Radiocarbon analysis reveals underestimation of soil organic carbon persistence in new-generation soil models

Alexander Sohrab Brunmayr¹, Frank Hagedorn², Margaux Moreno Duborgel², Luisa Isabell Minich², and Heather Graven¹

¹Imperial College London ²Swiss Federal Institute for Forest, Snow and Landscape Research

December 10, 2023

Abstract

Reflecting recent advances in our understanding of soil organic carbon (SOC) turnover and persistence, a new generation of models increasingly makes the distinction between the more labile soil particulate organic matter (POM) and the more persistent mineral-associated organic matter (MAOM). Unlike the typically poorly defined conceptual pools of traditional SOC models, the POM and MAOM pools can be directly measured for their carbon content and isotopic composition, allowing for pool-specific data assimilation. However, the new-generation models' predictions of POM and MAOM dynamics have not yet been validated with pool-specific carbon and 14C observations. In this study, we evaluate 5 influential and actively developed new-generation models (CORPSE, Millennial, MEND, MIMICS, SOMic) with pool-specific and bulk soil 14C measurements of 77 mineral topsoil profiles in the International Soil Radiocarbon Database (ISRaD). We find that all 5 models consistently overestimate the 14C content (Δ 14C) of POM by 670 the 5 models also strongly overestimate the Δ 14C of MAOM by 74average, indicating that the models generally overestimate the turnover rates of SOC and do not adequately represent the long-term stabilization of carbon in soils. These results call for more widespread usage of pool-specific carbon and 14C measurements for parameter calibration, and may even suggest that some new-generation models might need to restructure their simulated pools (e.g. by adding inert pools to POM and MAOM) in order to accurately reproduce SOC dynamics.

Radiocarbon analysis reveals underestimation of soil organic carbon persistence in new-generation soil models 2

Alexander S. Brunmayr¹, Frank Hagedorn², Margaux Moreno Duborgel^{2,3}, Luisa I. Minich^{2,3}, Heather D. Graven¹

¹Imperial College London, Department of Physics ²Eidgenössische Forschungsanstalt WSL ³ETH Zurich, Department of Earth Sciences

Key Points:

1

3

5 6 7

8

9

10

11

12

13

- New-generation soil models generally overestimate ¹⁴C content in topsoil.
 - This may be because new-generation models have too fast turnover rates and do not include highly persistent compounds such as pyrogenic carbon.
- Discovery of more representative measurable pools is likely to improve new-generation model designs and performances with ^{14}C .

Corresponding author: Alexander S. Brunmayr, asb219@ic.ac.uk

14 Abstract

Reflecting recent advances in our understanding of soil organic carbon (SOC) turnover 15 and persistence, a new generation of models increasingly makes the distinction between 16 the more labile soil particulate organic matter (POM) and the more persistent mineral-17 associated organic matter (MAOM). Unlike the typically poorly defined conceptual pools 18 of traditional SOC models, the POM and MAOM pools can be directly measured for their 19 carbon content and isotopic composition, allowing for pool-specific data assimilation. How-20 ever, the new-generation models' predictions of POM and MAOM dynamics have not 21 yet been validated with pool-specific carbon and ^{14}C observations. In this study, we eval-22 uate 5 influential and actively developed new-generation models (CORPSE, Millennial, 23 MEND, MIMICS, SOMic) with pool-specific and bulk soil ¹⁴C measurements of 77 min-24 eral topsoil profiles in the International Soil Radiocarbon Database (ISRaD). We find 25 that all 5 models consistently overestimate the ¹⁴C content (Δ^{14} C) of POM by 67% on 26 average, and 3 out of the 5 models also strongly overestimate the Δ^{14} C of MAOM by 27 74% on average, indicating that the models generally overestimate the turnover rates 28 of SOC and do not adequately represent the long-term stabilization of carbon in soils. 29 These results call for more widespread usage of pool-specific carbon and ¹⁴C measure-30 ments for parameter calibration, and may even suggest that some new-generation mod-31 els might need to restructure their simulated pools (e.g. by adding inert pools to POM 32 and MAOM) in order to accurately reproduce SOC dynamics. 33

³⁴ 1 Introduction

The terrestrial carbon reservoir sequesters an estimated 29% of anthropogenic CO₂ 35 emissions each year (Friedlingstein et al., 2022), significantly reducing the accumulation 36 rate of CO_2 in the atmosphere and thus slowing down climate change. However, the fu-37 ture role of the terrestrial carbon reservoir as a net CO_2 sink is uncertain, as Earth Sys-38 tem Models (ESMs) produce a wide range of projections for the net land-atmosphere car-39 bon flux over the course of the 21st century, partly due to high uncertainties in the carbon-40 climate feedback (Friedlingstein et al., 2014; Arora et al., 2020). Moreover, a study by 41 He et al. (2016) using the radiocarbon (^{14}C) isotope suggests that some of the most widely 42 used CMIP5 (Coupled Model Intercomparison Project Phase 5) ESMs may be system-43 atically overestimating the future land carbon sink, further casting doubt on the relia-44 bility of future land sink predictions. All five ESMs tested in their study strongly un-45 derestimated the ¹⁴C age of soil organic carbon, which indicates an overestimation of the 46 simulated carbon cycling rates, particularly in the most stable soil carbon pools. After 47 He et al. (2016) adjusted the soil carbon cycling rates to fit the observed 14 C data, the 48 ESMs ended up predicting $40\pm27\%$ lower carbon sequestration by the terrestrial sink 49 in the 21st century than with their default parameters. This result puts into question 50 the ability of current ESMs to accurately model soil carbon dynamics, and highlights the 51 importance of validating model predictions with ¹⁴C data. 52

Almost all ESMs rely on soil organic carbon (SOC) modules that are ultimately 53 based either on the Century model (Parton et al., 1987) (e.g., CESM2, Danabasoglu et 54 al., 2020) or the RothC model (Coleman & Jenkinson, 1996) (e.g., JULES, Clark et al., 55 2011). Even though Century and RothC have been used for many decades to predict SOC 56 dynamics in various landscapes with moderate success (Leifeld et al., 2008; Leifeld, 2008; 57 Leifeld et al., 2009; Abramoff et al., 2022; H. Zhang et al., 2020), both modeling frame-58 works were developed in the 1980s, and thus reflect the comparatively limited understand-59 ing of soil carbon cycling of that time. Indeed, the model design of RothC is inspired by 60 the now obsolete humification theory (Lehmann & Kleber, 2015; Schmidt et al., 2011), 61 and neither RothC nor Century explicitly simulate specific processes of SOC cycling, such 62 as physico-chemical protection of SOC or adsorption and desorption of dissolved organic 63 carbon, because their mechanisms were previously not understood well enough. 64

According to our current understanding, the most important control on SOC sta-65 bility is not so much the molecular composition or "quality" of organic matter, but rather 66 its protection from microbial and abiotic decomposition through occlusion in aggregates 67 and mineral association (Kleber et al., 2011; Dungait et al., 2012; Lehmann & Kleber, 68 2015; Lavallee et al., 2020). When SOC gets enclosed into aggregates or stabilized onto 69 soil mineral surfaces through the action of pedogenic oxides, in particular iron, aluminum 70 and calcium associated with clay particles (Rasmussen, Heckman, et al., 2018; Rowley 71 et al., 2018; Vogel et al., 2014), it becomes less accessible to decomposers and thus sig-72 nificantly increases its residence time in soils (Basile-Doelsch et al., 2020; Schrumpf et 73 al., 2013; Doetterl et al., 2015). A new generation of SOC models is now being devel-74 oped to incorporate the theory of SOC protection through occlusion and interactions with 75 soil minerals into our carbon cycle predictions. A common feature of new-generation soil 76 models is their distinction between particulate organic matter (POM) and mineral-associated 77 organic matter (MAOM). The POM pool largely consists of partially decomposed lit-78 ter fragments smaller than 2 mm (Lavallee et al., 2020; Basile-Doelsch et al., 2020), which 79 are usually covered with a thin mineral coating (Wagai et al., 2009). On the other hand, 80 the MAOM pool contains organic matter chemically adsorbed onto reactive mineral sur-81 faces, as well as strongly bound micro-aggregates formed around sand, silt, or clay par-82 ticles (Basile-Doelsch et al., 2020; Lavallee et al., 2020). Unlike the carbon pools of RothC 83 and Century, the POM and MAOM pools of the new-generation models can be opera-84 tionally defined with experimental protocols by which they can be separated from soil 85 samples and then analyzed individually for their elemental and isotopic composition (von 86 Lützow et al., 2007). This allows for a closer look into the processes governing soil car-87 bon stabilization and for potentially much larger datasets for model calibration and val-88 idation. However, the use of pool-specific measurements to validate models is still lim-89 ited, even for new-generation models (Y. Zhang et al., 2021, Table S1). 90

The theory that protection and accessibility are the most important controls on 91 SOC stability is strongly supported by ^{14}C studies (Gaudinski et al., 2000; Schrumpf et 92 al., 2013, 2021), which could indicate that new-generation SOC models might perform 93 better with ¹⁴C than the traditional SOC models integrated into ESMs. ¹⁴C is an effec-94 tive carbon cycle tracer because it is chemically indistinguishable from the other carbon 95 isotopes and therefore participates in the same carbon exchange mechanisms as the more 96 abundant ¹²C and ¹³C isotopes. Over the past century, the atmospheric ¹⁴C levels have 97 undergone dramatic changes, most notably as a result of thermonuclear weapons tests 98 in the 1950s and '60s, which have almost doubled the amount of atmospheric $^{14}CO_2$ in 99 the Northern Hemisphere (see Figure 2). As this bomb-derived ${}^{14}CO_2$ spreads into the 100 terrestrial carbon reservoirs through photosynthesis and into oceans through air-sea gas 101 exchanges (Graven et al., 2020), the level of enrichment in bomb-derived ^{14}C across dif-102 ferent terrestrial and oceanic carbon reservoirs helps to evaluate the speed and magni-103 tude of carbon exchanges with the atmosphere on annual and decadal scales. Meanwhile 104 for slower-cycling reservoirs such as deep soils or permafrost, the level of ¹⁴C depletion 105 due to radioactive decay (half-life of 5700 ± 30 years (Roberts & Southon, 2007)) helps 106 to estimate the time scales of carbon stabilization in those reservoirs on the order of cen-107 turies and millennia. ¹⁴C is therefore a powerful tool to study the exchanges and stor-108 age of carbon from decadal to millennial time scales. However, new-generation models 109 do not generally implement ¹⁴C simulations, and only a handful have systematically as-110 similated observed ¹⁴C data (e.g., Tipping & Rowe, 2019; Braakhekke et al., 2014; Ahrens 111 et al., 2020). 112

In this study, we use ¹⁴C measurements of the organic carbon in the mineral topsoil to evaluate the performance of five new-generation SOC models: CORPSE (Sulman et al., 2014), MEND-new (G. Wang et al., 2022), Millennial v2 (Abramoff et al., 2022), MIMICS-CN v1.0 (Kyker-Snowman et al., 2020), and SOMic 1.0 (Woolf & Lehmann, 2019). These models were chosen because they are open source, actively developed, and influential in the soil modeling community. Leveraging the measurability of their pools, we compare these models' predictions to ¹⁴C measurements of POM and MAOM, in addition to the total soil ¹⁴C. This provides a detailed picture of the modeled SOC dynamics and enables us to carry out an in-depth analysis of the models' performances.

122 2 Methods

Throughout this paper, we report the ¹⁴C content of a given carbon sample as Δ^{14} C, which is the deviation of the sample's ¹⁴C/¹²C ratio from the "modern" standard, corresponding to the pre-industrial atmospheric ¹⁴CO₂/¹²CO₂ ratio (Trumbore et al., 2016).

126

2.1 Pool-specific carbon and radiocarbon measurements

¹²⁷ We compare model predictions to three types of measured data for the topsoil: (1) ¹²⁸ the total SOC stocks in the topsoil, (2) the relative mass contributions of POM and MAOM ¹²⁹ to the total SOC stocks, and (3) the Δ^{14} C of POM, MAOM, and bulk SOC.

For this study, we will use the International Soil Radiocarbon Database (ISRaD) 130 (Lawrence et al., 2020) for carbon and 14 C measurements of POM and MAOM obtained 131 from soil samples using a combination of density fractionation and ultra-sonication. Den-132 sity fractionation with ultra-sonication is currently one of the most effective and com-133 monly employed methods for separating POM and MAOM (Golchin et al., 1994; Griepen-134 trog et al., 2015, 2014; Cerli et al., 2012; von Lützow et al., 2007; Poeplau et al., 2018). 135 This method separates the soil into three "density fractions" – the free light fraction, oc-136 cluded light fraction, and heavy fraction – in a three step process: (1) obtain the free 137 light fraction from the soil sample by density fractionation; (2) in the remaining sam-138 ple, destroy loosely-bound aggregates with ultra-sonication, thus releasing the occluded 139 fraction; (3) isolate the occluded light fraction from the relatively denser heavy fraction 140 by density fractionation. The resulting free and occluded light fractions correspond ap-141 proximately to the POM pool, while the heavy fraction is a good proxy for the MAOM 142 pool (Mikutta et al., 2019; Lavallee et al., 2020). We will from now on refer to the soil 143 density fractions (light and heavy) by the names of the corresponding pools (POM and 144 MAOM, respectively). 145

ISRaD provides carbon and ¹⁴C data for the bulk soil, and the free light, occluded 146 light, and heavy fractions. We derive the relative carbon contributions and Δ^{14} C of POM 147 with a weighted average of the free and occluded light fractions, and we directly asso-148 ciate MAOM with the heavy fraction in ISRaD. When the Δ^{14} C of the bulk soil is not 149 measured or reported in ISRaD, we calculate it with a weighted average of POM Δ^{14} C 150 and MAOM Δ^{14} C. Since most of the available ¹⁴C data is for the topsoil, we will eval-151 uate models only for the top $5 \,\mathrm{cm}$ or top $10 \,\mathrm{cm}$ of the mineral soil. The current version 152 of ISRaD (v 2.5.5.2023-09-20) contains complete ¹⁴C datasets of the POM and MAOM 153 density fractions in the topsoil of 77 soil profiles spread across 39 sampling sites, cover-154 ing forests, shrubland, cultivated landscapes, and rangeland and grassland. Almost all 155 of the sampling sites are in North America and Europe, and the remaining sites are lo-156 cated in Hawaii and Puerto Rico (see map in Figure 1). The dataset does not contain 157 any permafrost, thermokarst, peatland, or wetland soils, and 75 of the 77 samples are 158 from 1997-2015, with only one sample from 1949 and one sample from 1978. As shown 159 in Figure 2, most datapoints bear a positive Δ^{14} C value, demonstrating an enrichment 160 in bomb-derived ¹⁴C in the topsoil. 161

162 2.2 Selection of new-generation models

We reviewed the literature to find new-generation models whose pools are fully compatible with the observed POM and MAOM density fractions, and that have already been tested with a range of soil types and environments. Table 1 gives an overview of the features and capabilities of such new-generation models, almost all of which have been de-

Figure 1. Map of selected topsoil sampling sites from ISRaD (Lawrence et al., 2020). 37 of the 39 sites are located in North America and Europe, and the two remaining sites are in Hawaii and Puerto Rico. All sites have a complete ¹⁴C dataset for bulk soil and all density fractions for the top 5 or 10 cm of the mineral soil. The map also shows two of the most important environmental controls on soil carbon persistence: soil temperature (at 4 cm depth, averaged over 1970-2010 period, 1 degree horizontal resolution) from the CESM2 Large Ensemble product (Rodgers et al., 2021) on the map background, and clay content in the topsoil from ISRaD or SoilGrids (Poggio et al., 2021) for each sampling site.

veloped starting in the 2010s. Many new-generation SOC models also explicitly repre-167 sent the microbial biomass as a separate carbon pool, since microbes are the main drivers 168 of SOC turnover (Crowther et al., 2019; Basile-Doelsch et al., 2020; Schimel, 2023). The 169 newest version of the MEND model simulates a variety of microbial exo-enzyme pools 170 in addition to its microbial biomass pools (G. Wang et al., 2022). About half of the mod-171 els listed in Table 1 have already been implemented with ¹⁴C. However, none of them 172 have systematically assimilated fraction-specific ¹⁴C data, instead relying on ¹⁴C data 173 of bulk SOC or ${}^{14}CO_2$ data from soil respiration. 174

For this ¹⁴C study, we chose to evaluate the following models, as their code is opensource and they have produced successful SOC predictions for a variety of ecosystems:

- Millennial v2 (with Michaelis-Menten kinetics), Abramoff et al. (2022),
- SOMic 1.0, Woolf and Lehmann (2019),

179

180

181

182

- MEND-new (with default equations), G. Wang et al. (2022),
- CORPSE (version from GitHub repository bsulman/CORPSE-fire-response), first described in Sulman et al. (2014),
- MIMICS-CN v1.0, Kyker-Snowman et al. (2020).

