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Abstract

A significant increase in the number of anthropogenic objects in Earth orbit has necessitated the development of satellite

conjunction assessment and collision avoidance capabilities for new spacecraft. Often, the greatest source of uncertainty in

predicting a satellite’s trajectory in low Earth orbit originates from atmospheric neutral mass density variability caused by

enhanced geomagnetic activity and solar EUV absorption. This work investigates the impacts of solar and geomagnetic index

forecasting uncertainty on satellite drag and satellite maneuver decision-making. During an averaged point in the solar cycle,

accurate index forecasts with reduced uncertainty are shown to provide significantly improved advance notice for dangerous

conjunction events above 500 km. Below 500 km, forecast improvements are less impactful. This boundary of utility from

forecast improvements shifts upward and downward during solar maximum and solar minimum, respectively. Improved index

forecasts are shown to have little impact on making maneuver decisions 12-24 hours from a potential conjunction event, but

are demonstrated to be very useful when trying to make maneuver decisions with more lead time. These improved forecasts of

the space weather indices help in making actionable, durable conjunction predictions sooner than is currently possible.
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Key Points:8

• Poor forecasts of space weather indices inhibit our ability to perform actionable9

satellite conjunction assessment with advance notice.10

• Uncertainty in the space weather index forecast is translated into uncertainty in11

position in the satellite body-fixed frame.12

• Example scenarios show that accurate, uncertainty-aware space weather index fore-13

casts can help make better maneuver decisions sooner.14
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Abstract15

A significant increase in the number of anthropogenic objects in Earth orbit has neces-16

sitated the development of satellite conjunction assessment and collision avoidance ca-17

pabilities for new spacecraft. Often, the greatest source of uncertainty in predicting a18

satellite’s trajectory in low Earth orbit originates from atmospheric neutral mass den-19

sity variability caused by enhanced geomagnetic activity and solar EUV absorption. This20

work investigates the impacts of solar and geomagnetic index forecasting uncertainty on21

satellite drag and satellite maneuver decision-making. During an averaged point in the22

solar cycle, accurate index forecasts with reduced uncertainty are shown to provide sig-23

nificantly improved advance notice for dangerous conjunction events above 500 km. Be-24

low 500 km, forecast improvements are less impactful. This boundary of utility from fore-25

cast improvements shifts upward and downward during solar maximum and solar min-26

imum, respectively. Improved index forecasts are shown to have little impact on mak-27

ing maneuver decisions 12-24 hours from a potential conjunction event, but are demon-28

strated to be very useful when trying to make maneuver decisions with more lead time.29

These improved forecasts of the space weather indices help in making actionable, durable30

conjunction predictions sooner than is currently possible.31

Plain Language Summary32

As low earth orbit has become crowded with new satellites and debris, operators33

have been forced to maneuver satellites to avoid collisions on a regular basis. The drag34

force on a satellite, which can significantly affect the orbital path, varies depending on35

solar and geospace activity. Unfortunately, solar activity and resulting effects at Earth36

are difficult to predict even just a few days in advance. This paper traces space weather37

forecasting ability directly to impacts on satellite maneuver decision-making, and finds38

that better forecasts enable good maneuver decisions earlier than is possible with cur-39

rent forecasts.40

1 Introduction41

Recent rapid growth in the population of active satellites and debris objects in low42

Earth orbit (LEO) has led to a clear need for satellite conjunction assessment, risk anal-43

ysis (CARA), and collision avoidance (COLA) maneuvering capability. Today, a space44

domain awareness ecosystem exists that allows satellite operators to track objects in or-45

bit, predict conjunctions in advance, and make decisions regarding satellite maneuver-46

ing to mitigate the risk of a collision. Organizations like the US Space Force’s 18th Space47

Defense Squadron provide conjunction data messages (CDMs) (Consultative Commit-48

tee for Space Data Systems, 2022) to operators responsible for performing the subsequent49

risk analysis and making COLA decisions for their assets.50

With the advent of proliferated LEO constellations in recent years, CARA tasks51

are routinely becoming more automated to reduce operator burden. Figure 1 shows the52

number of tracked objects since 1970 in time-averaged orbit altitude bins. Significant53

debris-generating events, including the Chinese Fengyun 1C ASAT test in 2008 and the54

Cosmos-Iridium collision in 2009 are clearly apparent. The subsequent decay of the re-55

sulting debris populations from these events is also visible. In 2019, Starlink began op-56

erating thousands of satellites around 550 km, where the constellation is subject to con-57

stant bombardment from debris falling from breakup events above. Managing such a large58

constellation in a debris-filled environment requires careful automation and robust pro-59

cedures for collision avoidance.60

Considering this growing automation of CARA and COLA tasks, many operators61

have developed internal protocols for determining whether a COLA maneuver is appro-62

priate for a conjunction scenario of interest. Most maneuver decisions consider the prob-63
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Figure 1. Tracked objects by altitude since 1970, created using a history of two-line element

(TLE) data. The 2008 Chinese ASAT test and 2009 Cosmos-Iridium Collision are clearly defined

with debris decay following afterwards. The beginning of the Starlink constellation is also visible.

