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Abstract

This work introduces the results of an intensive 15-day surface observation campaign of methane (CH4) and adapts a new

analytical method to compute and attribute CH4 emissions. The selected area has a high atmospheric concentration of CH4

(campaign-wide minimum/mean/standard deviation/max observations: 2.0, 2.9, 1.3, and 16 ppm) due to a rapid increase in

the mining, production, and use of coal over the past decade. Observations made in concentric circles at 1km, 3km, and 5km

around a high production high gas coal mine were used with the mass conserving model free emissions estimation approach

adapted to CH4, yielding emissions of 0.73, 0.28, and 0.15 ppm/min respectively. Attribution used a 2-box mass conserving

model to identify the known mine’s emissions from 0.042-5.3 ppm/min, and a previously unidentified mine’s emission from

0.22-7.9 ppm/min. These results demonstrate the importance of quantifying the spatial distribution of methane in terms of

control of regional-scale CH4 emissions.
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Abstract This work introduces the results of an intensive 15-day surface observation campaign of 11 

methane (CH4) and adapts a new analytical method to compute and attribute CH4 emissions. The 12 

selected area has a high atmospheric concentration of CH4 (campaign-wide minimum/mean/standard 13 

deviation/max observations: 2.0, 2.9, 1.3, and 16 ppm) due to a rapid increase in the mining, 14 

production, and use of coal over the past decade. Observations made in concentric circles at 1km, 3km, 15 

and 5km around a high production high gas coal mine were used with the mass conserving model free 16 

emissions estimation approach adapted to CH4, yielding emissions of 0.73, 0.28, and 0.15 ppm/min 17 

respectively. Attribution used a 2-box mass conserving model to identify the known mine’s emissions 18 

from 0.042-5.3 ppm/min, and a previously unidentified mine’s emission from 0.22-7.9 ppm/min. These 19 

results demonstrate the importance of quantifying the spatial distribution of methane in terms of control 20 

of regional-scale CH4 emissions. 21 

 22 

Key Points 23 

1.) Campaign-wide CH4 observations show a mean concentration of 2.9 ppm and a maximum of 24 

16 ppm, indicating very high coal mine emissions. 25 

2.) Computed CH4 emissions decreased away from the mine, from 0.73 ppm/min at 1km to 0.15 26 

ppm/min at 5km, indicating wide spatial impact. 27 

3.) Emissions attributed to known mine (0.042-5.3 ppm/min) and unknown mine (0.22-7.9 28 

ppm/min), allowing better regional emissions control. 29 

 30 

Plain Language Summary The study measures methane levels around a high production and 31 



high gas coal mine and finds very high concentrations, averaging 2.9 ppm and reaching 16 ppm 32 

compared to the global background of 1.8-1.9 ppm. Emissions were estimated using a new model free 33 

mass conserving approach at different distances from the mine, and found to decrease from 0.73 34 

ppm/min 1 km away from the mine to 0.15 ppm/min 5 km away from the mine. Attribution however 35 

identified two separate sources, with the known mine having a range of emissions from (0.042-5.3 36 

ppm/min) and a second previously unknown mine with a range of emissions from (0.22-7.9 ppm/min). 37 

This work shows the importance of measuring methane at both high temporal frequency and 38 

simultaneously over a well-sampled set of spatial coordinates across the area of interest, quantify 39 

emissions from different sources. It is hoped that this approach can better identify and quantify 40 

methane leakage from coal mining, and allow for more precise control. 41 

 42 
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1. Introduction 67 

Emissions of Methane [CH4] contribute the second most to direct anthropogenic longwave radiative 68 

forcing (Etminan et al., 2016; Li et al., 2022). Since CH4 has a lifetime from 9.5 to 12.5 years (Li et al., 69 

2022; Prather et al., 2012), controlling methane emissions can provide an opportunity to mitigate peak 70 

loading and slow the rate of net global warming (Nature, 2021). 71 

Fossil fuel CH4 is one of the largest sources of anthropogenic methane emissions (Kirschke et al., 72 