Figure 3 shows the general structure of the above models. All the selected mod-183 els have pools which we can associate to the POM and MAOM fractions (see section S2 184 in the Supporting Information for details on how we associate the pools to each fraction), 185 and they all have at least one microbial biomass pool. We generally chose to evaluate 186 the most recent version of each model. However, we found an error in the ¹⁴C implemen-187 tation of the most recent version of MIMICS (Y. Wang et al., 2021) (see section S4.2 in 188 the Supporting Information), so we chose to use the coupled carbon-nitrogen version MIMICS-189 CN published one year prior in Kyker-Snowman et al. (2020). See section S1 and Fig-190 ures S1-S5 in the Supporting Information for more details on the exact versions and im-191 plementations of each model. 192

Figure 2. Measured Δ^{14} C data of the POM and MAOM density fractions and total soil organic carbon (SOC) at the selected topsoil profiles from ISRaD (Lawrence et al., 2020), overlaid on the atmospheric Δ^{14} CO₂ curve of the Northern Hemisphere (Graven et al., 2017). All POM and MAOM fractions shown here were produced using the method of density fractionation with ultra-sonication. These ISRaD data were originally published in Baisden et al. (2002); Berhe et al. (2012); Harden et al. (2002); Heckman (2010); Heckman et al. (2018); Lybrand et al. (2017); Marín-Spiotta et al. (2008); McFarlane et al. (2013); Meyer et al. (2012); Rasmussen, Throckmorton, et al. (2018); Schrumpf et al. (2013).

¹⁹³ Note that the MIND model (Fan et al., 2021) would have been a great candidate ¹⁹⁴ for evaluation, too, but only a subset of the modeled pools was run globally, so some of ¹⁹⁵ its parameters (e.g. $V_{\max,P}$ and $K_{M,P}$) do not have fitted values outside of 4 experimen-¹⁹⁶ tal test cases.

Figure 3. General structure of the new-generation models which we chose for this study. The MIMICS and CORPSE models additionally feature a CO_2 flux leaving MAOM and POM, which depends on the carbon use efficiency of the microbes. The SOMic and CORPSE models do not allow any flux from the DOM, Microbe, or MAOM pools back into the POM pool. More detailed diagrams for the MEND, Millennial, SOMic, CORPSE, and MIMICS models can be found in the Supporting Information (Figures S1-S5). Abbreviations: POM = particulate organic matter ; MAOM = mineral-associated organic matter ; DOM = dissolved organic matter.

¹⁹⁷ 2.3 Model input data

For each measurement site, the models are run with local environmental forcing data from 1850 to 2014. The initial conditions in 1850 are found by spinning up the models, looping over a "pre-industrial" year, where the forcing data is averaged over the 1850-1879 period, until the system reaches equilibrium, i.e. does not experience any signifiTable 1. Summary of features and capabilities of new-generation models. All of the listed models are compatible with the distinction between POM and MAOM and have been used to produce predictions for a variety of soil profiles. The models selected for evaluation with ¹⁴C in this study are indicated with an asterisk (*). The first two columns are the year of the first publication and, if applicable, the year of the latest published revision of each model at the time of writing. The "Open-source," "Implements ¹⁴C," and "Explicitly models" columns are checkmarked if at least one version of the model has open-source code, implements ¹⁴C simulations, or explicitly models a specified pool or feature, respectively. In the "Vertical mixing" subcolumn, models with a downward arrow (\downarrow) simulate any kind of downward transport or leaching for at least one of their pools, often in dissolved form, and sometimes using an advection equation. Models featuring an up-down arrow (\updownarrow) additionally implement vertical mixing for at least one of their pools with a diffusion equation.

					Explicitly models		dels		
Model name	First publication	Latest revision	Open-source	Implements ¹⁴ C	DOM	Microbes	Enzymes	Vertical mixing	Notes
* Millennial ¹	2018	2022	~		\checkmark	~		\downarrow	
* SOMic ²	2019		~	\checkmark	\checkmark	~		\downarrow	
* MEND ³	2013	2022	~	\checkmark	\checkmark	\checkmark	\checkmark		14 C only in 2015
* CORPSE 4	2014	2020	~			\checkmark			
\ast MIMICS 5	2014	2021	~	\checkmark		\checkmark		↓\$	^{14}C and $\downarrow \updownarrow$ only in 2021
MIND ⁶	2021		\checkmark			\checkmark			
AggModel 7	2013		\checkmark						incubation model
JSM ⁸	2020		(√)	~	~	~		↓\$	source code accessible upon request
COMISSION ⁹	2015	2020		\checkmark	\checkmark	\checkmark		↓\$	^{14}C introduced in v2.0
Tipping & Rowe 10	2019			\checkmark	\checkmark			\downarrow	
MEMS 11	2019	2021			\checkmark	\checkmark		$\downarrow \updownarrow$	\updownarrow introduced in v2.0
SOMPROF 12	2011	2014		\checkmark				$\downarrow \updownarrow$	^{14}C introduced in 2014
CAST ¹³	2013							\downarrow	
Struc-C ¹⁴	2009								
PROCAAS 15	2020								incubation model

¹Abramoff et al. (2018, 2022) ; ²Woolf and Lehmann (2019) ; ³G. Wang et al. (2013, 2015, 2022) ; ⁴Sulman et al. (2014, 2017); Salazar et al. (2018); Hicks Pries et al. (2018); Moore et al. (2020) ; ⁵Wieder et al. (2014, 2015); H. Zhang et al. (2020); Kyker-Snowman et al. (2020); Y. Wang et al. (2021) ; ⁶Fan et al. (2021) ; ⁷Segoli et al. (2013) ; ⁸Yu et al. (2020) ; ⁹Ahrens et al. (2015, 2020) ; ¹⁰Tipping and Rowe (2019) ; ¹¹Robertson et al. (2019); Y. Zhang et al. (2021) ; ¹²Braakhekke et al. (2011, 2013, 2014) ; ¹³Stamati et al. (2013) ; ¹⁴Malamoud et al. (2009) ; ¹⁵Liu et al. (2020)

cant inter-annual variability. More details on the spinup methods for each model are given
 in section S1 in the Supporting Information.

The selected models require a number of constant and time-dependent forcing data 204 to be run at each study site. We assume that soil properties such as sand, clay and silt 205 content, soil density, and land use are time-invariant since pre-industrial times. Where 206 these site-specific soil properties are not reported in ISRaD, they are taken from the Soil-Grids database (Poggio et al., 2021). The MIMICS model also requires the lignin con-208 tent of litter inputs, which we set to be a constant value depending only on the land use 209 type. We assume that the lignin content is 25% for forest litter and 7% for shrubland 210 litter (Rahman et al., 2013, Table 1). For grassland and cultivated landscapes, we as-211 sume a lignin content of 9% based on measurements of grasses at the seeding stage (Armstrong 212 et al., 1950, Table 1). Weather-dependent and other dynamic environmental properties, 213 such as soil temperature and ¹⁴C influx, are taken from global model predictions with 214 monthly time resolution. We use the monthly averaged CESM2 Large Ensemble (CESM2-215 LE) product (Rodgers et al., 2021) for vertically resolved soil temperature and moisture, 216 above- and below-ground net primary production (NPP), total gross primary produc-217 tivity (GPP), and the carbon-to-nitrogen ratio and Δ^{14} C of total litter carbon from 1850 218 to 2014 with 1 degree spatial resolution. Since the below-ground NPP from the CESM2-219 LE output is not vertically resolved, we derive the topsoil portion of the below-ground 220 NPP using the exponential function model from Xiao et al. (2023). For nitrogen depo-221 sition rates, we use monthly data simulated by the NCAR Chemistry-Climate Model Ini-222 tiative (CCMI) on a 0.5 degree grid from 1860 to 2016 (Tian et al., 2018). We extend 223 this data back to 1850 by setting the monthly nitrogen deposition rates for the 1850-1860 224 period to be equal to the average monthly rates over the 1860-1870 period. 225

Since none of the selected models represent lateral carbon transport or upward vertical mixing of soil carbon, the simulated topsoil systems receive all of their carbon exclusively from vegetation inputs. We can therefore estimate the carbon influx into the soil with the NPP, and the Δ^{14} C of the influx with the Δ^{14} C of litter from the CESM2-LE product. In the case of the MEND model, we use GPP instead of NPP as a model input, as prescribed by MEND's developers.

232 3 Results

We produced carbon and ¹⁴C predictions with the MEND, Millennial, SOMic, CORPSE 233 and MIMICS models for the 77 selected soil profiles, and compared them to the observed 234 carbon and ¹⁴C data from ISRaD. Our main performance metrics are the root mean squared 235 error (RMSE) and mean bias of the predictions with respect to the 6 observational datasets 236 described in Section 2.1. Table 2 gives a summary of the model performances, and Fig-237 ures S8-S12 in the Supporting Information show plots of predictions against observations 238 for each variable and each model. Note that the MEND model failed to run on 12 of the 239 77 selected soil profiles due to some numerical instability, and was unable to produce ${}^{14}C$ 240 data for 3 other profiles. Note also that the SOC stocks for 17 of the 77 selected profiles 241 are not available in ISRaD. 242

243

3.1 Carbon stocks and partitioning between pools

The SOMic, Millennial, and CORPSE models tend to overestimate the topsoil SOC 244 stocks of the selected soil profiles, while MEND and MIMICS underestimate the SOC 245 stocks, as shown in Figure 4a. In their predictions of SOC partitioning into POM and 246 MAOM, the new-generation models generally fail to cover the full range of variability 247 in the observations, with the exception of the MIMICS model (see Figure 4b-c). The CORPSE 248 and MIMICS models perform the best, and both have a RMSE of around 20 percent-249 age points, and a bias of around 10 points or less in magnitude. Meanwhile, the remain-250 ing models have an average RMSE of 35 points and an average absolute bias of around 251 25 points in their predictions of POM and MAOM contributions to total SOC stocks (see 252 Table 2). 253

Table 2. Root mean squared error (RMSE) and mean bias for each model and each dataset. In the case of the MEND model, the RMSE and bias were calculated based on results of n = 62 profiles for the Δ^{14} C rows, n = 52 for SOC stocks, and n = 65 for the rows of POM and MAOM contributions. For all other models, n = 77 for all rows, except SOC stocks, where n = 60.

		MEND	Millennial	SOMic	CORPSE	MIMICS	Average
$\mathbf{D}_{\mathbf{u}} = \mathbf{D}_{\mathbf{u}} = \mathbf{D}_{\mathbf{u}} \mathbf{D}_{\mathbf{u}} = \mathbf{D}_{\mathbf{u}} \mathbf{D}_{\mathbf{u}$	RMSE	84	115	101	90	80	94
Bulk SOC Δ C (700)	Bias	+59	+69	+46	+35	0	+42
$POM \Lambda^{14}C(07)$	RMSE	94	120	100	119	129	112
$POM \Delta C (700)$	Bias	+50	+63	+56	+86	+80	+67
MAOM $\Lambda^{14}C(07)$	RMSE	103	117	102	83	74	96
MAOM $\Delta = C(700)$	Bias	+83	+82	+57	-3	-39	+36
SOC stocks $(\log C/m^2)$	RMSE	4.1	3.8	3.2	6.2	2.3	3.9
SOC SLOCKS (KgC/III)	Bias	-1.3	+2.7	+1.9	+4.0	-1.6	+1.1
\mathbf{POM} contribution (\mathcal{O})	RMSE	35	40	32	23	17	29
FOM contribution (70)	Bias	+24	-33	-22	+11	-2	-4
MAOM contribution (%)	RMSE	35	41	30	21	21	30
MAOM contribution (70)	Bias	-24	+35	+20	-9	-9	+2

Figure 4. Observed and modeled total SOC stocks in the topsoil (top 5 or 10 cm of mineral soil) plotted on a log-transformed axis in subplot (a), and contributions of the POM and MAOM pools to the topsoil SOC stocks in subplots (b) and (c), respectively. Black diamonds are outliers. In (a), n = 60 for the boxplot of observed data, n = 65 for MEND, and n = 77 for all other models. In (b) and (c), n = 77 for all boxplots, except for MEND, where n = 65.

254

3.2 Performance with ¹⁴C

²⁵⁵ With the notable exception of MIMICS, the new-generation models consistently ²⁵⁶ overestimate the Δ^{14} C of bulk SOC, and their ¹⁴C predictions do not capture the full ²⁵⁷ variability of the observations (see Figure 5a). This is reminiscent of the ESMs' ¹⁴C pre-²⁵⁸ dictions (He et al., 2016), which also overestimate the Δ^{14} C of SOC and underestimate ²⁵⁹ its variability. Therefore, our results could suggest that the new generation of soil mod-²⁶⁰ els may be facing similar issues as the traditional SOC models incorporated into ESMs.

The pool-specific ¹⁴C results, shown in Figure 5b-c, shed a more critical light on the performance of MIMICS with the Δ^{14} C of bulk SOC. MIMICS overestimates the Δ^{14} C

of POM by 80% and underestimates the Δ^{14} C of MAOM by around 40% on average, 263 and these biases happen to cancel out in such a way that MIMICS produces very good 264 predictions for the Δ^{14} C of bulk SOC with a RMSE of just 80\% and no bias, the best 265 performance among the evaluated models (see Table 2). All five models overestimate the 266 Δ^{14} C of POM, with an average positive bias of 67%, and SOMic, Millennial, and MEND 267 also overestimate MAOM Δ^{14} C by 74‰ on average. CORPSE is good at predicting the 268 Δ^{14} C of MAOM with effectively no bias, but its POM Δ^{14} C predictions have the largest 269 bias (+119%) among all the models. On average, the evaluated models have a positive 270 bias between 36‰ and 67‰, and a RMSE around 100‰ in their Δ^{14} C predictions for 271 the POM, MAOM, and bulk SOC (see Table 2 for more details). 272

Figure 5. Observed and modeled Δ^{14} C of total SOC (a), POM (b), and MAOM (c) in the topsoil (top 5 or 10 cm of mineral soil). Black diamonds are outliers. Note that some extreme outliers are outside of plotting range. To have a uniform and consistent ¹⁴C dataset, we excluded the 1949 and 1978 samples so that we end up with more compact data spanning only 18 years at the tail end of the bomb spike. Therefore, n = 75 for all boxplots, except for MEND's, where n = 62.

The models produce contrasting predictions for the evolution of soil ¹⁴C over the second half of the 20th century. In the example of an alpine pasture (Figure 6), we can see that the CORPSE, SOMic and MIMICS models predict Δ^{14} C curves for POM which are distinct from MAOM, while the MEND and Millennial models produce similar Δ^{14} C dynamics for POM and MAOM. That is because the Millennial and MEND models have faster turnover rates than the other models, and their pools rapidly exchange carbon between themselves.

280

3.3 Role of environmental parameters

We further investigate how simulations depend on soil temperature and clay content, as these are considered some of the most important factors controlling SOC turnover and persistence (Basile-Doelsch et al., 2020; Leifeld et al., 2009).

