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Abstract

Wildfires can induce an abundance of vegetation and soil changes that may trigger higher surface runoff and soil erosion,

affecting the water cycling within these ecosystems. In this study, we employed the Advanced Terrestrial Simulator (ATS),

an integrated and fully distributed hydrologic model at watershed scale to investigate post-fire hydrologic responses in a few

selected watersheds with varying burn severity in the Pacific Northwest region of the United States. The model couples surface

overland flow, subsurface flow, and canopy biophysical processes. We developed a new fire module in ATS to account for the

fire-caused hydrophobicity in the topsoil. Modeling results show that the watershed-averaged evapotranspiration is reduced

after high burn severity wildfires. Post-fire peak flows are increased by 21-34% in the three study watersheds burned with

medium to high severity due to the fire-caused soil water repellency (SWR). However, the watershed impacted by a low severity

fire only witnessed a 2% surge in post-fire peak flow. Furthermore, the high severity fire resulted in a mean reduction of 38% in

the infiltration rate within fire-impacted watershed during the first post-fire wet season. Hypothetical numerical experiments

with a range of precipitation regimes after a high severity fire reveal the post-fire peak flows can be escalated by 1-34% due

to the SWR effect triggered by the fire. This study implies the importance of applying fully distributed hydrologic models in

quantifying the disturbance-feedback loop to account for the complexity brought by spatial heterogeneity.
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Abstract18

Wildfires can induce an abundance of vegetation and soil changes that may trigger higher19

surface runoff and soil erosion, affecting the water cycling within these ecosystems. In20

this study, we employed the Advanced Terrestrial Simulator (ATS), an integrated and21

fully distributed hydrologic model at watershed scale to investigate post-fire hydrologic22

responses in a few selected watersheds with varying burn severity in the Pacific North-23

west region of the United States. The model couples surface overland flow, subsurface24

flow, and canopy biophysical processes. We developed a new fire module in ATS to ac-25

count for the fire-caused hydrophobicity in the topsoil. Modeling results show that the26

watershed-averaged evapotranspiration is reduced after high burn severity wildfires. Post-27

fire peak flows are increased by 21-34% in the three study watersheds burned with medium28

to high severity due to the fire-caused soil water repellency (SWR). However, the wa-29

tershed impacted by a low severity fire only witnessed a 2% surge in post-fire peak flow.30

Furthermore, the high severity fire resulted in a mean reduction of 38% in the infiltra-31

tion rate within fire-impacted watershed during the first post-fire wet season. Hypothet-32

ical numerical experiments with a range of precipitation regimes after a high severity fire33

reveal the post-fire peak flows can be escalated by 1-34% due to the SWR effect triggered34

by the fire. This study implies the importance of applying fully distributed hydrologic35

models in quantifying the disturbance-feedback loop to account for the complexity brought36

by spatial heterogeneity.37

Plain Language Summary38

The increasing number of wildfires in the Pacific Northwest are changing the lo-39

cal soil and landscapes, potentially leading to increased water runoff, more soil erosion,40

and altered water quality. Despite attempts to study this, a thorough understanding of41

the long-term and large-scale impacts is lacking. We used a comprehensive computer model,42

including a new element for fire-induced soil water repellency, on freely available data43

to study watersheds affected by wildfires. Most showed an increase in peak water flow44

due to the fire’s effect on soil, except one watershed with a less severe fire. Another wa-45

tershed saw a decrease in water entering the soil after the fire. Our research compares46

water systems before and after fires, helping to further studies on the affects of fire on47

nutrients and sediment movement.48

1 Introduction49

In recent years, wildfires have caused “cascading hazards” across the globe (Hallema50

et al., 2018; Wagenbrenner et al., 2021; Kemter et al., 2021; Robinne et al., 2021). The51

Pacific Northwest of the United States represents a primary locus of wildfire activity and52

is denoted as one of the most significantly impacted regions globally. Wildfires in the Pa-53

cific Northwest region have been and continue to escalate in both frequency and sever-54

ity (Li et al., 2021; Abatzoglou, Battisti, et al., 2021). As a significant disturbance to55

the ecosystem, wildfires are directly responsible for the spatiotemporal redistribution of56

carbon and nitrogen nutrients (Roebuck Jr et al., 2022), deteriorated water and air qual-57

ities (Wine & Cadol, 2016; Moisseeva & Stull, 2021; Wilmot et al., 2022; Paul et al., 2022),58

debris flow hazards (Rengers et al., 2016; DiBiase & Lamb, 2020), water supply risks (Wieting59

et al., 2017), and extreme flooding (Moody & Ebel, 2012). Many of the previously men-60

tioned post-fire hazard cascades are the consequences of indirect fire effects that involve61

other spatiotemporal non-fire factors, combined with a direct fire effect caused by combustion—62

the substantial change on the soil physical properties, leading to the occurrence of soil63

water repellency (SWR) (DeBano, 2000a, 2000b; Garcia-Chevesich et al., 2010; Moody,64

2012; Ebel et al., 2012; Murphy et al., 2015; Ebel et al., 2016; Murphy et al., 2018; Agbeshie65

et al., 2022). In SWR, the hydrophobic layer that forms in the soil as a consequence of66

fire exhibits reduced permeability compared to its pre-fire state. As water is the main67
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medium of transport processes in the ecosystem, the repartitioning of water between the68

surface and subsurface due to the SWR effect can be substantial at large scales and fur-69

ther break the pre-fire dynamic patterns of transport processes post-fire.70

The consideration of SWR in various numerical modeling efforts has been limited.71

Those efforts have been undertaken to investigate the hydrologic effects of wildfires across72

diverse spatial and temporal scales, ranging from 1D soil column simulations to 3D in-73

tegrated watershed analyses (Cydzik & Hogue, 2009; Chen et al., 2013; Kinoshita et al.,74

2014; Zema et al., 2020; Maina & Siirila-Woodburn, 2020; Wilder et al., 2021; Wampler75

et al., 2023). Ebel et al. (2023) summarized recent work evaluating the post-wildfire hy-76

drologic response using physically based numerical models and identified key future re-77

search directions. One of the key future directions pointed out by Ebel et al. (2023) is78

to include vadose zone and saturated zone processes to better capture subsurface stream-79

flow generation. To represent the fire impact on watershed hydrology, Maina and Siirila-80