2013; Saunois et al., 2020a). Since China is the world’s largest producer and consumer of coal 73 

(Bournazian, 2016), CH4 emitted fro coal mines [CMM] possibly contributes up to 33%-40% of 74 

China’s total CH4 emissions (Janssens-Maenhout et al., 2017; Miller et al., 2019; Peng et al., 2016). 75 

Although China enacted CMM regulations in 2010 (Kerr and Yang, 2009), CMM continues grow 76 

(Miller et al., 2019). 77 

Methane emission estimates are highly uncertain (Brandt et al., 2014; Saunois et al., 2020b) in both 78 

space and time. They also generally have a fat tail distribution, wherein a small number of samples 79 

have extremely large emissions that overwhelm emissions under average conditions (Duren et al., 80 

2019; Plant et al., 2022). For these reasons, new approaches to quantify, reduce uncertainty, and 81 

attribute CH4 emissions can provide support for policies aiming to control and mitigate CMM (Cao, 82 

2017). 83 

Bottom-up (BU) quantification of emissions requires a priori knowledge of source locations and 84 

diversity, which tends to not represent real-world conditions. Top-down (TD) approaches analyze 85 

concentration data with improving accuracy (Allen, 2014; Rigby et al., 2019; Varon et al., 2018; 86 

Vaughn et al., 2018), specifically combining surface (Heerah et al., 2021; Katzenstein et al., 2003; Shi 87 

et al., 2023), aircraft (Karion et al., 2013; Shi et al., 2022; Tong et al., 2023; Vinković et al., 2022), 88 

and/or satellite (Wecht et al., 2014) CH4 observations with atmospheric models. Some TD approaches 89 

use physically realistic but complex chemical transport models (Bloom et al., 2017)
 
, others use plume 90 

models (Goldsmith et al., 2012), and others still use data driven approaches (Buchwitz et al., 2017). 91 

Uncertainties are rarely assessed holistically or in detail (Cohen and Prinn, 2011; Cohen and Wang, 92 

2014). 93 

Airborne remote sensing is a highly technical and costly approach to record CH4 fluxes from 94 

landfills, coal basins, and oil and gas production (Krautwurst et al., 2021; Krautwurst et al., 2017; 95 

Kuhlmann et al., 2023), which suffers from not being able to monitor CH4 emissions over long periods 96 



of time or in regions where the source is not well constrained (Brandt et al., 2014; Gorchov Negron et 97 

al., 2020; Hiller et al., 2014; Mehrotra et al., 2017; Molina et al., 2010). Satellite remote sensing can 98 

measure CH4 under specific orbits where the source is known and identified (Jacob et al., 2016; Jacob 99 

et al., 2022; Plant et al., 2022; Varon et al., 2018; Zhang et al., 2020), but only after being calibrated by 100 

upward looking remotely sensed measurements (Tu et al., 2022), and only when the atmosphere is rain, 101 

cloud and aerosol free (Cohen and Prinn, 2011; Reuter et al., 2019; Sadavarte et al., 2021). TROPOMI 102 

and GOSAT have both been shown to be data-rich at times (Butz et al., 2012; Hu et al., 2018; Jacob et 103 

al., 2016), but severely limited at other times (Butz et al., 2012; Kuze et al., 2009). Even when these 104 

satellites have sufficient data to compute emissions from other species, frequently CH4 cannot be 105 

computed (Li et al., 2023; Qin et al., 2023b) due to insufficient signal strength, and uncertainties which 106 

are both non-understood and mis-constrained (Povey and Grainger, 2015). 107 

Ground-based remote sensing provides higher accuracy versus satellite observations (Heerah et al., 108 