ability of collision (Pc), computed based on imperfect knowledge of the scenario and a64

model for evolving the states of the objects of interest. While the interpretation of po-65

tential conjunction events is probabilistic based on imperfect measurements and mod-66

els, the potential collision event itself is deterministic. Given perfect observations and67

a perfect process model, the probability of collision at any time before the conjunction68

event should be either zero or one. However, uncertainty in measurements and satellite69

propagation complicates the analysis. As the time until the conjunction event drops, bet-70

ter knowledge of the state of each object from new observations, along with a lower pro-71

cess model error, results in a better understanding of the likely outcome.72

Most potential conjunction events are identified during screening about seven days73

in advance of the time of closest approach (TCA). However, many operators choose to74

wait until 12-24 hours or less before TCA to decide whether or not to maneuver. This75

waiting is necessary because there is often significant process error in the state propa-76

gation of the objects involved in the conjunction, and updating the states of the objects77

with recent measurements constrains the growth of this process error.78

Operators choose to wait to make maneuver decisions because collision avoidance79

maneuvers are costly. While the amount of propellant expended for collision avoidance80

maneuvers is typically small compared to the amount used for station-keeping, such ma-81

neuvers can routinely prevent a satellite from performing its desired task (Earth obser-82

vation, serving users, charging solar panels, communicating with ground stations, etc.)83

for hours on end. However, many active satellites (especially small satellites) lack propul-84

sion systems capable of performing last-minute COLA maneuvers. Instead, these satel-85

lites may often use differential-drag techniques, which can mitigate risk but require sev-86

eral days’ notice to be effective. Even for satellites with propulsion systems, it is often87

inconvenient or impossible to maneuver at a moment’s notice since this likely means missed88

passes of ground targets or communications opportunities. For tracked, non-maneuverable89

debris objects, laser-nudging may be an effective means of collision avoidance maneu-90

vering (NASA, 2023), but even this approach still requires advance notice exceeding the91

current standard for operations.92
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If satellite propagation accuracy and uncertainty are improved, good maneuver de-93

cisions could be made sooner with the same level of risk. The following sections discuss94

limitations in our ability to predict satellite motion in LEO, how these limitations im-95

pact the conjunction risk assessment process, and what steps can be taken to make durable96

collision avoidance maneuver decisions sooner. After a discussion of the uncertainties in-97

volved in predicting satellite drag in Section 2, capabilities and limitations in forecast-98

ing atmospheric neutral mass density are discussed in Section 3. Then, the probability99

of collision metric is introduced and a dangerous scenario is highlighted using actual his-100

torical CDM data in Section 4. Finally, semi-analytical and numerical methods for trans-101

lating space weather index uncertainty into satellite state uncertainty are explained in102

Section 5, which are used for performing simulated conjunction assessment scenarios for103

collision events in Section 6.104

2 Satellite Drag105

As the largest contributor to state propagation error in LEO, significant effort has106

been devoted to improving satellite drag models in recent years. The acceleration due107

to atmospheric drag on a satellite is computed by108

r̈D = −1

2

CdA

m
ρv2relerel, (1)

where r is the satellite position vector in an Earth-centered inertial frame, ρ is the at-
mospheric neutral mass density, vrel is the magnitude of the velocity of the satellite rel-
ative to the motion of the atmosphere, Cd is the drag coefficient, A is the frontal area
of the satellite normal to the direction of motion relative to the atmosphere, m is the
mass of the satellite, and erel is the unit vector in the direction of satellite relative ve-
locity. In practice, the uncertain Cd, A, and m are often combined as

B =
CdA

m
, (2)

or, in some cases

B∗ =
CdAρ0
2m

, (3)

where ρ0 is the reference density of 0.15696615 kg/(m2·RE), and RE is the average Earth
radius (Hoots, 1980). It follows that

r̈D = −1

2
ρv2relBerel = − ρ

ρ0
v2relB

∗erel. (4)

To accurately predict satellite drag (and evolve uncertainty in that prediction), it109

is prudent to consider each term in Eq. 1 as uncertain. vrel and erel are often well char-110

acterized during quiet periods because the winds in the upper atmosphere are much lower111

in magnitude than the spacecraft’s velocity. However, geomagnetic disturbances have been112

shown to produce enhanced neutral winds in the upper atmosphere. The speed of the113

neutral winds can, at times, approach 1 km/s, which can cause rapid unpredictable fluc-114

tuations in apparent velocity for a LEO satellite (Zhang & Shepherd, 2000; Wang et al.,115

2008). Mass m, exposed frontal area A, and drag coefficient Cd are often very uncertain116

because these quantities require knowledge of the properties of the object being tracked117

that cannot be readily estimated directly from remote measurements. The rough size and118

mass of the object under study have been inferred from past orbital history (Gondelach119

et al., 2017), measurements of radar cross section (Dickey & Culp, 1989) or visual mag-120

nitude (Šilha, 2020). A and Cd are a function of satellite attitude, which is difficult to121

measure in real-time. Still, light curve measurements have been used to better charac-122

terize the attitude dynamics for tumbling objects of interest (Linares et al., 2014; Schild-123

knecht et al., 2017; Šilha et al., 2018). This knowledge of satellite attitude dynamics can124
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be helpful for understanding and predicting how Cd and A vary in time. However, most125

previous efforts at improving drag models have focused on estimating the combined term126

B or B∗ instead of inferring each parameter individually (Bowman, 2002; Saunders et127

al., 2012; Gondelach et al., 2017).128

In an analysis of satellite drag forecasting error during one month of observations,129

Hejduk and Snow (M. D. Hejduk & Snow, 2018) found that uncertainty in atmospheric130

density outweighed uncertainty in B 92% of the time. This makes sense, considering that131

variability in neutral mass density is common on both long and short timescales due to132

solar EUV radiation and Joule heating, respectively. Because satellite decay is so strongly133

influenced by solar and geomagnetic activity, significant effort has been devoted to de-134

veloping improved space weather models and observation techniques to reduce the un-135

certainty that arises due to this extreme variability in neutral mass density.136

