, t)C + I(t) , (S7)
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where matrix A(C, t) is a function of carbon stocks C and time t, and vector I(t) is

time-dependent.

Then, following the same procedure which yielded equation (S2), we can derive the

equation governing the evolution of the 14C stocks (14C):

d14C/dt = −λ14C + A(C, t)14C + 14I(t) , (S8)

where λ is the radioactive decay rate of 14C, and 14I is the external influx of 14C.

However, in the 14C-implementation of MIMICS, the evolution of the 14C stocks is

predicted with

d14C/dt = −λ14C + f(14C, t) = −λ14C + A(14C, t)14C + 14I(t) . (S9)

The above equation is incorrect because A(14C, t) ̸= A(C, t).
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S5. Turnover times in the Millennial model

In Millennial version 2 (Abramoff et al., 2022), the POM, MAOM, and Aggregate C

pools exchange carbon with each other on the scale of a few months. The aggregate

formation rate of the POM pool is between 0.012/day and 0.026/day (kpa in Table A1 of

Abramoff et al., 2022), which translates to an average aggregation time of 1-3 months.

Meanwhile, the optimized rate of aggregate formation for the MAOM pool is between

0.0038/day and 0.0052/day (kma in Table A1 of Abramoff et al., 2022), giving MAOM an

average aggregation time of 6-8 months. The Aggregate C pool has a breakdown rate of

around 0.02/day (kb in Table A1 of Abramoff et al., 2022), so aggregates have a turnover

time of just 50 days. POM and MAOM exchange their carbon rapidly with the Aggregate

C pool, which then redistributes the carbon back to the POM and MAOM pools in less

than 2 months, on average. This means that the 14C signals of the POM, MAOM, and

Aggregate C pools get homogenized within a couple years.
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Table S1. Correspondences between simulated carbon pools and the POM fraction,

MAOM fraction, or other carbon reservoirs.

Model POM fraction MAOM fraction Other SOC pools Litter pools

MEND POMO, POMH MOM, QOM DOM, MBA, MBD, EPO, EPH, EM

Millennial POM MAOM, Aggregate C LMWC, Microbial Biomass

SOMic SPM, IPM MAC DOC, MB

CORPSE SPCu, CPCu SPCp, CPCp, MNp MNu, LMB

MIMICS SOMc SOMp SOMa, MICr, MICK LITm, LITs
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Figure S1. MEND-new (2022) model diagram from G. Wang et al. (2022)

Figure S2. Millennial V2 diagram from Abramoff et al. (2022)
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Figure S3. SOMic 1.0 diagram from Woolf and Lehmann (2019)

Figure S4. CORPSE diagram from Moore et al. (2020)
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Figure S5. MIMICS-CN v1.0 diagram from Kyker-Snowman et al. (2020)

Figure S6. Comparison of ∆14C predicted by SOMic with the correct and incorrect 14C

implementations. The atmospheric ∆14CO2 of the Northern Hemisphere (source: Graven

et al., 2017) is plotted for reference. SOMic pool names: SPM, soluble plant matter;

IPM, insoluble plant matter; DOC, dissolved organic carbon; MB, microbial biomass;

MAC, mineral-associated carbon; SOC, total soil organic carbon.
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Figure S7. ∆14C output of MIMICS (Y. Wang et al., 2021) with incorrect iso-

topic implementation. The atmospheric ∆14CO2 of the Northern Hemisphere (source:

Graven et al., 2017) is plotted for reference. MIMICS pool names: LITm, metabolic lit-

ter; LITs, structural litter; MICr, r-strategist microbes; MICK , K-strategist microbes;

SOMp, physically protected soil organic matter; SOMc, chemically protected soil organic

matter; SOMa, active soil organic matter.
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Figure S8. Predictions vs observations plots for the MEND model.
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Figure S9. Predictions vs observations plots for the Millennail model.
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Figure S10. Predictions vs observations plots for the SOMic model.
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Figure S11. Predictions vs observations plots for the CORPSE model.
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Figure S12. Predictions vs observations plots for the MIMICS model.
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