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Abstract

Fluid dynamical systems are well described by discretized partial differential equations, but computational costs limit accuracy,

duration and/or resolution in numerical integrations. Recent studies showed that deep neural networks trained on simulations or

PDE-derived losses can improve cost-accuracy tradeoffs, but purely data-centric approaches discard physical and mathematical

insights and require computationally costly training data. Here we draw on advances in geometric deep learning to design

solver networks that respect PDE symmetries as hard constraints. We construct equivariant convolutional layers for mixed

scalar-vector input fields in order to capture the symmetries inherent to specific PDEs. We demonstrate our approach on

a challenging 1D semi-implicit shallow water scheme with closed boundaries, applying unsupervised learning with a physics-

derived loss function. We report strong improvements in accuracy and stability of equivariant solvers compared to standard

convolutional networks with the same architectures and parameter counts. Solver equivariance also improves performance on

new initial conditions not encountered during training, and suppresses error accumulation in global momentum and energy.

Strikingly, these benefits do not reduce loss values during training, but appear later during ML-assisted rollouts over time steps.

Our results suggest that symmetry constraints could improve deep learning performance across a wide range of fluid dynamical

tasks, learning algorithms and neural architectures.
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Fluid dynamical systems are well described by discretized partial differential equations (PDEs), but computational9

costs limit accuracy, duration and/or resolution in numerical integrations. Recent studies showed that deep neural10

networks trained on simulations or PDE-derived losses can improve cost-accuracy tradeoffs, but purely data-centric11

approaches discard physical and mathematical insights and require computationally costly training data. Here we draw12

on advances in geometric deep learning to design solver networks that respect PDE symmetries as hard constraints.13

We construct equivariant convolutional layers for mixed scalar-vector input fields in order to capture the symmetries14

inherent to specific PDEs. We demonstrate our approach on a challenging one-dimensional semi-implicit shallow water15

scheme with closed boundaries, applying unsupervised learning with a physics-derived loss function. We report strong16

improvements in accuracy and stability of equivariant solvers compared to standard convolutional networks with the17

same architectures and parameter counts. Solver equivariance also improves performance on new initial conditions18

not encountered during training, and suppresses error accumulation in global momentum and energy. Strikingly, these19

benefits do not reduce loss values during training, but appear later during machine learning (ML)-assisted rollouts over20

time steps. Our results suggest that symmetry constraints could improve deep learning performance across a wide range21

of fluid dynamical tasks, learning algorithms and neural architectures.22

I. INTRODUCTION23

Partial differential equations (PDEs) are essential for un-24

derstanding and simulating complex fluid dynamics. Exam-25

ples include convection-diffusion1, Euler2 and Navier–Stokes26

equations (NS)3,4. The shallow water equations (SWEs)5, de-27

rived by depth integration of NS, are mathematically simpler28

but widely employed as test cases to evaluate solution tech-29

niques for ocean, weather and climate applications6–11.30

PDEs describing geophysical fluid flows require numer-31

ical methods, for example, finite difference12,13, finite ele-32

ment14,15, finite volume16, boundary element17, and spectral33

element methods18. While small spatial domains admit di-34

rect numerical simulation, geophysical applications require35

coarse grids with Reynolds-averaging19 or large eddy simu-36

lation (LES)20,21 to approximate unresolved scales. Explicit37

time stepping simplifies computations but requires small steps38

for stability, while (semi)implicit schemes take larger time39

steps but must iteratively solve a system of equations 22–25.40

However, these classical approaches incur heavy computa-41

tional costs at high spatial and temporal resolutions.42

Recent machine learning approaches aim to transcend these43

cost-accuracy tradeoffs by training a model to accurately44

and efficiently solve PDEs on modern computational hard-45

ware. Supervised learning uses simulations from a classi-46

cal solver to train a machine learning (ML) model that uses47

larger space and time steps or skips the iterative computa-48

tions of an implicit scheme. This approach has shown success49

in accelerating PDE solutions while maintaining accuracy,50

obeying conservation laws and preserving high frequency fea-51

tures26–32, and has also been applied to mesh-free particle-52

based solvers33.53

Unsupervised learning trains the model to satisfy the PDE54

without requiring training data. It is most effective for implicit55

schemes, since solving their equations iteratively is complex56

and costly but verifying a solution is simple and fast. Unsu-57

pervised learning avoids overfitting by training on its own out-58

puts, but cannot avoid discretization errors for large the space59

or time steps. It has been used to solve several fluid dynamical60

PDEs34–43.61

Hybrid models replace only part of a classical PDE solver62

with an ML model, leaving other components unchanged.63

Early work applied this to computer graphics44, while a later64

study demonstrated an approach combining a fluid solver with65

ML techniques to approximate NS in a Lagrangian frame-66

work using regression forests45. More recently, authors46
67

used supervised learning to compute an additive correction68

to low-resolution incompressible NS, so that its evolution69

mimics a high-resolution model coarsened at each time step.70

An LSTM-based hybrid approach47 with significant practical71

speed-ups has been presented for predicting pressure changes72

for incompressible flow, while ref.48 proposed an ML-based73

approach for replacing the linear projection in the Eule-74

rian fluid implicit simulation, authors27 combined two well-75

established turbulent flow simulation techniques with deep76

learning and the paper49 developed an accelerated integrative77

ML solverto aid convergence of Reynolds Averaged Navier-78

Stokes simulations. Overall, hybrid methods allow us to ef-79

fectively incorporate physical knowledge while simplifying80

the learning task, and can improve accuracy and generaliza-81

tion capabilities.82

Major challenges remain for ML-based PDE solvers: long-83

term stability and accuracy are not guaranteed even for low84

loss values on training and testing data46,50–52, and general-85
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FIG. 1. Schematic representation of a one-dimensional shallow water problem with C-grid staggering of discretized fields. (a) Shallow water
system with domain length 𝐿. 𝑑 and ℎ are un-disturbed- and disturbed- water depth, 𝜁 is fluid surface elevation and ℎ = 𝜁 + 𝑑. 𝑢 is the velocity
along the space coordinate 𝑥. (b) Staggered grid for elevation and velocity. Top: fluid surface elevation 𝜁 𝑗 is represented at red squares while
velocity 𝑢 𝑗+1/2 is represented at black circles. Bottom: A flipped fluid surface elevation 𝜁𝑖 , as well as a flipped-and-inverted velocity. These
transformed fields solve the SWE with transformed initial and boundary conditions.