Error in density forecasts can be attributed to either error in the predicted space137

weather model inputs or error in the models themselves. When focusing on errors in the138

space weather inputs, Bussy-Virat et al. (Bussy-Virat et al., 2018) found that account-139

ing for uncertainties in projected F10.7 and Ap in the per-object covariances at TCA140

can lead to significantly different estimates of Pc . When considering error in the neu-141

tral mass density models, Hejduk and Snow (M. D. Hejduk & Snow, 2019) found that142

ignoring model uncertainty can cause dangerous conjunction events to go unnoticed. Gondelach143

et al. (2022) also quantified and propagated model uncertainty, but included a correla-144

tion factor between the position uncertainties of the two objects involved in the conjunc-145

tion. This correlation recognizes the idea that, often, both objects involved in a conjunc-146

tion will travel through similar perturbed regions of the atmosphere. In general, the goal147

of all of this work in uncertainty quantification is to accurately represent the true un-148

certainty in the predicted state of the objects being tracked based on the information149

available at the time of the estimate. This covariance-realism effort ensures that maneu-150

ver decisions are made based on accurate projected uncertainties, and is of much inter-151

est to the space surveillance and tracking community (Aristoff et al., 2016).152

3 Forecasting Neutral Mass Density153

Variability in neutral density within the thermosphere is driven largely by the ab-154

sorption of solar radiation in the XUV, EUV, and FUV ranges as well as Joule heating155

during periods of enhanced geomagnetic activity. Many models of the upper atmosphere156

rely on space weather indices as inputs to describe these dynamics. The indices help to157

simplify complex information about the solar or geospace environment into a set of scalar158

variables. One space weather index of particular interest is F10.7, the solar radio flux159

at 10.7 cm, because it has been observed to be correlated with solar EUV flux (Covington,160

1948; Tapping, 2013; Picone et al., 2002). The 81-day average of the index, F10.7A, is161

also sometimes used as an input for models. A major geomagnetic index of interest is162

Ap, which is derived from the Kp index and is computed by combining measurements163

of Earth’s magnetic field from thirteen specific observatories around the world (Bartels,164

1949). Ap is the daily average value of the index ap, which is computed every three hours.165

These geomagnetic indices help to estimate the rapid enhancements in neutral density166

in the thermosphere associated with Joule heating.167

Figure 2 shows the passive orbital decay of SATCAT 4006, a debris fragment from168

the Thor-Ablestar breakup event of 1961, over its tracked lifetime with historical globally-169

averaged neutral mass density from (J. Emmert et al., 2021) plotted in the background.170

The history of satellite altitude was extracted from tracking data in the form of two-line171

orbital element (TLE) sets for the object. The satellite path clearly shows higher rates172

of decay during solar maximum (high F10.7) than during solar minimum (low F10.7).173

Small deviations in decay rate, mostly visible during solar maximum, are from rapid den-174

sity enhancements caused by increased geomagnetic activity.175
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Figure 2. Passive decay of SATCAT 4006 (Thor Ablestar Debris) through multiple solar cy-

cles, with altitude and time-resolved neutral mass density estimates shown in the background for

reference. Below, a history of F10.7 and Ap are correlated with the density trends observed over

time.

Several empirical and physics-based models for the dynamics of the thermosphere-176

ionosphere system have been developed over the years. Recent in situ measurements of177

thermosphere density and temperature from satellite missions like CHAMP (Reigber et178

al., 1999), GRACE (Davis et al., 2000), and Swarm (Doornbos et al., 2009) have pro-179

vided excellent, while sparse, observations to compare model performance to under a va-180

riety of conditions. While significant progress has been made in modeling the response181

of the neutral thermosphere to enhanced geomagnetic activity, forecasts of the space weather182

indices that drive the models have not been comparably improved. These poor forecasts183

of the space weather indices are often the dominant source of uncertainty in predicting184

satellite drag.185

Recent work in (Licata et al., 2020) benchmarked the performance of operational186

forecasting models for key space weather drivers like F10.7 and Ap, among others. Such187

forecasts are typically driven by a combination of historical trends in the index under188

study and a set of current related observations at the forecast time. Recurrence and per-189

sistence are two important principles for these forecasts. Recurrence considers previous190

observations at interval solar rotations backward in time, while persistence uses the last191

known value as the best guess for future values of the index. F10.7 forecasts can be im-192

proved beyond the recurrence or persistence models by supplementing EUV radiation193

observations from the east limb of the sun or a modeled nowcast of the Sun’s surface mag-194

netic field (Lean et al., 2009; Henney et al., 2012, 2015).195

Forecasts of geomagnetic indices like Kp and its derived Ap are typically driven196

by a combination of solar wind measurements at the L1 Lagrange point and a history197
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of measurements for the index. Since measurements of solar wind at L1 provide very lit-198

tle advance notice of what is to arrive at Earth, forecasts of these indices typically have199

a short useful horizon time. Shprits et al. (2019) found that forecasts for Kp are only200

reliably accurate for a time horizon of 6 to 20 hours, depending on the solar cycle. Be-201

yond 1-2 days out, forecasts based on recurrence or persistence generally produce the best202

results (though performance is still quite poor). The skill of a forecast model can be rep-203

resented by204

skill = 1− RMSE

σx
, (5)

where, considering N samples with true values x and estimated values x̂,

RMSE =

√
ΣN

i=1(xi − x̂i)2

N
(6)

and

σx =

√
ΣN

i=1(xi − µ)2

N
. (7)

A skill score of 1 corresponds to a perfect forecast and 0 corresponds to a forecast where205

the RMSE is equal to the standard deviation of the observations. The skill can also be206

negative if the error in the forecast is larger than the variability in the data it’s trying207

to predict. A good forecast should have a skill score as high as possible.208

Figure 3 shows the skill of a NOAA Space Weather Prediction Center (SWPC) Ap209

forecast as a function of time (using a 5-year rolling average to reduce noise and make210

general trends apparent). This forecast model was developed in 2014 and then verified211

on historical data (https://www.swpc.noaa.gov/content/geomagnetic-activity-forecast-212

verification). The forecasts are separated by their time horizon from 1-7 days, and a plot213

of the monthly average sunspot number is overlaid. The overall skill of the model is quite214

low over all time periods. Only the 1-day forecast sits reliably above zero, and the 2-7215

day forecasts all appear to have a comparable lack of skill. On close inspection, it ap-216