Higher soil temperatures enhance microbial activity and generally increase the turnover rate of carbon in soils (German et al., 2012; Leifeld et al., 2009; Sierra et al., 2015). While the observed SOC stocks and POM and MAOM contributions are not correlated with temperature (Figure 7a-c), the observed Δ^{14} C of POM, MAOM, and bulk SOC significantly increase with higher temperature (Figure 7d-f), probably due to shorter carbon residence times in warmer soils. In contrast, the predicted Δ^{14} C of POM, MAOM, and bulk SOC are either uncorrelated or negatively correlated with soil temperature. All of

Figure 6. Observed and predicted Δ^{14} C of POM, MAOM, and bulk SOC in the top 10 cm of the mineral soil of a pasture in the Matsch valley, Italy. The observed ¹⁴C data from 2008 are published in Meyer et al. (2012). The atmospheric Δ^{14} CO₂ of the Northern Hemisphere (Graven et al., 2017) is shown for reference. With the SOMic, CORPSE and MIMICS models, the predicted Δ^{14} C of POM is distinct from the predicted Δ^{14} C of MAOM. On the other hand, the POM and MAOM pools in MEND and Millennial have very similar Δ^{14} C signals throughout the bomb-spike period.

the selected models modify carbon decomposition rates with a temperature-dependent
scaling factor (Abramoff et al., 2022; Woolf & Lehmann, 2019; Kyker-Snowman et al.,
2020; G. Wang et al., 2022; Sulman et al., 2014), but these results could indicate that
they may need to increase or change the effect of temperature on carbon turnover rates.

In Figure 8c, the clay content of the sampled topsoils seems to be a decisive fac-295 tor controlling the observed contribution of MAOM carbon to the total SOC stocks, with 296 higher clay content correlating with higher MAOM contribution. This is also true for 297 the MAOM contributions predicted by the MIMICS and CORPSE models, which pro-298 duce the most accurate predictions of MAOM contribution (see Table 2). However, MIM-299 ICS appears to struggle with correctly simulating the effects of increased clay content 300 on overall SOC dynamics, as evidenced by the inaccurate relationships of SOC stocks 301 and Δ^{14} C with clay (see Figure 8a and Figure 8d-f). It appears that MIMICS correctly 302 reproduces the evolution of MAOM contribution with clay content by increasing the res-303 idence time of carbon in MAOM, which in turn lowers the Δ^{14} C of MAOM and increases 304 SOC stocks, contrary to the observations. 305

306 4 Discussion

The comparison of new-generation model predictions with ¹⁴C observations reveals 307 inaccuracies in the estimations of the time scales of carbon exchanges and stabilization 308 in soils. Just like ESMs, most new-generation models overestimate the Δ^{14} C of bulk soil 309 organic carbon (SOC) and they, too, may therefore be overestimating the effectiveness 310 of soils as a net atmospheric CO_2 sink in the 21st century (He et al., 2016). The biases 311 in the predictions of the repartition of SOC between particulate organic matter (POM) 312 and mineral-associated organic matter (MAOM) may also affect the accuracy of future 313 projections. POM and MAOM have been shown to have different sensitivities to envi-314

Figure 7. Relationship of observed and predicted carbon and Δ^{14} C data with respect to mean annual temperature of the topsoil (averaged over the 1970-2010 period). Circles are datapoints, and lines are best linear fits through the points. The observed Δ^{14} C of bulk SOC, POM, and MAOM have a strong positive relationship with temperature. Meanwhile, the predicted Δ^{14} C are more weakly and sometimes negatively correlated with temperature. The linear fit line of CORPSE in subplot (c) is completely covered by the linear fit line of MIMICS. Note that we once again excluded the 1949 and 1978 samples for these plots.

Figure 8. Relationship of observed and predicted carbon and Δ^{14} C data with respect to clay content in the topsoil. Circles are datapoints, and lines are best linear fits through the points. CORPSE and MIMICS successfully reproduce the positive relationship between topsoil clay content and the observed MAOM contribution to total SOC stocks in subplot (c). However, in subplot (f), MIMICS has a strong negative correlation of MAOM Δ^{14} C with clay content, unlike the observations, which do not show a correlation. The linear fit line of CORPSE in subplot (f) overlaps with that of the observations. Note that we once again excluded the 1949 and 1978 samples for these plots.

ronmental variables such as temperature and are thus expected to react differently to 315 a changing climate (Hicks Pries et al., 2017; Kleber et al., 2011). Therefore, if models 316 do not correctly partition SOC into POM and MAOM and misrepresent their ¹⁴C, they 317 will probably produce inaccurate predictions of SOC dynamics under climate change.

318

We identify three likely reasons why the new-generation models generally under-319 perform with ¹⁴C, and discuss how these problems could potentially be solved: 320

- 1. Insufficient datasets for the calibration of carbon turnover rates,
- 2. Lack of a "passive" pool with very slow turnover to account for inert SOC com-322 ponents, 323
 - 3. Modeled pools do not capture the full range of SOC turnover rates.

The last point raises questions on the effectiveness of the new-generation models 325 and the POM-MAOM distinction as a whole. This invites further research on the sta-326 bility of the different constituents of SOC and a discussion on the most effective way to 327 partition SOC into representative measurable pools. 328

4.1 Insufficient calibration datasets 329

Our ¹⁴C results suggest that the new-generation models selected for this study over-330 estimate some carbon turnover rates. The most extreme case is Millennial v2, which gives 331 its micro-aggregate pool and mineral-adsorbed carbon pool turnover times of just a few 332 months (see section S5 of supplement). On the other hand, ¹⁴C-based studies find that 333 the MAOM fraction, which includes micro-aggregates and mineral-adsorbed carbon, typ-334 ically turns over on time scales of many decades or centuries (Gaudinski et al., 2000; Schrumpf 335 & Kaiser, 2015; van der Voort et al., 2017; Baisden et al., 2002). The overestimation of 336 turnover rates may be due to inadequate or insufficient data for the calibration of the 337 models' turnover parameters. Even though new-generation models have measurable pools, 338 they do not usually assimilate pool-specific carbon and ¹⁴C data, probably because such 339 data are currently very sparse. The only models in our evaluation to calibrate their pa-340 rameters with pool-specific carbon data are CORPSE (with data from only 2 soil pro-341 files, according to Y. Zhang et al., 2021, Table S1) and Millennial (as described in Abramoff 342 et al., 2022), and none of them assimilated pool-specific ^{14}C data. Instead, new-generation 343 models primarily rely on less informative bulk soil data, as well as some soil incubation 344 results, for parameter optimization. However, as the dataset of fraction-specific carbon 345 and ¹⁴C measurements is growing larger, new-generation models should start to take full 346 advantage of the measurability of their pools and assimilate those highly informative data. 347

348

321

324

4.2 Lack of passive pool

Another explanation for the consistent overestimation of soil Δ^{14} C by new-generation 349 models is the inability of the models to account for the presence of practically inert com-350 pounds in the soil, which negatively offset the bulk Δ^{14} C. For example, some soils with 351 a history of wildfires may contain a considerable fraction of pyrogenic carbon, which is 352 composed of highly durable aromatic compounds and can remain in soils over thousands 353 of years (Eckmeier et al., 2009; Hajdas et al., 2007; Leifeld, 2008). Due to its extreme 354 longevity, pyrogenic carbon is depleted in 14 C as a result of radioactive decay, bringing 355 down the overall Δ^{14} C of both POM (van der Voort et al., 2017) and MAOM (Soucémarianadin 356 et al., 2019). In deeper soils, the Δ^{14} C of SOC can be even further depleted due to a larger 357 proportion of petrogenic carbon, which is devoid of ¹⁴C (van der Voort et al., 2019). Whereas 358 the two major traditional SOC models explicitly account for such extremely old com-359 ponents with a "passive" pool (1000 year turnover time) in the Century model (Parton 360 et al., 1987) and an "inert organic matter" pool (no turnover at all) in the RothC model 361 (Coleman & Jenkinson, 1996), the new-generation models effectively force virtually in-362

ert components to fit into their actively cycling carbon pools. By creating a passive pool to account for inert compounds such as pyrogenic carbon, the new-generation models would be able to lower the overall Δ^{14} C of POM and MAOM, and more accurately reproduce the measured ¹⁴C data.

367

4.3 Search for more representative measurable pools

Finally, the underperformance of the models with respect to ¹⁴C may also be due 368 to a choice of pools which are not truly representative of the full spectrum of turnover 369 rates of the different SOC components. Whereas traditional models simply define the 370 number and turnover rates of their SOC pools such that they can reproduce observed 371 SOC dynamics while minimizing degrees of freedom, new-generation models also need 372 to make sure their pools are at once easily measurable and representative of the various 373 time scales of soil carbon persistence. If a measurable pool contains two or more com-374 ponents with very different turnover rates, the model may not be able to correctly re-375 produce the Δ^{14} C of that pool because it assumes a single, homogeneous turnover rate 376 for the entire carbon pool. Although some models already split POM into various sub-377 pools with contrasting turnover times (e.g., soluble and insoluble litter pools in SOMic, 378 or oxidizable and hydrolysable POM pools in MEND), they miss the most recalcitrant 379 POM pool of pyrogenic carbon, which even in minute amounts can significantly alter the 380 Δ^{14} C and apparent turnover of POM (Leifeld, 2008). Some new-generation models sub-381 divide the MAOM pool into micro-aggregates and mineral-adsorbed carbon (e.g., Mil-382 lennial), or into an active layer of adsorbed DOC and a more stable MAOM component 383 (e.g., MEND). However, those MAOM subpools might still not be homogeneous enough 384 in their turnover times for effective ${}^{14}C$ simulations. Recent ${}^{14}C$ studies determining the 385 stability of MAOM under the action of peroxide oxidation show that it may be neces-386 sary to further split clay-sized MAOM into two measurable subpools which are decom-387 posable or resistant to microbial exo-enzymes (Schrumpf et al., 2021; Jagadamma et al., 388 2010). Additionally, "continuous" SOC fractionation methods such as ramped pyroly-389 sis oxidation (Stoner et al., 2023) could provide a much higher resolution of the SOC turnover 390 rate spectrum. However, the resulting measurable pools are more difficult to interpret 391 in terms of their role in the soil carbon cycle, and their incorporation into mechanistic 392 SOC models is therefore less straightforward. 393

³⁹⁴ 4.4 Limitations of this study

The accuracy of our model evaluation is affected by multiple factors. Though we 395 took care to accurately match the modeled pools to the measured fractions (see section 396 S2 in Supporting Information), the correspondences are imperfect and further compli-397 cated by non-standardized definitions and density cut-offs for the light and heavy frac-398 tions published on ISRaD. Nevertheless, this does not change the overall overestimation 399 of soil Δ^{14} C by most models. The use of forcing data from possibly inaccurate CESM2-400 LE and CCMI outputs with low spatial resolution may also affect the accuracy of our 401 model evaluation. Furthermore, the Δ^{14} C of the carbon inputs from the CESM2-LE prod-402 uct could be inaccurate, especially in soils with a thick organic layer, which pre-ages the 403 carbon before it enters the mineral soil. However, the consistency and magnitude of the 404 models' overestimation of the topsoil's Δ^{14} C with respect to observed data indicate that 405 this overestimation is evidently a real pattern among the studied models. Finally, it is 406 also important to note that our study only produces an incomplete picture of model per-407 formances on a global scale, since most of the measured datapoints represent North Amer-408 ican and European forest ecosystems. 409

410 5 Summary

Despite their incorporation of the latest advances in soil sciences, new-generation 411 soil organic carbon (SOC) models currently show similar discrepancies with 14 C data as 412 the traditional SOC models. The new-generation models' consistent overestimation of 413 the Δ^{14} C in both particulate organic matter (POM) and mineral-associated organic mat-414 ter (MAOM) and their inaccurate partitioning of SOC between POM and MAOM sug-415 gest that these models underestimate the time scales of carbon storage in soils and might 416 produce unreliable future predictions under climate change. To improve their predictions, 417 418 new-generation models should take advantage of the measurability of their pools and calibrate their parameters with the rapidly growing dataset of pool-specific carbon and ^{14}C 419 measurements in addition to incubation and bulk soil data. They may also have to re-420 consider their model design and simulate measurable pools which better capture the full 421 spectrum of carbon turnover rates present in the soils. In particular, the consideration 422 of highly persistent soil carbon such as pyrogenic carbon could significantly improve 14 C 423 predictions. As more effective measurable pools are being discovered and the dataset of 424 pool-specific ¹⁴C data is expanding, new-generation soil models have the potential to even-425 tually supersede the traditional SOC models employed by ESMs if they take full advan-426 tage of the measurability of their pools and assimilate the available data. 427

428 6 Open Research

The source code to download the input data, run the models, and reproduce all the results presented in this manuscript is available on our GitHub repository https://github .com/asb219/evaluate-SOC-models.

Our final implementations of Millennial, CORPSE, MIMICS, and the 14 C compo-432 nent of MEND are available as python modules in our repository. For the carbon and 433 nitrogen components of MEND, the Fortran source code is in https://github.com/asb219/ 434 MEND (forked from https://github.com/wanggangsheng/MEND), which is added as a "git 435 submodule" to our repository. We use the install_github function of the devtools pack-436 age in R to compile the C++ code of the SOMic model released as "v1.1-asb219" in https:// 437 github.com/asb219/somic1 (forked from https://github.com/domwoolf/somic1) and 438 install it as an R package. We download data from SoilGrids with the soilgrids python 439 package (https://github.com/gantian127/soilgrids). 440

441 Acknowledgments

This study was supported by the Swiss National Science Foundation through the Sinergia scheme (grant no. 193770).