Woodburn (2020) replaced the pre-fire land cover types in the burn scar areas with bar-81

ren soil, but neglected the SWR effect on watershed hydrology. There are limited stud-82

ies that employ high-resolution integrated hydrology specifically designed to account for83

the long-term effects of wildfires on a watershed-scale.84

To address these gaps, in this study we employed a fully distributed hydrologic model85

known as the Advanced Terrestrial Simulator (ATS), which integrates surface overland86

flow, subsurface flow, and land surface processes including snow melt and canopy inter-87

ception. As pointed out by Cydzik and Hogue (2009) and Chen et al. (2013), physically-88

based approaches are encouraged to be applied for more accurate predictions of fire-impacted89

hydrology. To incorporate SWR into the model, we developed a novel fire module within90

the ATS high-performance computing framework. We set up models with higher tem-91

poral resolution (hours) and spatial resolution (tens of meters) to capture relevant fine-92

scale temporal variations and microtopographic features. The model inputs encompass93

extensive hydrographic, geologic, ecological, and climatological data from publicly ac-94

cessible sources, such as the National Land Cover Database (NLCD), Soil Survey Ge-95

ographic Database (SSURGO), and Daymet. The Monitoring Trends in Burn Severity96

(MTBS) and Burned Area Emergency Response (BAER) burn severity mapping prod-97

ucts were employed to assist in quantifying post-fire soil permeabilities. The Mckenzie98

River Watershed (Holiday Farm Fire in 2020), American River Watershed (Norse Peak99

Fire in 2017), Naches River Watershed (Schneider Springs Fire in 2021), and the We-100

nas Creek Watershed (Evans Canyon Fire in 2020) were selected as research areas, as101

the burned areas of the study fires are large (> 160 km2, or 40,000 acres) and the land102

cover types and climates of the watersheds are representative in the Pacific Northwest.103

We specifically seek to address the following research questions:104

1. How does fire-induced reduction in the leaf area index (LAI) affect post-fire evap-105

otranspiration?106

2. How does the burn severity of a wildfire event affect the post-fire peak flow dis-107

charges through the SWR effect?108

3. What is the role of post-fire precipitation rate in impacting the post-fire peak dis-109

charges?110

4. How does fire-induced infiltration change affect watershed function after a moderate-111

high severity fire?112

5. How do fire-induced changes in Manning’s n affect peak flow discharges after a low113

severity fire?114

In this paper, we first introduce the study areas, the numerical model and its setup,115

how we represent fire impacts on soil and vegetation in the model, and the simulation116

scenarios for hypotheses testing in Section 2. In Section 3, we present and analyze the117

modeling results of the post-fire peak flow discharge and infiltration, and discuss the study118

limitations and key future work focuses, followed by conclusions in the final section.119

–3–



manuscript submitted to Water Resources Research

2 Materials and Methods120

2.1 Study sites121

The focal watersheds in our study, subjected to recent wildfires in the Pacific North-122

west, are the McKenzie River Watershed (impacted by the Holiday Farm Fire in 2020),123

the American River Watershed (impacted by the Norse Peak Fire in 2017), the Naches124

River Watershed (impacted by the Schneider Springs Fire in 2021), and the Wenas Creek125

Watershed (impacted by the Evans Canyon Fire in 2020). The watersheds of the Amer-126

ican River, Naches River, and Wenas Creek reside within the Yakima River Basin, de-127

noted by the Hydrologic Unit Code (HUC) 1703 in the State of Washington; whereas128

the McKenzie River Watershed is situated within the Willamette River Basin (HUC 1709)129

in the State of Oregon. Figure 1 illustrates their geographic positions within the Pacific130

Northwest. Importantly, the Holiday Farm Fire accounted for one of Oregon’s 2020 megafires131

driven by compound extremes (Abatzoglou, Rupp, et al., 2021), causing over 600 km2
132

of devastation in the McKenzie River valley (Robbins, 2021).133

Burn severity data serves as an integral remote sensing mapping product to eval-134

uate wildfire-induced effects on vegetation biomass due to the fire’s heat pulse, render-135

ing it a significant metric to quantify the fire impact (Parsons et al., 2010). We employed136

the Monitoring Trends in Burn Severity (MTBS) data to assess burn severity (Eidenshink137

et al., 2007) for the Holiday Farm Fire, Norse Peak Fire and the Evans Canyon Fire. The138

Burned Area Emergency Response (BAER) data (Parsons, 2003) was used for the Schnei-139

der Springs Fire. The key difference in the two data products is that BAER is used for140

immediate assessment purpose and MTBS is used for long-term monitoring purposes.141

The satelite images used in BAER are obtained as close to the fire events as possible,142

while the satelite images used in MTBS are of the next vegetation growing season (typ-143

ically the next spring/summer).144

Figure 2 depicts the burn severity statistics pertaining to the four studied wildfire145

events. Both the Holiday Farm Fire and Norse Peak fire-caused over 60% of the area to146

be subjected to moderate to high severity burning. Conversely, the Schneider Springs147

Fire and Evans Canyon Fire subjected approximately 40% and 15% of their areas to mod-148

erate to high severity burning, respectively. Details such as fire ignition dates, the size149

of the impacted areas, average daily total precipitation in the impacted watershed on150

an annual basis, and dominant land cover types are summarized in Table 1.151

2.2 The burn severity dependent soil water repellency effect152

To quantify the relationship between the strengths of the SWR effect and the hy-153

drologic response is essentially to explain how the water conveyance capacity in porous154

media compares before and after combustion on top of the media. Soil burn severity, as155

a metric to assess the fire impact to soil, can be an appropriate metric in establishing156

the aforementioned relationship. However, existing studies show diverse conclusions (Vieira157

et al., 2015; Ebel & Moody, 2017; Robinne et al., 2020; Wagenbrenner et al., 2021; Carrà158

et al., 2021; Paul et al., 2022) and a comprehensive understanding on the relationship159

remains unclear. Despite the current inability and inaccuracy in quantitatively linking160

fire-induced SWR with burn severity in the hydrologic scientific community, some ear-161

lier studies have suggested that a reduction in hydraulic conductivity due to fire is in-162

versely proportional to burn severity (Moody et al., 2015). Experiments by Hallema et163

al. (2018) pointed out the hydrophobic coating is highly related to the combustion tem-164

perature.165

In both MTBS and BAER, burn severity is determined by the normalized burn ra-166

tio (NBR) and the differenced NBR (dNBR), whose practical value falls within the range167

of (−2000,+2000) (Eidenshink et al., 2007). In this study, we applied a simplified lin-168

ear relationship to quantify the SWR effect caused by wildfires:169

–4–



manuscript submitted to Water Resources Research

Figure 1. The fires and corresponding impacted watersheds within the Pacific Northwest.

The McKenzie River Watershed in the State of Oregon is characterized as a subbasin (HUC8),

while the American River Watershed, Naches River Watershed, and Wenas Creek Watershed

in the State of Washington comprise multiple local sub-watersheds (multiple HUC12’s). The

perimeters of the fires and burn severity maps of the four scrutinized wildfires are shown.