ization to new scenarios remains problematic53–56. A partial86

explanation is that training neural networks means choosing87

from a large, high-dimensional family of functions, many of88

which are physically or mathematically implausible. Nar-89

rowing the search by constraining the learned function has90

shown great promise: for example, conservation laws im-91

prove process representations in climate, weather, and ocean92

models57,58, while symmetry constraints aid image classifica-93

tion59 and segmentation60,61. However, the potential benefit94

for fluid dynamics remains mostly unclear.95

In this work we construct hybrid PDE solvers using equiv-96

ariant neural networks that obey PDE symmetry constraints.97

We draw on previous work in geometric deep learning59,62,98

but extend group equivariant convolutions to handle mixed99

scalar/vector inputs with the correct, PDE-specific transfor-100

mation rules. We demonstrate the benefit of equivariant solver101

networks using an unsupervised learning task, in which the102

network is trained to integrate a semi-implicit scheme for one103

dimensional (1-D) shallow water equations. These equations104

exhibit challenging stiff dynamics due to closed boundaries105

and reflecting waves. Our experiments show significant im-106

provements in long term accuracy and stability compared to107

standard convolutional neural networks (CNNs), despite simi-108

lar loss values during training. We also observe that symmetry109

constraints improve performance on initial conditions not en-110

countered during training, as well as representations of global111

mass, momentum and energy.112

II. NUMERICAL INTEGRATION OF FLUID DYNAMICS113

In this section we establish concepts and notation for PDE114

integration with classical numerical techniques, allowing us to115

describe our task and approach in the following section. We116

consider a general governing partial differential equation for117

fluid dynamics:118

𝜕𝑞(𝑡, 𝑥)
𝜕𝑡

= F [𝑞] = 𝑓 (𝑡, 𝑥, 𝑞(𝑡, 𝑥), 𝑑𝑞
𝑑𝑥
,
𝑑2𝑞

𝑑𝑥2 , . . .), 𝑥 ∈ Ω (1)119

𝑞(𝑥, 𝑡) = 𝑞Ω (𝑥), 𝑥 ∈ 𝜕Ω (2)120

𝑞(𝑥,0) = 𝑞0 (𝑥) (3)121

𝑥 and 𝑡 are space and time coordinates and 𝑞(𝑡, 𝑥) is the vector122

of modeled variable fields at one place and time, such as ve-123

locity and pressure in NS or velocity and height in SWE. F is124

a nonlinear operator computing time derivatives as nonlinear125

functions of functions of the fields and their spatial deriva-126

tives. The Dirichlet boundary conditions (BCs) 𝑞Ω (𝑥) on127

the boundary 𝜕Ω and initial conditions (ICs) 𝑞0 (𝑥) are given128

while 𝑞(𝑥, 𝑡) is the unknown quantity for which we solve the129

PDE. Eqs. 1-3 are a common form for governing a fluid flow,130

though other types of BCs and constraints (such as incom-131

pressibility) can also be used.132

A. Spatial Discretization133

We solve our PDEs with the classical finite difference meth-134

ods with uniform time step Δ𝑡 and all prognostic variables de-135

fined on a regular grid with space step Δ𝑥. For 1-D fields,136

and denoting the 𝑘-th variable field in 𝑞 by 𝑧, we use 𝑧𝑛
𝑗
=137

𝑞( 𝑗Δ𝑥,𝑛Δ𝑡)𝑘 to denote the value of 𝑧 at the 𝑗-th location on138

the 𝑛-th time step. We employ staggered representations of139

scalar fields and velocities using Arakawa C-grids63, and the140

notation 𝑧𝑛1/2, 𝑧
𝑛
3/2, . . . for shifted variables in Fig. 1b.141

B. Time Stepping142

Given the discretized variable fields 𝑞𝑛 at time 𝑡 = 𝑛Δ𝑡,143

a time stepping scheme is used to compute the next fields144

𝑞𝑛+1. Here we consider the broad range of schemes in which145

each occurence of 𝑞 in the definition of F is replaced by a146

weighted average of 𝑞𝑛 and 𝑞𝑛+1, and the weighting may be147

different for each field and each term of the PDE. Thus when148

𝑞𝑛 is used in every case we have an explicit method, while149

using (𝑞𝑛 + 𝑞𝑛+1)/2 in every case gives a Crank-Nicholson150

method64. Denoting the discretized version of F by F̃ , the151

scheme can be written as a system of equations152

𝑞𝑛+1𝑗 = 𝑞𝑛𝑗 +Δ𝑡F̃ [𝑞𝑛, 𝑞𝑛+1] (4)153

Because 𝑞𝑛+1 appears on both sides of the equation, we must154

solve the equations to obtain it, for example by using iterative155
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FIG. 2. Schematic representation of equivariant U-net architecture and ‘hybrid’ training procedure for a deep SWE solver. (a) Equivariant
U-Net architecture with an example of channels. Grid staggering leads to input channels with different sizes, so we use equivariant input
layers with different kernel sizes to obtain a uniform size across channels in the first hidden layer. All activations except for inputs and outputs
are defined as real-valued functions on the infinite discrete group 𝐻 containing reflections and translations (light blue area). Network outputs
provide a fluid surface update Δ𝜁 . (b) A ‘hybrid’ training loop adapted from34. A pool of system states is first filled with the initial conditions
𝜁0, 𝑢0. For a randomly selected batch of system states, the U-net then generates 𝜁 𝑡+𝑑𝑡 at the next time step while velocity is calculated as in
a numerical solver. The unsupervised loss function summed over the batch, its gradients are used to update network parameters and the new
states overwrite their own inputs in the pool.

methods. Calculating F̃ for the discretized variable fields re-156

quires discretized versions of all spatial derivatives, which in157

general must be designed and tested for each PDE to ensure158

accuracy and stability. This class of time stepping schemes159

is widely used for fluid dynamical PDEs: examples include160

incompressible Navier Stokes65–67 and certain shallow water161

solvers with land-water boundaries68 (see below).162

III. UNSUPERVISED LEARNING OF PDE INTEGRATION163

A. Problem Statement164

We aim to replace an expensive semi-implicit time scheme165

(Eq. 4) with a faster, neural-network based solver. Critically,166

we do not assume that we have access to simulation data for167

training purposes, but must train the network using only our168

knowledge of the PDE, spatial discretization and time step-169

ping scheme.170

Concretely, we wish to train (that is, optimize) the pa-171

rameters 𝜙 of a flexible function approximator 𝑆𝜙 , such that172

𝑆𝜙 (𝑞𝑛) ≈ 𝑆(𝑞𝑛) = 𝑞𝑛+1. Here 𝑆 denotes a single step of time173

integration using a classical numerical solver that acts as our174

target reference solution. We aim to achieve a close approx-175

imation between 𝑆𝜙 and 𝑆 on PDE integrations with initial176

distributions drawn from a specified probability distribution177

Π(𝑞):178

𝑞0 ∼ Π(𝑞) (5)179

𝑞𝑛 = 𝑆 (𝑛) (𝑞0) (6)180

𝑞𝑛 = 𝑆
(𝑛)
𝜙
(𝑞0) (7)181

𝑞𝑛 ≈ 𝑞𝑛 (8)182

Without access to simulation data, we cannot carry out super-183

vised training of 𝑆𝜙 using input-output pairs (𝑞𝑛, 𝑞𝑛+1). The184

motivation behind this problem formulation without access to185

training data is that it avoids expensive simulations, and does186

not require us to commit to a fixed set of simulated system187

states at the onset of training.188

B. Physics-derived Loss Function189

To train 𝑔𝜙 ≈ 𝑆 without simulation data, we construct a190

physics-derived loss 34,41 that is zero if and only if the dis-191

cretized PDE is precisely solved:192

LPDE (𝑞, 𝜙) =
𝑞 +Δ𝑡F̃ [𝑞,𝑔𝜙 (𝑞)] − 𝑆𝜙 (𝑞)2

2
+1Ω ·

𝑆𝜙 (𝑞) − 𝑞Ω2

2
(9)

193

The first loss term measures deviations from the prescribed194

PDE, and is clearly zero when 𝑆𝜙 = 𝑆. The second term195

measures violation of the Dirichlet BCs, with 1Ω an indica-196

tor function for the boundary. If 𝑆𝜙 is constructed to satisfy197

the BCs for any 𝜙 the second term can be dropped.198

C. Training Algorithm199

In principle, we could minimizeLPDE using any input fields200

𝑞, but to obtain optimal results when ICs are drawn from201

Π(𝑞), we should train on fields likely to occur when time-202

integrating from those ICs. We therefore train 𝑆𝜙 on fields it203

has itself integrated, following the strategy34 in Fig. 2b.204

We first initialize a pool of 5000 simulations with ICs drawn205

randomly from Π(𝑞). For each gradient step, a batch of sim-206

ulations is randomly selected from the pool, and stepped for-207

ward using 𝑆𝜙 . The fields at the old and new time steps for208

this batch are used to compute LPDE, and the resulting gradi-209

ents are used to update 𝜙. The updated simulations are then210
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and flipped version of the convolutional filter to the previous layer. The final output is obtained by averaging over reflected and non-reflected
version of each channel pooling on the geometrical two features.