pears that the maximum in forecast skill occurs during the declining phase of the pre-217

vious solar maximum. This improvement in geomagnetic index forecasting can likely be218

attributed to the elevated coherence in the IMF that generally occurs during this decline219

in the solar cycle. It is unfortunate that the Ap forecast skill is lowest during solar max-220

imum since this is the period when geomagnetic enhancements can cause the largest changes221

in atmospheric neutral mass density.222

Since ap forecasts are generally poor beyond a time horizon of a few hours to per-223

haps a day (depending on the state of the solar cycle), and since forecast skill appears224

from Figure 3 to be relatively constant with forecast time horizon, it is reasonable to sim-225

ulate ap forecast uncertainty with a white noise process. Such a process has a Gaussian226

uncertainty that is constant in time. Some complications arise, however, when we con-227

sider that there are strict bounds on what values ap can take. If the actual true value228

of ap at some point in the future is low and the forecast deviates substantially below that229

(according to a symmetric white noise process), there may be some probability of achiev-230

ing a sub-zero ap, which cannot exist. Another complexity to consider is that the map-231

ping of input ap to output density is not necessarily linear, and the combination of a non-232

linear transformation and the positivity constraint on ap and density can lead to chal-233

lenges in modeling uncertainty. Figure 4 shows the deviations in ap and F10.7 from truth234

using a simple persistence-based 1-day forecast over all recorded history for the indices235

from 1957-2023 from the Hemholtz center at GFZ Potsdam. Figure 4a shows that ap fore-236

casts are very much heteroscedastic with respect to the mean forecast. Both the spread237

and the distribution of the forecast uncertainty are clearly a function of the expected value238

of ap, with very skewed distributions around low forecasted values of ap. Figure 4b shows239

that the F10.7 forecast is also heteroscedastic (though less so than Ap), where uncer-240

tainty in the forecast is a function of the expected value of the index.241
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Figure 3. 5-year rolling-average skill of SWPC Ap forecasts (from 2014 model verification) by

time horizon from 1985-2013. Overlaid is the average monthly sunspot number by year. Forecast

skill is low for all time horizons and over all time, but skill appears to improve across all time

horizons during the declining phase of the solar cycle.

Figure 5 complicates this scenario further. It shows NRLMSISE-00 modeled den-242

sity as a function of the input indices, where we assume that uncertainty distributions243

on the indices are Gaussian (even though Figure 4 shows that this is not always a valid244

assumption). 5a shows densities computed with input F10.7 = 120, F10.7A = 120,245

and ap = N (x, 102), while 5b shows densities from assuming F10.7 = N (x, 102), F10.7A =246

x, and ap = 20. For each case, the modeled density is shown for 450 and 750 km al-247

titude. Figure 5a’s 450 km case very clearly shows that NRLMSISE-00 modeled density248

is also heteroscedastic with respect to the mean of the input distribution on ap. Above249

an input mean of 40, the uncertainty in the output appears relatively constant, but be-250

low 40, the distribution in density has much greater spread and no longer appears sym-251

metric (especially considering that input ap cannot drop below zero, so each negative252

sampled point is assigned an ap of zero). At an altitude of 750 km, uncertainty in ap ap-253

pears much more consistent across input means. Figure 5b repeats the same analysis,254

but using an uncertain F10.7. Interestingly, uncertainty in modeled density appears to255

be more heteroscedastic with respect to the mean input F10.7 with increasing altitude,256

opposite from what was observed for ap. Differences in uncertainty over input mean F10.7257

are much more apparent at 750 km than they are at 450 km.258

For the remainder of this work, it is necessary to parameterize the uncertainty in259

F10.7 and Ap as a function of time so that we can modify the uncertainty terms and in-260

spect the influence on maneuver decisions. Even though F10.7 and Ap are daily indices261

(though ap is in 3-hour increments), we shall presume that the indices are continuous262

and that the atmospheric response to variability in the indices is instantaneous. This al-263

lows us to sample the indices according to a probability distribution for each timestep264

of the satellite propagation. ap will be considered the continuous-time variable for Ap265

from here forward.266

Lacking a reasonable reference ap forecast model with a long history for performance267

comparison, we shall retain the white noise assumption for the ap forecasts for this work.268

To limit significant violations of this assumption, the following seconds consider a true269
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Figure 4. Deviation from 1-day forecasted indices based on a simple persistence model using

the historical record. (a) shows the deviation in the three-hour ap (which appears sparse because

it is derived from Kp), and (b) shows the deviation in the daily adjusted F10.7. Both are het-

eroscedastic.

Figure 5. NRLMSISE-00 Densities as computed with Gaussian distributed input uncertain-

ties of (a) σδap = 10, (b) σδF10.7 = 10 , and means as denoted on the x-axis. 450 and 750 km

altitudes are shown to demonstrate how heteroscedasticity for density with respect to the indices

changes with altitude.
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ap forecast that is 40 2nT or above. Additional effort is required to properly account for270

uncertainty in density from lower forecasted values of ap. If at any time the sampled fore-271

cast ap falls below zero, it will be replaced with zero. The standard deviation of the white272

noise process (σδap = 10) was selected based on ap climatology and a simple persistence273

model.274

J. T. Emmert et al. (2017) found that F10.7 forecasts tend to deviate from truth275

with roughly Brownian motion over time. That assumption will be made here as well.276

At each timestep, the probability density function of the deviation is Gaussian distributed277

with mean zero and standard deviation σδF10.7
(t) = 0.015

√
t, which was determined em-278

pirically to match the historical performance of F10.7 forecasts from (Licata et al., 2020;279