Table 1. Basic information of the study wildfires and impacted watersheds

Wildfire Ignition Burned Annual Dominant
(Impacted Date Area Precip.∗ [mm] Land Cover
Watershed) [mm/dd/yyyy] [km2] (climate classification†) Types‡

Holiday Farm Fire 09/08/2020 642 1391 EF (80%)
(Mckenzie River) (Csb) S/S (9%)
Norse Peak Fire 08/12/2017 188 868 EF (87%)
(American River) (Dsc) S/S (7%)

Schneider Springs Fire 08/04/2021 419 615 EF (66%)
(Naches River) (Dsb) S/S (21%)

G/H (6%)
Evans Canyon Fire 08/31/2020 281 406 S/S (44%)
(Wenas Creek) (Dsb) EF (31%)

G/H (22%)

∗Annual avearge total precipitation
†Dominant Köppen–Geiger climate classification (Csb = temperate, dry and warm summer;
Dsb = cold, dry and warm summer; Dsc = cold, dry and cold summer)
‡EF = Evergreen Forest; S/S = Shrub/Scrub; G/H = Grassland/Herbaceous

–5–
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Figure 2. Burn severity statistics relative to the study wildfires: (a) the Holiday Farm Fire,

with a mean burn severity of 2.87 and 63.0% of its area burned with moderate to high severity;

(b) the Norse Peak Fire, with a mean of 2.88 and 61.2% of its area burned with moderate to high

severity; (c) the Schneider Springs Fire, with a mean of 2.34 and 38.8% of its area burned with

moderate to high severity; and (d) the Evans Canyon Fire, with a mean of 2.04 and a mere 15.2%

of its area burned with moderate to high severity.

–6–
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Permeabilitypost-fire = Permeabilitypre-fire · (1− 20% · Burn Severity) (1)

where BurnSeverity can take integers 1, 2, 3, and 4 to represent no-low, low, moder-170

ate, and high burn severities, respectively.171

In Figure 3, the pre-fire soil permeabilities are informed by the Soil Survey Geo-172

graphic Database (SSURGO) database. Within the fire perimeter, after applying Equa-173

tion 1, the topsoil permeability reduces to 80%, 60%, 40%, and 20% of its pre-fire value174

if the local burn severity is equal to 1, 2, 3, and 4, respectively. Thus, the ratio of the175

pre-fire topsoil permeability and the post-fire topsoil permeability represents exactly the176

burn severity integer indexes (see BurnSeverity definition in Equation 1), as shown in177

the last panel of Figure 3. Note that the 0–5 cm soil layer is defined as the topsoil based178

on literature findings that the 0–5 cm layer is the most affected by fires (Roth et al., 2023).179

Figure 3. A graphic illustration of the post-fire topsoil permeability change. The Schnei-

der Springs Fire in the Naches River Watershed is shown here as an example. The pre-fire soil

permeability comes from the SSURGO database. The post-fire topsoil permeability has been

updated using the burn severity map from the MTBS database.

The modifications in chemical and physical soil properties induced by fire were con-180

densed into a single overarching effect, the SWR effect, accounting for the hydrophobic181

transformation of topsoil attributable to fire heat. This is a limitation engendered by the182

simplification of fire impact depiction in our model, since we did not conduct explicit and183

proactive simulations of the fire-originated ash layer. The ash layer is easily removed by184

the first post-fire flush, hence, the effects of the ash layer on the SWR effect is neglected.185

Anticipated future work includes integrating additional physics-based processes into the186

model to more accurately portray fire’s impact on the underlying soil.187

2.3 Model description188

This study used the ATS version 1.4.1 (Coon et al., 2019, 2020). ATS is a high per-189

formance computing (HPC) code solving fully distributed and ecosystem-based integrated190

hydrology. It uses process kernels (PKs) and multi-process-couplers (MPCs) to allow cus-191

tom coupling among different physical and biophysical processes. Here we used the wa-192

tershed water balance MPC to couple the canopy water PK, the snow water PK, and193

the surface-subsurface flow MPC to simulate the integrated watershed hydrology. The194

surface-subsurface flow MPC couples the subsurface flow PK and the overland flow PK.195

ATS performance has been evaluated at different watersheds within the continental United196

States (Shuai et al., 2022; Bhanja et al., 2023). ATS divides the modeling domain into197

a terrain following two-dimensional (2D) surface domain and a three-dimensional (3D)198

subsurface domain, on which the diffusion wave equation for overland flow and the Richards199

equation for variably saturated groundwater flow are solved, respectively.200

–7–
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The water mass conservation equation on the surface domain reads:201

∂Θs

∂t
+∇ · qs = Qs +Qe (2)

where Θs is the mass of surface water per unit surface area; qs is the overland flow rate202

per unit surface area; Qs is the sources and sinks, including rainfall, snowmelt, evapo-203

ration and transpiration; and Qe is the surface water-groundwater flux. If Qe < 0, wa-204

ter flows from surface to subsurface domain, i.e., infiltration.205

Note that the canopy component of water storage is wrapped into the sources and206

sinks term, Qs, and the conservation of water in canopy is defined by,207

dΘcanopy

dt
= I −Dsnow −Drain − Ecanopy (3)

where Θcanopy is the canopy water storage; I is the canopy interception and is associ-208

ated with the leaf area index (LAI); Dsnow and Drain are the drainage of water from snow209

and rain from the canopy, respectively; and Ecanopy is the evaporation of canopy water.210

The water mass is written in terms of the water pressure ps, the primary variable,211

through ponded depth h in the surface domain,212

Θs = ηh (4)

h = H
(ps − patm)2

ρg
(5)

where η is the molar density of water; patm is the atmospheric pressure; ρ is the mass213

density of water; g is gravitational acceleration; and H is the Heaviside function to en-214

sure non-negativity of water ponded depth.215

The water flow rate on the surface domain is determined by the diffusion wave equa-216

tion,217

qs = −ηh
h4/3

n
√
|∇z|

∇(h+ z) (6)

where n is the Manning’s surface roughness coefficient and z is the elevation of the land218

surface.219

In the 3D subsurface domain, the water mass conservation is governed by,220

∂Θg

∂t
+∇ · qs = Qg (7)

where Θg is the mass of groundwater per unit volume; qs is the water flow rate in the221

subsurface domain; and Qg is the sources/sinks term, representing processes such as in-222

jection or pumping wells.223

The water pressure pg is also used as the primary variable in the subsurface do-224

main to solve the coupled water mass conservation by requiring pg|∂Ω = ps. Subsur-225

face water content is,226

Θg = ηSwϕ (8)
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and the Darcy’s flow, qg, is,227

qg = − η

µ
krK(∇p+ ρgz) (9)

where ϕ is the porosity of the medium; Sw is the water saturation; µ is the water vis-228

cosity; kr is the relative permeability; and K is the absolute permeability.229

2.4 Model setup and simulated scenarios230

To drive the integrated hydrologic model, an extensive set of hydrography, digital231

elevation model (DEM), land cover, subsurface material structures/properties, and me-232

teorological data are essential. The Watershed Workflow package (Coon & Shuai, 2022)233

was employed to systematically retrieve and compile the requisite input data from pub-234

licly available sources spanning various data-providing and managing agencies such as235

the U.S. Geological Survey (USGS), U.S. Department of Agriculture (USDA), and oth-236

ers. A comprehensive inventory detailing the input data utilized and their respective sources237

can be found in Table A1 in Appendix A.238

The computational meshes (triangular prism 3D cells) are generated also using Wa-239

tershed Workflow. A 3D mesh is vertically extruded from a terrain following 2D trian-240

gular mesh generated through Delaunay triangulation, leveraging the Triangle library241