stored in the simulation pool, where they overwrite their own211

previous values. After every 50 gradient steps, a randomly se-212

lected simulation is overwritten with a new initialization from213

Π(𝑞). We use a default batch size of 𝑏 = 100, 60 epochs, and214

the Adam optimizer69 with an initial learning rate of 0.001.215

D. Hybrid Solvers216

For a fully data-driven architecture, the time stepping func-217

tion 𝑆𝜙 can be fully specified by a deep neural network or218

other general function approximator. However, several stud-219

ies have shown that combining deep learning and numerical220

physics in a single model can provide better results than ei-221

ther approach alone35,48,49,70,71. A particular focus of this hy-222

brid approach has been semi-implicit numerical schemes that223

require a system of equations to be solved at each time step.224

Classical numerical solvers for these schemes often use vari-225

able substitution to reduce the number of equations and un-226

knowns: examples include elimination of velocity when solv-227

ing for fluid height in the SWEs68 and the pressure projection228

step for incompressible NS. Hybrid approaches therefore train229

a deep neural network to efficiently solve the reduced set of230

equations, after which the remaining output variables are cal-231

culated using formulae from the original numerical solver. We232

describe this approach in detail for a SWE scheme in Fig. 2b.233

This hybrid approach can offer several benefits compared234

to a learning a fully data-driven time stepping scheme. By235

replacing only expensive computations, it retains some induc-236

tive biases of the original scheme, and ensures that the full set237

of updated fields are accurate when the learned computations238

are correct. Fewer input and output channels for the trained239

model also reduce parameter counts and improve optimiza-240

tion and data efficiencies.241

E. Neural Architectures242

To learn (hybrid) time stepping for spatially structured243

fields, we employ the U-net architecture72. The U-net is a244

convolutional encoder-decoder network. In the encoder, the245

number of channels increases with depth while spatial reso-246

lution decreases, while the decoder enacts the opposite trans-247

formations while receiving skip connections from the encoder248

at each resolution (Fig. 2a). At each resolution, the encoder249

and decoder employ two convolution layers with kernel size 7.250

For input fields with C-grid staggering, different kernel sizes251

are used to achieve a uniform spatial extent for output fields in252

the encoder’s first convolution layer. The final outputs of the253

U-net are interpreted as updates Δ𝑞, and added to the corre-254

sponding input fields 𝑞𝑛 to produce the time-step fields 𝑞𝑛+1.255

The default resolution of input is 200 for mass grids and 199256

for velocity grids. The number of parameters for the network257

is changed by using a multiplier for the channel counts of all258

hidden layers (Fig. 2 shows a multiplier of 16).259

IV. GEOMETRIC CONSTRAINTS260

Many PDEs have symmetries: certain spatial transforma-261

tions of initial and boundary conditions lead to a correspond-262

ing transformation of the system state at future time points.263

We aim to improve ML-based PDE solvers by endowing them264

with these properties as a hard constraint built into the neural265

architecture. This effectively narrows the class of functions266

through which we are searching for an effective and efficient267

solver, by filtering out functions inconsistent with the symme-268

try.269

A. Equivariance270

Suppose we have a finite group of symmetries 𝑔 ∈ 𝐺 acting271
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on a set of spatially extended fields 𝑞 by transformations 𝑞→272

T𝑔 (𝑞), with T𝑔1𝑔2 = T𝑔1 ◦T𝑔2 . A function Ψ(𝑞) is equivariant273

when transforming its inputs is equivalent to transforming its274

outputs. Concretely, for each 𝑔 ∈𝐺 the transformations T𝑔,T ′𝑔275

act on Ψ’s inputs and outputs respectively, and276

∀𝑔, 𝑞 : Ψ(T𝑔𝑞) = T ′𝑔 Ψ(𝑞) (10)277

For example, let Ψ denote time integration of the 2D heat278

equation 𝜕𝑞

𝜕𝑡
= 𝜅

(
𝜕2𝑞

𝜕𝑥2
1
+ 𝜕2𝑞

𝜕𝑥2
2

)
. This Ψ is equivariant to rota-279

tions, reflections, and translations of the heat field 𝑞. In this280

case both the input and output transformations are simply the281

same point-to-point mappings of the scalar heat fields, but for282

more complex PDEs involving vector fields the transforma-283

tions can be more involved (see below).284

B. Equivariant Convolutions285

We now describe the construction of convolutional net-286

works with equivariance as a hard constraint, meaning that287

the 𝑆𝜙 is equivariant for any 𝜙. Throughout this section we288

follow59, but simplify notation by describing a single input289

and output channel, both of which are 𝑛-D fields of the same290

size. We denote by Y ⊂ Z𝑛 the regular grid of integer val-291

ued coordinates on which the input and output channels are292

defined.293

A standard convolutional layer applies an 𝑛-D convolu-294

tional filter 𝑊 to a spatially extended scalar input field 𝑞 to295

produce a scalar output field 𝑞★𝑊 :296

[𝑞★𝑊] (𝑥) =
∑︁
𝑦∈Y

𝑞(𝑦)𝑊 (𝑦− 𝑥) + 𝑏 (11)297
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where𝑊 (𝑦) = 0 for 𝑦 outside the spatial extent of the filter. 𝑞,298