J. T. Emmert et al., 2017; Stevenson et al., 2022).280

4 Space Weather and Collision Probability281

Over the years, several metrics have been proposed and used in an attempt to quan-282

tify the risk of a collision between two resident space objects (RSOs). In the early days,283

a predicted offset distance was the only parameter considered in the conjunction assess-284

ment process (Patera, 2001). But as probabilistic projections of satellite state became285

available, using deterministic offset distances meant leaving probabilistic information on286

the table. Today, most operators agree that tracking the probability of collision, com-287

puted by considering both the predicted offset distance and the evolved state covariances288

for the objects of interest (as well as their presumed hard body radii), is a prudent ap-289

proach to conjunction risk assessment. A satellite operator will generally assign a prob-290

ability of collision maneuver threshold based on a balance of the risks of a collision and291

the costs of performing too many maneuvers. NASA generally uses a Pc maneuver thresh-292

old of 10−4 (i.e. a probability of 1
10,000 ), while SpaceX generally uses a probability thresh-293

old of 10−5 (or 1
100,000 ). NASA, however, tends to maneuver 24 hours prior to TCA while294

SpaceX delays maneuvering until 12 hours or less before TCA, which significantly re-295

duces the maneuver burden (Moomey et al., 2023).296

When conjunction relative velocities exceed 1 km/s, it becomes reasonable to as-297

sume that motion is rectilinear and that the interaction between objects occurs on a plane298

in the encounter frame of the conjunction. The probability of collision is then a func-299

tion of the combined hard body radius of the two objects involved in the conjunction,300

R, the offset or miss distance in the conjunction plane, rm (with major and minor axis301

components xm and ym), and the 2-dimensional state covariance in the encounter plane302

with standard deviation components σx and σy. Pc is computed by303

Pc(R, xm, ym, σx, σy) =
1

2πσxσy

∫ R

−R

∫ √
R2−x2

−
√
R2−x2

e
− 1

2

[(
x−xod

σx

)2
+
(

y−yod
σy

)2
]
dy dx. (8)

Different implementations of solvers for the equation above have been developed over the304

years that have become increasingly computationally efficient and robust, including (Foster305

& Estes, 1992; Chan, 1997; Patera, 2001), and (Alfano, 2005). More information about306

computing a 2D probability of collision can be found in (Alfano, 2007).307

Figure 6 shows that for a conjunction scenario of interest, there are two possible308

ways to achieve a low Pc. The right side of the Pc maximum for each curve is called the309

dilution region. It is impossible to achieve a high probability when position uncertainty310

at TCA is large. Reducing the covariance size (i.e. making better observations and hav-311

ing better predictions) in the diluted region leads to an increase in the Pc. To the left312

of each maximum is what is referred to as the robust region. Pc is low here when the pre-313

dicted offset distance is much larger than the uncertainty in object positions. Decreas-314

ing covariance size in the robust region leads to a reduction in Pc.315
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Figure 6. Probability of collision as a function of the position variance and predicted offset

distance at TCA. Regions to the right of maximum Pc are considered diluted, and maneuver de-

cisions cannot be reliably made here. Increasing the offset distance has the effect of reducing the

maximum Pc and pushing this maximum further to the right.

It is always preferred to exist within the robust region. When in this region, op-316

erators are generally confident about their computed Pc and have reason to believe that317

improved measurements should reduce Pc as time goes on. The figure demonstrates that318

the ratio of the offset distance to the covariance size is important in determining when319

the transition into the robust region will take place. Conjunctions with a small offset dis-320

tance take longer to reach the robust region, while conjunctions that end in a collision321

will never enter the robust region. This analysis is critically dependent on accurate es-322

timates of the offset distance, r̂m between the objects at TCA, yet r̂m often varies quite323

considerably in time when forecasted drag deviates from truth.324

To better understand the impact that poor space weather forecast models can have325

on Pc, a history of real CDMs is useful. In 2019, a set of CDMs was publicly released326

as part of an ESA conjunction assessment challenge (Uriot et al., 2022). An example con-327

junction from this dataset with some of its CDM parameters and relevant space weather328

indices is shown in Figure 7. Figure 7a shows the F10.7 index as recorded for the dates329

of the CDMs in the conjunction. These values of F10.7 are quite low and relatively sta-330

ble with no large enhancements or fluctuations. Figure 7b shows the ap index values recorded331

during the conjunction assessment period. The enhancement in ap from TCA−5 d to332

TCA − 2 d would be expected to lead to increased Joule heating and neutral density333

enhancements, which could lead to increased drag on the propagated objects. Figure 7c334

shows the predicted offset distance from each CDM. Prior to the period of enhanced ap,335

the offset distance is predicted to be large. After seeing increased drag during the pe-336

riod of enhanced geomagnetic activity, however, there is a large drop in the predicted337

offset distance – making a collision suddenly appear much more likely. If the storm was338

predicted well, a sudden change in the predicted offset distance wouldn’t occur. Figure339

7d shows the computed probability of collision for each CDM in the conjunction chain.340

The Pc plot initially shows steady declines in Pc as covariance drops with more recent341

measurements, as expected. Then, when the predicted offset distance drops suddenly fol-342

lowing the storm, it is accompanied by a sudden increase in the predicted Pc. While Pc343

in this case is below the thresholds for maneuvering, major fluctuations in the predicted344
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Pc when close to TCA are problematic since they complicate the maneuver decision-making345

process. This conjunction series demonstrates the problems that arise when space weather346

forecasts are not accurate or considered in the conjunction assessment process. Improv-347

ing space weather forecasts and the way that they are handled in conjunction assessment348

is critical for protecting against events like this. Otherwise, the capabilities of the en-349

tire conjunction assessment pipeline will remain diminished during periods of geomag-350

netic storms and other intervals of enhanced geomagnetic activity.351

Figure 7. Parameters of interest from a real set of CDMs belonging to a conjunction of inter-

est. (a) shows F10.7 at the time each CDM was generated, (b) shows the three-hour ap index,

(c) shows the predicted offset distance from each CDM, and (d) shows the resulting Pc over time.

Large jumps in Pc can likely be attributed to poor forecasting of the geomagnetic enhancement

apparent in ap between TCA− 5d and TCA− 2d.