(Shewchuk, 2002), a Delaunay triangulator widely applied in computational physics. Through242

the mesh extrusion, each soil column contains 15 layers with a total thickness ranging243

from 40-50 m, determined by the depth to bedrock data in the SoilGrids database (Poggio244

et al., 2021). The 2D and 3D mesh refinements are done along stream networks informed245

by the NHDPlus High Resolution dataset (U.S. Geological Survey, 2023b), and in the246

top 2 meters of soil, respectively. The smallest triangle area is approximately 20,000 m2
247

in the Mckenzie River Watershed and approximately 5,000 m2 in the other three water-248

sheds, resulting in approximately 1.8 million 3D cells in the Mckenzie River Watershed249

and approximately 600 thousands to 1 million 3D cells in the other three watersheds.250

Figure 4 shows an example setting up the model for one of the study watersheds,251

the Naches River Watershed. The canopy biophysical processes and ground surface en-252

ergy balance are computed on the surface domain of the model, thus the associated pa-253

rameters (e.g., rooting profiles, photosynthetic parameters, albedo, and others) are stored254

in 2D cells with spatial variation. The LAI of each plant functional type is extracted from255

the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset and has both tem-256

poral and spatial variations. In each 3D cell, the subsurface material properties, e.g., per-257

meability and porosity, are assigned with the values from the national databases as a pri-258

ori information (Bhanja et al., 2023). Nonetheless, we acknowledge that the ATS-simulated259

fire-affected watershed hydrology necessitates reinforcement from in-situ post-fire soil260

data acquisition through field campaigns, which are both logistically challenging and ex-261

ceptionally valuable.262

The meteorological forcing data is from the Daymet dataset, which provides 1 km263

× 1 km resolution gridded precipitation, air temperature, incoming shortwave radiation,264

and vapor pressure data across continental North America beginning in 1980. Rain and265

snow are partitioned from precipitation based on the air temperature. The gridded tran-266

sient forcing data is mapped onto the computational mesh at each time step, which varies267

from several minutes to approximately 1 hour, depending on the Courant–Friedrichs–Lewy268

(CFL) condition. Linear interpolation on the Daymet dataset is performed to provide269

subdaily forcing data. We recognize the crucial nature of subdaily precipitation data when270

considering post-fire watershed hydrology. Existing research pertaining to fire impacts271

has illuminated that the initial 30 minutes of a precipitation event exert the most influ-272

ence on post-fire surface runoff (Moody, 2012; Ebel et al., 2012; Murphy et al., 2015).273

–9–
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Nonetheless, to effectively tackle spatial heterogeneity at the watershed or sub-basin scales,274

we opted for the Daymet dataset over other publicly available meteorological forcing datasets275

with superior temporal resolution but inferior spatial resolution. A comparative study276

by Shuai et al. (2022) of three publicly accessible gridded meteorological forcing datasets,277

namely Daymet (used in this study), the Parameter-elevation Regressions on Indepen-278

dent Slopes Model (PRISM), and the North American Land Data Assimilation System279

(NLDAS), concluded that a higher spatial resolution is more advantageous for scientific280

enquiries involving significant spatial heterogeneity within the framework of ATS water-281

shed hydrology simulations. In scenarios where a higher spatial resolution is indispens-282

able, employing statistical downscaling techniques (Rastogi et al., 2022) on meteorolog-283

ical forcing data may become a necessity for executing fire hydrologic impact assessments284

at a finer temporal resolution, to be addressed in future work.285

(a)

Soil Type

Soil Permeability

Soil Porosity

Soil Depth

Geology Type

Geology Permeability

Geology Porosity

Depth to Bedrock

Grassland/Herbaceous

Shrub/Scrub

Evergreen Forest

Non-vegetated
(Open-water, etc.)

(b)

(c) (d)

DEM Land
Cover

Computational
Mesh

Figure 4. Key components of model setup for the Naches River Watershed. (a) DEM, (b)

land cover type, (c) soil and geology properties, and (d) the 3D computational mesh.

In each watershed, a 500-year simulation using the annual mean precipitation rate286

(rainfall only) was first performed as the model cold spin-up. Next, using the final steady-287

state model output from the cold spin-up as the initial condition, a 40-year simulation288

was performed to reach the cyclic steady state using “typical year” meteorological forc-289

ing (Figure 5) and LAI data, as the model hot spin-up. Seasonal variabilities of surface290

water and groundwater flow as well as evaporation and transpiration are the featured291

results from the model hot spin-up simulations. Finally, transient simulations with me-292

teorological forcing data were initialized using the model output of the final time step293

in model hot spin-up.294
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The duration of the transient run is constrained by the availability of two dynamic295

raster datasets, namely meteorological forcing data from Daymet covering the period from296

1980 to 2021 and LAI data from MODIS spanning from 2002 to 2023. Consequently, we297

initiated the transient simulations on October 1, 2002 and concluded them on Decem-298

ber 31, 2021, in the American River Watershed, Naches River Watershed, and Wenas299

Creek Watershed. However, in the case of the McKenzie River Watershed, the tempo-300

ral extent was curtailed to October 1, 2012 to December 31, 2021, due to the substan-301

tial computational burden arising from its large size.302

pre-fire simulation

no fireignition

simulation 1

simulation 2

Figure 5. Watershed-averaged precipitation pattern in a “typical year” in the Pacific North-

west. Wildfire season is from late-June to mid-September. All four wildfires in this study oc-

curred in the typical wildfire season in the Pacific Northwest. The wet season is from early-

September to late-November. Snow season is from late-November to late-March of the next year.

Two parallel simulations, with and without the fire-caused SWR effect, are performed after fire

ignition.