444 References

Abramoff, R. Z., Guenet, B., Zhang, H., Georgiou, K., Xu, X., Viscarra Rossel, 445 R. A., ... Ciais, P. (2022, January). Improved global-scale predictions of soil 446 carbon stocks with Millennial Version 2. Soil Biology and Biochemistry, 164, 447 108466. Retrieved 2022-01-19, from https://linkinghub.elsevier.com/ 448 retrieve/pii/S0038071721003400 doi: 10.1016/j.soilbio.2021.108466 449 Abramoff, R. Z., Xu, X., Hartman, M., O'Brien, S., Feng, W., Davidson, E., 450 ... Mayes, M. A. (2018, January). The Millennial model: in search 451 of measurable pools and transformations for modeling soil carbon in the 452 new century. Biogeochemistry, 137(1-2), 51–71. Retrieved 2021-03-21, 453 from http://link.springer.com/10.1007/s10533-017-0409-7 doi: 454 10.1007/s10533-017-0409-7 455 Ahrens, B., Braakhekke, M. C., Guggenberger, G., Schrumpf, M., & Reichstein, M. 456

457	(2015, September). Contribution of sorption, DOC transport and microbial
458	interactions to the 14C age of a soil organic carbon profile: Insights from a
459	calibrated process model. Soil Biology and Biochemistry, 88, 390–402. Re-
460	trieved 2022-05-29, from https://linkinghub.elsevier.com/retrieve/pii/
461	S0038071715002138 doi: 10.1016/j.soilbio.2015.06.008
462	Ahrens, B., Guggenberger, G., Rethemeyer, J., John, S., Marschner, B., Heinze,
463	S., Schrumpf, M. (2020, September). Combination of energy limi-
464	tation and sorption capacity explains 14C depth gradients. Soil Biology
465	and Biochemistry, 148, 107912. Retrieved 2022-07-10, from https://
466	linkinghub.elsevier.com/retrieve/pii/S0038071720302091 doi:
467	10.1016/j.soilbio.2020.107912
468	Armstrong, D. G., Cook, H., & Thomas, B. (1950, January). The lignin
469	and cellulose contents of certain grassland species at different stages of
470	growth. The Journal of Agricultural Science, $40(1-2)$, 93–99. Re-
471	trieved 2023-11-25, from https://www.cambridge.org/core/product/
472 473	identifier/S002185960004555X/type/journal_article doi: 10.1017/ S002185960004555X
474	Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedling-
475	stein, P., Ziehn, T. (2020, August). Carbon–concentration and car-
476	bon–climate feedbacks in CMIP6 models and their comparison to CMIP5
477	models. <i>Biogeosciences</i> , 17(16), 4173–4222. Retrieved 2023-03-09, from
478	https://bg.copernicus.org/articles/17/4173/2020/ doi: 10.5194/
479	bg-17-4173-2020
480	Baisden, W. T., Amundson, R., Cook, A. C., & Brenner, D. L. (2002, Decem-
481	ber). Turnover and storage of C and N in five density fractions from Cal-
482	ifornia annual grassland surface soils: TURNOVER AND STORAGE OF
483	C AND N. Global Biogeochemical Cycles, 16(4), 64–1–64–16. Retrieved
484	2023-07-01, from http://doi.wiley.com/10.1029/2001GB001822 doi:
485	$10.1029/2001 { m GB001822}$
486	Basile-Doelsch, I., Balesdent, J., & Pellerin, S. (2020, October). Reviews and syn-
487	theses: The mechanisms underlying carbon storage in soil. Biogeosciences,
488	17(21), 5223-5242. Retrieved 2023-08-28, from https://bg.copernicus.org/
489	articles/17/5223/2020/ doi: $10.5194/bg-17-5223-2020$
490	Berne, A. A., Harden, J. W., Iorn, M. S., Kleber, M., Burton, S. D., & Harte, J.
491	(2012, June). Persistence of soil organic matter in eroding versus depositional
492	Idition positions: EROSION AND SOLL ORGANIC MALLER DINAM- ICS Lowmal of Combusian Pagamab: Biogeogeneous $117(C2)$ n/n n/n
493	Betrieved 2023 07 01 from http://doi.uil.ev.com/10.1020/2011 IC001790
494	doi: 10.1029/2011.IG001790
495	Braakhekke M C Beer C Hoosheek M B Beichstein M Kruijt B Schrumpf
490	M & Kabat P (2011 May) SOMPROF: A vertically explicit soil or-
498	ganic matter model. <i>Ecological Modelling.</i> 222(10), 1712–1730. Retrieved
499	2021-04-21. from https://linkinghub.elsevier.com/retrieve/pii/
500	S0304380011000962 doi: 10.1016/j.ecolmodel.2011.02.015
501	Braakhekke, M. C., Beer, C., Schrumpf, M., Ekici, A., Ahrens, B., Hoosbeek, M. R.,
502	Reichstein, M. (2014, March). The use of radiocarbon to constrain cur-
503	rent and future soil organic matter turnover and transport in a temperate
504	forest. Journal of Geophysical Research: Biogeosciences, 119(3), 372–391.
505	Retrieved 2021-04-21, from http://doi.wiley.com/10.1002/2013JG002420
506	doi: $10.1002/2013$ JG002420
507	Braakhekke, M. C., Wutzler, T., Beer, C., Kattge, J., Schrumpf, M., Ahrens, B.,
508	Reichstein, M. (2013, January). Modeling the vertical soil organic matter
509	profile using Bayesian parameter estimation. $Biogeosciences, 10(1), 399-420.$
510	Retrieved 2021-04-21, from https://bg.copernicus.org/articles/10/399/
511	2013 / doi: 10.5194/bg-10-399-2013

512	Cerli, C., Celi, L., Kalbitz, K., Guggenberger, G., & Kaiser, K. (2012, January).
513	Separation of light and heavy organic matter fractions in soil — Testing for
514	proper density cut-off and dispersion level. Geoderma, 170, 403–416. Re-
515	trieved 2022-01-23, from https://linkinghub.elsevier.com/retrieve/pii/
516	S0016706111002941 doi: $10.1016/j.geoderma.2011.10.009$
517	Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J.,
518	Cox, P. M. (2011, September). The Joint UK Land Environment Simu-
519	lator (JULES), model description – Part 2: Carbon fluxes and vegetation
520	dynamics. Geoscientific Model Development, 4(3), 701–722. Retrieved 2021-
521	04-14, from https://gmd.copernicus.org/articles/4/701/2011/ doi:
522	10.5194/gmd-4-701-2011
523	Coleman, K., & Jenkinson, D. S. (1996). RothC-26.3 - A Model for the turnover of
524	carbon in soil. In D. S. Powlson, P. Smith, & J. U. Smith (Eds.), Evaluation of
525	Soil Organic Matter Models (pp. 237–246). Berlin, Heidelberg: Springer Berlin
526	Heidelberg. Retrieved 2021-03-24, from http://link.springer.com/10.1007/
527	978-3-642-61094-3 17 doi: 10.1007/978-3-642-61094-3 17
E 29	Crowther T W Van Den Hoogen J Wan J Mayes M A Keiser A D Mo
520	L Maynard D S (2019 August) The global soil community and its
525	influence on biogeochemistry Science 365(6455) eaav0550 Betrieved 2023-
530	09-20 from https://www.science.org/doi/10_1126/science_aav0550_doi:
531	10,1126/science apv0550
532	Danahagarlu C. Lamarqua I. Pagmaistan I. Pailay D. A. DuVivian A. K. Ed
533	wanda I Strand W.C. (2020 Echrycow) The Community Forth System
534	Madel Version 2 (CESM2) Journal of Advances in Modeling Forth System
535	Model Version 2 (CESM2). Journal of Autoances in Modeling Earth Systems, 10(2) Detrieved 2021 04 22 from https://onlinelibrory.viley.com/doi/
536	12(2). Retrieved 2021-04-22, from https://onlinelibrary.wiley.com/dol/
537	10.1029/2019MS001916 doi: $10.1029/2019MS001910$
538	Doetterl, S., Stevens, A., Six, J., Merckx, R., Van Oost, K., Casanova Pinto, M.,
539	Boeckx, P. (2015, October). Soil carbon storage controlled by interactions
540	between geochemistry and climate. Nature Geoscience, 8(10), 780–783. Re-
541	trieved 2021-04-21, from http://www.nature.com/articles/ngeo2516 doi:
542	10.1038/ngeo2516
543	Dungait, J. A. J., Hopkins, D. W., Gregory, A. S., & Whitmore, A. P. (2012,
544	June). Soil organic matter turnover is governed by accessibility not recal-
545	citrance. Global Change Biology, 18(6), 1781–1796. Retrieved 2021-04-21,
546	from http://doi.wiley.com/10.1111/j.1365-2486.2012.02665.x doi:
547	10.1111/j.1365-2486.2012.02665.x
548	Eckmeier, E., Van der Borg, K., Tegtmeier, U., Schmidt, M. W. I., & Gerlach,
549	R. (2009). Dating Charred Soil Organic Matter: Comparison of Radio-
550	carbon Ages from Macrocharcoals and Chemically Separated Charcoal Car-
551	bon. Radiocarbon, 51(2), 437–443. Retrieved 2022-02-07, from https://
552	www.cambridge.org/core/product/identifier/S0033822200055831/type/
553	journal_article doi: $10.1017/S0033822200055831$
554	Fan, X., Gao, D., Zhao, C., Wang, C., Qu, Y., Zhang, J., & Bai, E. (2021, Au-
555	gust). Improved model simulation of soil carbon cycling by representing
556	the microbially derived organic carbon pool. The ISME Journal, $15(8)$,
557	2248-2263. Retrieved 2022-07-10, from http://www.nature.com/articles/
558	s41396-021-00914-0 doi: 10.1038/s41396-021-00914-0
559	Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A., Liddicoat,
560	S. K., & Knutti, R. (2014, January). Uncertainties in CMIP5 Climate Pro-
561	jections due to Carbon Cycle Feedbacks. Journal of Climate, 27(2), 511–526.
562	Retrieved 2022-09-19, from http://journals.ametsoc.org/doi/10.1175/
563	JCLI-D-12-00579.1 doi: 10.1175/JCLI-D-12-00579.1
564	Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L.,
565	Hauck, J., Zheng, B. (2022, November). Global Carbon Budget 2022.
566	Earth System Science Data, 14(11), 4811–4900. Retrieved 2023-07-18,

567 568	from https://essd.copernicus.org/articles/14/4811/2022/ doi: 10.5194/essd-14-4811-2022
569	Gaudinski, J. B., Trumbore, S. E., Davidson, E. A., & Zheng, S. (2000). Soil car-
570	bon cycling in a temperate forest: radiocarbon-based estimates of residence
571	times, sequestration rates and partitioning of fluxes. $Biogeochemistry, 51(1),$
572	33-69. Retrieved 2022-05-04, from http://link.springer.com/10.1023/A:
573	1006301010014 doi: 10.1023/A:1006301010014
574	German, D. P., Marcelo, K. R. B., Stone, M. M., & Allison, S. D. (2012, April).
575	The Michaelis-Menten kinetics of soil extracellular enzymes in response
576	to temperature: a cross-latitudinal study. Global Change Biology, 18(4),
577	1468-1479. Retrieved 2021-04-19, from http://doi.wiley.com/10.1111/
578	j.1365-2486.2011.02615.x doi: 10.1111/j.1365-2486.2011.02615.x
579	Golchin, A., Oades, J., Skjemstad, J., & Clarke, P. (1994). Study of free and oc-
580	cluded particulate organic matter in soils by solid state ¹³ C CP/MAS NMR
581	spectroscopy and scanning electron microscopy. Soil Research, 32(2), 285. Re-
582	trieved 2023-07-01, from http://www.publish.csiro.au/?paper=SR9940285
583	doi: 10.1071/5R9940285
584	Graven, H., Allison, C. E., Etheridge, D. M., Hammer, S., Keeling, R. F., Levin,
585	isotopos in atmospheric CO ₂ for historical simulations in CMIP6
580	scientific Model Development 10(12) 4405-4417 Betrieved 2021-03-10
507	from https://gmd_copernicus_org/articles/10/4405/2017/doi:
589	10.5194/gmd-10-4405-2017
590	Graven, H., Keeling, R. F., & Rogeli, J. (2020, November). Changes to Car-
591	bon Isotopes in Atmospheric CO ₂ Over the Industrial Era and Into the Fu-
592	ture. Global Biogeochemical Cycles, 34(11). Retrieved 2023-08-02, from
593	https://onlinelibrary.wiley.com/doi/10.1029/2019GB006170 doi:
594	10.1029/2019GB006170
595	Griepentrog, M., Bodé, S., Boeckx, P., Hagedorn, F., Heim, A., & Schmidt, M. W. I.
596	(2014, January). Nitrogen deposition promotes the production of new fun-
597	gal residues but retards the decomposition of old residues in forest soil
598	fractions. Global Change Biology, 20(1), 327–340. Retrieved 2022-02-11,
599	from https://onlinelibrary.wiley.com/doi/10.1111/gcb.12374 doi:
600	$10.1111/{ m gcb}.12374$
601	Griepentrog, M., Eglinton, T. I., Hagedorn, F., Schmidt, M. W. I., & Wiesenberg,
602	G. L. B. $(2015, \text{ January})$. Interactive effects of elevated CO ₂ and nitrogen
603	deposition on fatty acid molecular and isotope composition of above- and be-
604	lowground tree biomass and forest soil fractions. Global Change Biology, 21(1),
605	473-486. Retrieved 2021-09-26, from https://onlinelibrary.wiley.com/
606	do1/10.1111/gcb.12666 do1: 10.1111/gcb.12666
607	Hajdas, I., Schlumpf, N., Minikus-Stary, N., Hagedorn, F., Eckmeier, E., Schoch,
608	w., Cherubini, P. (2007, June). Radiocarbon ages of soil charcoals
609	Methoda in Physica Research Section B: Ream Interactions with Materi
610	ale and Atome 250(1) 308-402 Batriaved 2023-08-28 from https://
612	linkinghub elsevier com/retrieve/pii/S0168583X07004028
613	10.1016/i.nimb.2007.02.075
614	Harden J W Fries T L & Pavich M J (2002) Cycling of Beryllium and Car-
615	bon through hillslope soils in Iowa. <i>Bioaeochemistru</i> . 60, 317–336. doi: 10
616	.1023/A:1020308729553
617	He, Y., Trumbore, S. E., Torn, M. S., Harden, J. W., Vaughn, L. J. S., Allison.
618	S. D., & Randerson, J. T. (2016, September). Radiocarbon constraints imply
619	reduced carbon uptake by soils during the 21st century. Science, 353(6306),
620	1419-1424. Retrieved 2022-05-28, from https://www.sciencemag.org/
621	lookup/doi/10.1126/science.aad4273 doi: 10.1126/science.aad4273

622	Heckman, K. (2010). Pedogenesis & Carbon Dynamics Across A Lithosequence
623	Under Ponderosa Pine (Doctoral dissertation). Retrieved 2023-10-06, from
624	https://zenodo.org/record/1486081 (Publisher: Zenodo)
625	Heckman, K., Lawrence, C. R., & Harden, J. W. (2018, February). A sequential
626	selective dissolution method to quantify storage and stability of organic carbon
627	associated with Al and Fe hydroxide phases. Geoderma, 312, 24–35. Re-
628	trieved 2023-07-01, from https://linkinghub.elsevier.com/retrieve/pii/
629	S0016706117312703 doi: 10.1016/j.geoderma.2017.09.043
630	Hicks Pries, C. E., Castanha, C., Porras, R. C., & Torn, M. S. (2017, March). The
631	whole-soil carbon flux in response to warming. Science, 355(6332), 1420–
632	1423. Retrieved 2022-07-10, from https://www.science.org/doi/10.1126/
633	science.aal1319 doi: 10.1126/science.aal1319
634	Hicks Pries, C. E., Sulman, B. N., West, C., O'Neill, C., Poppleton, E., Porras,
635	R. C Torn, M. S. (2018, October). Root litter decomposition slows
636	with soil depth. Soil Biology and Biochemistry, 125, 103–114. Retrieved
637	2022-07-26. from https://linkinghub.elsevier.com/retrieve/pii/
638	S003807171830230X doi: 10.1016/i.soilbio.2018.07.002
630	Jagadamma S. Lal B. Ussiri D. A. N. Trumbore S. E. & Mestelan S. (2010
640	April) Evaluation of structural chemistry and isotopic signatures of refractory
641	soil organic carbon fraction isolated by wet oxidation methods Biogeochem-
642	istry = 98(1-3) = 29-44 Betrieved 2023-08-28 from http://link.springer
643	com/10, 1007/s10533-009-9374-0 doi: 10.1007/s10533-009-9374-0
644	Kleber M Nico P S Plante A Filley T Kramer M Swanston C & Sollins
645	P (2011 February) Old and stable soil organic matter is not necessarily
646	chemically recalcitrant: implications for modeling concepts and tempera-
647	ture sensitivity: SLOW TURNOVER OF LABILE SOIL ORGANIC MAT-
649	TEB Global Change Biology 17(2) 1097–1107 Betrieved 2022-01-28 from
649	https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2010.02278
650	.x doi: 10.1111/i.1365-2486.2010.02278.x
651	Kyker-Snowman E Wieder W B Frey S D & Grandy A S (2020 Septem-
652	ber) Stoichiometrically coupled carbon and nitrogen cycling in the Microbial-
653	MIneral Carbon Stabilization model version 1.0 (MIMICS-CN v1.0) Geo-
654	scientific Model Development 13(9) 4413–4434 Retrieved 2023-06-29
655	from https://gmd.copernicus.org/articles/13/4413/2020/ doi:
656	10.5194/gmd-13-4413-2020
657	Lavallee J M Soong J L & Cotrufo M F (2020 January) Concentualizing
658	soil organic matter into particulate and mineral-associated forms to address
659	global change in the 21st century Global Change Biology 26(1) 261–273 Re-
660	trieved 2021-12-08 from https://onlinelibrary.wiley.com/doi/10.1111/
661	gcb. 14859 doi: 10.1111/gcb.14859
662	Lawrence C B Beem-Miller I Hovt A M Monroe G Sierra C A Stoner
662	S Wagai B (2020 January) An open-source database for the synthesis
664	of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD)
665	version 1.0. Earth Sustem Science Data, 12(1), 61–76. Retrieved 2022-07-
666	10. from https://essd.copernicus.org/articles/12/61/2020/ doi:
667	10.5194/essd-12-61-2020
669	Lehmann I & Kleber M (2015 December) The contentious nature of soil organic
669	matter. Nature, 528(7580), 60–68. Retrieved 2021-04-21 from http://www
670	.nature.com/articles/nature16069 doi: 10.1038/nature16069
671	Leifeld J (2008 May) Biased 14C-derived organic carbon turnover estimates
672	following black carbon input to soil: an exploration with RothC <i>Biogeochem</i> -
673	$istry, 88(3), 205-211$ Retrieved 2023-08-28 from http://link_springer
674	.com/10.1007/s10533-008-9209-4 doi: 10.1007/s10533-008-9209-4
675	Leifeld J. Zimmermann M. & Fuhrer J. (2008 December) Simulating
676	decomposition of labile soil organic carbon: Effects of pH. Soil Biol-