2021; Luther et al., 2022; Tu et al., 2022). EM27/SUN measurements have approximated CH4 109 

emissions in Poland (Luther et al., 2019; Luther et al., 2022). However, these instruments are 110 

expensive, require calibration, and have limited data collection due to solar signal strength. 111 

This work employs a high-frequency surface-based observation platform of CH4 concentration 112 

which is portable, economical, and unaffected by most environmental factors. The observations are 113 

combined with a new mass-conserving methodology based on temporal transformation of the spatially 114 

derived mass-conserving framework successfully applied to NO2 (Li et al., 2023; Qin et al., 2023b). 115 

This work focuses on Shanxi, one of the densest coal mining regions in the world, accounting for 116 

approximately 10% of total global coal production (Lin and Liu, 2010; Qin et al., 2023a). Continuous 117 

observations were made around known coal mines, unknown sources, and of background conditions. 118 

High-frequency emissions calculated using these data were used to drive a 2-box model to attribute 119 

emissions to the known mine and a second low production mine previously thought insignificant. The 120 

results provide insights into the spatial distribution of CH4 emissions, demonstrate rapid adoption of 121 

practical methods globally, and enable source attribution. 122 

2. Method and Data 123 

2.1. Study Site and Campaign Design 124 

Changzhi, Shanxi is located in a basin, with coal mines densely distributed throughout both flat 125 

central regions and around the mountainous edges (Figure S1), many of which are classified as high 126 



CH4 emitting mines. Due to this combination, province-wide background CH4 concentrations are very 127 

high and have large variation in time. One mine is classified as having high amounts of CH4 per unit of 128 

production and an annual coal production of 4 million tons [CM-A], and the other is unclassified for 129 

CH4 per unit of production and having an annual coal production of 3 million tons [CM-B] (Qin et al., 130 

2023a). Observations were positioned along concentric circles located 1km, 3km, and 5km from CM-131 

A, over an approximation of the four ordinal directions: east, west, south, north (Figure1). All locations 132 

were planned to be far away from known anthropogenic sources, leading to a net total 12 measurement 133 

points. As later discovered, CM-B is located approximately 1km southwest from the measurement 134 

point located at 5km west. 135 

2.2. Measuring CH4 Concentration 136 

CH4 concentrations were observed daily at 1 Hz from 8:30 to 17:00 local time in August 2022 using 137 

a portable greenhouse gas analyzer (LGR-915-0011, California, USA) 5m above the surface. Three 138 

different locations were selected daily along a single ordinal direction from the mine center, allowing a 139 

more consistent and precise calculation of the spatial gradient (Table S1). The CH4 data was averaged 140 

minute-by-minute to match observed wind data, and subsequently used to compute emissions. As show 141 

in Figure S2, the CH4 concentration data is highly correlated with rapid changes in both the wind speed 142 

and direction. 143 

Observations made in clean locations with a wind direction not from the mine are subsequently 144 

considered for background sites. The lowest and least variable CH4 observations are found on August 145 

23 in the south (2.08ppm±0.08) (Figure S2). It is important to note that although the minimum in this 146 

work, these values are significantly higher than the global latitude-band background. Three other 147 

locations and days were observed with relatively low mean and not significantly large variation: 148 

August 19 in the east (2.63ppm±0.35), August 22 in the east (2.65ppm±0.51), and August 22 in the 149 

south (2.60ppm±0.55) (Figure S2). These results imply that the practice adopted by the community to 150 

separate a plume from the global latitude band or climatological background state is not applicable in 151 

the locations sampled in this paper (Buchwitz et al., 2017; Irakulis-Loitxate et al., 2021; Lauvaux et al., 152 