5 Incorporating Index Forecasts into Propagated Uncertainty352

Various approaches have been implemented in practice to propagate spacecraft state353

uncertainty considering the influences of space weather effects throughout the propaga-354

tion. Most operational methods feed the forecasted space weather indices through a sim-355

ple empirical model for neutral density. This nominal density profile is then used to prop-356

agate the state of the spacecraft. Clearly, there is some uncertainty in the model and in357

the forecast that needs to be accounted for in this propagation in order to accurately rep-358

resent the satellite state covariance at the time of closest approach. In practice, this un-359

certainty quantification is often performed by again employing an empirical model that360

considers historical error in neutral mass density predictions as a function of the space361

weather conditions (i.e. during quiet, moderate, or storm-time environments). Uncer-362

tainty in the density is then captured in the propagation by adding a ”consider param-363

eter” that artificially inflates uncertainty in the B∗ term, which will impact overall satel-364

lite state uncertainty (M. Hejduk, 2019; Poore et al., 2016; Barker et al., 2000). One prob-365

lem with this approach is that it combines the contributions of ballistic coefficient un-366
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certainty and atmospheric uncertainty, which makes analysis of uncertainty difficult. Ide-367

ally, uncertainty in atmospheric density, and thus propagated satellite state, should be368

derived analytically from its root causes – uncertainty in the forecasted space weather369

indices and uncertainty in the atmospheric model.370

Drag influences the mean motion of a satellite’s orbit by371

ṅ =
3

2
n1/3µ−2/3ρBv3F (9)

where n =
√
µ/a3 is the mean motion, a is the semi-major axis, µ is the gravitational372

parameter, ρ is the neutral mass density, v is the orbital speed, and F is a factor based373

on the thermospheric winds:374

F =
∥v − vA∥2

v2
ev · ev−vA

(10)

where v is satellite velocity, vA is the velocity of the atmosphere, and ev and ev−vA
are375

unit vectors in the subscribed vector directions. The mean anomaly may be computed376

from mean motion by377

dM

dt
= n. (11)

J. T. Emmert et al. (2017) derived the following analytical expressions for the de-378

viation in the n and M as a function of the relative neutral density error, ϵρ along the379

orbital path:380

δn(t) ≈ δn0

(
1 +

1

3

∆n̂

∆n̂0

)
+

∆n̂

∆t

∫ t

t0

ϵρ(t
′)dt′ (12)

δM (t) ≈ δM0
+ δn0

∆t

(
1 +

1

6

∆n̂

n̂0

)
+

∆n̂

∆t

∫ t

t0

∫ t′

t0

ϵρ(t
′′)dt′′dt′ (13)

where δn0
and δM0

are the initial measurement errors for the mean motion and mean anomaly,381

respectively. The relative error is defined as382

ϵρ(t) =
ρ̂(t)− ρ(t)

ρ(t)
. (14)

We define nref (t) and Mref (t) as the reference values in n and M using the true den-383

sity. Thus ϵρ = 0 for the reference case. nref (t) and Mref (t) may be computed by nu-384

merical propagation through the real atmospheric density profile along the orbital path.385

When starting from perfectly known n and M , Equations 12 and 13 show that error over386

time in n is proportional to the first integral of the normalized density error, while er-387

ror in M is proportional to the second integral of the normalized density error. For Pc388

computation, however, we are interested in deviations in the spacecraft-fixed frame de-389

fined by the radial, in-track, and cross-track (RIC) components (δr, δi, δc). The unit vec-390

tors for this coordinate frame may be computed from an Earth-centered inertial posi-391

tion r and velocity v where392

er =
r

∥r∥
, ei =

v

∥v∥
, ec =

r× v

∥r× v∥
. (15)

An approximate conversion from δn and δM to δr and δi, respectively, is relatively393

straightforward from Keplerian dynamics. For position errors that are small relative to394
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the curvature of the orbit path, the radial component of the deviation relates to a change395

in the semi-major axis of the ellipse, the along-track component relates to the deviation396

in true anomaly. The normal component relates to small plane changes that occur when397

the right ascension of the ascending node (RAAN, Ω) drifts at slightly different rates as398

the semi-major axis changes throughout the propagation. This nodal drift may be ap-399

proximated using J2 perturbations.400

Using Earth’s gravitational parameter µ = 398600 km3/s2, the semi-major axis401

of the orbit may be computed from n(t) = n0 + δn(t) directly402

a(t) =

(
µ

(n(t))2

)1/3

. (16)

The eccentric anomally can be solved for numerically from M(t) = M0+δM (t) by the
following relation:

M(t) = E(t)− e sin(E(t)) (17)

Once a(t) and E(t) are known, the radial distance along the deviated orbit path is sim-403

ply404

r(t) = a(t) (1− e cos(E(t)) , (18)

where e is the eccentricity of the orbit. To determine the deviation in position along the405

radial component from the reference state, simply compute δr = rdev(t)−rref (t), where406

rref is the radius computed using nref and Mref with true atmospheric density, while407

rdev is computed using the deviated density profile.408

The along-track satellite position offset, δT , is more simply related to the devia-
tion in mean anomaly by

δi(t) ≈ δM (t)
v̂(t)

n̂(t)
. (19)

Now that the radial and along-track components of the deviation are known, the
normal component may be approximated by considering the precession rate of the right
ascension of the ascending node, Ω̇, due to J2 perturbations

Ω̇ = −3

2
J2

(
RE

a(1− e2)