677	ogy and Biochemistry, 40(12), 2948–2951. Retrieved 2023-08-28, from
678	https://linkinghub.elsevier.com/retrieve/pii/S0038071708002861
679	doi: 10.1016/j.soilbio.2008.08.019
680	Leifeld, J., Zimmermann, M., Fuhrer, J., & Conen, F. (2009, March). Stor-
681	age and turnover of carbon in grassland soils along an elevation gradient
682	in the Swiss Alps. Global Change Biology, 15(3), 668–679. Retrieved
683	2023-04-07. from https://onlinelibrary.wilev.com/doi/10.1111/
684	i.1365-2486.2008.01782.x doi: 10.1111/j.1365-2486.2008.01782.x
685	Liu K Xu Y Feng W Zhang X Yao S & Zhang B (2020 December)
686	Modeling the dynamics of protected and primed organic carbon in soil
687	and aggregates under constant soil moisture following litter incorporation.
688	Soil Biology and Biochemistry, 151, 108039. Retrieved 2022-07-10, from
689	https://linkinghub.elsevier.com/retrieve/pii/S0038071720303357
690	doj: 10.1016/i.sojlbio.2020.108039
601	Lybrand B A Heckman K & Basmussen C (2017 August) Soil organic
602	carbon partitioning and 14 C variation in desert and conifer ecosystems of
602	southern Arizona Biogeochemistry 13/(3) 261–277 Retrieved 2023-07-
694	01 from http://link.springer.com/10.1007/s10533-017-0360-7 doi:
605	10 1007/s10533-017-0360-7
606	Malamoud K McBratney A B Minasny B & Field D I (2009 February)
607	Modelling how carbon affects soil structure <i>Geoderma</i> 1/9(1-2) 19–26 Re-
609	trieved 2022-07-10 from https://linkinghub elsevier com/retrieve/nii/
600	S0016706108003169 doi: 10.1016/j.geoderma.2008.10.018
700	Marín-Spiotta E Swanston C W Torn M S Silver W L & Burton S D
700	(2008 January) Chemical and mineral control of soil carbon turnover
701	in abandoned tropical pastures $Geoderma 1/3(1-2) 49-62$ Retrieved
702	$2023-07-01$ from https://linkinghub_elsevier_com/retrieve/nii/
704	S0016706107002807 doi: 10.1016/j.geoderma.2007.10.001
704	McFarlane K I Torn M S Hanson P I Porras B C Swanston C W
705	Callaham M A & Cuilderson T P (2013 March) Comparison of soil
700	organic matter dynamics at five temperate deciduous forests with physical
708	fractionation and radiocarbon measurements Biogeochemistry 112(1-3)
709	457-476. Retrieved 2023-07-01. from http://link.springer.com/10.1007/
710	s10533-012-9740-1 doi: 10.1007/s10533-012-9740-1
711	Meyer S Leifeld I Bahn M & Fuhrer I (2012 February) Free and pro-
712	tected soil organic carbon dynamics respond differently to abandonment
713	of mountain grassland $Biogeosciences 9(2) 853-865$ Betrieved 2023-
714	10-06. from https://bg.copernicus.org/articles/9/853/2012/ doi:
715	10.5194/bg-9-853-2012
716	Mikutta B Turner S Schippers A Gentsch N Meyer-Stüve S Condron
717	L. M Guggenberger, G. (2019, July). Microbial and abiotic con-
718	trols on mineral-associated organic matter in soil profiles along an ecosys-
719	tem gradient. Scientific Reports. 9(1), 10294. Retrieved 2023-08-28.
720	from https://www.nature.com/articles/s41598-019-46501-4 doi:
721	10.1038/s41598-019-46501-4
722	Moore J A M Sulman B N Mayes M A Patterson C M & Classen A T
723	(2020 April) Plant roots stimulate the decomposition of complex but not
724	simple soil carbon Functional Ecology $3/(4)$ 899–910 Betrieved 2022-08-29
725	from https://onlinelibrary.wiley.com/doi/10.1111/1365-2435.13510
726	doi: 10.1111/1365-2435.13510
727	Parton, W. J., Schimel, D. S., Cole, C. V., & Ojima, D. S. (1987, September)
728	Analysis of Factors Controlling Soil Organic Matter Levels in Great Plains
729	Grasslands. Soil Science Society of America Journal 51(5) 1173–1179
730	Retrieved 2023-07-18, from http://doi.wilev.com/10.2136/sssai1987
	03615995005100050015x doi: 10.2136/sssai1987.03615995005100050015x

732	Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, C., Nieder, R.
733	(2018, October). Isolating organic carbon fractions with varying turnover
734	rates in temperate agricultural soils – A comprehensive method compari-
735	son. Soil Biology and Biochemistry, 125, 10–26. Retrieved 2022-07-10, from
736	https://linkinghub.elsevier.com/retrieve/pii/S0038071718302232
737	doi: 10.1016/j.soilbio.2018.06.025
738	Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B.,
739	Ribeiro, E., & Rossiter, D. (2021, June). SoilGrids 2.0: producing soil infor-
740	mation for the globe with quantified spatial uncertainty. SOIL, $7(1)$, 217–240.
741	Retrieved 2022-09-25, from https://soil.copernicus.org/articles/7/217/
742	2021/ doi: 10.5194/soil-7-217-2021
743	Rahman, M. M., Tsukamoto, J., Rahman, M. M., Yoneyama, A., & Mostafa, K. M.
744	(2013, August). Lignin and its effects on litter decomposition in forest ecosys-
745	tems. Chemistry and Ecology, 29(6), 540–553. Retrieved 2023-11-25, from
746	http://www.tandfonline.com/doi/abs/10.1080/02757540.2013.790380
747	doi: $10.1080/02757540.2013.790380$
748	Rasmussen, C., Heckman, K., Wieder, W. R., Keiluweit, M., Lawrence, C. R., Berhe,
749	A. A., Wagai, R. (2018, February). Beyond clay: towards an improved
750	set of variables for predicting soil organic matter content. Biogeochemistry,
751	137(3), 297-306. Retrieved 2023-09-25, from http://link.springer.com/
752	10.1007/s10533-018-0424-3 doi: 10.1007/s10533-018-0424-3
753	Rasmussen, C., Throckmorton, H., Liles, G., Heckman, K., Meding, S., & Hor-
754	wath, W. (2018, July). Controls on Soil Organic Carbon Partitioning and
755	Stabilization in the California Sierra Nevada. Soil Systems, $2(3)$, 41. Re-
756	trieved 2023-07-02, from http://www.mdpi.com/2571-8789/2/3/41 doi:
757	10.3390/soilsystems 2030041
758	Roberts, M. L., & Southon, J. R. (2007). A Preliminary Determination of the
759	Absolute ${}^{14}C/{}^{12}C$ Ratio of OX-I. Radiocarbon, $49(2)$, 441–445. Re-
760	trieved 2021-04-11, from https://www.cambridge.org/core/product/
761	identifier/S0033822200042363/type/journal_article doi: 10.1017/
762	S0033822200042363
763	Robertson, A. D., Paustian, K., Ogle, S., Wallenstein, M. D., Lugato, E., & Cotrufo,
764	M. F. (2019, March). Unifying soil organic matter formation and persistence
765	frameworks: the MEMS model. <i>Biogeosciences</i> , 16(6), 1225–1248. Retrieved
766	2022-01-28, from https://bg.copernicus.org/articles/16/1225/2019/
767	doi: 10.5194/bg-16-1225-2019
768	
769	Rodgers, K. B., Lee, SS., Rosenbloom, N., Timmermann, A., Danabasoglu, G.,
	Rodgers, K. B., Lee, SS., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Yeager, S. G. (2021, December). Ubiquity of human-induced
770	 Rodgers, K. B., Lee, SS., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Yeager, S. G. (2021, December). Ubiquity of human-induced changes in climate variability. <i>Earth System Dynamics</i>, 12(4), 1393–1411. Re-
770 771	 Rodgers, K. B., Lee, SS., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Yeager, S. G. (2021, December). Ubiquity of human-induced changes in climate variability. <i>Earth System Dynamics</i>, 12(4), 1393-1411. Retrieved 2022-09-25, from https://esd.copernicus.org/articles/12/1393/ 2021 (1997) 10 5104 (and 12 1202 2021)
770 771 772	 Rodgers, K. B., Lee, SS., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Yeager, S. G. (2021, December). Ubiquity of human-induced changes in climate variability. <i>Earth System Dynamics</i>, 12(4), 1393-1411. Re- trieved 2022-09-25, from https://esd.copernicus.org/articles/12/1393/ 2021/ doi: 10.5194/esd-12-1393-2021
770 771 772 773	 Rodgers, K. B., Lee, SS., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Yeager, S. G. (2021, December). Ubiquity of human-induced changes in climate variability. <i>Earth System Dynamics</i>, 12(4), 1393-1411. Re- trieved 2022-09-25, from https://esd.copernicus.org/articles/12/1393/ 2021/ doi: 10.5194/esd-12-1393-2021 Rowley, M. C., Grand, S., & Verrecchia, E. P. (2018, January). Calcium- lite in the table of the state of t
770 771 772 773 774	 Rodgers, K. B., Lee, SS., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Yeager, S. G. (2021, December). Ubiquity of human-induced changes in climate variability. <i>Earth System Dynamics</i>, 12(4), 1393-1411. Retrieved 2022-09-25, from https://esd.copernicus.org/articles/12/1393/2021/ doi: 10.5194/esd-12-1393-2021 Rowley, M. C., Grand, S., & Verrecchia, E. P. (2018, January). Calciummediated stabilisation of soil organic carbon. <i>Biogeochemistry</i>, 137(1-2), 27-40. Detrieved 2022, 00-25. from https://esd.com/doi.org/10.1011/101111111111111111111111111111
770 771 772 773 774 775	 Rodgers, K. B., Lee, SS., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Yeager, S. G. (2021, December). Ubiquity of human-induced changes in climate variability. <i>Earth System Dynamics</i>, 12(4), 1393-1411. Re- trieved 2022-09-25, from https://esd.copernicus.org/articles/12/1393/ 2021/ doi: 10.5194/esd-12-1393-2021 Rowley, M. C., Grand, S., & Verrecchia, E. P. (2018, January). Calcium- mediated stabilisation of soil organic carbon. <i>Biogeochemistry</i>, 137(1-2), 27-49. Retrieved 2023-09-25, from http://link.springer.com/10.1007/ 210522_017_0410_1_doi: 10_1007/c10522_017_0410_1
770 771 772 773 774 775 776	 Rodgers, K. B., Lee, SS., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Yeager, S. G. (2021, December). Ubiquity of human-induced changes in climate variability. <i>Earth System Dynamics</i>, 12(4), 1393-1411. Re- trieved 2022-09-25, from https://esd.copernicus.org/articles/12/1393/ 2021/ doi: 10.5194/esd-12-1393-2021 Rowley, M. C., Grand, S., & Verrecchia, E. P. (2018, January). Calcium- mediated stabilisation of soil organic carbon. <i>Biogeochemistry</i>, 137(1-2), 27-49. Retrieved 2023-09-25, from http://link.springer.com/10.1007/ s10533-017-0410-1 doi: 10.1007/s10533-017-0410-1
770 771 772 773 774 775 776 777	 Rodgers, K. B., Lee, SS., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Yeager, S. G. (2021, December). Ubiquity of human-induced changes in climate variability. <i>Earth System Dynamics</i>, 12(4), 1393-1411. Re- trieved 2022-09-25, from https://esd.copernicus.org/articles/12/1393/ 2021/ doi: 10.5194/esd-12-1393-2021 Rowley, M. C., Grand, S., & Verrecchia, E. P. (2018, January). Calcium- mediated stabilisation of soil organic carbon. <i>Biogeochemistry</i>, 137(1-2), 27-49. Retrieved 2023-09-25, from http://link.springer.com/10.1007/ s10533-017-0410-1 doi: 10.1007/s10533-017-0410-1 Salazar, A., Sulman, B. N., & Dukes, J. S. (2018, January). Microbial dor- mentation promotes migraphial biomages and reministed subject of during
770 771 772 773 774 775 776 777 778	 Rodgers, K. B., Lee, SS., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Yeager, S. G. (2021, December). Ubiquity of human-induced changes in climate variability. <i>Earth System Dynamics</i>, 12(4), 1393-1411. Re- trieved 2022-09-25, from https://esd.copernicus.org/articles/12/1393/ 2021/ doi: 10.5194/esd-12-1393-2021 Rowley, M. C., Grand, S., & Verrecchia, E. P. (2018, January). Calcium- mediated stabilisation of soil organic carbon. <i>Biogeochemistry</i>, 137(1-2), 27-49. Retrieved 2023-09-25, from http://link.springer.com/10.1007/ s10533-017-0410-1 doi: 10.1007/s10533-017-0410-1 Salazar, A., Sulman, B. N., & Dukes, J. S. (2018, January). Microbial dor- mancy promotes microbial biomass and respiration across pulses of drying- watting stress. <i>Soil Biology and Biochemistry</i>, 116, 227-244. Detrieved
770 771 772 773 774 775 776 777 778 779	 Rodgers, K. B., Lee, SS., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Yeager, S. G. (2021, December). Ubiquity of human-induced changes in climate variability. <i>Earth System Dynamics</i>, 12(4), 1393-1411. Re- trieved 2022-09-25, from https://esd.copernicus.org/articles/12/1393/ 2021/ doi: 10.5194/esd-12-1393-2021 Rowley, M. C., Grand, S., & Verrecchia, E. P. (2018, January). Calcium- mediated stabilisation of soil organic carbon. <i>Biogeochemistry</i>, 137(1-2), 27-49. Retrieved 2023-09-25, from http://link.springer.com/10.1007/ s10533-017-0410-1 doi: 10.1007/s10533-017-0410-1 Salazar, A., Sulman, B. N., & Dukes, J. S. (2018, January). Microbial dor- mancy promotes microbial biomass and respiration across pulses of drying- wetting stress. <i>Soil Biology and Biochemistry</i>, 116, 237-244. Retrieved 2023-06-25, from https://linkinghub.olsovier.com/retrieve/reii/
770 771 772 773 774 775 776 777 778 779 780 780	 Rodgers, K. B., Lee, SS., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Yeager, S. G. (2021, December). Ubiquity of human-induced changes in climate variability. <i>Earth System Dynamics</i>, 12(4), 1393-1411. Re- trieved 2022-09-25, from https://esd.copernicus.org/articles/12/1393/ 2021/ doi: 10.5194/esd-12-1393-2021 Rowley, M. C., Grand, S., & Verrecchia, E. P. (2018, January). Calcium- mediated stabilisation of soil organic carbon. <i>Biogeochemistry</i>, 137(1-2), 27-49. Retrieved 2023-09-25, from http://link.springer.com/10.1007/ s10533-017-0410-1 doi: 10.1007/s10533-017-0410-1 Salazar, A., Sulman, B. N., & Dukes, J. S. (2018, January). Microbial dor- mancy promotes microbial biomass and respiration across pulses of drying- wetting stress. <i>Soil Biology and Biochemistry</i>, 116, 237-244. Retrieved 2023-06-25, from https://linkinghub.elsevier.com/retrieve/pii/ S0038071717306120_doi: 10.1016/j.soilbio.2017.10.017
770 771 772 773 774 775 776 777 778 779 780 781	 Rodgers, K. B., Lee, SS., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Yeager, S. G. (2021, December). Ubiquity of human-induced changes in climate variability. Earth System Dynamics, 12(4), 1393-1411. Re- trieved 2022-09-25, from https://esd.copernicus.org/articles/12/1393/ 2021/ doi: 10.5194/esd-12-1393-2021 Rowley, M. C., Grand, S., & Verrecchia, E. P. (2018, January). Calcium- mediated stabilisation of soil organic carbon. Biogeochemistry, 137(1-2), 27-49. Retrieved 2023-09-25, from http://link.springer.com/10.1007/ s10533-017-0410-1 doi: 10.1007/s10533-017-0410-1 Salazar, A., Sulman, B. N., & Dukes, J. S. (2018, January). Microbial dor- mancy promotes microbial biomass and respiration across pulses of drying- wetting stress. Soil Biology and Biochemistry, 116, 237-244. Retrieved 2023-06-25, from https://linkinghub.elsevier.com/retrieve/pii/ S0038071717306120 doi: 10.1016/j.soilbio.2017.10.017
770 771 772 773 774 775 776 777 778 779 780 781 781 782	 Rodgers, K. B., Lee, SS., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Yeager, S. G. (2021, December). Ubiquity of human-induced changes in climate variability. Earth System Dynamics, 12(4), 1393-1411. Re- trieved 2022-09-25, from https://esd.copernicus.org/articles/12/1393/ 2021/ doi: 10.5194/esd-12-1393-2021 Rowley, M. C., Grand, S., & Verrecchia, E. P. (2018, January). Calcium- mediated stabilisation of soil organic carbon. Biogeochemistry, 137(1-2), 27-49. Retrieved 2023-09-25, from http://link.springer.com/10.1007/ s10533-017-0410-1 doi: 10.1007/s10533-017-0410-1 Salazar, A., Sulman, B. N., & Dukes, J. S. (2018, January). Microbial dor- mancy promotes microbial biomass and respiration across pulses of drying- wetting stress. Soil Biology and Biochemistry, 116, 237-244. Retrieved 2023-06-25, from https://linkinghub.elsevier.com/retrieve/pii/ S0038071717306120 doi: 10.1016/j.soilbio.2017.10.017 Schimel, J. (2023, March). Modeling ecosystem-scale carbon dynamics in soil: The microbial dimension. Soil Biology and Biochemistry, 178, 108048. Bo
770 771 772 773 774 775 776 777 778 779 780 781 781 782 783	 Rodgers, K. B., Lee, SS., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Yeager, S. G. (2021, December). Ubiquity of human-induced changes in climate variability. <i>Earth System Dynamics</i>, 12(4), 1393-1411. Re- trieved 2022-09-25, from https://esd.copernicus.org/articles/12/1393/ 2021/ doi: 10.5194/esd-12-1393-2021 Rowley, M. C., Grand, S., & Verrecchia, E. P. (2018, January). Calcium- mediated stabilisation of soil organic carbon. <i>Biogeochemistry</i>, 137(1-2), 27-49. Retrieved 2023-09-25, from http://link.springer.com/10.1007/ s10533-017-0410-1 doi: 10.1007/s10533-017-0410-1 Salazar, A., Sulman, B. N., & Dukes, J. S. (2018, January). Microbial dor- mancy promotes microbial biomass and respiration across pulses of drying- wetting stress. <i>Soil Biology and Biochemistry</i>, 116, 237-244. Retrieved 2023-06-25, from https://linkinghub.elsevier.com/retrieve/pii/ S0038071717306120 doi: 10.1016/j.soilbio.2017.10.017 Schimel, J. (2023, March). Modeling ecosystem-scale carbon dynamics in soil: The microbial dimension. <i>Soil Biology and Biochemistry</i>, 178, 108948. Re- trieved 2023-11-18 from https://linkinghub.elsevier.com/retrieve/pii/
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 784	 Rodgers, K. B., Lee, SS., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Yeager, S. G. (2021, December). Ubiquity of human-induced changes in climate variability. Earth System Dynamics, 12(4), 1393-1411. Re- trieved 2022-09-25, from https://esd.copernicus.org/articles/12/1393/ 2021/ doi: 10.5194/esd-12-1393-2021 Rowley, M. C., Grand, S., & Verrecchia, E. P. (2018, January). Calcium- mediated stabilisation of soil organic carbon. Biogeochemistry, 137(1-2), 27-49. Retrieved 2023-09-25, from http://link.springer.com/10.1007/ s10533-017-0410-1 doi: 10.1007/s10533-017-0410-1 Salazar, A., Sulman, B. N., & Dukes, J. S. (2018, January). Microbial dor- mancy promotes microbial biomass and respiration across pulses of drying- wetting stress. Soil Biology and Biochemistry, 116, 237-244. Retrieved 2023-06-25, from https://linkinghub.elsevier.com/retrieve/pii/ S0038071717306120 doi: 10.1016/j.soilbio.2017.10.017 Schimel, J. (2023, March). Modeling ecosystem-scale carbon dynamics in soil: The microbial dimension. Soil Biology and Biochemistry, 178, 108948. Re- trieved 2023-11-18, from https://linkinghub.elsevier.com/retrieve/pii/ S003807172300010X doi: 10.1016/j.soilbio.2023.108948
770 771 772 773 774 775 776 777 778 779 780 781 782 782 783 784 785 785	 Rodgers, K. B., Lee, SS., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Yeager, S. G. (2021, December). Ubiquity of human-induced changes in climate variability. <i>Earth System Dynamics</i>, 12(4), 1393-1411. Re- trieved 2022-09-25, from https://esd.copernicus.org/articles/12/1393/ 2021/ doi: 10.5194/esd-12-1393-2021 Rowley, M. C., Grand, S., & Verrecchia, E. P. (2018, January). Calcium- mediated stabilisation of soil organic carbon. <i>Biogeochemistry</i>, 137(1-2), 27-49. Retrieved 2023-09-25, from http://link.springer.com/10.1007/ s10533-017-0410-1 doi: 10.1007/s10533-017-0410-1 Salazar, A., Sulman, B. N., & Dukes, J. S. (2018, January). Microbial dor- mancy promotes microbial biomass and respiration across pulses of drying- wetting stress. <i>Soil Biology and Biochemistry</i>, 116, 237-244. Retrieved 2023-06-25, from https://linkinghub.elsevier.com/retrieve/pii/ S0038071717306120 doi: 10.1016/j.soilbio.2017.10.017 Schimel, J. (2023, March). Modeling ecosystem-scale carbon dynamics in soil: The microbial dimension. <i>Soil Biology and Biochemistry</i>, 178, 108948. Re- trieved 2023-11-18, from https://linkinghub.elsevier.com/retrieve/pii/ S003807172300010X doi: 10.1016/j.soilbio.2023.108948 Schmidt, M. W. L. Torn, M. S. Abiyen, S. Dittmar, T. Guggenberger, G.