2022; Sadavarte et al., 2021). For this reason, a new quantitative approach is presented to understand 153 

and quantify what is actually a source and what is not. This approach is applicable under conditions 154 

both encountered globally as well as those under the uniquely high and variable conditions observed 155 

herein. 156 



2.3. Meteorological Data  157 

The wind speed and direction were obtained from local meteorological stations with a temporal 158 

frequency of 1min. As show in Figures S3 and S4 the overall wind was dominated by a southerly 159 

direction (38.0% of observations between 150° and 210°) and found to be moderately slow (69.9% of 160 

observations were between 1 m/s and 4 m/s). The 10
th

 and 90
th

 percentiles of wind direction (54° and 161 

312°) and wind speed (1 m/s and 5.1 m/s) respectively, indicate that high frequency sampling reveals a 162 

small number of relatively large changes are observed, which are expected to lead to a “fat-tail” type of 163 

distribution of subsequently computed emissions (Delkash et al., 2016). 164 

2.4. Quantitative Estimation of CH4 Emissions  165 

A mass conserving approach was used to estimate the CH4 emissions in connection with the high 166 

frequency observations of CH4 and meteorological data, hereafter called the Mass Conserving Model 167 

of Measured Coal Methane [MCM
2
]. This approach is based on previous emissions estimates of total 168 

atmospheric column observations of short-lived NOx
 
(Li et al., 2023; Qin et al., 2023b), but has never 169 

been applied to surface observations in general, or CH4 in specific. Adopting this approach methane is 170 

done starting with mass conservation (Equation 1), and reorganizing the individual terms (Equations 2, 171 

3) as follows: 172 

𝜕𝐶𝐻4

𝜕𝑡
= 𝐸𝐶𝐻4

− 𝛼 × ∇(𝑈 × 𝐶𝐻4)         (1) 

∇(𝑈 × 𝐶𝐻4) = 𝐶𝐻4 ×
𝜕𝑈

𝜕𝑡
+ 𝑈 ×

𝜕𝐶𝐻4

𝜕𝑡
          (2) 

𝜕𝐶𝐻4

𝜕𝑡
= 𝐸𝐶𝐻4

−  𝛼 × (𝐶𝐻4 ×
𝜕𝑈

𝜕𝑡
+ 𝑈 ×

𝜕𝐶𝐻4

𝜕𝑡
)         (3) 

where CH4 is methane concentration (ppm), t is time (min), 𝐸𝐶𝐻4
is CH4 emissions (ppm/min), 𝛼 is a 173 

conversion coefficient between distance and wind speed, and U is wind speed (m/s).  174 

Uncertainty analysis was conducted before calculating the CH4 emissions to ensure only reliable data 175 

was used, since observed variation of CH4 over time is influenced not only by CH4 emissions, but also 176 

changes in wind speed and pressure. Specifically,  𝐶𝐻4 ×
𝜕𝑈

𝜕𝑡
 represents the change in CH4 influenced 177 

by pressure, while 𝑈 ×
𝜕𝐶𝐻4

𝜕𝑡
 represents the change in CH4 influenced by advection. Furthermore, since 178 

there is uncertainty in the observations, this work takes a conservative approach, and only considers 179 

data when the threshold given by equation (4) is observed to be considered influenced by emissions. 180 

𝑢 ×
𝜕𝐶𝐻4

𝜕𝑡
/∇(𝑈 × 𝐶𝐻4) > 30%  （4） 

The remaining data (approximately 22%, Figure S5) is not processed in the emissions calculation as the 181 



signal is most likely due to a combination of observational uncertainty and white noise (Prinn et al., 182 

1987). 183 

2.5. Attribution Analysis 184 

A 2-box mass conserving model (based on equation 5) was used to attribute emissions from the more 185 

than one suspected source of CH4 in the west. The change in CH4 over time t (min) at the observation 186 

point 𝐶𝑐𝑜𝑎𝑙 𝑚𝑖𝑛𝑒 (ppm) is driven by Emissions from the upwind coal mine 𝐸𝑐𝑜𝑎𝑙 𝑚𝑖𝑛𝑒  (ppm/min) and the 187 

concentration gradient computed using the wind U (min
-1

), and the background concentration  188 

𝐶𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑  (ppm) as demonstrated in (Figure S6). 189 