As shown in Figure 5, the Pacific Northwest summer wildfire season is typically fol-303

lowed by a wet season in the fall, which explains the increased risks for post-fire flood-304

ing and debris flow hazards (Wall et al., 2020). After a fire ignition date, two parallel305

simulation are performed to compare with and without the fire-caused SWR effect on306

watershed hydrology (Figure 5).307

The evaluation of the hydrologic response of a watershed to a wildfire disturbance308

is a typical disturbance response test in dynamical systems theory. Hence, except for the309

post-fire wet season in the actual fire year (e.g., 2021 for the Schneider Springs Fire in310

the Naches River Watershed), the fire impacted watershed hydrology is also examined311

using historical wet seasons from 1980 and 2021. Figure 6a displays the annual pattern312

of daily total rainfall in the Naches River Watershed (as an example). Figure 6b-c zoom313

in to the wet season in between September 1 and November 30 and highlight the daily314

total rainfall in wet seasons in 2021 and 2006, respectively. The post-fire wet season in315

the actual fire year, 2021, did not encounter a historically large rainfall event. Thus, the316

historical greatest daily rainfall event that occurred in 2006 was used to test the water-317

shed response to the fire-caused SWR effect under extreme meteorological forcing. Sim-318

ilarly, the top 10 greatest daily rainfall events were examined (Table B1 in Appendix B).319

The simulated scenarios are listed in Table 2.320
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Figure 6. The historical rainfall events in wet season in the Naches River Watershed as an

example. (a) Annual pattern of daily total rainfall in the Naches River Watershed. The blue bars

are the 1980 to 2021 daily total rainfall. The mean and the the 95th percentile are plotted by

the yellow dashed line and red soil line. (b) The red bars highlight the daily total rainfall in 2021

wet season. The Schneider Springs Fire occurred in the wildfire season of 2021. (c) The red bars

highlight the daily total rainfall in the 2006 wet season, when the greatest daily rainfall occurred.
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Table 2. Simulated scenarios

Scenario Time Period Fire-caused Fire-caused Meteorological Fire-caused
[mm/dd/yyyy] LAI reduction SWR effect Forcing Data∗ Manning’s n

Reduction

Mckenzie-long 10/01/2012–12/31/2021 Yes No P0 No
American-long 10/01/2002–12/31/2021 Yes No P0 No
Naches-long 10/01/2002–12/31/2021 Yes No P0 No
Wenas-long 10/01/2002–12/31/2021 Yes No P0 No

Mckenzie-l-N∗∗ 09/08/2020–12/01/2020 Yes No P0, P1, ..., P10 No
Mckenzie-ls-N 09/08/2020–12/01/2020 Yes Yes P0, P1, ..., P10 No
American-l-N 08/12/2017–12/01/2017 Yes No P0, P1, ..., P10 No
American-ls-N 08/12/2017–12/01/2017 Yes Yes P0, P1, ..., P10 No
Naches-l-N 08/04/2021–12/01/2021 Yes No P0, P1, ..., P10 No
Naches-ls-N 08/04/2021–12/01/2021 Yes Yes P0, P1, ..., P10 No
Wenas-l-N 08/31/2020–12/01/2020 Yes No P0, P1, ..., P10 No
Wenas-ls-N 08/31/2020–12/01/2020 Yes Yes P0, P1, ..., P10 No
Wenas-lsm 08/31/2020–12/01/2020 Yes Yes P0 Yes
American-nl 08/12/2017–12/01/2017 No No P0 No

∗ P0 is the meteorological forcing data in the post-fire wet season in the actual fire year;
P1, P2, ..., P10 are the 10 greatest daily rainfall wet seasons from historical data.
∗∗ N is an integer from 0 to 10 to represent P0–P10, respectively.

The simulations were performed using 256 to 1,024 cores on Cori (Intel Xeon E5-321

2698 v3) and Perlmutter (AMD EPYC 7763), two National Energy Research Scientific322

Computing Center (NERSC) supercomputers.323

2.5 Model performance evaluation metrics324

Model evaluation was performed by comparing to both simulated streamflow dis-325

charge and total evapotranspiration (ET) with observations. Daily continuous stream-326

flow data at the outlets of the Mckenzie River Watershed and the American River Wa-327

tershed for 1980 to 2021 were obtained from the USGS National Water Information Sys-328

tem (NWIS). Since no observations are available in the Naches River Watershed and the329

Wenas Creek Watershed, river flow discharges from the National Water Model (NWM)330

are used for model to model comparison. The NWM is a specific configuration of WRF-331

Hydro covering the entire continental United States, simulating hourly surface and sub-332

surface hydrologic processes. The backbone of the surface process includes Noah-MP sim-333

ulating land surface process, a quasi-3D flow module simulating the subsurface flow, and334

a 2D diffusion wave equation simulating surface water. The resulting overland flows are335

then aggregated to the catchment streamflow using a Muskingum scheme, based on NHD-336

Plus catchment delineation. Lastly, the 8-day averaged gap-filled ET from the MODIS337

database (product name: MOD16A2 V6) is used for the total ET.338

We used the coefficient of determination (R2), the Nash-Sutcliffe Efficiency (NSE)339

(Equation 10) and the modified Kling-Gupta efficiency (mKGE) (Equation 11-12) as the340

key metrics for evaluating the model performance (Nash & Sutcliffe, 1970; Gupta et al.,341

2009; Kling et al., 2012):342

NSE = −(
µsim − µobs

σobs
)2 − (

σsim

σobs
)2 +

2σsimρ

σobs
(10)

–13–



manuscript submitted to Water Resources Research

KGE = 1−
√
(R− 1)2 + (

σsim

σobs
− 1)2 + (

µsim

µobs
− 1)2

= 1−
√
(R− 1)2 + (γ − 1)2 + (β − 1)2

(11)

mKGE =
KGE +

√
2− 1√

2
(12)

where sim and obs are the simulated and observed time series (of streamflow discharge343

and total ET in this study), respectively; σ and µ represent standard deviation and mean,344

respectively; ρ is the Pearson correlation coefficient; R is the coefficient of correlation;345

γ is the variability ratio; and β is the bias ratio. Note that the key difference between346

NSE and KGE/mKGE is that KGE/mKGE is not derived from the mean squared error—347

it simply uses the L2 norm of correlation, standard deviation, and bias. Both NSE and348

mKGE lie in (−∞, 1]. Negative NSE or mKGE values imply poor model performance.349

When NSE = 0 or mKGE = 0, the model performance is same as predictions using350

the mean of the observations, i.e., µobs. Model prediction is perfect when NSE = 1 or351

mKGE = 1.352

3 Results and Discussion353

3.1 Model performance evaluation354

The model showed generally good performance in simulated flow discharge com-355

pared to observed flow discharge (USGS) and NMW-simulated flow discharge (Figure356

7). The modeling result on flow discharge at watershed outlet in the American River Wa-357

tershed is more accurate than in the other three watersheds. The R2, NSE and mKGE358

scores are 0.708, 0.576 and 0.742, respectively, indicating outstanding model performance359