)2 √
µ

a3
cos i (20)

where J2 is Earth’s J2 parameter, RE is the radius of the Earth, and i is the inclination409

of the orbit (Vallado, 2001). The inclination is constant, and since the forecasted satel-410

lite propagations required for conjunction assessment typically have less than a 7-day411

time horizon, it is reasonable to approximate the eccentricity as constant as well. Now,412

a is the only time-varying parameter that Ω̇ depends on. As small changes in a occur413

during the orbital propagation, differences in the nodal drift rate will accumulate to cause414

minor shifts in the orbital plane. This out-of-plane perturbation leads to position devi-415

ation in the cross-track component, δc. We can approximate δc by first considering the416

angle δΩ between the orbit planes417

δΩ(t) =

∫ t

0

(
Ω̇dev − Ω̇ref

)
t′dt′. (21)

Then, the position deviation in the cross-track component is approximately bounded418

by419

∥δc(t)∥ < 2āref (1 + e) sin(δΩ(t)). (22)
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This is a bound because deviation along the normal component will oscillate as a func-420

tion of time since the deviated and reference orbital planes intersect to cause two cross-421

ings along the orbital path.422

Figure 8 shows numerically-propagated position deviations in the radial, along-track,423

and normal component for an object with B = 0.02 m2/kg, initial altitude of 450 km,424

eccentricity of zero, and inclination of 80◦. 100 sample trajectories were run from the425

same initial starting point using uncertain forecasts of ap and F10.7, as shown in Fig-426

ures 8a and b. For simplicity, the true values for the indices are a constant ap = 40 and427

F10.7 = 120 for the duration of these runs. The first column, 8c, shows the deviations428

in positions from a forecast where only ap is uncertain. The magnitude of the position429

deviation is much larger in the along-track component than in the radial component, which430

is also much larger than the deviation in the normal component. This makes sense, since431

Equations 12 and 13 suggested that along-track error would grow proportionally to the432

integral of the normalized forecast density error, and that the radial component would433

grow proportionally to the double-integral of the forecast density error. The normal com-434

ponent deviation is small becuase it is driven by a slow plane-change, and indeed it os-435

cillates between bounds as was predicted. A slight bias is apparent in the radial and along-436

track components. This bias can be attributed to the slight skewness in the density dis-437

tribution that occurs when provided an ap around 40 2nT with Gaussian uncertainty at438

450 km, as is visible in Figure 5.439

Figure 8d shows the deviations along the orbital path when there is only uncertainty440

in the forecasted F10.7. While the relative magnitudes of the deviations between the com-441

ponents remain similar to what was found in 8c, the actual magnitudes are much larger,442

which makes sense considering that EUV absorption is the primary driver of atmospheric443

variability. There is very little bias apparent in the F10.7 error-only case, which makes444

sense since the distribution around the forecasted density provided a Gaussian input F10.7445

appears to be symmetric in Figure 5. Figure 8e shows the combined effect of forecast un-446

certainty in both ap and F10.7. Since the magnitude of deviations in the F10.7-deviated447

case significantly outweighs those from the ap-deviated case, the distributions look sim-448

ilar in Figure 8e as they do in Figure 8d. This suggests that at least for cases when the449

mean forecast is perfect, uncertainty in F10.7 plays a far more significant role in deter-450

mining satellite position uncertainty than does uncertainty in forecasted ap.451

6 Simulation Results452

In order to persuade a satellite operator or tracking service to adopt new satellite453

drag forecasting procedures, it’s crucial to showcase the complete process, starting from454

index uncertainty, through to modeled density uncertainty, satellite state uncertainty,455

and ultimately to the impact on the computed probability of collision and thus decision-456

making. To simulate an informative set of scenarios, a starting satellite state is initial-457

ized for a circular orbit at 450, 550, and 650 km initial altitude, all with an inclination458

of 80 degrees. The space weather environment is set again to a constant F10.7 = 120459

(an average value between solar minimum and maximum), F10.7A = 120, and ap =460

40 for the duration of the 7-day simulation. In reality, such a prolonged period of enhanced461

geomagnetic activity is unlikely, but the highly non-Gaussian and asymmetric distribu-462

tion of modeled density produced by an ap estimate below 40 with Gaussian uncertainty463

provides significant complications. Incorporating this modeling of uncertainty for low464

ap is a valuable topic of future work.465

Starting at the initial time, 50 sample objects with perfect initial state knowledge466

are propagated with accelerations from simple two-body gravitation, atmospheric drag,467

and J2 Earth oblateness included. The atmospheric density profile that each object trav-468

els through is computed by sampling deviations on F10.7 and ap using the same pro-469

cesses and uncertainties as Figure 8a and b. A reference object is also propagated us-470
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Figure 8. Deviations from a reference ”truth” state for (a) F10.7, (b) ap, (c) RIC position

errors considering only δap, (d) RIC position errors considering only δF10.7, and (e) RIC position

errors showing the combined effect of both δF10.7 and δap.

ing the true space weather indices during this period. At 3 hour intervals, a new set of471

propagated objects are initialized at the location of the reference point for each step. This472

process simulates taking new measurements every three hours that constrain state un-473

certainty at that time to zero. The expected state and covariance at TCA for each it-474

eration will differ because the first iteration will have been propagated for 7 days, the475

second for 6 days 21 hours, and so on. The probability of collision at TCA is computed476

based on these expected states and covariances, which allows us to compare the com-477

puted probability of collision as a function of time until TCA under a variety of circum-478

stances. Four cases are simulated:479

• Case (1) uses realistic growth in uncertainty for F10.7 and ap, as is shown in Fig-480

ure 8a and b. F10.7 deviation is modeled as a Brownian process where σδF10.7
(t) =481

0.015
√
t (the reference forecasting ability). ap is modeled as a white noise process482

with µδap = 0 and a constant σδap = 10 2nT .483
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• Case (2) assumes that values for F10.7 are known at all times throughout the484

propagation, while uncertainty in ap is still a white noise process with µδap = 0485

and σδap = 10 2nT .486

• Case (3) again assumes that F10.7 is known, but now uncertainty in ap is reduced487

with σδap
= 5 2nT .488

• Case (4) again assumes that F10.7 is known, uses the initial ap uncertainty with489