𝑊 , and 𝑞★𝑊 are simply real-valued functions on Y, while 𝑏299

is a scalar. Standard convolutions are equivariant with respect300

to translations, but not other symmetries.301

In contrast, equivariant convolutional layers produce out-302

puts that are real-valued functions of an extended discrete303

group 𝐻 generated by the symmetry group 𝐺 of interest as304

well as translations in R𝑛. The first such layer takes standard305

scalar fields as input:306

[𝑞★𝑊] (ℎ) =
∑︁
𝑦∈Y

𝑞(𝑦)𝑊 (ℎ−1𝑦) + 𝑏 (12)307

Subsequent layers use functions on 𝐻 as both inputs and out-308

puts:309

[𝛾★𝑊] (ℎ) =
∑︁
ℎ′∈H

𝛾(ℎ′)𝑊 (ℎ−1ℎ′) + 𝑏 (13)310

𝛾, 𝑊 , and 𝛾 ★𝑊 are real-valued functions of 𝐻. As shown311

in59, Eqs. 12-13 satsify equivariance (Eq. 10). The input trans-312

formation in Eq. 12 is simply 𝐺’s action on Z𝑛 described by313

𝐺, while other transformations act on real-valued functions of314

𝐻. For any such function 𝛼(ℎ) we have315

[𝑇ℎ𝛼] (ℎ′) = 𝛼(ℎ−1ℎ′) (14)316

We visualize functions on 𝐻 as collections of maps over Y,317

with one map (i.e. real-valued function on Y) for each 𝑔 ∈ 𝐺318

(Fig. 3). Since the nonzero regions of 𝑞, 𝛾 and𝑊 are bounded,319

the outputs’ nonzero regions are as well. In Eq. 12, 𝑊 is de-320

fined on a patch of Z𝑛, but in Eq. 13𝑊 is a function on 𝐻. To321

include multiple input output and channels, we simply sum322

over inputs for each output in Eqs. 11-13, and note that the323

arrays storing𝑊 acquire two additional dimensions. The bias324

𝑏 is then indexed by the output channel, but not by location or325

group element.326

To build an equivariant convolutional network, a sequence327

of equivariant convolutional layers is interspersed with point-328

wise nonlinearities. To obtain an equivariant final output on329

Y instead of 𝐻, a pooling operation (e.g. a mean or maxi-330

mum) operates ‘along the 𝐺-axis’ of the 𝐺-indexed collection331

of maps onY. Concretely, we take the mean or maximum over332

all elements of 𝐻 that share the same translational component.333

For a symmetry group of size |𝐺 |, a standard convolu-334

tion with 𝑐 input and output channels has as many param-335

eters as an equivariant layer with 𝑐/
√︁
|𝐺 | channels. When336

Y is a 𝐷-dimensional grid with 𝑁 points per axis, the com-337

putational complexity of the forward and backward passes338

is 𝑂 (𝑁𝐷𝐾𝐷𝑐2) in both cases, since the equivariant network339

has |𝐺 | times fewer input-output channel pairs but each in-340

put channel must be convolved with a transformed slice of the341

filter bank |𝐺 | times.342

1. Reflection-equivariant 1-D Convolutions343

Having introduced equivariant convolutions for any finite344

symmetry group 𝐺 acting on a discrete grid Y, we next focus345

on the concrete example of 1-D reflective symmetries. This346

two-element group is the only nontrivial symmetry group and347

the main focus of this paper. Here Y = {−𝑁, . . . , 𝑁}, 𝐺 con-348

tains the identity and a reflection, and 𝐻 consists of either el-349

ement of 𝐺 followed by any translation. In this case, a convo-350

lutional time stepping network 𝑆𝜙 : 𝑞𝑛→ 𝑞𝑛+1 is equivariant351

if 𝑅F (𝑆𝜙 (𝑞)) = 𝑆𝜙 (𝑅F (𝑞)), for any input field(s) 𝑞 and where352

the ‘mirroring’ operator 𝑅F reflects the fields on the spatial353

axis, i.e. [𝑅F (𝑞)] (𝑥) = 𝑞(−𝑥).354

A standard 1-D convolutional layer in Eq. 11 with 𝑐in inputs355

𝑞 and 𝑐out outputs 𝑎 is defined as:356

𝑎 𝑗 , · =
𝑐in∑︁
𝑖=1
𝑊 𝑗 ,𝑖, ·★𝑞𝑖, · + 𝑏 𝑗 (15)357

where the · symbol denotes all values along a given axis. 𝑊 is358

an 𝑐in× 𝑐0×𝐾 array for filter size 𝐾 , while 𝑏 is a 𝑐out-element359

vector.360

In 1-D reflection-equivariant networks, the first layer is a361

special case with 𝑐in input channels 𝑞 defined on Y and 𝑐1362

outputs 𝑎1 defined on 𝐻. Eq. 12 thus becomes:363

𝑎1
𝑗 ,0, · =

𝑐in∑︁
𝑖=1
𝑊1

𝑗 ,𝑖, ·★𝑞𝑖, · + 𝑏1
𝑗 (16)364

𝑎1
𝑗 ,1, · =

𝑐in∑︁
𝑖=1

𝑅F

(
𝑊1

𝑗 ,𝑖, ·

)
★𝑞𝑖, · + 𝑏1

𝑗 (17)365

While 𝑞,𝑊1, 𝑏1 have the same size here as in standard con-366

volutional layers, 𝑎1 gains a third dimension that indexes the367

elements of 𝐺.368

For subsequent layers, both the 𝑐ℓ−1 input channels 𝑎ℓ−1
369

and 𝑐ℓ outputs 𝑎ℓ are defined on 𝐻 and are stored in 3-D ar-370

rays. Eq. 13 becomes:371

𝑎ℓ𝑗,0, · =
𝑐ℓ−1∑︁
𝑖=1
𝑊 𝑗 ,𝑖,0, ·★𝑎

ℓ−1
𝑖,0, · +𝑊 𝑗 ,𝑖,1, ·★𝑎

ℓ−1
𝑖,1, · + 𝑏ℓ𝑗

(18)

372

𝑎ℓ𝑗,1, · =
𝑐ℓ−1∑︁
𝑖=1

𝑅F
(
𝑊 𝑗 ,𝑖,1, ·

)
★𝑎ℓ−1

𝑖,0, · +𝑅F
(
𝑊 𝑗 ,𝑖,0, ·

)
★𝑎ℓ−1

𝑖,1, · + 𝑏
ℓ
𝑗

(19)

373

The filter bank𝑊 now has four dimensions, the third of which374

indexes 𝐺. When computing results at the second index along375

the second, 𝐺-indexing dimension of each output channel376

(Eq. 19), the filters are flipped on the spatial axis and per-377

muted on the 𝐺 axis (Fig. 3). While the equivariance of these378

layers follows as a special case of the results in59, we include379

simple proofs for the case of 1-D reflections in the Appendices380

A 1-A 2.381

Finally, to produce a network output that is defined on a382

simple 1-D grid (not as a function on 𝐻), we use a mean pool-383

ing operation over the symmetry dimension384

𝑦out
𝑗 ,. =

(
𝑎𝐿𝑗,0, · + 𝑎

𝐿
𝑗,1, ·

)
/2 (20)385

which also obviously has the desired equivariance property.386

Thus, by chaining together these input, internal, and output387

layers, our entire network Ψ is reflection equivariant.388
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2. Extension to Mixed Scalar-Vector Inputs389

Unfortunately, the equivariance defined for convolutions390

above does not match the reflection symmetries of many391

PDEs, since it fails to account for differences in how vector392

and scalar fields are affected by rotation and reflection. For393

a scalar field, the value of the transformed field (e.g. heat) is394

simply the value of the original field at a different point. But395

for vector fields (e.g. velocity) both a location change and a396

reflection/rotation of the vector at the corrected location are397

required. Simply transforming each component of the veloc-398

ity field in a PDE solution as a separate scalar would yield a399

new field that does not solve the PDE.400

For reflections of 1-D vector field 𝑢, the necessary transfor-401

mation is402

[𝑅F𝑢] (𝑥) = −𝑢[−𝑥] (21)403

To implement the proper transformation when 𝑞 contains both404

scalar fields 𝜁 and vector fields 𝑢, we define the following405

input layer (compare to Eq. 19):406

𝑎1
𝑗 ,0, · =

𝑐
𝜁

𝑖𝑛∑︁
𝑖=1
𝑊

𝜁

𝑗,𝑖, ·★𝜁𝑖, · +
𝑐𝑢
𝑖𝑛∑︁

𝑖=1
𝑊𝑢

𝑗,𝑖, ·★𝑢𝑖, · + 𝑏ℓ𝑗

(22)

407

𝑎1
𝑗 ,1, · =

𝑐
𝜁

𝑖𝑛∑︁
𝑖=1

𝑅F (𝑊 𝜁

𝑗,𝑖, ·)★𝜁𝑖, · +
𝑐𝑢
𝑖𝑛∑︁

𝑖=1
−𝑅F (𝑊𝑢

𝑗,𝑖, ·)★𝑢𝑖, · + 𝑏ℓ𝑗

(23)

408

Since the output of this layer is a real-valued function on 𝐻,409

subsequent equivariant layers can be used without modifica-410

tion in Eq. 13. Defining an equivariant output layer to produce411

vector fields is straightforward, but because we construct hy-412

brid solvers (see below) scalar outputs are sufficient for our413

purposes.414

We prove the equivariance of our input layer in A 3. For an415

empirical confirmation of this, Fig. 4 shows the equivariance416

of a classical PDE solver 𝑆 and a trained equivariant convo-417

lutional network 𝑆𝜙 for the shallow water equations, which418

govern scalar height and vector velocity fields.419

C. One-dimensional shallow water equations420

We evaluated our learning strategies using the 1-D SWEs,421

composed of momentum and continuity equations:422

𝜕𝑢

𝜕𝑡
= −𝐶𝐷

1
ℎ
𝑢 |𝑢 | −𝑔 𝜕𝜁

𝜕𝑥
(24)423

𝜕𝜁

𝜕𝑡
= −𝜕 (ℎ𝑢)

𝜕𝑥
(25)424

with spatial coordinate 𝑥 ∈ [0, 𝐿], time 𝑡, velocity 𝑢, surface425

disturbance 𝜁 , total depth ℎ = 𝑑+𝜁 , bottom drag𝐶𝐷 , and grav-426

itational acceleration 𝑔. SWEs are commonly used to describe427

large-scale flows in coasts, oceans, estuaries, and rivers, based428

on the assumption that fluid depth is well below the length429

TABLE I. Simulation parameters used for SWEs.

Parameters Explanation Value
𝐿 simulation domain 2000 (𝐾𝑚)
𝑑 undisturbed water depth 100 (𝑚)
𝐶𝐷 bottom drag coefficient 1.0𝑒−3
𝑔 acceleration due to gravity 9.81 (𝑚/𝑠2)
Δ𝑥 space step 10 (𝐾𝑚)
Δ𝑡 time step 300 (𝑠)
𝑤imp implicit weighting 0.5

scale of horizontal motion, as illustrated in Fig. 1a. Our dry430

BCs, common in riverine and coastal models68,73,74, mean that431

no fluid enters or escapes:432

𝑢(𝑥 = 0) = 𝑢(𝑥 = 𝐿) = 0 (26)433

𝜁 (𝑥 = 0) = 𝜁 (𝑥 = 𝐿) = 0 (27)434

By default we use ‘Gaussian bell’ ICs:435

𝑢(𝑥,0) = 0 (28)436

𝜁 (𝑥,0) = 1
√

2𝜋𝜎2
𝑒−(𝑥−𝜇)

2/𝜎2
(29)437

with 𝜇 and 𝜎 uniformly distributed on [100𝐾𝑚,1900𝐾𝑚]438

and [10𝐾𝑚,100𝐾𝑚] respectively.439

Substituting 𝜁 ← 𝑅F (𝜁), 𝑢 ← −𝑅F (𝑢) into Eqs. 24-27440

demonstrates reflection equivariance of the SWEs, which we441

confirmed empirically in Fig. 4a.442

Since closed, wave-reflecting boundaries tend to require443

minuscule time steps for explicit schemes, we used a semi-444

implicit scheme68 to generate reference simulations and to445

construct loss functions (Eq. 9) for unsupervised learning.446

This finite difference method stores velocities and surface el-447

evations on staggered grids (details in the B, simulation pa-448

rameters in Table I). Its computational cost is dominated by449

solving a tridiagonal linear system450

𝐴𝜁𝑛+1 = 𝑏 (30)451

Where 𝐴, 𝑏 are functions of 𝜁𝑛 and 𝑢𝑛. The relative costs452

of calculating the coefficients of 𝐴 and 𝑏 or computing 𝑢𝑛+1453

given 𝜁𝑛+1 are negligible.454

V. EVALUATION METRICS455

We compare trained solvers 𝑆𝜙 to a reference numerical456

method 𝑆 with four error measures described previously75.457

We calculate these metrics for each individual field �̂�𝑛 esti-458

mating 𝑧𝑛 ∈ 𝑞𝑛.459

• Normalized Root Mean Square Error (NRMSE) de-460

scribes a relative difference between estimated and ref-461

erence solutions:462

NRMSE =
∥ �̂�𝑛 − 𝑧𝑛∥2
∥𝑧𝑛∥2

(31)463

Note that all estimated fields �̂�𝑛 are integrated 𝑛 time464

steps from the ICs of the reference solution.465
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FIG. 5. Progress and success rate of training for standard and
reflection-equivariant convolutional networks. (a) Training loss
curves for standard CNN and GE-CNN solvers. During training the
loss of GE-CNN solver is a little larger than one of CNN solver.
(b) Training success rate standard and GE-CNNs. Here, high- and
small network respectively have about 148M and 1.6M parameters.