𝜕𝐶𝑐𝑜𝑎𝑙 𝑚𝑖𝑛𝑒

𝜕𝑡
= 𝐸𝑐𝑜𝑎𝑙 𝑚𝑖𝑛𝑒 + 𝑈 × 𝐶𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 − 𝑈 × 𝐶𝑐𝑜𝑎𝑙 𝑚𝑖𝑛𝑒           (5) 190 

All observed individual data points and computed emissions are used wind direction is capable of 191 

transporting the CH4 from either CM-A or CM-B towards the observation site, while the remaining 192 

data is not used. A discretized version of Equation 5 is given in Equation 6 and solved using a first 193 

order finite difference approach: 194 

𝐶𝐶𝑜𝑎𝑙 𝑚𝑖𝑛𝑒𝜏𝑖+1
− 𝐶𝑐𝑜𝑎𝑙 𝑚𝑖𝑛𝑒𝜏𝑖

= 𝐸𝑐𝑜𝑎𝑙 𝑚𝑖𝑛𝑒𝜏𝑖
+ 𝑈𝜏𝑖 × 𝐶𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝜏𝑖

− 𝑈𝜏𝑖 × 𝐶𝑐𝑜𝑎𝑙 𝑚𝑖𝑛𝑒𝜏𝑖
          (6) 195 

where 𝜏𝑖 and 𝜏𝑖+1 are the current and next time step, and the other terms are defined as in equation 5. 196 

All possible sets of steady-state concentrations are computed using all possible combinations of 197 

emissions and concentrations as boundary and initial conditions and running the equation forward to 198 

equilibrium. The computed concentrations are analyzed probabilistically by comparing the modeled 199 

CH4 probability density function (PDF) with the observed CH4 PDF. Differences between the PDFs are 200 

clearly associated with the different wind directions and hence geophysical locations of the sources can 201 

be distinguished.    202 

3. Results and Discussion 203 

3.1. Observations and Analysis of CH4 Concentration 204 

Time series of CH4 concentration, wind speed, and direction at 1km, 3km and 5km north of CM-A 205 

are given in Figure 2. The wind direction blew from CM-A towards the observations (between 150° 206 

and 210°) 59.2% of the time, with only one day observed at 1km north (August 15) with a significant 207 

amount of wind from the west (between 240° and 300°). Consistent with CM-A being the major source 208 

at 1km, when the wind blew from the south, the CH4 concentration (3.45±0.79) was both higher and 209 

had a larger variation than when the wind blew from the west (2.40±0.17) which was similar to 210 

background conditions. This is consistent with there being no known significant sources to the west 211 

from this observation location, as shown in Figure 1. Similarly, under faster than average wind 212 



conditions from the direction of CM-A (On August 21 the mean wind was 5.70 m/s with 14.9% of 213 

observations faster than 7 m/s), the observed concentrations were slightly lower, yet similarly variable 214 

(3.17±0.82). All of these findings are consistent with transport dominating the concentrations at 1km 215 

north, and that high frequency wind and concentration observations are required in tandem to compute 216 

the required spatial gradients in the CH4, otherwise there is no basis to objectively separate the effects 217 

of the emitting region (CM-A) from the background. 218 

A similar set of findings were observed at 3km north, while 5km north is generally similar to the 219 

background. At 3km north, when the wind was from the south (59.3% of data), the concentration was 220 

lower and more variable (3.16±1.48, with 78.7% of observations below 3.0ppm) than at 1km north, 221 

consistent with advection from CM-A and a relatively stable atmosphere with a small contribution from 222 

diffusion between the plume and the background. When the wind blew from other directions, the 223 

distribution of concentrations broadened considerably, with a range from background (2.25ppm) 224 

through extremely polluted (16.2ppm). One subset of this was observed on August 15 (observed over a 225 

total of 61 mins of observations, 6.68% of the total observations at 3km north) when the wind was from 226 

the west and slow, where the concentration was (5.44±2.82), as depicted in Figure 2. The data on this 227 

day aligned with the presence of a major highway west of the observation site, which was observed in-228 

person to have heavy traffic consisting of vehicles carrying coal (which could still be outgassing) as 229 

well as others powered by CNG. At 5km north the overall concentration (2.40±0.28) was generally 230 

lower than at 3km and had much lower variability, consistent with background CH4. 231 