787	Janssens, I. A., Trumbore, S. E. (2011, October). Persistence of soil
788	organic matter as an ecosystem property. Nature, 478(7367), 49–56. Retrieved
789	2022-02-11, from http://www.nature.com/articles/nature10386 doi:
790	10.1038/nature10386
791	Schrumpf, M., & Kaiser, K. (2015, February). Large differences in estimates
792	of soil organic carbon turnover in density fractions by using single and re-
793	peated radiocarbon inventories. <i>Geoderma</i> , 239-240, 168–178. Retrieved
794	2022-02-06, from https://linkinghub.elsevier.com/retrieve/pii/
795	S0016706114003577 doi: 10.1016/j.geoderma.2014.09.025
796	Schrumpf, M., Kaiser, K., Guggenberger, G., Persson, T., Kögel-Knabner, I.,
797	& Schulze, ED. (2013, March). Storage and stability of organic car-
798	bon in soils as related to depth, occlusion within aggregates, and attach-
799	ment to minerals. $Biogeosciences, 10(3), 1675-1691.$ Retrieved 2023-07-
800	02, from https://bg.copernicus.org/articles/10/1675/2013/ doi:
801	$10.5194/\mathrm{bg}$ -10-1675-2013
802	Schrumpf, M., Kaiser, K., Mayer, A., Hempel, G., & Trumbore, S. (2021, February).
803	Age distribution, extractability, and stability of mineral-bound organic carbon
804	in central European soils. <i>Biogeosciences</i> , 18(3), 1241–1257. Retrieved 2023-
805	08-28, from https://bg.copernicus.org/articles/18/1241/2021/ doi:
806	$10.5194/\mathrm{bg}$ -18-1241-2021
807	Segoli, M., De Gryze, S., Dou, F., Lee, J., Post, W., Denef, K., & Six, J. (2013,
808	August). AggModel: A soil organic matter model with measurable pools
809	for use in incubation studies. <i>Ecological Modelling</i> , 263, 1–9. Retrieved
810	2021-04-21, from https://linkinghub.elsevier.com/retrieve/pii/
811	S0304380013002147 doi: 10.1016/j.ecolmodel.2013.04.010
812	Sierra, C. A., Trumbore, S. E., Davidson, E. A., Vicca, S., & Janssens, I. (2015,
813	March). Sensitivity of decomposition rates of soil organic matter with
814	respect to simultaneous changes in temperature and moisture. Jour-
815	nal of Advances in Modeling Earth Systems, 7(1), 335–356. Retrieved
816	2021-04-19, from http://doi.wiley.com/10.1002/2014MS000358 doi:
817	$10.1002/2014 \mathrm{MS000358}$
818	Soucémarianadin, L., Reisser, M., Cécillon, L., Barré, P., Nicolas, M., & Abiven,
819	S. (2019, June). Pyrogenic carbon content and dynamics in top and sub-
820	soil of French forests. Soil Biology and Biochemistry, 133, 12–15. Re-
821	trieved 2023-08-28, from https://linkinghub.elsevier.com/retrieve/
822	pii/S0038071719300537 doi: 10.1016/j.soilbio.2019.02.013
823	Stamati, F. E., Nikolaidis, N. P., Banwart, S., & Blum, W. E. (2013, Decem-
824	ber). A coupled carbon, aggregation, and structure turnover (CAST)
825	model for topsoils. Geoderma, 211-212, 51–64. Retrieved 2022-05-29, from
826	https://linkinghub.elsevier.com/retrieve/pii/S0016706113002140
827	doi: 10.1016 /j.geoderma.2013.06.014
828	Stoner, S. W., Schrumpf, M., Hoyt, A., Sierra, C. A., Doetterl, S., Galy, V., &
829	Trumbore, S. (2023, August). How well does ramped thermal oxidation
830	quantify the age distribution of soil carbon? Assessing thermal stability of
831	physically and chemically fractionated soil organic matter. Biogeosciences,
832	20(15), 3151-3163. Retrieved 2023-08-26, from https://bg.copernicus.org/
833	articles/20/3151/2023/ doi: 10.5194/bg-20-3151-2023
834	Sulman, B. N., Brzostek, E. R., Medici, C., Shevliakova, E., Menge, D. N. L.,
835	& Phillips, R. P. (2017, August). Feedbacks between plant N demand
836	and rhizosphere priming depend on type of mycorrhizal association. <i>Ecol</i> -
837	<i>ogy Letters</i> , 20(8), 1043–1053. Retrieved 2022-07-26, from https://
838	onlinelibrary.wiley.com/doi/10.1111/ele.12802 doi: 10.1111/ele.12802
839	Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E., & Pacala, S. W. (2014,
840	December). Microbe-driven turnover offsets mineral-mediated storage of soil
841	carbon under elevated CO2. Nature Climate Change, $4(12)$, 1099–1102. Re-

842	trieved 2022-05-29, from http://www.nature.com/articles/nclimate2436
843	doi: $10.1038/nclimate2436$
844	Tian, H., Yang, J., Lu, C., Xu, R., Canadell, J. G., Jackson, R. B., Zhu, Q.
845	(2018, June). The Global N2O Model Intercomparison Project. Bulletin
846	of the American Meteorological Society, 99(6), 1231–1251. Retrieved 2023-
847	$06\text{-}20,\mathrm{from\ https://journals.ametsoc.org/view/journals/bams/99/6/}$
848	bams-d-17-0212.1.xml doi: 10.1175/BAMS-D-17-0212.1
849	Tipping, E., & Rowe, E. C. (2019, March). Modelling the physical states, ele-
850	ment stoichiometries and residence times of topsoil organic matter. Euro-
851	pean Journal of Soil Science, $70(2)$, $321-337$. Retrieved 2022-07-10, from
852	https://onlinelibrary.wiley.com/doi/10.1111/ejss.12785 doi:
853	10.1111/ m ejss.12785
854	Trumbore, S. E., Sierra, C. A., & Hicks Pries, C. E. (2016). Radiocarbon Nomen-
855	clature, Theory, Models, and Interpretation: Measuring Age, Determin-
856	ing Cycling Rates, and Tracing Source Pools. In E. A. Schuur, E. Druf-
857	fel, & S. E. Trumbore (Eds.), Radiocarbon and Climate Change (pp. 45–
858	82). Cham: Springer International Publishing. Retrieved 2021-04-05,
859	from http://link.springer.com/10.1007/978-3-319-25643-6_3 doi:
860	10.1007/978-3-319-25643-6_3
861	van der Voort, T. S., Mannu, U., Hagedorn, F., McIntyre, C., Walthert, L., Schleppi,
862	P., Eglinton, 1. I. (2019, August). Dynamics of deep soli carbon – insights from $\frac{14}{C}$ time gaming agrees a climatic modiant – <i>Diagonacian age</i> $\frac{16}{16}$, 2222
863	2246 Detrieved 2021 02 21 from https://hr.com/prices.org/orticleg/16/
864	3233/2010/ doi: 10.5104/bg.16.3233.2010
805	van der Voort T S Zell C I Hagedorn E Eeng X McInture C P Haghinour
800	N Eglinton T I (2017 December) Diverse Soil Carbon Dynam-
868	ics Expressed at the Molecular Level: Molecular Level Soil Carbon Dy-
869	namics. Geophysical Research Letters, 44 (23), 11.840–11.850. Retrieved
870	2021-03-21, from http://doi.wiley.com/10.1002/2017GL076188 doi:
871	10.1002/2017 GL076188
872	Vogel, C., Mueller, C. W., Höschen, C., Buegger, F., Heister, K., Schulz, S.,
873	Kögel-Knabner, I. (2014, January). Submicron structures provide preferential
874	spots for carbon and nitrogen sequestration in soils. Nature Communications,
875	5(1), 2947. Retrieved 2023-09-20, from https://www.nature.com/articles/
876	ncomms3947 doi: 10.1038/ncomms3947
877	von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G.,
878	Matzner, E., & Marschner, B. (2007, September). SOM fractionation meth-
879	ods: Relevance to functional pools and to stabilization mechanisms. Soil
880	Biology and Biochemistry, $39(9)$, 2183–2207. Retrieved 2022-01-26, from
881	https://linkinghub.elsevier.com/retrieve/pii/S0038071707001125
882	doi: 10.1016/j.soilbio.2007.03.007
883	Wagai, R., Mayer, L. M., & Kitayama, K. (2009, February). Nature of the "oc-
884	cluded" low-density fraction in soil organic matter studies: A critical review.
885	Soil Science and Plant Nutrition, 55(1), 13–25. Retrieved 2022-05-29, from
886	http://www.tandfonline.com/doi/abs/10.1111/j.1/4/-0/65.2008.00356
887	.X dol: 10.1111/J.1747-0705.2008.00550.X
888	Wang, G., Gao, Q., Tang, Y., Hobble, S. E., Reich, P. B., & Zhou, J. (2022, March).
889	migraphial acological modeling Clobal Change Biology 28(5) 1035–1050 Pa
890	trioved 2023 06 23 from https://enlipelibrary_uiley_com/doi/10_1111/
891	a_{cb} 16036 doi: 10.1111/ a_{cb} 16036
092	Wang G. Jagadamma S. Mayes M. A. Schadt C. W. Magan Steinwood I. Cu
093 894	L. & Post. W. M. (2015, January) Microhial dormancy improves development
895	and experimental validation of ecosystem model. The ISME Journal 9(1)
906	226-237. Retrieved 2021-04-21, from http://www.nature.com/articles/