• Time-averaged Normalized Root Mean Square Error466

(E𝑡NRMSE) averages the NRMSE over the full dura-467

tion of a simulation (in this work, 1200 time steps span-468

ning 100 simulated hours).469

• Pearson’s correlation 𝜌( �̂�𝑛, 𝑧𝑛) of reference and learned470

solutions.471

• Training Success Rate (TSR) is the probability that472

training will converge to a E𝑡NRMSE < 10. This mea-473

sure allows us to incorporate the stochastic aspect of474

deep learning in evaluating performance (both the ini-475

tial weights and the order of ICs differ across runs). In476

this work, we quantify TSR by using E𝑡NRMSE− 𝜁 for477

SWEs.478

VI. SOFTWARE IMPLEMENTATION479

Classical numerical and machine learning solvers are480

implemented in Pytorch and Numpy. Code for equivariant481

convolutions is partly adapted from GrouPy at https:482

//github.com/jornpeters/GrouPy/tree/pytorch\483

_p4\_p4m\_gconv/groupy/gconv, while code for training484

on evolving simulations is based partly on code published485

in34, https://github.com/wandeln/Unsupervised_486

Deep_Learning_of_Incompressible_Fluid_Dynamics.487

The code for both numerical- and ML solver are publicly at488

https://github.com/m-dml/GE-CNN_learning_SWEs.489

VII. EXPERIMENTS490

We carried out unsupervised training of a hybrid PDE in-491

tegration scheme for the SWEs, to determine whether hard492

symmetry constraints improve long-term accuracy and stabil-493

ity. Our reference simulations (see section IV C) used a stag-494

gered grid with 200 height and 199 velocity points shown in495

Fig. 1b.496

The neural network inferred surface height 𝜁𝑛 from the sys-497

tem state at step 𝑡−1. Following34, we provide 13 input chan-498

nels describing 𝑢𝑛−1, 𝑧𝑛−1 and the BCs:499

input =
(
𝜁, ℎ,𝑚𝑏

𝜁
,𝑚𝜁 ,𝑚

𝑏
𝜁
· 𝜁,𝑚𝜁 · 𝜁,𝑚𝑏

𝜁
· ℎ,500

𝑚𝜁 · ℎ,𝑢,𝑚𝑏
𝑢 ,𝑚𝑢,𝑚

𝑏
𝑢 ·𝑢,𝑚𝑢 ·𝑢

)
(32)501

Here, 𝑚𝜁 is a mask for 𝜁 . It is zero for boundary values and502

one for interior values while 𝑚𝑏
𝜁
= 1−𝑚𝜁 , and 𝑚𝑢,𝑚

𝑏
𝑢 are the503

same for velocities. To deal with different spatial dimensions504

across input channels, we used kernel size 6 for 𝜁-sized inputs505

and kernel size 7 for 𝑢-sized inputs, and added the results in506

Fig. 2a.507

In our hybrid scheme, the neural network replaced the ex-508

pensive tridiagonal solve in Eq. 30 to compute 𝜁𝑛+1, while509

the numerical scheme computes coefficients of the tridiagonal510

system and updates 𝑢𝑛+1 while imposing BCs. We can there-511

fore drop the second term in Eq. 9 and replace the first with:512

LSWE =
𝐴𝜁𝑛+1− 𝑏2

2 (33)513

We compared equivariant networks (GE-CNN) to standard514

convolutional U-nets with the same architecture, loss and515

training procedure. For both network types, we adjusted the516

number of trainable parameters by scaling the number of out-517

put channels for all convolutions except the final layer, and for518

our default configuration as shown in Fig. 2a. This resulted in519

148M parameters for the equivariant convolutions and 149M520

for standard convolutions.521

A. Equivariance Improves Accuracy and Convergence522

We compared default configurations of our standard convo-523

lutional neural networks (CNN) to reflection-equivariant ver-524

sions (GE-CNN), see Fig. 2a. We trained on a library of525

Gaussian bells ICs with occasional resets, as shown in sec-526

tion III C. Both standard and equivariant convolutional net-527

works achieved low loss values and accurately predicted how528

the next time step for the SWEs (Fig. 5a). Since the standard529

CNN architecture describes a less restricted function class530

than the GE-CNN, it achieves a slightly lower loss value dur-531

ing training, at the cost of failing to respect symmetry in au-532

toregressive predictions.533

To test whether respecting symmetry would improve long534

term-accuracy, we therefore evaluated we compared the CNN535

and GE-CNN after training in autoregressive rollouts. Net-536

work outputs were used to define inputs for the next time537

step, and the results were compared to reference numerical538

solutions over 1200 time steps (100 simulated hours, Fig. 6a).539

The reference solutions describe waves propagating outward540

from the initial Gaussian bell before reflecting off the domain541

boundary five times (Fig. 6a, Fig. 6d black).542
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FIG. 6. GE-CNNs produce accurate SWE rollouts from Gaussian bell ICs. (a) Reference simulation of surface elevation 𝜁 and velocity 𝑢.
(b) Rollouts from CNN solver for 𝜁 and 𝑢, with errors (prediction − reference). (c) As in ‘b,’ but for GE-CNNs. (d) Snapshots of 𝜁 and 𝑢
obtained from the reference solver (black), CNN (blue) and GE-CNN orange. (e) Mean over ICs of NRMSE for 𝜁 and 𝑢 as a function of time
from the start of the simulation, for CNNs (blue) and GE-CNNs. (f) As in ‘e,’ but for correlation. (g) Histograms of time averaged NRMSE in
𝜁 and 𝑢 for CNNs (blue) and GE-CNNs (orange).

Individual CNN rollouts successfully reproduced the prop-543

agation and reflection of waves, but exhibited gradually in-544

creasing errors that increased when the waves were reflected545

by the closed boundaries (Fig. 6b). Over the CNN rollout the546

waves broadened, developed additional peaks in 𝜁 not present547

in the reference simulation. Compared to to reference sim-548

ulations, CNN rollouts exhibited higher spatial frequencies,549

a positive velocity bias and spatially asymmetric errors (Fig.550

6d, blue). By the end of the rollout the magnitude of errors551

reached the amplitude of the simulated wave heights and ve-552

locities.553

The GE-CNN followed the reference solution more closely,554

with errors at least one order of magnitude smaller than the555

simulated signals, and difficult to discern visually (Fig. 6c).556

The shape and width of the propagating and reflecting waves557

and surrounding smaller ripples closely matched the reference558

simulation. By the end of the simulation, errors appear as559

additional undulations in 𝜁 , while 𝑢 continues to to follow the560

reference simulation closely (Fig. 6d, orange).561

The training success rate, defined as the probablity over562

multiple training runs and ICs of achieving low time-averaged563

error (in Section V), was 10/12 for the GE-CNN but only 2/12564

for the CNN (Fig. 5b). When using networks ∼ 100 times565

smaller, we observed 9/12 successes for the GE-CNN (1.6M566

parameters) and 1/12 for the CNN (1.7M).567

We further measured how accuracy of CNN and GE-CNN568

rollouts varied over time and ICs by computing rollouts for569

each over 200 ICs. NRMSE (see Section V) in both 𝜁 and 𝑢 in-570

creased more quickly for the CNN, reaching average values 1-571

2 order of magnitude higher (Fig. 6e). Correlation coefficients572

between rollouts and the reference simulation followed a sim-573

ilar trend, with a decrease over time but clear superiority for574

the GE-CNN (Fig. 6f). We further examined the distribution575

of time-averaged NRMSE across ICs, computing histograms576
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FIG. 7. Reflection equivariance improves accuracy for all network sizes. (a-b) E𝑡NRMSE-𝜁 and E𝑡NRMSE-𝑢 as functions of network
parameter counts in CNNs and GE-CNNs. Error bars show standard deviations which are obtained by using the predictions in 100ℎ. (c-
f) Plots of NRMSE-𝜁 , NRMSE-𝑢, 𝜌(𝜁, 𝜁), and 𝜌(�̂�, 𝑢) as functions of integration time for several sizes of CNN and GE-CNN.