Time series of CH4 measured at 1km, 3km and 5km west of CM-A and corresponding wind direction 232 

and speed are given in Figure 2. Overall, the main wind direction is from the south 98.4% of the time at 233 

1km, 74.5% of the time at 3km, and 70.2% of the time at 5km, and the wind speed was very high when 234 

measuring CH4 at 1km west, with an average value of 4.28±1.13m/s and a maximum of 7.4m/s. This 235 

set of findings is consistent with clean upwind sources. Accordingly at 1km west, the observed CH4 236 

was slightly higher than background and had similar variability to 1km and 3km north (2.71±0.94ppm 237 

and 86.5% of the data below 3ppm). At 3km west, CH4 was observed to be similar to the background 238 

(2.32±0.09ppm). The only exception was found at 1km west between 9:00 am and 9:30 am on August 239 

17, in which all of the observations were greater than 4ppm. Since the areas to the west from 1km west 240 

contains mostly farmland, there was no expected strong source of CH4, as shown in Figure 1. This 241 

indicates that during this special short time, the observed slow increase and rapid fall-off in CH4 242 



concentration must be due an unidentified source, or a change in the boundary layer and/or vertical 243 

mixing structure. 244 

Following this, it was anticipated that the 5km west site would exhibit background types of 245 

conditions, however the observed data deviates significantly. Wind speed was low (1.63±0.54m/s, 246 

maximum 3.0 m/s),CH4 was both very high and exhibited substantial temporal variability (5.83±2.99 247 

ppm, 66.7% exceeding 4ppm, and peak of 15.3 ppm), and 70.2% of the observations were from the 248 

south as demonstrated in (Figure 2). From Figure 1, it can be seen that there is another Coal mine 249 

(hereafter CM-B) located about 1km away from the 5km west measurement point, to its southwest, 250 

although CM-B has an annual production of about 3 million tons (smaller than CM-A) and not 251 

considered to be high gas (like CM-A), and therefore was not previously considered important. The 252 

overlap of high concentrations with low a priori emissions, suggests that formal attribution is essential 253 

to quantitatively confirm whether CM-B is the source responsible for both typical conditions at 5km 254 

west, as well as the long-range transport event at 1km west. 255 

CH4 concentrations and wind observations in all directions except to the west, and except for the 256 

small number of special events documents above, exhibit PDFs that show there is a decrease in 257 

concentration the further the distance from CM-A (Figures S7 and S8), indicating that CM-A is 258 

consistent with the major sources in these regions. These decreases are observed in terms of the 259 

median, mean, distribution width, and percentage over 4.0ppm all decreasing from 1km north to 3km 260 

north and again from 3km north to 5km north. 261 

The observed CH4 concentration gradient as one moves westward from CM-A is inconsistent with 262 

the other ordinal directions (Figure S7). While there was a small decrease in the mean and distribution 263 

breadth from 1km west to 3km west, there was a large increase in the median, mean, distribution width, 264 

percentatge over 4.0ppm from 3km west to 5km west. Furthermore, the data at 5km west was found to 265 

be skewed differently than at the other sites, with approximately 70% of the data greater than 4.0ppm. 266 