σδap
= 10 2nT , but also introduces a +5 2nT bias in ap.490

To simulate a real event, each of these cases is used to propagate an object from491

each initialization time to TCA, which provides a set of covariance matrices at TCA as492

a function of time and case. To emphasize a critical scenario, we simulate a true colli-493

sion where the primary object (being tracked) and secondary object have a true final cen-494

troid offset, rod = [1, 1, 1][m] and each object involved in the conjunction has a hard495

body radius of 10 m. Such a small centroid offset for a combined hard body radius of496

20 m means that this collision will occur.497

The velocity of the secondary object relative to the primary object can play an im-498

pactful role in the probability of collision, so this scenario selects a random uniform sam-499

ple of 1000 relative velocity magnitudes on the interval [5, 15][km/s]. The relative ve-500

locity direction is computed by a uniform random sample of 1000 unit vector directions.501

This stochastic approach to modeling potential conjunction geometries is critical for get-502

ting a fuller picture of potential maneuver decisions. To keep the example simple, the503

state covariance matrix for the secondary object at TCA in all cases is the same as the504

covariance of the primary, just oriented in the RIC frame with respect to the secondary505

object rather than the primary. Still, the assumption that the covariances are not cor-506

related when computing the probability of collision is retained for a more realistic Pc507

evaluation.508

Figure 9 shows the probability that the computed Pc exceeds a maneuver thresh-509

old of 1×10−5 as a function of time until TCA for each of the four cases. If a maneu-510

ver decision needed to be made n days prior to TCA, the figure shows what decision might511

be made for each of the four cases. Figure 9a shows maneuver decision probabilities by512

case at an altitude of 450 km, while 9b and 9c show 550 and 650 km, respectively. First,513

it is clear that it is difficult to make correct maneuver decisions early at 450 km under514

any circumstance, even if forecast models are improved significantly. The baseline from515

case (1) shows that a correct maneuver decision cannot be reliably made until only three516

hours prior to TCA. Even removing uncertainty in F10.7 altogether in case (2) provides517

only a few hours of additional notice. Reducing the uncertainty in ap in case (3) makes518

further modest improvements on maneuver notice while introducing a bias on ap does519

not seem to have much impact on the overall decision notice.520

At the 550 km altitude, it is clear that there is significantly more advance notice521

for maneuvering when provided with better forecasts. For the baseline case (1), reliable522

maneuver notice is up from 3 hours to about 12 hours. The benefit of forecasting F10.7523

perfectly is clearly apparent in this plot by comparing case (2) to case (1). Case (2) ma-524

neuver notice leads case (1) by about a day, meaning that an operator could decide to525

maneuver for this event much sooner with the same risk posture if they had this perfect526

forecast for F10.7 available. Further reducing the uncertainty in the ap forecasts leads527

to even more advance maneuver notice, but adding a small bias now has a significant neg-528

ative impact.529

At the 650 km altitude, these effects are even more apparent. In all cases, the ma-530

neuver decision can be reliably made about 1 day prior to TCA. There is about a two-531

day difference in maneuver notice between cases (1) and (2), and the bias on ap in case532

(4) significantly reduces decision-making performance to something comparable to case533

(1). At this higher altitude, the overall neutral density is much less than that at 450 km,534
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Figure 9. Probability of maneuvering for a conjunction event that ends in a collision as a

function of time from TCA. Maneuver decisions are based on a Pc threshold of 1× 10−5 and each

case is demonstrated at (a) 450 km, (b) 550 km, and (c) 650 km to show altitude dependence.

and variability in density is more strongly forced by EUV absorption and enhanced ge-535

omagnetic activity. At higher altitudes, it matters less and less what forecast model is536

being used as the time to TCA wanes, especially when the maneuver decision is being537

made less than one day prior to TCA, since it takes a long time for satellite position er-538

rors to accumulate.539

7 Conclusion540

As long as the standard practice in operations is to continue to delay maneuver decision-541

making until 12-24 hours prior to TCA, this effort shows that there is little value that542

comes from improving space weather forecasts, especially at higher altitudes above 500543

km during average solar conditions (mid-cycle). During solar maximum, the lower bound-544

ary for altitude where improved forecasts make a significant difference is even higher. It545

takes time for forecasted density errors to translate to accumulated satellite state errors,546

and this is especially true at higher altitudes. Although relative variability in the neu-547

tral density is greater at higher altitudes, drag is also less impactful in deviating satel-548

lite state. Considering, however, that there is appetite within the spacecraft operator com-549

munity for maneuvering sooner, this effort shows that better space weather forecasts have550

the potential to provide significant improvements in advance notice in the case of dan-551

gerous conjunction events, especially at the middle LEO altitudes where most large con-552
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stellations plan to operate. The utility of these forecast improvements will also vary de-553

pending on operating altitude and the state of the solar cycle.554

There is great potential for improving the fusion of space weather forecast infor-555

mation into the conjunction assessment pipeline. In particular, the authors recommend556

that space weather organizations provide not only forecasted indices and densities but557

also uncertainties associated with these forecasts rooted in measurement uncertainties558

or physical quantities rather than empirical error performance. As is, some operators are559

subject to considering forecasts as truth, which dangerously leads to poor covariance re-560

alism in the conjunction assessment process. Accurately reflecting the uncertainty in the561

indices and forecasted densities may be challenging, considering that the uncertainties562

are often non-Gaussian and heteroscedastic. Accurately modeling these uncertainties and563

the impact they have on Pc, especially if the Gaussian state uncertainty assumption is564

violated, are important areas of continuing work.565

Open Research Section566

Historical TLEs for tracked objects are publicly available through space-track.org.567

Partial historical CDMs were accessed and are available from https://kelvins.esa.int/collision-568

avoidance-challenge/data/. A history of the recorded solar and geomagnetic indices is569

available at https://kp.gfz-potsdam.de/en/data.570
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