(Figure 7b). In the Mckenzie River Watershed and Naches River Watershed, the R2 scores360

are 0.749 and 0.506, the NSE scores are 0.232 and 0.414, and the mKGE scores are 0.436361

and 0.608, respectively (Figure 7a and 7c). The model performance on flow discharge362

in these two watersheds is good, but worse than in the American River Watershed. The363

performance difference can be explained by the watershed size differences—the Amer-364

ican River Watershed modeling domain is significantly smaller, at only 6.9% and 26.5%365

of the size of the Mckenzie River Watershed and the Naches River Watershed modeling366

domains. Fully distributed hydrologic models like ATS commonly perform better at smaller367

spatial scales than at larger spatial scales (Merz et al., 2009), due to larger uncertain-368

ties and increased challenges in calibrating spatially varying parameters.369

Though model correctly predicts the basic seasonable variations, the simulated flow370

discharge at the watershed outlet in the Wenas Creek Watershed shows the worst per-371

formance of the studied watersheds. The R2, NSE, and mKGE scores are 0.159, 0.233,372

and 0.228, respectively. The scatter plot in Figure 7d shows a large deviation when ATS373

predicts near zero flow discharge. However, the NWM predicts higher flow discharge. This374

discrepancy may explain the low performance scores of ATS—the base flow predicted375

by ATS is relatively inaccurate compared to its peak flow predictions, implying inaccu-376

racy in ET predictions during hot and dry days. The varibility ratio γ = 1.382 and the377

bias ratio β = 0.702, implying that ATS streamflow predictions have larger standard378

deviation and lower mean compared to the NWM predictions, caused by the low per-379

formance of ATS in base flow predictions. Note that the NWM flow discharge result in380

the Wenas Creek Watershed is assumed as the ground truth, which may bring uncertain-381

ties to evaluating ATS modeling results.382

Figure 8 shows the ATS model performance for watershed-averaged total ET in the383

study watersheds. In the Mckenzier River Watershed, American River Watershed, and384
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Figure 7. ATS model performance of flow discharge in the (a) Mckenzie River, (b) American

River, (c) Naches River, and (d) Wenas Creek.
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Naches River Watershed, the R2, NSE, and mKGE scores are all greater than 0.7, sug-385

gesting that model predictions are accurate on watershed-averaged total ET by ATS in386

these three watersheds. However, the ATS predicted watershed-averaged total ET in the387

Wenas Creek Watershed is underestimated in winter seasons, leading to lower performance388

scores compared to the other three watersheds. The R2, NSE, and mKGE scores are 0.689,389

0.557, and 0.405, respectively. A difference in the dominant land cover type between the390

Wenas Creek Watershed and the other three watersheds may explain the ATS predicted391

ET performance difference. As seen in Table 1, the dominant land cover type in the We-392

nas Creek Watershed is shrub/scrub (44%), evergreen forest (31%) and grassland/herbaceous393

(22%). In the other three watersheds, evergreen forest is greatly dominant (66%–87%).394

This discrepancy suggests that the biophysical parameters used to compute evaporation395

and transpiration (e.g., Priestley-Taylor constants, LAI, etc.) are less accurate for shrub/scrub396

than evergreen forest, even though they are both referenced from the CLM 4.5 techni-397

cal notes (Oleson et al., 2010).398

In general, the ATS modeling results compare well with both the USGS observed399

flow discharges and the NWM predicted flow discharges. This agrees with the results of400

Bhanja et al. (2023) that ATS has reasonably good performance without modeling do-401

main specific calibration when using only a priori information. Through the long term402

pre-fire simulations, we are also able to visualize the watershed hydrologic conditions (top-403

soil saturation and surface water ponded depth) on the fire ignition dates and the first404

significant rainfall event dates (Figure 9).405

3.2 Watershed average evapotranspiration is reduced after high burn406

severity wildfires407

The research question, “how much does the fire-caused LAI reduction affect the post-408

fire evapotranspiration”, is analyzed through the Norse Peak Fire within the American409

River Watershed. Figure 10 shows two concurrent five-year simulations that span from410

2017—the inception of the Norse Peak Fire—to 2022. These portrayed the simulation411

scenarios American-l and American-nl, which are delineated in Table 2.412

The time series of simulated ET utilizing the LAI data extracted from the MODIS413

dataset are displayed in Figure 10a. The red dashed and gold dotted curves denote two414

predominant land cover classes within the American River Watershed, evergreen forest415

and shrub/scrub, respectively. In the aftermath of the Norse Peak Fire in 2017, a de-416

crease followed by a recovery phase was observed in the LAI for both evergreen forest417

and shrub/scrub over the next four years. This dynamic shift had a direct influence on418

the simulated ET, as depicted by the green solid curve. The simulated ET registered a419

decline during 2018-2020 and an approximate restoration to its antecedent, pre-fire con-420

dition by 2021.421

To explore the influence of fire-induced LAI diminution on simulated ET, we repli-422

cated the 2017 LAI data for both evergreen forest and shrub/scrub in subsequent years,423

specifically 2018-2021. This simulation scenario represents a theoretical condition, dis-424

regarding any vegetation impact due to the Norse Peak Fire in 2017. As demonstrated425

in Figure 10b, the simulated ET retains identical seasonal magnitudes. A comparative426

analysis of simulation outcomes from scenarios American-l and American-nl provides di-427

rect evidence that the watershed-averaged ET is significantly altered by the reduction428

in LAI resulting from a high burn severity fire.429

3.3 High burn severity wildfires cause increased post-fire peak flow dis-430

charges431

We found that high burn severity fires cause increased post-fire peak flow discharges,432

while low burn severity fires can hardly yield similar impacts. Figure 11 shows that the433
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Figure 8. ATS model performance on watershed-averaged total evapotranspiration in the (a)

Mckenzie River, (b) American River, (c) Naches River, and (d) Wenas Creek.
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(a) Mckenzie River

(b) American River

(c) Naches River

(d) Wenas Creek

Dry: 09/08/2020

Dry: 08/12/2017

Dry: 08/04/2021

Dry: 08/31/2020

Wet: 11/16/2020

Wet: 10/21/2017

Wet: 11/15/2021

Wet: 11/18/2020

Figure 9. Watershed dry conditions on the fire ignition dates and wet conditions during the

first significant post-fire precipitation events. (a) 09/08/2020 (dry) and 11/16/2020 (wet) in the

Mckenzie River Watershed, (b) 08/12/2017 (dry) and 10/21/2017 (wet) in the American River

Watershed, (c) 08/04/2021 (dry) and 11/15/2021 (wet) in the Naches River Watershed, and (d)

08/31/2020 (dry) and 11/18/2020 (wet) in the Wenas Creek Watershed.
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Figure 10. The comparison between scenarios (a) with and (b) without the fire caused LAI

reduction and its affect on the simulated ET.