897	ismej2014120 doi: 10.1038/ismej.2014.120
898	Wang, G., Post, W. M., & Mayes, M. A. (2013, January). Development of
899	microbial-enzyme-mediated decomposition model parameters through steady-
900	state and dynamic analyses. <i>Ecological Applications</i> , 23(1), 255–272. Re-
901	trieved 2021-04-21, from http://doi.wiley.com/10.1890/12-0681.1 doi:
902	10.1890/12-0681.1
903	Wang, Y., Zhang, H., Ciais, P., Goll, D., Huang, Y., Wood, J. D., Prescher, A.
904	(2021, April). Microbial Activity and Root Carbon Inputs Are More Impor-
905	tant than Soil Carbon Diffusion in Simulating Soil Carbon Profiles. Journal
906	of Geophysical Research: Biogeosciences, 126(4). Retrieved 2022-07-10, from
907	https://onlinelibrary.wiley.com/doi/10.1029/2020JG006205 doi:
908	$10.1029/2020\mathrm{JG006205}$
909	Wieder, W. R., Grandy, A. S., Kallenbach, C. M., & Bonan, G. B. (2014, July).
910	Integrating microbial physiology and physio-chemical principles in soils with
911	the MIcrobial-MIneral Carbon Stabilization (MIMICS) model. Biogeosciences,
912	11(14), 3899-3917. Retrieved 2021-05-25, from https://bg.copernicus.org/
913	articles/11/3899/2014/ doi: $10.5194/bg$ - $11-3899$ - 2014
914	Wieder, W. R., Grandy, A. S., Kallenbach, C. M., Taylor, P. G., & Bonan, G. B.
915	(2015, June). Representing life in the Earth system with soil microbial func-
916	tional traits in the MIMICS model. Geoscientific Model Development, $\mathcal{B}(6)$,
917	1789-1808. Retrieved 2023-06-29, from https://gmd.copernicus.org/
918	articles/8/1789/2015/ doi: 10.5194/gmd-8-1789-2015
919	Woolf, D., & Lehmann, J. (2019, December). Microbial models with minimal min-
920	eral protection can explain long-term soil organic carbon persistence. Scientific
921	Reports, $9(1)$, 6522. Retrieved 2021-10-01, from http://www.nature.com/
922	articles/s41598-019-43026-8 doi: 10.1038/s41598-019-43020-8
923	Mao, L., Wang, G., Chang, J., Chen, Y., Guo, A., Mao, A., Luo, Z. (2025, Au-
924	and its drivers — Clobal Feeleev and Biogeography 22(8) 1425 1451 — Bo
925	trioved 2023 07 16 from https://enlipelibrary.uiley.com/doi/10_1111/
926	meVet 2025-01-10, mom met ps. 7 om met ps ary. write y. com/ doi 7 10.1111 / meb 13705
927	Yu I. Ahrens B. Wutzler T. Schrumpf M. & Zaehle S. (2020 Febru-
920	arv). Jena Soil Model (JSM v1.0: revision 1934): a microbial soil or-
930	ganic carbon model integrated with nitrogen and phosphorus processes.
931	Geoscientific Model Development, 13(2), 783–803. Retrieved 2022-07-
932	10. from https://gmd.copernicus.org/articles/13/783/2020/ doi:
933	10.5194/gmd-13-783-2020
934	Zhang, H., Goll, D. S., Wang, Y., Ciais, P., Wieder, W. R., Abramoff, R., Tang,
935	X. (2020, April). Microbial dynamics and soil physicochemical properties
936	explain large-scale variations in soil organic carbon. Global Change Biology,
937	26(4), 2668-2685. Retrieved 2022-07-10, from https://onlinelibrary.wiley
938	.com/doi/10.1111/gcb.14994 doi: 10.1111/gcb.14994
939	Zhang, Y., Lavallee, J. M., Robertson, A. D., Even, R., Ogle, S. M., Paustian,
940	K., & Cotrufo, M. F. (2021, May). Simulating measurable ecosystem
941	carbon and nitrogen dynamics with the mechanistically defined MEMS
942	2.0 model. <i>Biogeosciences</i> , 18(10), 3147–3171. Retrieved 2022-07-10,
943	from https://bg.copernicus.org/articles/18/3147/2021/ doi:
944	$10.5194/\mathrm{bg} ext{-}18 ext{-}3147 ext{-}2021$

Supporting Information for "Radiocarbon analysis reveals underestimation of soil organic carbon persistence in new-generation soil models"

Alexander S. Brunmayr¹, Frank Hagedorn², Margaux Moreno Duborgel^{2,3},

Luisa I. Minich^{2,3}, Heather D. Graven¹

¹Imperial College London, Department of Physics

 $^2\mathrm{Eidgen{}\ddot{o}ssische}$ Forschungsanstalt WSL

 $^3\mathrm{ETH}$ Zurich, Department of Earth Sciences

Contents of this file

- 1. Text S1 to S5 $\,$
- 2. Figures S1 to S12
- 3. Table S1

Introduction

This document provides further information on the specific model versions and implementations used in this study (section S1, Figures S1-S5), and specifies which simulated pools were associated to which measured soil fraction (section S2, Table S1). It also explains how we re-implemented non-isotopic models with ¹⁴C (section S3), and why the ¹⁴C implementation of SOMic and the newest version of MIMICS are incorrect (section S4, Figures S6-S7). Section S5 gives some more details on Millennial's turnover times. Finally, Figures S8-S12 at the end of this document show plots of model predictions against observations for each model.

:

S1. Further information on model versions and implementations

The source codes of all the selected model versions are openly available. By having direct access to the code with which the model developers produced their results, we can be more confident that we test an implementation of the models as intended by their respective authors.

Our final implementations of the Millennial, CORPSE, and MIMICS models are available as python modules on our GitHub repository https://github.com/asb219/ evaluate-SOC-models. Our slightly modified implementation of the MEND model in https://github.com/asb219/MEND is added to our repository as a git submodule. Finally, we installed the SOMic model's R package directly from our forked https:// github.com/asb219/somic1 GitHub repository.

S1.1. Millennial

We use Millennial V2 with Michaelis-Menten kinetics as described in Abramoff et al. (2022). We re-implemented the model with ¹⁴C in Python based on the original R code in the https://github.com/rabramoff/Millennial repository under the tag "v2" (commit e95bca9 from September 2021). We used the model equations from file R/models/derivs _V2_MM.R in the repository and ran the model with the fitted parameter values from the file Fortran/MillennialV2/simulationv2/soilpara_in_fit.txt in the repository. The initial condition for both carbon and ¹⁴C stocks is found by first solving for a pre-industrial steady state, similarly to the model tutorial R/simulation/model_tutorial.Rmd in the repository, and then running the model from steady state for 200 years using time-varying pre-industrial forcing data featuring a seasonal cycle. The final state of that spinup is

then used as the initial condition for the final run of the model over the 1850-2014 period. The model runs with daily time steps, and though the model tutorial uses the 4th order Runge-Kutta integration method, we integrate the equations simply with the forward Euler method, which is stable and precise enough with daily time steps.

S1.2. CORPSE

The CORPSE model was originally described in Sulman, Phillips, Oishi, Shevliakova, and Pacala (2014). There are currently at least six publicly available versions of CORPSE. Since we are mostly interested in carbon dynamics, the lead developer Benjamin Sulman recommended we use the most up-to-date carbon-only implementation in https://github.com/bsulman/CORPSE-fire-response (latest commit at time of writing: 19ee2c7 from February 2021). We reimplemented CORPSE with ¹⁴C based on the equations in file CORPSE_array.py and using the parameter values from file Whitman_sims.py in that repository. However, the equation for the clay-related rate modifying factor is taken from file code/CORPSE_integrate.py in repository https://github.com/bsulman/CORPSE-N, since the model seems to be working more reliably with that version of the equation. Like in Millennial, the initial condition is found by solving for a pre-industrial steady state and spinning up for 200 years from that steady state. If the solver is unable to find a steady state, the model is spun up for 4000 years. The model runs with daily time steps and uses the forward Euler integration method.

S1.3. SOMic

We use version 1.0 of the SOMic model as described in (Woolf & Lehmann, 2019). The original code is available on the GitHub repository https://github.com/domwoolf/

somic1 (hash of latest commit at time of writing: be34e56 from June 2019). However, we forked the repository to https://github.com/asb219/somic1 in order to fix a minor issue in its ¹⁴C implementation (see reason in section S4.1), and used the version released under the tag "v1.1-asb219" to produce our results. We spin up the model for 5000 years to get the initial carbon and ¹⁴C stocks. The model runs with monthly time steps and uses the forward Euler integration method.

S1.4. MEND

We use the latest version of the default MEND model with carbon-nitrogen coupling as described in G. Wang et al. (2022). Our ¹⁴C re-implementation is based on the code from commit 92323c7 (from February 2022) of the GitHub repository https://github.com/ wanggangsheng/MEND. We forked the repository from that commit to https://github .com/asb219/MEND so we could adapt the model input and output to our purposes. We use all the default model settings and the optimized parameter values provided in the Fortran namelist file MEND_namelist.nml in the repository. The pre-industrial soil carbon and nitrogen stocks are found by initializing the model with the default initial state from file userio/inp/SOIL_ini.dat and spinning up for 400 year with pre-industrial forcing data. The pre-industrial soil ¹⁴C levels are found by running the spun-up model for another 1000 years with pre-industrial forcing data. The model runs with hourly time steps and uses the forward Euler integration method.

S1.5. MIMICS

We use the MIMICS-CN v1.0 model, as published in (Kyker-Snowman et al., 2020), because the latest version of MIMICS (Y. Wang et al., 2021) did not correctly imple-

ment ¹⁴C (see section SS4.2). The original R code of MIMICS-CN v1.0 is available on https://zenodo.org/records/3534562. It already implements stable isotope tracers, but no radioactive isotopes such as ¹⁴C, so we re-implemented the model with ¹⁴C in python. Like for Millennial and CORPSE, we spin up for 200 years from the pre-industrial steady-state solution. If no steady state can be found, we spin up for 4000 years. The model runs with hourly time steps and uses the forward Euler integration method.

:

S2. Correspondences between pools and measurable fractions

This section explains how we associate the simulated pools of each model with either the *POM* (particulate organic matter) fraction or the *MAOM* (mineral-associated organic matter) fraction. See Table S1 for a summary of the correspondences between the modeled pools and the *POM* and *MAOM* fractions.

We assume that the POM fraction (corresponding to the "light fraction" resulting from density fractionation) is composed of fragmented and partially processed plant litter which is not stabilized in the soil matrix through mineral association. We assume that the MAOM fraction (corresponding to the "heavy fraction" resulting from density fractionation) is composed of soil organic carbon which is enclosed in stable aggregates or strongly adsorbed to minerals. Since the live microbial biomass and dissolved organic carbon generally represent a small fraction of soil organic carbon, we can neglect them, so we assume they belong to neither POM nor MAOM.

S2.1. MEND

We assume that the POM fraction is composed of the POM_O and POM_H pools, and that the MAOM fraction is composed of the MOM and QOM pools.

List of organic carbon pools in the MEND-new (2022) model by G. Wang et al. (2022) (also see Figure S1):

- POM_O and POM_H (particulate organic matter decomposed by oxidative and hydrolytic enzymes, respectively).
- MOM (mineral-associated organic matter).
- QOM: "active layer of MOM" which can exchange carbon with DOM through adsorption and desorption (G. Wang et al., 2022).

- DOM (dissolved organic matter).
- MB_A and MB_D (active and dormant microbial biomass, respectively).
- EP_O, EP_H, EM: various microbial exo-enzymes.

Note that the "Litter" pool in the MEND model diagram in Figure S1 is not explicitly modeled as a pool, and therefore does not feature in the above list of organic carbon pools.

S2.2. Millennial

We assume that the measured MAOM fraction is the sum of the Aggregate C and MAOM pools, and that the POM fraction is entirely composed of the POM pool.

List of organic carbon pools in Millennial v2 by Abramoff et al. (2022) (see also Figure S2):

- POM (particulate organic carbon).
- Aggregate C: "stable microaggregates which remain after dispersion in the larger particle size fraction (>50–60 μ m)" (Abramoff et al., 2022), so this corresponds to the coarse heavy fraction.
- MAOM (mineral-associated organic carbon): consists of organic matter associated to minerals through sorption (Abramoff et al., 2022).
- Microbial Biomass: live microbial biomass.
- LMWC (low molecular weight carbon): "LMWC could be analogous to dissolved organic C (DOC) if there is enough moisture in the soil matrix, and if we do not consider DOC molecules that are too large to be taken up by microbes" (Abramoff et al., 2022).

The *MAOM* fraction is composed of the MAC pool, and the *POM* fraction is composed of the SPM and IPM pools.

:

List of organic carbon pools in SOMic 1.0 by Woolf and Lehmann (2019) (also see Figure S3):

- SPM and IPM (soluble and insoluble plant matter, respectively).
- MAC (mineral-associated carbon): "mineral-sorbed or -occluded SOC" (Woolf & Lehmann, 2019).
- DOC (dissolved organic carbon).
- MB (microbial biomass).

S2.4. CORPSE

We associate the MAOM fraction with the SPC_p, CPC_p, and MN_p pools, since they represent mineral-adsorbed and micro-aggregated carbon (Moore et al., 2020). We associate the POM fraction with the SPC_u and CPC_u pools, but not the microbial MN_u pool, because POM is mostly composed of unprotected plant-derived carbon.

List of organic carbon pools in the CORPSE-fire-response version of the CORPSE model, first published in Sulman et al. (2014) and last updated in Moore et al. (2020) (see also Figure S4):

- SPC_u , CPC_u , and MN_u (Unprotected simple plant carbon, Unprotected complex plant carbon, and Unprotected microbe necromass, respectively).
- SPC_p, CPC_p, and MN_p (Protected simple plant carbon, Protected complex plant carbon, and Protected microbe necromass): "protected organic matter is inaccessible to microbial

X - 10

decomposition through chemical sorption to mineral surfaces or occlusion within microaggregates" (Moore et al., 2020).

• LMB (live microbial biomass).

S2.5. MIMICS

According to Kyker-Snowman et al. (2020), the SOM_c pool corresponds to the *POM* fraction, and the SOM_p pool corresponds to the *MAOM* fraction.

List of organic carbon pools in MIMICS-CN v1.0 by Kyker-Snowman et al. (2020) (see also Figure S5):

- LIT_m and LIT_s (metabolic and structural litter, respectively): litter pools which are not considered part of soil organic matter.
- SOM_p (physicochemically protected soil organic matter): "is primarily composed of microbial products that are adsorbed onto mineral surfaces" and is "analogous to heavy fraction or MAOM pools" (Kyker-Snowman et al., 2020).
- SOM_c (chemically recalcitrant soil organic matter): "consists of decomposed or partially decomposed litter" and is "analogous to light fraction or POM pools" (Kyker-Snowman et al., 2020).
- SOM_a (available soil organic matter): "the only SOM pool that is available for microbial decomposition; it contains a mixture of fresh microbial residues, products that are desorbed from the SOMp pool (e.g., Jilling et al., 2018), as well as depolymerized organic matter from the SOMc pool" (Kyker-Snowman et al., 2020). This pool is usually very small and we associate it to neither POM nor MAOM.