The data clearly indicates that the 5km west site behaves more like a source region than even the 1km 267 

north site. 268 

3.2. Quantification and Characteristics of CH4 Emissions 269 

The emissions have been computed at each following Equations 3 and 4, with 25.7% of observations 270 

yielding emissions results. The PDFs of the emissions (Figures 3 and S9) reveal that the three stations 271 

in the north and the 5km west station all are relatively high and variable, while the remainder are 272 



relatively low and non-variable. Among all the CH4 emissions results, the highest median, mean, 273 

maximum, and breadth of the distribution are all observed at 5km west. The 3km south location has the 274 

lowest emissions of all points observed (by median), with a respective median, mean, maximum, and 275 

percentage greater than 1.0ppm/min of (0.03ppm/min, 0.26ppm/min, 0.90ppm/min, 0%) (Figure S9), 276 

and is subsequently considered representative of background emissions in this work. It is important to 277 

note that there is no area within this region that has 0ppm/min emissions and that the minimum 278 

concentration on average is about 2.23ppm (Figure S8), both of which are considered very high or 279 

polluted compared with most other current studies (Irakulis-Loitxate et al., 2021; Sadavarte et al., 280 

2021). 281 

The spatial distribution of the CH4 emissions is similar to that of the CH4 concentration observations 282 

(Figure 3). First, there is a decrease as one moves northward along the axis away from CM-A, with the 283 

median, mean, maximum, and percentage of emissions greater than 1.0ppm/min at 1km north 284 

(0.73ppm/min, 1.18ppm/min, 5.67ppm/min, and 42%) all larger than at 3km north (0.28ppm/min, 285 

0.72ppm/min, 3.41ppm/min, and 29%). The values at 3km north are also larger than those at 5km 286 

north, which respectively are (0.11ppm/min, 0.18ppm/min, and 0.59ppm/min, and 0%). The subset of 287 

emissions under low wind speed conditions exhibited a larger decline from 1km to 3km and from 3km 288 

to 5km. The observations are further consistent with transport from a single dominant source located at 289 

CM-A being the primary driving factor, and diffusion from other industrial sources in Changzhi city 290 

center being a secondary factor. 291 

Consistent with there being few to no sources impacting the 1km west and 3km west sites, except for 292 

considerably less transport from CM-A the computed PDFs at these sites (Figure 3) demonstrate low 293 

emissions and low variability, with the respective median, mean, maximum, and percentage of 294 

emissions greater than 1.0ppm/min at 1km west being  (0.28ppm/min, 0.55ppm/min, 3.03ppm/min, and 295 

16%) and at 3km west being even lower (0.08ppm/min, 0.10ppm/min, 0.27ppm/min, and 0%). 296 

However, the CH4 emissions computed at 5km west were the highest and most variable of all results 297 

computed in this work, with the respective statistics being (1.45ppm/min, 1.82ppm/min, 7.92ppm/min, 298 

and 60%). Furthermore, the skewness of the distribution at 5km west (which has 30% of the CH4 299 

emissions above 2.0ppm/min) is much larger than at 1km north (which only has 15% of emissions 300 

above 2.0ppm/min). Combining these pieces of information, at first look it seems that the site at 5km 301 

west is not related to the emissions from CM-A, or at best are a mixture of emissions from CM-A and 302 



those at another site, herein proposed to be CM-B. The remainder of this study focuses on 303 

disentangling and attributing contributions from CM-A and CM-B at 5km west, with the observations 304 

at the remaining sites ruled out in terms of having a contribution from CM-B. 305 

3.3. Attribution of Emissions  306 

This works applied the 2-box model at the 5km west site and quantified the contribution of both CM-307 

A and CM-B emissions to the observed CH4 concentration distributions as given in Figure 3. First, the 308 

results of the 2-box model produce PDFs which overlap with the overall observed CH4 PDF, indicating 309 

that the results are reasonable. Second, space of the emissions computed from the two different two 310 

coal mines do not overlap, and cover two independent portions of the observed CH4 PDF. Specifically, 311 

the observed CH4 concentrations as a whole have a 30%, 50%, and 70% value of (3.68ppm, 5.18ppm, 312 

and 6.86ppm) respectively. The emissions from CM-A yield a CH4 concentration less than 4ppm most 313 

of the time, with a 30%, 50%, 70%, and maximum concentration of (2.96ppm, 3.15ppm, 3.31ppm, and 314 