modeling results for the simulation scenarios Mckenzie-l and Mckenzie-ls (Figure 11a),434

American-l and American-ls (Figure 11b), Naches-l and Naches-ls (Figure 11c), and Wenas-435

l and Wenas-ls (Figure 11d). Comparison between Figure 11a-c and Figure 11d reveals436

the burn severity plays a key role in post-fire peak discharge increases, since the mean437

burn severities of the Holiday Farm Fire, the Norse Peak Fire, and the Schneider Springs438

Fire are 2.87, 2.88, and 2.34, respectively, while the mean burn severity of the Evans Canyon439

Fire is 2.04. The post-fire peak flows in the Mckenzie River Watershed, Ameircan River440

Watershed and the Naches River Watershed increased 21-34%, owing to the fire caused441

SWR effect. In the Wenas Creek Watershed, the post-fire peak flow discharge increase442

is merely 2%, implying no significant fire impact through the SWR effect.443

3.4 Increased peak flow discharges due to high-burn severity fires are444

intensified by increased post-fire precipitation445

Another key finding of our study is that high burn severity fires-caused increased446

peak flow discharges immediately post-fire are intensified by higher precipitation rates;447

while low burn severity fire is insensitive to the increased post-fire higher precipitation448

rates. Figure 12 shows the modeling results from the simulation scenarios: Mckenzie-l-449

1 to -10 and Mckenzie-ls-1 to -10 (Figure 12a), American-l-1 to -10 and American-ls-1450

to -10 (Figure 12b), Naches-l-1 to -10 and Naches-ls-1 to -10 (Figure 12c), and Wenas-451

l-1 to -10 and Wenas-ls-1 to -10 (Figure 12d). With respect to a fire of certain burn sever-452

ity statistics and spatial distribution, a reduced post-fire precipitation rate inflicts min-453

imal hydrologic disturbance, whereas a higher post-fire precipitation rate culminates in454

significant post-fire peak flows. This indicates that fire-induced watershed hydrology al-455

terations are exacerbated by increased post-fire precipitation rates. However, in the We-456

nas Creek Watershed, even a threefold increase in post-fire precipitation rate did not yield457

significant differences in hydrologic response when comparing scenarios with and with-458

out the fire-induced SWR effect, a consequence of the low burn severity of the Evans Canyon459

Fire.460
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Figure 11. Post-fire peak discharges with and without the fire-caused SWR effect in (a) the

Mckenzie River Watershed, (b) the American River Watershed, (c) the Naches River Watershed,

and (d) the Wenas Creek Watershed.
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Figure 12. Correlation between the post-fire peak discharge with and without the fire-caused

Soil Water Repellency effect and the post-fire maximum daily precipitation in (a) the Mckenzie

River Watershed, (b) the American River Watershed, (c) the Naches River Watershed, and (d)

the Wenas Creek Watershed.
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3.5 High burn severity wildfires suppress infiltration through soil wa-461

ter repellency (SWR) effect462

We used the Norse Peak Fire in the American River Watershed as a case study to463

answer the research question, “how does the infiltration changed by the fire caused SWR464

effect after a moderate-high severity fire”. This decision was predominantly driven by465

the superior performance of the model concerning surface water flow discharge and ET466

among all watersheds incorporated in this study. The investigations revealed that fires467

with high burn severity have the potential to inhibit infiltration due to the SWR effect.468

The time series of the magnitudes of the watershed maximum infiltration in sce-469

narios with and without the fire-induced SWR effect are shown in Figure 13a. By incor-470

porating the influence of the fire-induced SWR effect, a noticeable decrease in the mag-471

nitudes of infiltration is observed. A mean reduction of 38% in the infiltration rate within472

the American River Watershed was evident. The two top-view panels in Figure 13b and473

13c elucidate the spatial distribution of infiltration within the American River Water-474

shed, both with and without the influence of the fire-induced SWR effect. Subsequent475

to the Norse Peak Fire in 2017, the first substantial precipitation event in the wet sea-476

son presented a higher infiltration rate than years with an active fire-induced SWR ef-477

fect. This observation can be attributed to the fact that the fire-induced hydrophobic478

layer on the topsoil impedes infiltration.479

without SWR with SWR

(a)

(b) (c)

Flow

(b-c)

Figure 13. (a) The watershed maximum infiltration rate in the American River Watershed

after the Norse Peak Fire for the two scenarios, without and with the SWR effect. (b-c) The spa-

tial distribution of infiltration in the American River Watershed on the day with first significant

precipitation event after the Norse Peak Fire for the two scenarios, without and with the SWR

effect.

3.6 Fire-caused Manning’s n reduction causes increased post-fire peak480

flow discharges481

We addressed research question, how does the fire caused Manning’s n reduction482

affect the post-fire peak flow discharges after a low severity fire, by studying the Evans483

Canyon Fire-affected Wenas Creek Watershed. This area was selected due to previous484

findings that suggested that the SWR effect does not exert a significant influence on the485

post-fire peak flow discharge, thereby necessitating an examination of the sensitivity of486
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the Manning’s n reduction on the post-fire peak flow discharge. As delineated in Fig-487

ure S3 in the Supporting Information (SI) document, both the dashed blue and solid red488

curves symbolize scenarios (Wenas-l and Wenas-ls) previously depicted in Figure 12d.489

The green solid-dotted curve shows the impact of Manning’s n on the post-fire peak flow490

discharge. The decrease in the Manning’s coefficient as a consequence of vegetation loss,491

attributable to fire, led to increases in post-fire peak flows. This is supported by a 5-19%492

escalation detected during several post-fire precipitation events, as indicated in Figure493

S3 in the SI. Of note, the reduction in Manning’s n attributed to the fire is not solely494

in river channels, but is distributed across all the combusted regions to account for the495

loss of vegetation. The influence of Manning’s n on surface runoff is unsurprising, given496

its role as a paramount factor in determining flow discharge within the overland flow model497

that solves the diffusion wave equation.498

4 Conclusions and Future Work499

Most post-fire processes are driven by water flow in an ecosystem (Martin, 2016),500

hence, a deeper understanding of how fires impact water flow is crucial. The present re-501

search highlights the implementation of a high-resolution, fully distributed, integrated502

hydrologic model designed to assess hydrologic alterations precipitated by wildfires in503

the Pacific Northwest. The four wildfires investigated in this study each display unique504

characteristics in terms of burn severity statistics and spatial distributions. The climatic505

regimes and landscape cover types of the watersheds influenced by these fires are pre-506

sentative in the Pacific Northwest. The impact of SWR induced by the fires within their507

respective fire perimeters was incorporated into the model and found to significantly in-508

fluence watershed hydrologic functions.509

Modeling results reveal the LAI reduction caused by fire directly resulted in a de-510

crease of simulated ET within the American River Watershed. This reduction can per-511

sist for years post-fire, gradually reverting to pre-fire dynamics with the recovery of the512