for 𝑢- and 𝜁-errors on logarithmic scales (Fig. 6g). The GE-577

CNN error distributions peaked near zero, while CNN errors578

peaked around the targeted signals’ amplitude, with a long-579

tailed distribution.580

For both CNN and GE-CNN rollouts, E𝑡NRMSE-𝜁 de-581

creases with parameter count of the trained networks, and582

is lower for GE-CNNs (Fig. 7a-b). The largest CNNs com-583

puted 𝜁 as accurately as the smallest GE-CNNs, but for 𝑢584

even the smallest GE-CNNs outperformed CNNs of all sizes585

tested. The same trend was observed at individual time points586

for NRMSEs (Fig. 7c-d) and correlation values (Fig. 7e-f).587

Overall, these results show that the long-rollout accuracy im-588

provement provided by equivariance is robust to the choice of589

network size and accuracy metric.590

B. Generalization Capabilities After Training591

We next examined how well PDEs solvers trained using592

Gaussian bell ICs would perform on conditions beyond their593

training data.594

We first measured rollout accuracy for an ICs described595

by an isosceles triangle in 𝜁 a the domain center with 400596

km base and 0.12 m height (Fig. 8a). This system state was597

never encountered during training, as it contains a discontinu-598

ous first spatial derivative in contrast to the smooth Gaussian599

bell. Rollout errors we were considerably higher than for a600

novel Gaussian bell scenario, though the GE-CNN was again601

more accurate, especially for 𝑢 (Fig. 8b-c). In the CNN roll-602

out the propagating wave dissipated into many high-frequency603

ripples, while for the GE-CNN waves propagated with the604

correct shape but too slowly, leading to a position mismatch605

with reference simulations (Fig. 8d). CNN and GE-CNN roll-606

out performance for triangular ICs with random height, width607

and position (uniform on 0.09-0.36 m, 200-300 km and 0-608

200 km respectively) showed similar trends to Gaussian bells.609

GE-CNN was uniformly superior, its errors grew more slowly610

over time, and its error distribution peaked near zero while the611

CNN’s peaked above 4 times the estimated signals (Fig. 8g).612

For a more challenging generalization task, we used a613

sum of 3 Gaussian bells as an initial condition. The refer-614

ence simulation (Fig. 9a) shows 6 propagating and reflecting615

waves that form a complex interference pattern. As previ-616

ously, in CNN rollouts the waves were distorted and dissi-617

pated over time with a positive bias emerging for 𝑢, while the618

GE-CNN maintained the correct shapes but introduced timing619

errors (Fig. 9c), and was more accurate at every time point620

(Fig. 9d). We also computed accuracy measures for triple-621

bell ICs (Fig. 9e-g) with random means (uniform on 100-1900622

km) and widths (10-100 km). The GE-CNN yielded better623

NRMSE and correlation values for all time delays, and a dis-624

tribution of time-averagd NRMSE that peaked near zero and625

showed little overlap with CNN results.626

C. Learned Representations of Global Mass, Momentum and627

Energy628

A challenge for ML-based PDE solvers is that their pre-629

dictions do not always satisfy conservation laws, even when630

these laws are manifested in their unsupervised loss or train-631

ing data71,76. Our reference SWE solver conserves mass, con-632

serves energy except for bottom drag, and conserves momen-633

tum except for bottom drag and boundary effects. Each re-634

flection of a propagating wave from the closed boundaries in-635

volves a temporary conversion of kinetic to potential energy.636

We investigated how well trained networks represent 4637

quantities: mass
∑
ℎ𝑖 , momentum

∑
ℎ𝑖𝑢𝑖 , kinetic energy638

1
2
∑
ℎ𝑖𝑢

2
𝑖
, and potential energy 1

2
∑
𝑔ℎ𝑖 . Note that we em-639

ployed the disturbed water depth ℎ to represent mass. We640

computed these for CNN and GE-CNN rollouts and compared641

to the reference solver. In individual held-out Gaussian bell642

ICs (Fig. 10a, upper row), CNN rollouts show a rapid error643

accumulation in all 4 quantities, while GE-CNNs exhibited a644
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Statistical  error measures from 100 random tests
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FIG. 8. GE-CNN solver trained on Gaussian bell ICs generalizes to triangular ICs. (a) Reference simulation of surface elevation 𝜁 and velocity
𝑢 from a triangular IC. (b) Rollouts from CNN solver for 𝜁 and 𝑢, with errors (prediction − reference). (c) As in ‘b,’ but for GE-CNNs.
(d) Snapshots of 𝜁 and 𝑢 obtained from the reference solver (black), CNN (blue), and GE-CNN (orange). (e) Mean over ICs of NRMSE for 𝜁
and 𝑢 as a function of time from the start of the simulation, for CNNs (blue) and GE-CNNs. (f) As in ‘e,’ but for correlation. (g) Histograms
of time averaged NRMSE in 𝜁 and 𝑢 for CNNs (blue) and GE-CNNs (orange).

slow drift in total mass that produced a drift in potential en-645

ergy, and negligible errors in momentum and kinetic energy.646

When averaging over many ICs, we found that average val-647

ues of the conserved quantities matched closely for GE-CNN648

and the reference simulation until almost 100 hours, while649

the CNN showed clear differences after 50 h (Fig. 10a, lower650

row). Similar results were observed for triangular (Fig. 10b)651

and multi-bell ICs (Fig. 10c); for these ICs errors grew more652

quickly but the GE-CNN matched the reference simulation653

more closely.654

VIII. DISCUSSION655

We developed reflection-equivariant 1-D convolutional net-656

works for mixed vector-scalar inputs, and trained them to657

solve the SWEs with an unsupervised loss. We showed how658

these networks can be endowed with the same symmetries and659

the targeted PDEs, and our experiments showed how they im-660

prove accuracy and stability over standard CNNs with similar661

parameter counts, over a broad range of scenarios and tests.662

GE-CNNs matched reference simulations more closely at all663

time points, performed on new IC types and more faithfully664

represented mass, momentum, and energy. A remarkable as-665

pect of these equivariant networks is that their advantages first666

become apparent when generating and evaluating longer roll-667

outs, with no differences from standard CNNs apparent during668

training. Our results show that equivariant architectures offer669

significant benefits for long-term accuracy and physical con-670

sistency, with no modifications to the loss function or training671

procedures.672
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Snapshots for    ,  Reference simulation

GE-CNN prediction and error (Network Param. = 147466201)c
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FIG. 9. GE-CNN solver trained on Gaussian bell ICs generalizes to multi-bell ICs. (a) Reference simulation of surface elevation 𝜁 and velocity
𝑢 from a multi-bell IC (centers 400, 1000, 1350 km; widths 3, 5, 7 km). (b) Rollouts from CNN solver for 𝜁 and 𝑢, with errors (prediction −
reference). (c) As in ‘b,’ but for GE-CNNs. (d) Snapshots of 𝜁 and 𝑢 obtained from the reference solver (black), CNN (blue) and GE-CNN
orange. (e) Mean over ICs of NRMSE for 𝜁 and 𝑢 as a function of time from the start of the simulation, for CNNs (blue) and GE-CNNs. (f) As
in ‘e,’ but for correlation. (g) Histograms of time averaged NRMSE in 𝜁 and 𝑢 for CNNs (blue) and GE-CNNs (orange).

A. Related Work673

Our work builds on and complements existing studies seek-674

ing to exploit symmetries for solving PDEs. Authors77 use675

PDE symmetries to design data augmentations for use dur-676

ing training, instead of making their networks equivariant.677

Ref.78 built steerable CNNs and the paper79demonstrated their678

utility predicting the evolution of incompressible NS and679

an advected temperature field, but do not consider mixed680

scalar/vector inputs and examine their predictions only 10681

time steps into the future.682

In Ref.80, the authors use network layers that solve a spe-683

cific PDE to build convolutional networks, instead of con-684

structing layers to match the symmetry groups of a specific685

PDE as we do here. Authors81 use rotation equivariant convo-686

lutional layers to operate on vector fields, but do not consider687

mixed input types or solve PDEs.688

The equivariant convolution layers we have developed for689

mixed scalar/vector inputs could also be realized using steer-690

able convolutions79 with the correct combination of scalar691

and vector capsules. Instead of transforming filter banks,692

steerable convolutions are based on optimizing convolution693

weights within a pre-computed linear subspace that satisfies694

the desired constraints. While this approach is flexible and695

efficient, we believe our layers can provide considerable util-696

ity through their mathematical simplicity. Some studies have697

also reported successful implementation of equivariant net-698

work through filter bank transformation, but could not achieve699

the same results through steerable convolutions82.700
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FIG. 10. GE-CNN solver robustly predicts mass, momentum, and energy. (a) Global mass, momentum, kinetic- and potential energy from the
reference solver, CNN- and GE-CNN rollouts (upper; same IC as Fig. 6). Mean and standard error of the mean for global mass, momentum,
kinetic- and potential energy over 200 Gaussian bell ICs. (b) As in ‘a,’ but for triangular ICs. (c) As in ‘a,’ but for multi-bell ICs.

B. Future Outlook701

In future work, we intend to extend our results to higher702

dimensional and more complex systems, and to combine ge-703

ometric and physical constraints83,84. We also anticipate that704

by offering a combination of long-rollout performance and au-705

tomatic differentiability, equivariant deep PDE solvers could706

prove useful for solving inverse problems85,86. The observed707

performance gains for long rollouts could also find useful ap-708

plications in climate, weather and ocean modeling, which re-709

quire stability and accuracy over far longer time intervals than710

commonly evaluated scenarios for deep PDE solvers.711
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Appendix A: Proof of Equivariance for Convolution Layers719

For completeness, we first provide proofs for the equiv-720

ariance of the original scalar-field-only convolution layers59
721
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in our notation. We then prove equivariance for our mixed722

scalar/vector input layers.723

1. Proof of Equivariance for Scalar-input Convolutional Input724

Layer725

The outputs of the first (input) layer of an equivariant con-726

volutional network 𝑎1
𝑗 ,0, · and 𝑎1

𝑗 ,1, · are defined in Eq. (16) and727

Eq. (17). We flip the input 𝑅F (𝑞𝑖, ·). Applying this layer to a728

fliped input using the same weights and biases gives:729

�̃�1
𝑗 ,0, · =

𝑐in∑︁
𝑖=1
𝑊1

𝑗 ,𝑖, ·★𝑅F
(
𝑞𝑖, ·

)
+ 𝑏1

𝑗 (A1)730

�̃�1
𝑗 ,1, · =

𝑐in∑︁
𝑖=1

𝑅F

(
𝑊1

𝑗 ,𝑖, ·

)
★𝑅F

(
𝑞𝑖, ·

)
+ 𝑏1

𝑗 (A2)731

To prove the equivariance in this layer, we flip the first layer732

of output. This flipping operator can be moved into the con-733

volution. Then, we obtain734

𝑅F (�̃�1
𝑗 ,0, ·) = 𝑅F

( 𝑐in∑︁
𝑖=1
𝑊1

𝑗 ,𝑖, ·★𝑅F
(
𝑞𝑖, ·

)
+ 𝑏1

𝑗

)
735

=

𝑐in∑︁
𝑖=1

𝑅F

(
𝑊1

𝑗 ,𝑖, ·

)
★𝑞𝑖, · + 𝑏1

𝑗 = 𝑎
1
𝑗 ,1, · (A3)736

𝑅F (�̃�1
𝑗 ,1, ·) = 𝑅F

( 𝑐in∑︁
𝑖=1

𝑅F

(
𝑊1

𝑗 ,𝑖, ·

)
★𝑅F

(
𝑞𝑖, ·

)
+ 𝑏1

𝑗

)
737

=

𝑐in∑︁
𝑖=1
𝑊1

𝑗 ,𝑖, ·★𝑞𝑖, · + 𝑏1
𝑗 = 𝑎

1
𝑗 ,0, · (A4)738

Now, these two equations satisfy the definition of the group739

equivariance in Eq. (10). Thus, we finish the proof. An ex-740

ample plot for the group equivariance of this layer is shown in741

Fig. (3).742

2. Proof of Equivariance for Non-Input Convolution Layers743

The output of subsequent layers, for which inputs and out-744

put channels are both real-valued functions on 𝐻, is given in745

eq. 19. A flipped input 𝑅F (𝑥𝑖, ·) gives the output746

�̃�ℓ𝑗,0, · =
𝑐ℓ−1∑︁
𝑖=1
𝑊 𝑗 ,𝑖,0, ·★�̃�

ℓ−1
𝑖,0, · +𝑊 𝑗 ,𝑖,1, ·★�̃�

ℓ−1
𝑖,1, · + 𝑏

ℓ
𝑗 (A5)747

�̃�ℓ𝑗,1, · =
𝑐ℓ−1∑︁
𝑖=1

𝑅F (𝑊 𝑗 ,𝑖,0, ·)★�̃�ℓ−1
𝑖,1, · +𝑅F (𝑊 𝑗 ,𝑖,1, ·)★�̃�ℓ−1

𝑖,0, · + 𝑏
ℓ
𝑗

(A6)

748

Flipping outputs gives749

𝑅F (�̃�ℓ𝑗,0, ·) =𝑅F

( 𝑐ℓ−1∑︁
𝑖=1
𝑊 𝑗 ,𝑖,0, ·★�̃�

ℓ−1
𝑖,0, · +𝑊 𝑗 ,𝑖,1, ·★�̃�

ℓ−1
𝑖,1, · + 𝑏

ℓ
𝑗

)
(A7)

750

𝑅F (�̃�ℓ𝑗,1, ·) =𝑅F

( 𝑐ℓ−1∑︁
𝑖=1

𝑅F (𝑊 𝑗 ,𝑖,0, ·)★�̃�ℓ−1
𝑖,1, ·+751

𝑅F (𝑊 𝑗 ,𝑖,1, ·)★�̃�ℓ−1
𝑖,0, · + 𝑏

ℓ
𝑗

)
(A8)752

Then, we move the flipping operator 𝑅F into the conversation753

features. We not only need to flip the weights but also switch754

the non-flipped input. Thus, Eqs. (A7-A8) can be written as755

𝑅F (�̃�ℓ𝑗,0, ·) =
𝑐ℓ−1∑︁
𝑖=1

𝑅F
(
𝑊 𝑗 ,𝑖,1, ·

)
★𝑎ℓ−1

𝑖,0, · +𝑅F
(
𝑊 𝑗 ,𝑖,0, ·

)
★𝑎ℓ−1

𝑖,1, · + 𝑏
ℓ
𝑗756

= 𝑎ℓ𝑗,1, · (A9)757

𝑅F (�̃�ℓ𝑗,1, ·) =
𝑐ℓ−1∑︁
𝑖=1
𝑊 𝑗 ,𝑖,0, ·★𝑎

ℓ−1
𝑖,0, · +𝑊 𝑗 ,𝑖,1, ·★𝑎

ℓ−1
𝑖,1, · + 𝑏

ℓ
𝑗 = 𝑎

ℓ
𝑗,0, ·

(A10)

758

Therefore, according to the definition of equivariance, we759

have proven the equivariance convolution in subsequent lay-760

ers. The example plot is also illustrated in Fig. (3).761

3. Proof of Equivariance for Mixed Scalar-Vector762

Convolution Layers763

The first layer’s outputs for mixed scalar-vector inputs are764

shown in Eqs. (22-23). Here, we prove the equivariance in this765

layers. According to the symmetry of the vector field shown766

in Eq. (21), we transform the input as 𝑅F (𝜁𝑖, ·) and −𝑅F (𝑢𝑖, ·).767

Thus, the first layer of output using the flipping input is written768

as769

�̃�1
𝑗 ,0, · =

𝑐
𝜁

𝑖𝑛∑︁
𝑖=1
𝑊

𝜁

𝑗,𝑖, ·★𝑅F (𝜁𝑖, ·) +
𝑐𝑢
𝑖𝑛∑︁

𝑖=1
𝑊𝑢

𝑗,𝑖, ·★−𝑅F (𝑢𝑖, ·) + 𝑏ℓ𝑗

(A11)

770

�̃�1
𝑗 ,1, · =

𝑐
𝜁

𝑖𝑛∑︁
𝑖=1

𝑅F (𝑊 𝜁

𝑗,𝑖, ·)★𝑅F (𝜁𝑖, ·) +
𝑐𝑢
𝑖𝑛∑︁

𝑖=1
−𝑅F (𝑊𝑢

𝑗,𝑖, ·)★−𝑅F (𝑢𝑖, ·)771

+ 𝑏ℓ𝑗 (A12)772

Next, we flip these outputs773

𝑅F (�̃�1
𝑗 ,0, ·) =𝑅F

( 𝑐
𝜁

𝑖𝑛∑︁
𝑖=1
𝑊

𝜁

𝑗,𝑖, ·★𝑅F (𝜁𝑖, ·) +
𝑐𝑢
𝑖𝑛∑︁

𝑖=1
−𝑊𝑢

𝑗,𝑖, ·★𝑅F (𝑢𝑖, ·) + 𝑏ℓ𝑗
)

(A13)

774

𝑅F (�̃�1
𝑗 ,1, ·) =𝑅F

( 𝑐
𝜁

𝑖𝑛∑︁
𝑖=1

𝑅F (𝑊 𝜁

𝑗,𝑖, ·)★𝑅F (𝜁𝑖, ·)+775

𝑐𝑢
𝑖𝑛∑︁

𝑖=1
𝑅F (𝑊𝑢

𝑗,𝑖, ·)★𝑅F (𝑢𝑖, ·) + 𝑏ℓ𝑗
)

(A14)776
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Now, we move the flipping operator into the convolu-777

tion operator. The flipping weight and input feature can be778

changed as the following equations,779

𝑅F (�̃�1
𝑗 ,0, ·) =

𝑐
𝜁

𝑖𝑛∑︁
𝑖=1

𝑅F (𝑊 𝜁

𝑗,𝑖, ·)★𝜁𝑖, · +
𝑐𝑢
𝑖𝑛∑︁

𝑖=1
−𝑅F (𝑊𝑢

𝑗,𝑖, ·)★𝑢𝑖, · + 𝑏ℓ𝑗780

= 𝑎1
𝑗 ,1, · (A15)781

𝑅F (�̃�1
𝑗 ,1, ·) =

𝑐
𝜁

𝑖𝑛∑︁
𝑖=1
𝑊

𝜁

𝑗,𝑖, ·★𝜁𝑖, · +
𝑐𝑢
𝑖𝑛∑︁

𝑖=1
𝑊𝑢

𝑗,𝑖, ·★𝑢𝑖, · + 𝑏ℓ𝑗 = 𝑎1
𝑗 ,0, ·

(A16)

782

Thus, according to the definition of equivariance of convolu-783

tion, we have proven the equivariance for mixed scalar-vector784

convolution layers.785

Appendix B: Numerical Discretization of SWEs786

Here we describe how the space- and time-discretized vari-787

able fields 𝑢𝑛 and 𝜁𝑛 of the SWE at the 𝑛-th time step are used788

to compute the (𝑛 + 1)-th time step. We describe the proce-789

dures used for the semiiplict non-deep-learning-based classi-790

cal numerical solver, which is a biased upwind scheme68.791

We discretize the momentum equation (eq. 24) as follows:792

𝑢𝑛+1 = 𝑢𝑛−Δ𝑡𝐶𝐷

1
ℎ
𝑢𝑛 |𝑢𝑛 |−Δ𝑡𝑔(1−𝑤imp)

𝜕𝜁𝑛

𝜕𝑥
−Δ𝑡𝑔𝑤imp

𝜕𝜁𝑛+1

𝜕𝑥
(B1)793

where 𝑤imp is a fixed parameter controlling weighting be-794

tween implicit and explicit time stepping. The mass equation795

(eq. 25) is discretized as:796

𝜁𝑛+1 = 𝜁𝑛 −Δ𝑡 (1−𝑤imp)
𝜕ℎ𝑛𝑢𝑛

𝜕𝑥
−Δ𝑡𝑤imp

𝜕ℎ𝑛𝑢𝑛+1

𝜕𝑥
(B2)797

Recall that ℎ = 𝑑 + 𝜁 and 𝑑 is the undisturbed water depth.798

Eq. (B1) is inserted into eq. (B2) to obtain799

𝜁𝑛+1 =𝜁𝑛 −Δ𝑡 (1−𝑤imp)
𝜕ℎ𝑛𝑢𝑛

𝜕𝑥
−Δ𝑡𝑤imp

𝜕ℎ𝑛𝑢∗

𝜕𝑥
800

+Δ𝑡2𝑤2
imp𝑔

𝜕2ℎ𝑛𝜁𝑛+1

𝜕𝑥2 (B3)801

where 𝑢∗ is an ‘interim solution’ defined by802

𝑢∗ = 𝑢𝑛 −Δ𝑡𝑐𝐷
1
ℎ
𝑢𝑛 |𝑢𝑛 | −Δ𝑡𝑔(1−𝑤imp)

𝜕𝜁𝑛

𝜕𝑥
(B4)803

When calculating the product of two variables defined on the804

velocity and mass points of the Arakawa C-grid (Fig. 1b), we805

interpolate the mass variable to velocity grid points by aver-806

aging adjacent values. For a quantity 𝛼 defined on the ve-807

locity or mass gird, the first spatial derivative is discretized808

as 𝜕𝛼
𝜕𝑥 𝑖

=
𝛼𝑖+1/2−𝛼𝑖−1/2

Δ𝑥
, with outputs staggered by Δ𝑥/2 from809

inputs. The second spatial derivative is discretized using the810

second order finite difference 𝜕2𝛼
𝜕𝑥2 𝑖

=
𝛼𝑖+1−2𝛼𝑖+𝛼𝑖−1

Δ𝑥2 , with out-811

puts on the same grid as inputs. Therefore, eq. (B3) can be812

written as813

𝜁𝑛+1𝑖 =
1

1+ 𝑐𝐸 + 𝑐𝑊

[
𝜁𝑛 +div+ 𝑐𝐸𝜁𝑛+1𝑖+1 + 𝑐𝑊 𝜁

𝑛+1
𝑖−1

]
(B5)814

where div = −Δ𝑡 (1 − 𝑤imp) 𝜕ℎ
𝑛𝑢𝑛

𝜕𝑥
− Δ𝑡𝑤imp

𝜕ℎ𝑛𝑢∗

𝜕𝑥
, while 𝑐𝐸815

and 𝑐𝑊 are defined as816

𝑐𝐸 =

{
0.5Δ𝑡2𝑤2

imp𝑔 (ℎ
𝑛
𝑖
+ℎ𝑛

𝑖+1 )
Δ𝑥2 𝑖 𝑓 ℎ𝑛

𝑖+1 > 0
0 otherwise.

817

𝑐𝑊 =

{
0.5Δ𝑡2𝑤2

imp𝑔 (ℎ
𝑛
𝑖
+ℎ𝑛

𝑖−1 )
Δ𝑥2 𝑖 𝑓 ℎ𝑛

𝑖−1 > 0
0 otherwise.

818

Eq. (B5) describes a linear system of equations in 𝜁𝑛+1 that819

can be written in matrix-vector form820

𝐴𝜁𝑛+1 = 𝑏 (B6)821

where 𝐴 is a 𝑁 × 𝑁 tridiagonal matrix (𝑁 = 𝐿/Δ𝑥) with822

𝐴𝑘,𝑘 = 1, 𝐴𝑘,𝑘−1 =− 𝑐𝑊
1+𝑐𝐸+𝑐𝑊 , 𝐴𝑘,𝑘+1 =− 𝑐𝐸

1+𝑐𝐸+𝑐𝑊 and all other823

elements zero. 𝑏 ∈ R𝑁 with 𝑏 =
𝜁 𝑛+𝑑𝑖𝑣

1+𝑐𝐸+𝑐𝑊 . Following68, we824
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