4.60ppm), while the emissions from CM-B yield a CH4 concentration more than 5ppm most of the 315 

time, with a minimum, 30%, 50%, 70%, and maximum concentration of (4.76ppm, 5.20ppm, 5.68ppm, 316 

and 6.18ppm). 317 

Overall, the emissions from CM-B cover well the observed concentration values from the range of 318 

50% to 70%, with a single high value around the 90% value, while the emissions from CM-A cover 319 

well the observed concentration values in the range from 10% to 30%. One weakness is that the length 320 

of observations is not as comprehensive as at the other sites, and therefore it is possible that had more 321 

observations been made, the contributions from CM-B would have filled more of the space between the 322 

70% and 90% levels, and some combination of sources from CM-A and CM-B would have better filled 323 

the space between the 30% and 50% levels. Overall, the results indicate to a high degree of certainty 324 

that the emissions from the two respective coal mines are distinct, with CM-A the source of emissions 325 

in the lower range of the concentration distribution and CM-B the source for emissions in the higher 326 

concentration range, covering values in the middle and upper range. Improvements in modeling, 327 

additional observations, considering possible contributions from additional missing sources, and 328 

consideration of longer-range transport could add further improvement and better explore the 329 

intermediate range of observed concentrations.  330 

4. Conclusions 331 

This work demonstrates that high frequency surface observations of CH4, in combination with high 332 



frequency observations of wind can provide deep insights into emissions by accounting for high 333 

frequency changes in space and time at the same time, which tend to be missing from models which 334 

used more idealized approaches (such as average plume shapes and sizes, levels of coal production, and 335 

interpreting gradients from a small number of fixed images). This work demonstrates that a significant 336 

source of CH4 emissions from a previously unknown or improperly classified mine may pose a vastly 337 

different range of observed concentration as well as computed emissions than expected. The 338 

importance of observations at both high frequency and regional spatial coverage are demonstrated, and 339 

a set of practical methods that are freely open and can be adopted and modified rapidly are provided. 340 

The approach to source attribution used herein can provide insights to policymakers to formulate 341 

regional emission control policies and provide a check on or a priori assumption for the new generation 342 

of advance satellite-based top-down emissions estimates, while demonstrating that spatial attribution is 343 

a critical next-step for satellite approximations and methane control policies. 344 
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 551 
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 553 

 554 

 555 

Figures 556 

 557 

Figure 1. Locations of four individual coal mines (Green filled houses), a power plant (Yellow outlined house), and 558 

the 12 observation locations presented in this work (red double-outlined triangles). Distance from CM-A are given 559 

as concentric circles at 1km (white), 3km (yellow), and 5km (blue). 560 

 561 
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 562 
Figure 2. Time series of CH4 concentration [ppm] (blue), wind speed [m/s] (yellow) and wind direction [o] (orange 563 

lines) measured at 1km (solid), 3km (dashed) and 5km (dash-dot) located north (top) and west (bottom) of CM-A 564 

on four different days (August 14 top left, August 15 top right, August 17 bottom left, and August 18 bottom right).   565 

 566 
Figure 3. Probability density functions [PDF] of computed CH4 emissions located at 1km north (a), 3km north (b), 567 

5km north (c), 1km west (d), 3km west (e), and 5km west (f) of CM-A, including median, mean, maximum, and 568 

minimum statistics. The PDFs of CH4 concentration measured at 5km west (blue) and simulated using the 2-Box 569 

model under conditions when the source is CM-A (red), and when the sources is CM-B (orange), including 570 

representative 30%, 50%, and 70% bounds are in (g). 571 
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