LAI. In a hypothetical scenario devoid of fire-induced LAI reduction, no significant changes513

in ET were observed.514

An augmentation of 21-34% in post-fire peak flows were seen from the modeling515

results in the McKenzie River Watershed, the American River Watershed, and the Naches516

River Watershed as a result of the SWR effect triggered by fire. The Wenas Creek Wa-517

tershed, conversely, only witnessed a 2% surge in post-fire peak flow, as a result of the518

Evans Canyon Fire’s low burn severity. The Norse Peak Fire resulted in a mean reduc-519

tion of 38% in the infiltration rate within the American River Watershed during the post-520

fire wet season. Additionally, post-fire peak flows in the McKenzie River Watershed and521

the Naches River Watershed escalated by 1-34% due to the SWR effect.522

In a specific fire impacted watershed, a low post-fire precipitation rate inflicts min-523

imal hydrologic disturbance, whereas a higher post-fire precipitation rate culminates in524

significant post-fire peak flows. This finding indicates that fire-induced watershed hy-525

drology alterations are exacerbated by increased post-fire precipitation rates. However,526

as a consequence of the low burn severity of the Evans Canyon Fire, even a threefold in-527

crease in the post-fire precipitation rate did not yield significant differences in hydrologic528

response when comparing scenarios with and without the fire-induced SWR effect in the529

Wenas Creek Watershed. Moreover, for the same fire, the reduction in the Manning’s530

coefficient due to vegetation loss attributable to the fire was observed to be more reac-531

tive to increasing post-fire peak flows, with a rise of 5-19% witnessed during various post-532

fire precipitation events.533

Future work includes coupling ATS (integrated hydrology model) with PFLOTRAN534

(reactive transport model) (Hammond et al., 2014) and the PFLOTRAN sandbox (Hammond,535

2022) to investigate the biogeochemistry of fire-affected watersheds. The model coupling536
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can be done through the Alquimia interface library (Andre et al., 2013). The coupled537

ATS-PFLOTRAN model (Molins et al., 2022; Xu et al., 2022) offers a robust framework538

for determining high-resolution biogeochemical spatial hot spots and key temporal mo-539

ments in carbon and nitrogen cycling, in addition to identifying the fates of pyrogenic540

nutrients in fire-impacted watersheds.541

Open Research542

The source codes of the Advanced Terrestrial Simulator (ATS) model are available un-543

der the Berkeley Software Distribution (BSD) License at https://github.com/amanzi/544

ats. Publicly available data used in this study and their sources are summarized in Ta-545

ble A1 in Appendix A. Other input/output data from the model and the scripts to pro-546

duce the figures of the manuscript are available at https://data.ess-dive.lbl.gov/547

datasets/doi:10.15485/2006549 (Li et al., 2023). Figures were made with Python 3.10548

(https://www.python.org/), Matplotlib version 3.5.1 (https://matplotlib.org/),549

and Paraview version 5.10.1 (https://www.paraview.org/). The study site map was550

made with ArcGIS Pro version 3.1.2 (https://www.esri.com/en-us/arcgis/products/551
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Appendix A. List of publicly available data used in this study as model565

inputs and for model performance evaluation566

Table A1. Data sources and references

Inputs Sources (Data managing agencies∗) References

Vector data

Watershed boundary NHDPlus HR (USGS) U.S. Geological Survey (2023b)
Stream network NHDPlus HR (USGS) U.S. Geological Survey (2023b)
Fire perimeter MTBS (USDA, USGS) Eidenshink et al. (2007)

Static raster data

DEM 3DEP (USGS) U.S. Geological Survey (2023a)
Land cover NLCD (USGS) U.S. Geological Survey (2019)

Soil properties SSURGO (USDA) USDA Soil Survey Staff (2023)
Geology properties GLHYMPS (Borealis) Gleeson et al. (2014)

Soil thickness SoilGrids (ISRIC) Poggio et al. (2021)
Depth to bedrock SoilGrids (ISRIC) Poggio et al. (2021)
Burn severity MTBS (USDA, USGS) Eidenshink et al. (2007)

Dynamic raster data

Meteorological forcing Daymet (ORNL) Thornton et al. (2022)
Leaf area index MODIS (NASA) Myneni et al. (2015)

Model evaluation data

Streamflow discharge NWIS (USGS) U.S. Geological Survey (2023c)
Evapotranspirition MODIS (NASA) Running et al. (2017)

∗USGS: U.S. Geological Survey;
USDA: U.S. Department of Agriculture;
Borealis: Canadian Dataverse Repository;
ISRIC: International Soil Reference and Information Centre;
ORNL: Oak Ridge National Laboratory;
NASA: National Aeronautics and Space Administration.
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Appendix B. List of highest daily rainfall in the study watersheds567

Table B1. High rainfall events in the wet seasons in 1980–2021

Year with High Rainfall Daily Total Year with High Rainfall Daily Total
Event in Wet Season Rainfall [mm] Event in Wet Season Rainfall [mm]

Mckenzie River American River

1996 110 (P1) 2006 122 (P1)
1999 72 (P2) 2008 94 (P2)
2012 64 (P3) 2017 81 (P3)
1998 62 (P4) 1990 77 (P4)
1994 57 (P5) 2015 71 (P5)
2013 55 (P6) 1994 63 (P6)
1984 50 (P7) 2013 62 (P7)
2006 49 (P8) 1999 60 (P8)
2016 48 (P9) 1997 58 (P9)
2017 46 (P10) 2012 57 (P10)

Naches River Wenas Creek

2006 91 (P1) 2006 53 (P1)
2008 68 (P2) 2017 42 (P2)
2017 62 (P3) 1994 38 (P3)
1990 57 (P4) 1997 37 (P4)
1997 52 (P5) 2008 36 (P5)
2015 50 (P6) 1980 35 (P6)
1994 48 (P7) 1990 34 (P7)
1980 46 (P8) 2021 31 (P8)
1999 45 (P9) 2015 28 (P9)
2021 43 (P10) 2016 25 (P10)
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Figure S1. DEM and land cover types in the (a) Mckenzie River Watershed, (b) Wenas Creek

Watershed, and (c) American River Watershed.
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Figure S2. Köppen–Geiger climate classification in the study watersheds (Csb = temperate,

dry & warm summer; Dsb = cold, dry & warm summer; Dsc = cold, dry & cold summer).
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Figure S3. The relationships between the post-fire maximum daily precipitation and the river

peak discharge in three scenarios: (1) without the SWR effect and without the Manning’s n

reduction (base case), (2) without the SWR effect and without the Manning’n reduction, and

(3) with the SWR effect and with the Manning’n reduction.
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