• MIC_r and MIC_K ("low-efficiency, r strategist" microbes and "high-efficiency, K strategist" microbes, respectively): live microbial biomass pools.

:

Note that MIMICS-CN v1.0 also has a Dissolved Inorganic Nitrogen (DIN) pool, which does not contain organic carbon.

S3. Radiocarbon predictions with non-isotopic models

Among the new-generation models selected for this study, SOMic, MIMICS, and MEND have already implemented ¹⁴C. However, the most recent and only open-source version of MEND does not include ¹⁴C, and SOMic and MIMICS incorrectly implemented their ¹⁴C simulations (see section S4). Nevertheless, we can still produce ¹⁴C predictions with non-isotopic models by individually tracking the carbon fluxes at every time step and attaching a ¹⁴C signal to each flux. Since none of the models define an internal structure for their pools, we will assume by default that the pools are well-mixed, which means that the Δ^{14} C of a pool's outflux is equal to the pool's Δ^{14} C. This assumption is common practice for ¹⁴C modeling in soils (Sierra et al., 2017).

We run all of the selected models using the forward Euler method to advance from one time step to the next. The models either implicitly or explicitly produce the internal flux matrix Φ^i at each time step i, where $\Phi^i_{jk} \ge 0$ is the flux of carbon from pool k into pool j (with $j \ne k$), and $\Phi^i_{jj} \le 0$ is the total outflux of carbon out of pool j at time step i. They also define the external influx vector I^i such that $I^i_j \ge 0$ is the influx of carbon entering the modeled system through pool j at time step i. Matrix Φ contains all the fluxes between the pools and out of the system, and vector I contains all the influxes of carbon from outside the system into the modeled pools. We can therefore find the carbon stocks C^{i+1}_j of pool j at time step i + 1 based on the Φ^i , I^i , and C^i_j of the previous time step i:

$$C_{j}^{i+1} = C_{j}^{i} + I_{j}^{i} + \sum_{k} \Phi_{jk}^{i} , \qquad (S1)$$

where the summation of internal fluxes Φ_{jk}^{i} is performed over all donor pools k to get the total internal carbon flux into pool j (when $k \neq j$), subtracted by the flux out of pool j (when k = j).

Assuming the pools are well-mixed, we can now produce ¹⁴C predictions by tagging each flux Φ_{jk} with the ¹⁴C signal of pool k. We measure the ¹⁴C signal in terms of the unitless "absolute Fraction Modern" (FM_{abs}) as defined in Trumbore, Sierra, and Hicks Pries (2016), such that FM_{abs} = 1 + (Δ^{14} C/1000%). The FM_{abs} is proportional to the ¹⁴C/¹²C ratio normalized to a δ^{13} C of -25% (Trumbore et al., 2016), and is thus proportional to the normalized ratio of ¹⁴C to total carbon (¹⁴C/C), considering the negligible abundance of ¹⁴C compared to ¹²C and ¹³C. Therefore, if we know F_j^i , the FM_{abs} of pool j at time step i, we can find F_j^{i+1} at time step i + 1 with the following equation (provided all the pools and the influx have comparable δ^{13} C signals):

$$F_{j}^{i+1}C_{j}^{i+1} = (1-\lambda)F_{j}^{i}C_{j}^{i} + I_{j}^{i}F_{\text{influx}}^{i} + \sum_{k} \Phi_{jk}^{i}F_{k}^{i}, \qquad (S2)$$

where C_j^{i+1} is given by equation (S1), λ is the radioactive decay rate of ¹⁴C in units of inverse time step size, and F_{influx}^i is the FM_{abs} of the external carbon influx at time step *i* given by the forcing data. We can then recover the Δ^{14} C at each time step *i* and for each pool *j* with $(F_j^i - 1) \times 1000\%$.

S4. Incorrect or inaccurate ¹⁴C implementations

S4.1. SOMic

The SOMic model (Woolf & Lehmann, 2019), as implemented on the GitHub repository domwoolf/somic1 (commit be34e56 from June 2019), does not produce accurate ¹⁴C predictions. Instead of working with the more typical Δ^{14} C or absolute Fraction Modern (FM_{abs}) units, this implementation tracks the ¹⁴C age, which we summarily define as Age = $-\log (FM_{abs}) \lambda^{-1}$, where λ is the radioactive decay rate of ¹⁴C. This causes complications when updating the ¹⁴C ages of the pools at each time step and when computing the total ¹⁴C age of the soil from the ¹⁴C ages of the individual pools. Indeed, to find the combined age Age_{A+B} of pools A and B, the implementation of SOMic takes a weighted average over the ages, which is not entirely accurate:

$$Age_{A+B} = \frac{C_A Age_A + C_B Age_B}{C_A + C_B}, \qquad (S3)$$

where Age_i and C_i are the ¹⁴C age and the carbon stocks, respectively, of pool *i*. This weighted average formula is used to integrate the ¹⁴C ages of carbon fluxes into the pools at each time step on lines 154-160, and to compute the ¹⁴C age of the total soil on line 210 of file src/SOMIC.cpp in the domwoolf/somic1 GitHub repository (commit be34e56).

In order to prove that equation (S3) is inaccurate, let us derive how to correctly add the ¹⁴C ages of pools A and B. Let ¹⁴C_i denote the ¹⁴C stocks and C_i the total carbon stocks of pool *i*. Then, by conservation of mass, we have

$${}^{14}C_{A+B} = {}^{14}C_A + {}^{14}C_B \text{ and } C_{A+B} = C_A + C_B \Rightarrow \frac{{}^{14}C_{A+B}}{C_{A+B}} = \frac{{}^{14}C_A + {}^{14}C_B}{C_A + C_B}.$$
 (S4)

Since the FM_{abs} is proportional to the ¹⁴C/C ratio (assuming pools A and B have a similar ¹³C content), the above is equivalent to

$$F_{\rm A+B} = \frac{C_{\rm A}F_{\rm A} + C_{\rm B}F_{\rm B}}{C_{\rm A} + C_{\rm B}}, \qquad (S5)$$

where F_i and C_i are the FM_{abs} and carbon stocks, respectively, of pool *i*. It follows that the combined ¹⁴C age of pools A and B is given by

$$Age_{A+B} = -\lambda^{-1} \cdot \log\left(\frac{C_A \exp\left(-\lambda \cdot Age_A\right) + C_B \exp\left(-\lambda \cdot Age_B\right)}{C_A + C_B}\right).$$
 (S6)

Notice that equation (S3) is the first non-zero term of the above result's Taylor expansion around $Age_A = 0$, $Age_B = 0$. This means that equation (S3) works well for ages that are close to zero, i.e. when the $\Delta^{14}C$ is close to zero. However, it fails to accurately predict the propagation of the bomb spike into the soil ecosystem in the latter half of the 20th century, as shown in Figure S6. While the error induced by the incorrect implementation exceeds 25‰ for the total soil $\Delta^{14}C$ in the 1970s, the error in the 2000s and 2010s is only around 10‰, which is relatively minor.

S4.2. MIMICS

The only MIMICS version already implemented with ¹⁴C is published in Y. Wang et al. (2021), and the code is available at https://data.csiro.au/collection/csiro: 47942v1. However, this ¹⁴C implementation is incorrect (see Figure S7).

The time evolution of the carbon stocks in MIMICS is given by function f(C, t), which depends on the carbon stocks vector C and time t. Function f is implemented as subroutime modelx in the source file vsoilmic05f_ms25.f90. We can write function f in terms of internal carbon transfer matrix A and carbon influx vector I:

$$dC/dt = f(C,t) = A(C,t)C + I(t), \qquad (S7)$$

where matrix A(C, t) is a function of carbon stocks C and time t, and vector I(t) is time-dependent.

:

Then, following the same procedure which yielded equation (S2), we can derive the equation governing the evolution of the ¹⁴C stocks (¹⁴C):

$$d^{14}C/dt = -\lambda^{14}C + A(C,t)^{14}C + {}^{14}I(t), \qquad (S8)$$

where λ is the radioactive decay rate of ¹⁴C, and ¹⁴I is the external influx of ¹⁴C.

However, in the 14 C-implementation of MIMICS, the evolution of the 14 C stocks is predicted with

$$d^{14}C/dt = -\lambda^{14}C + f({}^{14}C, t) = -\lambda^{14}C + A({}^{14}C, t){}^{14}C + {}^{14}I(t).$$
(S9)

The above equation is incorrect because $A({}^{14}C, t) \neq A(C, t)$.

S5. Turnover times in the Millennial model

In Millennial version 2 (Abramoff et al., 2022), the POM, MAOM, and Aggregate C pools exchange carbon with each other on the scale of a few months. The aggregate formation rate of the POM pool is between 0.012/day and 0.026/day (k_{pa} in Table A1 of Abramoff et al., 2022), which translates to an average aggregation time of 1-3 months. Meanwhile, the optimized rate of aggregate formation for the MAOM pool is between 0.0038/day and 0.0052/day (k_{ma} in Table A1 of Abramoff et al., 2022), giving MAOM an average aggregation time of 6-8 months. The Aggregate C pool has a breakdown rate of around 0.02/day (k_b in Table A1 of Abramoff et al., 2022), so aggregates have a turnover time of just 50 days. POM and MAOM exchange their carbon rapidly with the Aggregate C pool, which then redistributes the carbon back to the POM and MAOM pools in less than 2 months, on average. This means that the ¹⁴C signals of the POM, MAOM, and Aggregate C pools get homogenized within a couple years.

References

Abramoff, R. Z., Guenet, B., Zhang, H., Georgiou, K., Xu, X., Viscarra Rossel, R. A., ...
Ciais, P. (2022, January). Improved global-scale predictions of soil carbon stocks with
Millennial Version 2. Soil Biology and Biochemistry, 164, 108466. Retrieved 2022-0119, from https://linkinghub.elsevier.com/retrieve/pii/S0038071721003400
doi: 10.1016/j.soilbio.2021.108466

:

- Graven, H., Allison, C. E., Etheridge, D. M., Hammer, S., Keeling, R. F., Levin, I., ... White, J. W. C. (2017, December). Compiled records of carbon isotopes in atmospheric CO₂ for historical simulations in CMIP6. *Geoscientific Model Development*, 10(12), 4405–4417. Retrieved 2021-03-10, from https://gmd.copernicus.org/ articles/10/4405/2017/ doi: 10.5194/gmd-10-4405-2017
- Kyker-Snowman, E., Wieder, W. R., Frey, S. D., & Grandy, A. S. (2020, September). Stoichiometrically coupled carbon and nitrogen cycling in the MIcrobial-MIneral Carbon Stabilization model version 1.0 (MIMICS-CN v1.0). Geoscientific Model Development, 13(9), 4413-4434. Retrieved 2023-06-29, from https:// gmd.copernicus.org/articles/13/4413/2020/ doi: 10.5194/gmd-13-4413-2020
- Moore, J. A. M., Sulman, B. N., Mayes, M. A., Patterson, C. M., & Classen, A. T. (2020, April). Plant roots stimulate the decomposition of complex, but not simple, soil carbon. *Functional Ecology*, 34(4), 899–910. Retrieved 2022-08-29, from https://onlinelibrary.wiley.com/doi/10.1111/1365-2435.13510 doi: 10.1111/1365-2435.13510
- Sierra, C. A., Müller, M., Metzler, H., Manzoni, S., & Trumbore, S. E. (2017, May). The muddle of ages, turnover, transit, and residence times in the carbon cycle. *Global*

Change Biology, 23(5), 1763-1773. Retrieved 2021-04-09, from http://doi.wiley .com/10.1111/gcb.13556 doi: 10.1111/gcb.13556

- Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E., & Pacala, S. W. (2014, December). Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nature Climate Change, 4(12), 1099–1102. Retrieved 2022-05-29, from http://www.nature.com/articles/nclimate2436 doi: 10.1038/ nclimate2436
- Trumbore, S. E., Sierra, C. A., & Hicks Pries, C. E. (2016). Radiocarbon Nomenclature, Theory, Models, and Interpretation: Measuring Age, Determining Cycling Rates, and Tracing Source Pools. In E. A. Schuur, E. Druffel, & S. E. Trumbore (Eds.), *Radiocarbon and Climate Change* (pp. 45–82). Cham: Springer International Publishing. Retrieved 2021-04-05, from http://link.springer.com/ 10.1007/978-3-319-25643-6_3 doi: 10.1007/978-3-319-25643-6_3
- Wang, G., Gao, Q., Yang, Y., Hobbie, S. E., Reich, P. B., & Zhou, J. (2022, March). Soil enzymes as indicators of soil function: A step toward greater realism in microbial ecological modeling. *Global Change Biology*, 28(5), 1935–1950. Retrieved 2023-06-23, from https://onlinelibrary.wiley.com/doi/10.1111/gcb.16036 doi: 10.1111/ gcb.16036
- Wang, Y., Zhang, H., Ciais, P., Goll, D., Huang, Y., Wood, J. D., ... Prescher,
 A. (2021, April). Microbial Activity and Root Carbon Inputs Are More Important than Soil Carbon Diffusion in Simulating Soil Carbon Profiles. *Journal of Geophysical Research: Biogeosciences*, 126(4). Retrieved 2022-07-10, from https://onlinelibrary.wiley.com/doi/10.1029/2020JG006205 doi: 10.1029/

Woolf, D., & Lehmann, J. (2019, December). Microbial models with minimal mineral protection can explain long-term soil organic carbon persistence. *Scientific Reports*, 9(1), 6522. Retrieved 2021-10-01, from http://www.nature.com/articles/s41598 -019-43026-8 doi: 10.1038/s41598-019-43026-8

:

Model	POM fraction	MAOM fraction	Other SOC pools	Litter pools
MEND	POM _O , POM _H	MOM, QOM	DOM, MB_A , MB_D , EP_O , EP_H , EM	
Millennial	РОМ	MAOM, Aggregate C	LMWC, Microbial Biomass	
SOMic	SPM, IPM	MAC	DOC, MB	
CORPSE	SPC_u, CPC_u	SPC_p, CPC_p, MN_p	MN _u , LMB	
MIMICS	SOM _c	$\mathrm{SOM}_{\mathrm{p}}$	SOM_a , MIC_r , MIC_K	LIT _m , LIT _s

Figure S1. MEND-new (2022) model diagram from G. Wang et al. (2022)

Figure S2. Millennial V2 diagram from Abramoff et al. (2022)

:

Figure S3. SOMic 1.0 diagram from Woolf and Lehmann (2019)

Figure S4. CORPSE diagram from Moore et al. (2020)

X - 23

Figure S5. MIMICS-CN v1.0 diagram from Kyker-Snowman et al. (2020)

Figure S6. Comparison of Δ^{14} C predicted by SOMic with the correct and incorrect ¹⁴C implementations. The atmospheric Δ^{14} CO₂ of the Northern Hemisphere (source: Graven et al., 2017) is plotted for reference. SOMic pool names: SPM, soluble plant matter; IPM, insoluble plant matter; DOC, dissolved organic carbon; MB, microbial biomass; MAC, mineral-associated carbon; SOC, total soil organic carbon.

:

Figure S7. Δ^{14} C output of MIMICS (Y. Wang et al., 2021) with incorrect isotopic implementation. The atmospheric Δ^{14} CO₂ of the Northern Hemisphere (source: Graven et al., 2017) is plotted for reference. MIMICS pool names: LIT_m, metabolic litter; LIT_s, structural litter; MIC_r, r-strategist microbes; MIC_K, K-strategist microbes; SOM_p, physically protected soil organic matter; SOM_c, chemically protected soil organic matter; SOM_a, active soil organic matter.

Figure S8. Predictions vs observations plots for the MEND model.

Figure S9. Predictions vs observations plots for the Millennail model.

Figure S10. Predictions vs observations plots for the SOMic model.

Figure S11. Predictions vs observations plots for the CORPSE model.

Figure S12. Predictions vs observations plots for the MIMICS model.

: