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Abstract

Observed increases in wildfire activity across the contiguous United States, which have occurred amid a warming climate and

expanding residential footprint within flammable landscapes, illustrate the urgency of understanding near-future changes in fire

regimes. Here, we use a statistical model including future projections of both human population distribution and atmospheric

conditions from climate models to predict the number, size, and cumulative area burned by wildfires. We find an overall increase

in both the number of fires (+56%) and total burned area (+60%) during 2020-2060 relative to a 1984-2019 baseline, as well

as ubiquitous increases in area burned (+63%) by the largest fires. Additionally, we predict the emergence of observationally

unprecedented fire frequency in eastern U.S. locations where wildfire was rare historically (+71%), and unprecedented increases

in the size of the largest fires in the Western U.S. where fires were historically common—underscoring the need to prepare for

more frequent and severe fire even in communities unaccustomed to them.
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Abstract 29 

Observed increases in wildfire activity across the contiguous United States, which have occurred 30 

amid a warming climate and expanding residential footprint within flammable landscapes, 31 

illustrate the urgency of understanding near-future changes in fire regimes. Here, we use a 32 

statistical model including future projections of both human population distribution and 33 

atmospheric conditions from climate models to predict the number, size, and cumulative area 34 

burned by wildfires. We find an overall increase in both the number of fires (+56%) and total 35 

burned area (+60%) during 2020-2060 relative to a 1984-2019 baseline, as well as ubiquitous 36 

increases in area burned (+63%) by the largest fires. Additionally, we predict the emergence of 37 

observationally unprecedented fire frequency in eastern U.S. locations where wildfire was rare 38 

historically (+71%), and unprecedented increases in the size of the largest fires in the Western 39 

U.S. where fires were historically common—underscoring the need to prepare for more frequent 40 

and severe fire even in communities unaccustomed to them. 41 

Plain Language Summary 42 

In this work we find that the future of fire in the U.S. will likely be characterized by more 43 

frequent and larger fires in most regions due to the changing climate and more people starting 44 

fires in new places. There will be more fires in the Eastern U.S. which have not experienced 45 

many fires in the recent past and the Western U.S. will see more fires that are even larger than 46 

the largest fires. These changes have major implications for ecosystem and fire management, 47 

disaster response and mitigation, and public policy.    48 

1. Introduction 49 

Over the past forty years, burned area in the United States (U.S.) has increased four-50 

fold—at a rate of approximately 173,000 acres per year across the U.S. (Burke et al., n.d.). 51 

Numerous studies have focused on the western U.S. fire-climate relationships (Abatzoglou & 52 

Kolden, 2013; Dennison et al., 2014; Littell et al., 2009), projecting future burned area 53 

(Kitzberger et al., 2017; Littell et al., 2018; Liu & Wimberly, 2016; Spracklen et al., 2009), and 54 

large/extreme fires (Stavros et al., 2014), but few studies have examined these trends at a 55 

national-scale (Anderegg et al., 2022; Barbero, Abatzoglou, Larkin, et al., 2015; Barbero et al., 56 

2014; Gao et al., 2021; Podschwit et al., 2018) or focused on areas with lower fire activity in the 57 

latter half of the 20th century like the Great Plains (Donovan et al., 2017) and eastern U.S. 58 

(Barbero, Abatzoglou, Kolden, et al., 2015; Prestemon et al., 2016), where there is also evidence 59 

of fire being responsive to warming and drying (Abatzoglou & Williams, 2016; Iglesias et al., 60 

2022; A. P. Williams et al., 2015).  61 

While climate variability and change explain a majority of area burned in many regions 62 

(Abatzoglou & Williams, 2016), human activity influences area burned through ignitions, 63 

suppression efforts, and land use/land cover change (LULC) (Chelsea Nagy et al., 2018; 64 

Mietkiewicz et al., 2020; Radeloff et al., 2018). These impacts become even more complex 65 

through non-linear interactions with environmental drivers (Abatzoglou et al., 2018; Cattau et al., 66 

2020; Hawbaker et al., 2013; Syphard et al., 2017). Moreover, due to the ever-expanding 67 

“Wildland Urban Interface” (Radeloff et al., 2018), more homes and people are now located in 68 

fire-prone areas (Iglesias et al., 2021) than ever before. Because humans are responsible for 69 

igniting four times as many large wildfires as lightning across the U.S., and are today the 70 

primary source of large wildfires in both the eastern and the West Coast regions of the U.S. 71 
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despite human ignited fires being of lower intensity and smaller in size relative to lightning fires 72 

(Balch et al., 2017; Chelsea Nagy et al., 2018). It is important to account for these direct 73 

anthropogenic effects—especially the spatial distribution of people across the landscape—when 74 

considering future fire patterns. 75 

Although large fires account for only a small percentage of the total number of fires, they 76 

comprise the majority of total burned area across the U.S. (Barbero et al., 2014; Stavros et al., 77 

2014), and their capacity to exceed or escape suppression often makes them the most dangerous 78 

and costly wildfires to manage (J. Williams, 2013). Since large fires pose a significant threat to 79 

ecosystems, fire and ecosystem managers need to be better informed about where fires are 80 

expected to become more frequent, and how large the largest fires will become. To date, most 81 

future fire research that predicts annual burned area or probability of fire has excluded large 82 

regions of the U.S. defined as non-burnable by the presence of agriculture and barren land cover 83 

types, e.g., the Great Plains (Barbero et al., 2014; Stavros et al., 2014). These studies also lack 84 

explicit consideration of anthropogenic forces that lead to increased ignitions, peaking around a 85 

population density of approximately 10 people/km
2
 (Pechony & Shindell, 2010), and changes in 86 

fuel. 87 

In this study, we predict future fire events and sizes from 2020 to 2060 in the contiguous 88 

U.S. using Bayesian statistical models trained on historical fire, climate, and population data 89 

(Joseph et al., 2019). Historical fire events were obtained from the Monitoring Trends and Burn 90 

Severity (MTBS) program and were filtered to include only wildfire events >1000 acres (405 ha) 91 

and exclude prescribed and agricultural fires across the contiguous U.S., with no land types 92 

being excluded (e.g., agricultural land) (Eidenshink et al., 2007). We then use our models to 93 

estimate spatiotemporal trends in fires driven by projected future climate from eight global 94 

climate models (GCM) under the RCP 4.5 scenario, an intermediate emission scenario, along 95 

with projected population data under a population growth scenario where social, economic and 96 

technological trends do not shift significantly from historical patterns (SSP2: Shared 97 

Socioeconomic Pathway 2). Predicting the largest fire to ever occur in every ecoregion is 98 

extremely difficult, so it is common to use a fire size (ha, acres) threshold to capture a range of 99 

the largest fires (9,10), but this method often leads to the elimination of many ecoregions that 100 

only experience smaller fire sizes which are significant for a given ecoregion. Thus, we utilize a 101 

percentile threshold as done in Nagy et al. (2019) which identifies large fires proportionally as 102 

the largest 10% or 90th percentile of fires occurring within each EPA Level III U.S. ecoregion.  103 

Our modeling approach in this study represents a substantial advance in three distinct 104 

ways. First, while most existing models are regional in scope and rely on simple linear regression 105 

models of climate and fire (Kitzberger et al., 2017; Littell et al., 2018), our model incorporates 106 

spatially varying non-linear effects of climate and population at a national-scale. Second, our 107 

Bayesian approach explicitly propagates uncertainty for derived parameters and when we 108 

integrate over the uncertainty in the predicted number of fires and the burned area we obtain the 109 

predicted maximum fire size per ecoregion (Joseph et al., 2019). Third, our use of the EPA 110 

hierarchical nesting of ecoregions across Level I, II, and III allows for the sharing of information 111 

among climatologically similar ecoregions (since level III ecoregions in a level II ecoregion are 112 

often adjacent). This nested approach therefore allows for the consideration of non-stationarity in 113 

relationships between climate and fire behavior for ecoregions that may shift in a warming 114 

climate. 115 
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Our key research questions are: 1) How much are large fires expected to increase over the 116 

next 40 years?; 2) Where will the most extreme fires occur in the future; and 3) Where will we 117 

see the emergence of fires (i.e., in areas where it has not been recently prominent)? The results 118 

presented are the ensemble average of the eight GCM’s results, with individual model results 119 

presented in the Supplementary Information. 120 

2. Materials and Methods 121 

2.1 Bayesian statistical models to predict fire regimes 122 

We used the models developed by Joseph et al. (2019) to predict wildfire extremes across 123 

the contiguous United States. Joseph et al. (2019) combined a 30-yr wildfire record with 124 

meteorological and housing data in spatiotemporal Bayesian statistical models, with spatially 125 

varying nonlinear effects to predict wildfires. Joseph et al. (2019) built one model to describe the 126 

total number of fires occurring and another describing the size of each wildfire. They constructed 127 

four models to model fire occurrence and compared the various models’ predictive performance 128 

based on test-set log likelihood and posterior predictive checks for the proportion of zeros, 129 

maximum count, and total count. The models differed in the distributions used in the likelihood, 130 

with the zero-inflated negative binomial model having the best performance. They developed 131 

five models for fire size, each with a different distribution of fire size or burned area for a given 132 

fire event, and evaluated each model in terms of test set log likelihood and posterior predictive 133 

checks for fire size extremes. The lognormal model for the burned area provided the best 134 

performance. The model was trained on data from 1984-2009 withholding the period from 2010 135 

to 2016 to evaluate predictive performance. By allowing the non-linear effects of weather and 136 

housing density to vary across space, this model achieved good predictive accuracy for fire 137 

extremes at a regional scale over the six-year prediction window. Further model details are 138 

located in the Supplementary Information. 139 

2.2 Model Implementation 140 

Further model details can be found in the Supplementary Information as well as 141 

published in Joseph et al. (2019). A Hamiltonian Monte Carlo method was used to sample from 142 

the posterior distributions of count and burned area models. The models were fitted using the 143 

No-U-Turn Sampler (Hoffman & Gelman, 2014). Models were fitted in the Stan probabilistic 144 

programming language using the rstan package (Carpenter et al., 2017; Stan Development Team, 145 

2018). Four chains of 1000 iterations each were run, with the first 500 iterations discarded as 146 

warmup. After obtaining the output for each GCM the results were averaged to produce the 147 

ensemble mean which is presented in the main text and individual model results are provided in 148 

the Supplementary Information. Trends were fit with a linear regression model, where residuals 149 

and p values were used to assess fit and significance.  150 

3. National Fire, Climate, and Population Data Utilized 151 

3.1 Model Training Data 152 

Wildfire event data for the contiguous United States was obtained from the Monitoring 153 

Trends and Burn Severity (MTBS) program (Eidenshink et al., 2007). MTBS data contains 154 

spatiotemporal information on the extent of large wildfire events from 1984-2019. Each event 155 
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has a unique ID, start date, location information, and final fire size. They define large fires as a 156 

fire 1000 acres (~405 ha) or greater in the western United States and a fire 500 acres (~202 ha) or 157 

larger in the eastern United States. To maintain a consistent analysis across the U.S. we analyzed 158 

only fires greater than 1000 acres, leaving 12,219 fire events.  159 

The models were driven by meteorological variables from gridMET (Abatzoglou, 2013), a 160 

gridded product that blends monthly high-spatial resolution (~4-km) climate data from the 161 

Parameter-elevation Relationships on Independent Slopes Model (Daly et al., 2008) with 162 

temporal attributes from the National Land Data Assimilation System (NLDAS2) regional 163 

reanalysis using climatologically aided interpolation to produce daily surface meteorological 164 

variables. Daily total precipitation, minimum relative humidity, mean wind speed, and maximum 165 

air temperature were averaged monthly from 1984-2019 at the Environmental Protection Agency 166 

level 3 (L3) ecoregion, 84 across the contiguous US (Omernik & Griffith, 2014). We calculated 167 

the cumulative monthly precipitation over the previous 12 months for each ecoregion-month 168 

combination.  169 

Population density was used as a proxy for the spread in ignitions caused by humans 170 

(Radeloff et al., 2018). Population density estimates were obtained from the Integrated Climate 171 

and Land Use Scenarios (ICLUS, https://www.epa.gov/gcx/iclus-fourth-national-climate-172 

assessment) Version 2.1 Fourth National Climate Assessment which reports population data for 173 

the conterminous US based on 2010 U.S. decennial census data. 174 

3.2 Future Model Input Data 175 

We are utilizing the Multivariate Adaptive Constructed Analogs (MACA) dataset 176 

consisting of 20 Coupled Model Inter-comparison Project (CMIP5) GCMs that provided daily 177 

output of the requisite variables for future experiments under the RCP4.5 scenario (Abatzoglou 178 

& Brown, 2012). There are two MACA datasets, we are using the product where the GCM 179 

model output is statistically downscaled by bias correcting the GCM outputs with training data 180 

from gridMET for 1979-2012 (MACAv2-METDATA). This allows for the continuity of analysis 181 

between Joseph et al. (2019) and this project. From the MACA dataset we obtained monthly 182 

values of precipitation, minimum relative humidity, maximum air temperature, and mean wind 183 

speed. We then calculated the average of each climate variable at the L3 ecoregion scale for each 184 

month in 2020-2060. From the monthly ecoregion precipitation we calculated the previous 12-185 

month precipitation total for each ecoregion.  186 

Of the 20 models available in the MACA dataset we chose 8 models based on the 187 

reported selection process for the USDA Forest Service to identify the best scenarios, climate 188 

models, and climate projections that could be applied at the scale of the conterminous United 189 

States (Joyce & Coulson, 2020). They ranked the models by the historical model performance 190 

which was based on 42 & 18 variable metrics (Rupp, 2016; Rupp et al., 2013). We used 8 out of 191 

the top 10 models ranked by both metrics, the other two models were missing the minimum 192 

relative humidity needed to run the model. We decided to only use the RCP 4.5 emission 193 

scenario because the choice of scenario has a very limited impact on climate projections by the 194 

mid-century, our cutoff period (Rangwala et al., 2021), and RCP 4.5 is considered a more likely 195 

scenario when compared to RCP 8.5 given our current commitments and observed trajectory 196 

(Burgess et al., 2020; Hamburg Climate Futures Outlook, n.d.; Hausfather & Peters, 2020).  197 
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Decadal projections of population up to 2100 were obtained from the ICLUS dataset 198 

based on 2010 Census population data along with fertility, mortality, and immigration rates from 199 

the Wittgenstein Center (http://www.wittgensteincentre.org/en/index.htm). These projections are 200 

consistent with the demographic assumptions of the Shared Socioeconomic Pathways (SSPs). 201 

We used the population projections from SSP2, known as the “middle-of-the-road” projection, 202 

where social, economic and technological trends do not differ greatly from the historical 203 

patterns. ICLUS v2 population is reported at geographical units resulting in 2256 units 204 

comprising Metropolitan and Micropolitan Statistical Areas and stand-alone rural counties. We 205 

used linear interpolation to estimate population density at the monthly time step per geographical 206 

unit and then aggregate across the geographical units to obtain an ecoregion scale mean monthly 207 

population density estimate for 2020-2060. 208 

4.  Results 209 

4.1 Large fire occurrence will increase 56% over the next four decades 210 

We predict that new patterns of projected fire events across the continental U.S. will 211 

emerge through 2020-2060 (Figure 1B-I). For results presented throughout this paper, CI refers 212 

to the 95% Confidence Interval. From the Monitoring Trends in Burn Severity (MTBS) dataset 213 

from 1984-2019 there were 12,219 large fires (> 1,000 acres or 404 ha) or an average of 339 214 

fires per year. In contrast, we predict a total of 21,132 (CI:16,701; 25,536) large fires or 528 fires 215 

per year (CI:441; 673) for 2020-2060 (Figure 2A), which is a 56% average increase in the 216 

number of fires per year. The model predicts an increasing number of fires in nearly all 217 

ecoregions, with some ecoregions projected to increase substantially more than others (Figure 218 

1A), which is consistent with previous research (Anderegg et al., 2022; Gao et al., 2021; Moritz 219 

et al., 2012). From 1984-2019, eight ecoregions had zero large fire events, while not a single 220 

model predicted an ecoregion experiencing less than one fire event in the next 40 years 221 

(mean=1.5 fires for those ecoregions). Across the U.S. the median number of large fires 222 

predicted per ecoregion was 125 and the mean was 251 fires. Places that had the largest number 223 

of fires in the recent past are projected to have the largest number of fires in the future. These 224 

ecoregions include the cold deserts of Utah, Nevada and the southern regions of Idaho and 225 

Oregon; Northwestern Great Plains centered on the border of Wyoming, Montana and the 226 

Dakotas; California Coastal Mountains and foothills; Arizona/New Mexico Mountains (Figure 227 

3A), and much of the Western Cordillera which encompasses the Sierra Nevada as well as the 228 

Rockies. For much of the intermountain west including the cold deserts of the Great Basin the 229 

fire activity has increased partly due to the presence of invasive annual grass (Bromus tectorum 230 

L.) (Balch et al., 2013; Bradley et al., 2018). There is evidence of invasives altering fire regimes 231 

in ecoregions across the U.S. including the desert southwest, eastern temperate deciduous forests 232 

and southern pine savannah (Fusco et al., 2019). For much of the Southwest and the Great Basin 233 

fuel availability is one of the factors limiting fires in these arid environments, with the abundance 234 

of precipitation in the previous year determining the current-year fire season (Abatzoglou & Kolden, 235 

2013; Mckenzie & Littell, 2016). 236 
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 237 

Figure 1. Baseline and change in wildfires, 1984-2019 vs. 2020-2060. A) Number of large 238 

fires per year per ecoregion from the 1984-2019 Monitoring Trends in Burn Severity (MTBS), 239 

B) Change in the number of fires per year per ecoregion comparing predicted 2020-2060 values 240 

to modeled 1990-2019 values, C) Percent change in the number of fires per year per ecoregion 241 

predicted 2020-2060 vs. modeled 1990-2019, D) Burned area per year (acres) per ecoregion 242 

from 1984-2019 (MTBS), E) Change in the burned area per year per ecoregion, predicted 2020-243 

2060 vs. modeled 1990-2019, F) Percent change in the burned area per year per ecoregion, 244 

predicted 2020-2060 vs. modeled 1990-2019 , G) 90% maximum fire size (acres) per ecoregion 245 

from 1984-2019 (MTBS), H) Change (acres) in the 90% maximum fire size, predicted 2020-246 

2060 vs. modeled 1990-2019, I) Percent change in the 90% maximum fire size (acres) per 247 

ecoregion, predicted 2020-2060 vs. modeled 1990-2019. 248 

 249 

Our model predicts that the Northwestern Great Plains ecoregion will have the largest 250 

increase in the number of fire events, with a mean increase of 14.5 fires per year over 2020-2060. 251 

The ecoregions that ranked 2nd to 5th by average annual increase per year over the future period 252 

were: Southern Coastal Plain (13) with an increasing trend of 3.8 fires per decade from 1990- 253 

2060 (Figure 3C); California Coastal Sage (11); Central Basin and Range (10.8) with an 254 

increasing trend of  3.1 fires per decade from 1990-2060 (Figure 3B); Arizona/New Mexico 255 

Mountains (Figure 3A) (10); Snake River Plain (9.2). There were 26 regions that had no change 256 

or slightly negative change in fires per year (Figure 1B). Our model predicts that recent trends in 257 

large fire occurrences in a warming climate will greatly increase. The Arizona/New Mexico 258 

Mountains and Sierra/Klamath/Cascade Mountains ecoregions experienced increases of 0.6 fires 259 

per year from 1984-2011, and here we predict that this will increase to 12.5 fires per year from 260 

2020-2060. No significant trends were observed for the Basin and Range ecoregions in the recent 261 

past (Dennison et al., 2014), but we project them to increase to 35.8 fires per year from 2020-262 
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2060. The Great Plains have seen an increase from only 33 fires per year from 1985-1995 up to 263 

117 fires per year from 2005-2014 (Donovan et al., 2017), and has doubled to quadrupled from 264 

2014-2018 (Iglesias et al., 2022). Similarly, our model predicts the largest increase in the number 265 

of fires at 30.9 fires per year to occur in the Northwestern Great Plains. Even under lower 266 

emission scenarios, like the RCP 4.5, in the future the fire frequency and size are still projected 267 

to increase dramatically in regions like the Northern Great Plains, as well as the central and 268 

southeastern U.S. (Anderegg et al., 2022).  269 

 270 

 271 
Figure 2. Observed and modeled average number of fires and burned area per year for the 272 

continental United States. A) Average number of fires per year across the continental U.S. from 273 

the: 1984-2019 Monitoring Trends in Burn Severity (MTBS) in red, 1990-2019 MTBS in blue, 274 

modeled past 1990-2019 in green, and modeled future 2020-2060 in purple. B) Average burned 275 

area per year across the continental U.S. from the: 1984-2019 Monitoring Trends in Burn 276 
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Severity (MTBS) in red, 1990-2019 MTBS in blue, modeled past 1990-2019 in green, and 277 

modeled future 2020-2060 in purple. 278 

 279 

Many ecoregions had little to no fire activity per year from 1984-2019 (Figure 1A). In 280 

these regions, even a modest positive increase in fires per year (Figure 1B) resulted in substantial 281 

relative increases in fire occurrence from 2020-2060 (Figure 1C). The largest relative change in 282 

the number of fires per year is predicted in the Mississippi Alluvial Plain (233%), the area 283 

surrounding the Mississippi River (Figure 1C & 3E), as well as the Southeast Coastal Plains, and 284 

Southeastern Plains in parts of western Kentucky and Tennessee. While we found the largest 285 

relative increase in fire events to occur in the Mississippi Alluvial Plain, others projected the 286 

highest relative increase in fire probabilities across the U.S. to occur in the Upper Great Lakes 287 

(Minnesota, Wisconsin, Michigan) (Gao et al., 2021), which are among the ecoregions we find 288 

an emergence of fire in the future compared to the satellite record of fire. Eleven ecoregions are 289 

predicted to have fewer fires per year in the future. These regions are predicted to have a 290 

decrease in fires per year and therefore a negative percent change in the future: Coast Range (-291 

25%) encompassing the coasts of California, Oregon and Washington; Central Appalachians (-292 

10%) and a decreasing trend of -0.3 fires per decade form 1990-2060 (Figure 3D); and the 293 

Southwestern Tablelands (-1.5%) in northeastern New Mexico. Some of the regions that are 294 

predicted to have the largest number of fires in the future but also have historically experienced 295 

many fires will still see moderate relative increases, with a 44.8% increase in Cold Deserts and a 296 

65.6% increase in the Central Semi-Arid Prairies (Figure 1C).  297 
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 298 
Figure 3. Trends in number of fires and area burned for selected ecoregions. Number of 299 

fires and burned area (acres) per year from the Monitoring Trends in Burn Severity (MTBS) 300 

(blue dots: 1984-2019) and median Modeled (ensemble red dots, shading is the range in median 301 

estimates from eight GCMs: 1990-2060) along with decadal trends for the A) Arizona/New 302 

Mexico Mountains, B) Central Basin and Range, C) Southern Coastal Plain, D) Central 303 
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Appalachians, E) Mississippi Alluvial Plain ecoregions. All trends, except the Central 304 

Appalachians, are statistically significant p<0.05. 305 

4.2 Annual Burned area will increase 60% over the next four decades 306 

For 1984-2019 the MTBS dataset reported a total burned area of 117M acres and an 307 

average 3.25M acres per year from large fires. The predicted total burned area for 2020-2060 is 308 

207M acres (CI:157M, 257M) with an average 5.2M acres per year (CI: 4.28M, 6.90M) across 309 

all ecoregions (Figure 2B), an increase of 60% over the observed past burned area per year. 310 

Similar to the observed burned area per year (Figure 1D), the Cold Deserts were predicted to be 311 

the ecoregions with the largest burned area per year with the Central Basin and Range (0.46M 312 

acres/yr) (Figure 3B), followed by the Northern Basin and Range (0.34M acres/yr). Fourteen 313 

ecoregions had a predicted total burned area of less than 10,000 acres. These 14 ecoregions were 314 

the same regions that had 0 to 1 event during the 36-year MTBS record.  315 

 316 

The Arizona/New Mexico Mountains ecoregion was predicted to have the largest 317 

increase in burned area per year for the period 2020-2060, with an increase of 0.13M acres per 318 

year and an increasing trend of 45,000 acres per decade for 1990-2060 (Figure 3A). The top five 319 

regions with the largest increasing change in burned area per year are all located in the western 320 

U.S. (Figure 1E). Eleven ecoregions mostly clustered in the South Central Semi-Arid Prairies 321 

located from Nebraska to Texas, along with Central Appalachians were predicted to have a 322 

decrease in burned area per year. Outside of the western U.S. the only regions predicted to have 323 

large increases in burned area per year are in the Southern Coastal Plains and Western gulf 324 

coastal Plains of Texas, predicted to have an average annual burned area of 0.12M acres. Other 325 

research predicts a small increase in annual area burned for the entire Southeast but for an 326 

ecoregion that includes the Southern Coastal Plain of Florida and the Middle Atlantic Coastal 327 

Plain (coastline of Georgia and Carolinas) the median annual area burned is projected to rise by 328 

21.6% (Prestemon et al., 2016). Our model predicts the largest increases per year in burned area 329 

for much of the western U.S., but research comparing annual area burned from 1972-2015 with 330 

projections for 2010-2030, saw significantly larger change, with a greater than five times 331 

increase in annual area burned over the northwestern Intermountain U.S. (including northern 332 

Idaho, western Montana and western Wyoming), central Rockies (central Utah and northern 333 

Colorado), southern Rockies and Southwest (New Mexico and northern Arizona) (Kitzberger et 334 

al., 2017).  335 

Similar to the percent change in total number of fires, the model predicts larger increases 336 

in burned area per year along the Mississippi River down to the Gulf Coast with large percent 337 

changes also occurring in the Southeastern Plains of Alabama, Georgia, and the Carolinas 338 

(Figure 1F). The model predicted that the Mississippi Alluvial Plain would have the largest 339 

percent change in burned area per year (372%), followed by the Southern Florida Coastal Plain 340 

(172%). In the west, the Central California Valley (171%) is predicted to see the largest percent 341 

increase in burned area per year. The model predicted that the coast from Washington to 342 

Northern California would see the greatest negative percent change (-29%) in burned area per 343 

year. The ecoregion with the second largest predicted negative percent change is the Central 344 

Appalachians (-23%). The Southern Rockies in Colorado are among the regions projected to see 345 

over 100% increase in burned area per year. Research found even greater percent changes in 346 

annual area burned with an increase of 175% for the Rocky Mountain Forest by 2046-2055 347 

compared to 1996-2005 (Spracklen et al., 2009). They found little change in area burned by 2050 348 
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for the Eastern Rocky Mountains/Great Plains ecoregions but our model predicts the Northern 349 

Great Plains will see an average increase of 74% in burned area per year while the South-Central 350 

Prairies of the Great Plains will have an average increase of 5% with many of the ecoregions 351 

seeing slight decreases in burned area per year.  352 

4.3 Widespread increases in the sizes of the largest fires 353 

The places that recently had the largest burned area per year were also among the regions 354 

that had larger maximum fire sizes. The among-ecoregion median of the 90th percentile fire size 355 

from the MTBS dataset for 1984-2019 was 8,558 acres, while the largest 90th percentile fire size 356 

was 53,377 acres in the North Cascades in central Washington. These ecoregions include much 357 

of the mountains in the western U.S. that make up the Western Cordillera (Figure 1G). The 90th 358 

percentile maximum fire sizes are an order of magnitude smaller than the largest events observed 359 

in an ecoregion because the largest fires are extreme tail events while the 90th percentile value 360 

tells you that 10% of all the events in that ecoregion are larger. The ecoregions with the largest 361 

change in maximum fire size were similar to the ecoregions that had the largest change in 362 

number of fires and burned area per year. The California Coastal Mountains and Foothills are 363 

predicted to have the largest change in maximum fire size with an increase of 28,192 acres 364 

(Figure 1H) and an increasing trend of 2,000 acres per decade (Figure 4B). The Arizona/New 365 

Mexico Mountains is the ecoregion with the 2nd largest projected increase in maximum fire size 366 

of 27,869 acres or a trend of 3,400 acres per decade (Figure 4A) which is a 31% decrease from 367 

the observed trend in maximum fire sizes from 1984-2011 for the Arizona/New Mexico 368 

Mountains (Dennison et al., 2014). For the same time period, the Sierra/Klamath/Cascade 369 

Mountains ecoregion had a negative trend of over 500 acres per year (Dennison et al., 2014) for 370 

the maximum fire size, which our model predicts to reverse and increase to a trend of 158 acres 371 

per year. The Rocky Mountains and Cold Deserts are also expected to have large increases in the 372 

maximum fire size by 2060 (Figure 1H). This is consistent with the projected increases in the 373 

probability of very large fires across the continental U.S. with the largest increases occurring in 374 

regions that had observed many very large fires in recent decades including the intermountain 375 

west covering the Great Basin and Western Cordillera (Barbero, Abatzoglou, Larkin, et al., 376 

2015). 377 



manuscript submitted to replace this text with name of AGU journal 

 

 378 
Figure 4. Trends in maximum fire size for selected ecoregions. 90% maximum fire size per 379 

year from the Monitoring Trends in Burn Severity (MTBS) (blue dots: 1984-2019) and mean 380 

Modeled 90
th

 quantile fire size (ensemble red dots mean of eight GCMs: 2020-2060, shading is 381 

the range from the 85
th

 quantile to the 97
th

 quantile fire sizes) along with decadal trends for the 382 

A) Arizona/New Mexico Mountains, B) California Coastal Sage, Chaparral, and Oak 383 

Woodlands, C) Southern Coastal Plain, D) Northwestern Great Plains ecoregions. All trends are 384 

statistically significant p<0.005. 385 

 386 

Across the U.S. our model predicts that maximum fire sizes will increase by an average 387 

of 63%. The regions expected to see the largest relative increase in the maximum fire size occur 388 

mostly in the western U.S. (including the Rockies, Sierra-Nevadas and the Great Basin regions) 389 

(Figure 1I), similar to previous research on very large fire probability (Larkin et al., 2015). The 390 

southern two-thirds of the western U.S. had a 132% linear increase in the probabilities in very 391 

large fires from 1984-2010 as well as a significant increase in probabilities across the Southeast 392 

US, especially in Florida (Barbero et al., 2014). For the southern western U.S. our model predicts 393 

a similar average increase of 128% in the maximum fire size and for the Southeastern Coastal 394 

Plains an average increase of 92% for 2020-2060 compared to the modeled 1990-2019 values, or 395 

a trend of 1,400 acres per decade (Figure 4C). In the future the mean probability of a very large 396 

fire across the western US increased 30% for 2031-2060 compared to 1950–2005 observations, 397 

with Eastern Great Basin (Idaho), Pacific Northwest, Rocky Mountains, and Southwest (Arizona 398 

and New Mexico), showing at least a 200% increase in probability of a very large fire (Stavros et 399 

al., 2014). The model predicted ecoregion with the biggest percent change in the maximum fire 400 

size is the Snake River Plain (207%). 401 

 402 
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4.4 Emerging fire regimes expected in the eastern U.S. over the next four decades 403 

In the satellite recording era, much of the Eastern U.S. has observed minimal fire events, 404 

burned area, and maximum fire sizes (Figure 1A, D, G) but our models predict small absolute 405 

increases in the number and sizes of future events over the next four decades (Figure 1B, E, H), 406 

which lead to large increases in the percent change in the number of fires, burned area, and 407 

maximum fire sizes in the future (Figure 1C, F, I). Of the eastern regions, the Mississippi 408 

Alluvial Plain, the area surrounding most of the Mississippi River, is the ecoregion predicted to 409 

have the largest relative change in both the number of fires per year (233%) and burned area per 410 

year (372%). The Southeastern Plains in parts of western Kentucky and Tennessee are predicted 411 

to have large relative increases in the number of fires per year in the future, while the 412 

Southeastern Plains of Alabama, Georgia and the Carolinas are predicted to have large relative 413 

increases in burned area per year. These regions, along with the rest of the U.S., see increases in 414 

the percent change in maximum fire size. Our prediction of the emergence of more extreme fire 415 

regimes in these eastern ecoregions that have often been excluded from fire modeling efforts due 416 

to their recent lack of fire events shows the importance of their inclusion because managers and 417 

people living in these regions need to prepare for a future of more and larger fire events.  418 

5. Conclusions 419 

5.1 More extreme large fires in the west & emerging fire in the east expected in the 420 

future 421 

Our results suggest that the observed increasing trends in the number of fires and fire size 422 

across the continental U.S. will continue over the next several decades, even on a moderate 423 

warming trajectory (RCP 4.5) and moderate population growth scenario (SSP2). In the present 424 

study, we seek for the first time to incorporate all of the key elements: number of fires and 425 

maximum fire size, in addition to area burned for the entire continental United States while 426 

accounting for human ignitions, in a single comprehensive study across all EPA ecoregions. To 427 

date, most future fire research has focused on projections of fire probability or burned area, and 428 

the relative change in these quantities, rather than the actual number of fire events—and most 429 

such studies have omitted direct anthropogenic influences on ignition likelihood (Barbero et al., 430 

2014; Larkin et al., 2015; Stavros et al., 2014). In addition, prior research on U.S. wildfire has 431 

mainly focused on the drier western third of the country while ignoring the Great Plains and 432 

lower fire frequency zones in the southern and eastern U.S.  433 

 434 

We find that climate change will likely cause wildfires to spread into regions where such 435 

events were rare in the satellite recording era (e.g., around the Great Lakes, along the Mississippi 436 

River down to the Gulf of Mexico), and lead to much larger wildfires that reach historically 437 

unprecedented sizes in regions where fires were historically common (e.g. the Cold Deserts and 438 

Western Cordillera). Ecoregions that are predicted to have the largest total number of fire events 439 

are not the same ecoregions that are predicted to have the largest total burned area under the 440 

same moderate (RCP4.5) climate model forcing. On a contiguous U.S-wide basis, we find that 441 

the number of large fires is expected to increase over 2020-2060. Regions that had the most fires 442 

in the past will generally remain the most frequent burning regions in the future, although the 443 

Southern Florida Coastal Plain emerges as a new frequent fire region. Further, we find that the 444 

changes in percent area burned in the future (+60%) slightly larger than the percent increase in 445 

the number of fire events (+56%)—and that maximum fire size increases more (+63%) than 446 
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either of the other two metrics. Though our modeling predicts larger relative increases in burned 447 

area in the Eastern U.S., where large fires were rare in the observed record, the largest absolute 448 

increases in area burned occur in the West (specifically, the Western Mountains and Cold Desert 449 

ecoregions). 450 

 451 

The fact that overall burned area as well as maximum fire size increases by a larger 452 

increment than the number of fires suggests a possible non-linear relationship between climate 453 

change and the most extreme wildfires, as has been hinted at in recent research based on 454 

observed trend in the U.S. West (Juang et al., 2022). This may relate to the relatively stronger 455 

climate signal, compared to the anthropogenic ignition signal—though we note that both forcings 456 

could potentially be underestimated if either climate change or population growth occur faster 457 

than the intermediate scenarios used in this study. Historically, it is the largest wildfires that are 458 

most likely to exceed active firefighting efforts (for a variety of reasons including rapidly 459 

expanding perimeters, the increased likelihood of expanding amid complex topography, and/or 460 

firefighting resource exhaustion). Although active fire suppression is not explicitly included in 461 

our modeling, it is plausible that any underlying non-linear empirical relationships in the real-462 

world fire training dataset—on which active suppression occurred in many cases—is nonetheless 463 

indirectly represented in the predictive model. Either way, one key implication of our predictions 464 

is that much larger future fires will increasingly challenge suppression efforts in a warming 465 

climate—perhaps acting as a positive feedback to maximum fire size. 466 

 467 

One key conclusion from our study is the high likelihood of more frequent and larger 468 

extreme fire events in most parts of the U.S. Regions currently experiencing few fires will see 469 

the smallest relative increases in maximum fire size, while the places that burn regularly will see 470 

the largest relative increases as well as the largest maximum fire sizes. Most of the southeastern 471 

ecoregions are among those expected to see the largest relative increases in the number of fires 472 

and acres burned per year, while the western ecoregions see the largest relative increases in 90th 473 

percentile maximum fire sizes. Previous work demonstrated that total annual area burned in a 474 

given region is strongly influenced by the largest wildfires (Stavros et al., 2014), but as our 475 

results show there can be significant increases in maximum fire sizes despite minimal increases 476 

in annual burned area in the same ecoregion. It has already been recognized that human ignitions 477 

affect the spatial patterns of large fires (Balch et al., 2017; Chelsea Nagy et al., 2018), and the 478 

very largest fires are driven by different climatic conditions compared to other large fires in the 479 

western and eastern U.S. (Barbero et al., 2014; Stavros et al., 2014). However, our own previous 480 

work developing the predictive model used in the present study suggests that ordinary events 481 

provide information on extremes, which would not be the case if extreme events were driven by 482 

completely unique climatic conditions from the ordinary events (Joseph et al., 2019). Previous 483 

studies have also excluded agricultural areas (deeming them “non-burnable”) and regions that 484 

experienced fewer than five very large fires in their training data—but in the present study, these 485 

are some of the regions we project to have the largest relative increase in maximum fire size 486 

(including the Central Valley of California and parts of the Great Plains). In the only other study 487 

(to the authors’ knowledge), that uses Bayesian statistics and climate from multiple GCMs to 488 

predict very large fire occurrence across the CONUS, the authors only considered 16 ecoregions 489 

(Podschwit et al., 2018)(rather than the 84 ecoregions in the present work). 490 
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5.2 Model Caveats 491 

Our model does not include explicit vegetation information, rather is using the ecoregions as 492 

proxy. Without explicit vegetation information there is no vegetation feedback (i.e already 493 

burned area not being able to be burned again within a certain timeframe)(Parks et al., 2015) or 494 

changes in vegetation distribution and subsequent climate-fire relationships. We limited our 495 

scope of study like others who realize that future changes in fire will require simulation of 496 

vegetation response to both climate and disturbance including fire (Kitzberger et al., 2017). 497 

Some research found when vegetation change is included in future fire modeling the total burned 498 

area increases dramatically compared to if it is excluded (Liu & Wimberly, 2016) while others 499 

found when future projections accounted for interactions among prior fires on surface and 500 

canopy fuel availability area burned reduced by 14.3% for in the Sierra Nevada compared to 501 

projections where only climate drivers were considered (Hurteau et al., 2019). The GCMS that 502 

provided the climate data for this study can represent fire occurrence but poorly and there is no 503 

agreement between models on past fire occurrence and how it might change in the future 504 

(Kloster & Lasslop, 2017). Future fire predictions are present in some GCMS in CMIP6 but none 505 

are able to capture the extent of current extreme fire events (Sanderson & Fisher, n.d.).  506 

Another caveat to our analysis comes from the calibration/validation based on the MTBS 507 

dataset. The MTBS burned area data derived from the Landsat satellite has a return interval of 16 508 

days so may miss short fires in areas with rapid post-fire regeneration like in grasses (Li & Guo, 509 

2018). MTBS has a threshold of over 405 ha in the west and when researchers included smaller 510 

fires then the total burned area would increase by 116% in the US (Chelsea Nagy et al., 2018). 511 

The short time period of analysis also contributes to this caveat; some ecoregions are sufficiently 512 

data sparse (possibly due to low fire activity or frequency, small ecoregion area, or other factors) 513 

that complicate future predictions. 514 

5.3 Public and Policy Significance 515 

 By including regions often excluded or overlooked along with the human impact on 516 

ignitions, our study provides a more complete prediction for the future of fire across all regions 517 

in the U.S. The projected increase in fire has substantial yet notably different ecological, societal, 518 

disaster response, and public policy implications for the Western and Eastern U.S. (respectively). 519 

In the West, which has a recent history of frequent and large fires, the future fire regime will 520 

only become more extreme—with ever greater influences on the forests and other ecosystems, 521 

populated areas via direct fire threats as well as indirect air pollution hazard related to smoke, 522 

and raising the prospect of even greater need for resources allocation to fire management and 523 

response. In the East, where fires in the 20th century were rare or non-existent for some 524 

ecoregions, the emergence of unprecedented fire events is likely to challenge existing fire 525 

management systems and ecosystems alike, and may well be a shock to many communities not 526 

accustomed to fire in their regions. Currently the U.S. Department of Agriculture (USDA), 527 

Forest Service Wildfire Crisis Implementation Plan only covers 8 Western States with no 528 

mention of the Eastern U.S. (USDA Forest Service, n.d.). For these reasons, it will be 529 

increasingly important to develop cohesive national wildfire policies (Plan A, 2013) that account 530 

for future fire predictions across the wide range of background ecologies, climates, and human 531 

geographies that will be interacting in a warming climate. 532 
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Introduction  

The following provides more details about the fire count and burn area models along 
with the results from the eight Global Climate Models that were averaged to get the 
ensemble results presented in the main text.  

Text S1. Model Details 
a. Fire Occurrence Model 
The model represents counts as a zero-inflated negative binomial random variable. 

This approach allows us to simultaneously account for the zero-inflation and 
overdispersion observed in the fire count data. The model defines a probability mass 
function for fires over 405 ha (approximately 1000 acres) in each ecoregion s (spatial 
scale s = 1,....,S) and time step t (monthly scale t = 1,....,T). The location parameter μs,t and 
the structural zero inflation parameters πs,t were able to vary in space and time. A log link 
function ensured μs,t > 0 while a logit link function ensured πs,t ∈ (0,1).  Linking by spatial 
and temporal units so that π = (πs=1,t=1 , πs=2,t=1 , . . ., πs=S,t=1 , πs=S,t=2 , . . ., πs=S,t=T) as well as 
for μ, the location and zero inflation parameters were modeled by  

log(μ) =α(μ) + Xβ(μ) + φ(μ) + log(a) 
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logit(π) = α(π) + Xβ(π) + φ(π) 
where α(μ) and α(π) are scalar parameters of intercepts, X is a design matrix (S × T) × 

p where 
p is the number of input features, β and φ are column vector parameters with β(μ) 

and β(π) being length p and φ(μ) and φ(π) of length S × T with spatiotemporal adjustments, 
and a is an areas offset vector for the spatial units s repeated for each time step t. A 
multivariate horseshoe was used sharing information between the zero inflated and 
negative binomial location parameters (Peltola et al., 2014). 

b. Burned Area 
The model response yi is the number of hectares burned over 405 ha for the ith fire 

event occurring in each spatial unit si at time step ti. The model included covariate 
dependence through the location parameter:  μi = α + X(𝑠𝑠𝑖𝑖,𝑡𝑡𝑖𝑖)β + ϕ(𝑠𝑠𝑖𝑖,𝑡𝑡𝑖𝑖), where α is an 
intercept parameter, X(𝑠𝑠𝑖𝑖,𝑡𝑡𝑖𝑖) is a row vector from the design matrix X, β is a vector of 
coefficients of length p, and ϕ(𝑠𝑠𝑖𝑖,𝑡𝑡𝑖𝑖) is an adjustment for the spatial unit s and time step t. 
For the lognormal burned area model a univariate horseshoe prior was used.  

c. Accounting for nonlinear forcing 
The design matrix was created to include the spatially nonlinear effects of 

meteorological variables and population density. To account for the nonlinearity and to 
allow the coefficients for each basis vector to vary spatially we used B-splines (Wood, 
2017). The univariate B-splines for the meteorological drivers and population density 
each had five degrees of freedom, generating 30 basis vectors. Interaction effects were 
added between each basis vector and the ecoregions to account for the spatial variability 
in the nonlinear effects (Brezger and Lang, 2006; Kneib et al., 2009). The interactions 
between ecoregions is captured through the hierarchical nesting of the 3 ecoregions 
levels; such that coefficients in level 3 may be related to coefficients in the level 2 
ecoregion that contains the level 3 ecoregion and so forth up to level 1 which contains 
the level 2 ecoregion and a global effect. The interactions effects for each of the 30 basis 
vectors for each ecoregion level were included to allow information sharing across 
ecoregion level and ecoregions of similar of ecology. An adjustment for the global 
intercept for each ecoregion level was included to account for any spatial variability that 
is not related to population density or climate. This leads to a matrix of 3,472 values, that 
includes many zero values, that will increase the efficiency of computing μ and π. The 
random effects in space and time were created “using a temporally autoregressive, 
spatially intrinsically autoregressive formulation (Besag and Kooperberg, 1995; Banerjee 
et al., 2014)” (Joseph et al., 2019).  

d. Posterior predictive inference for finite sample maxima 
Joseph et al. (2019) compared empirical maxima to the predicted distribution of 

maxima to ensure that models capture tail behavior. They also performed predictive 
checks for the proportion of zero counts and totals for count and burned area models. 
Posterior predictive inference for finite sample maxima obtains a “distribution over 
maxima by marginalizing over unknowns including the number of events, size of each 
event and the parameters of their distributions (Marani and Ignaccolo, 2015)” (Joseph et 
al., 2019).  
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S2. Individual GCM predictions 
 Out of all the models the IPSL and MRI predicted significantly fewer fires per year 

and burned area per year than the others, with the Had_ES model predicting 
approximately 2.5 times more fires and burned area than the IPSL model. 

  
 
Model   Burned Area Per Year Number of Fires Per Year 

CanESM2 5.66M (min:3.47M; max:13.58M) 571 (min:393; max: 898) 

CNRM_CM5 5.96M (min:3.79M; max:10.39M) 558 (min:419; max: 851) 

CSIRO 6.23M (min:4.21M; max: 10.64M) 605 (min:432; max: 990) 

Had_CC 6.53M (min: 4.39M; max: 9.82M) 661 (min:495; max: 952) 

Had_ES 7.71M (min: 4.58M; max: 13.89M) 738 (min:527; max: 1116) 

IPSL_MR 2.58M (min:1.64M; max: 7.25M) 300 (min:221; max: 749) 

MIROC 5.91M (min:3.92M; max 9.25M) 608 (min:457; max: 849)  

MRI 4.12M (min: 2.93M; max: 13.72M) 414 (min:314; max: 607) 

 

Table S1. Median predicted burned area per year (acres) and number of fires per year 
from 2020-2060 for the Contiguous U.S. along with the minimum and maximum from 
the 2000 iterations run per model. 
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Figure S1. Change in the number of fires per year per ecoregion comparing predicted 
2020-2060 vs. modeled 1990-2019 values for each of the eight GCMS. 
 

 
Figure S2. Percent change in the number of fires per year per ecoregion predicted 2020-
2060 vs. modeled 1990-2019 for each of the eight GCMs.  
 

 
Figure S3. Change in Burned Area per year per ecoregion comparing predicted 2020-
2060 vs. modeled 1990-2019 values for each of the eight GCMS.  
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Figure S4. Percent change in Burned Area per year per ecoregion comparing predicted 
2020-2060 vs. modeled 1990-2019 values for each of the eight GCMS.  
 

 
Figure S5. Change in 90% Maximum Fire Size per ecoregion comparing the predicted 
2020-2060 vs. modeled 1990-2019 values for each of the eight GCMS.  
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Figure S6. Percent Change in 90% Maximum Fire Size per ecoregion comparing the 
predicted 2020-2060 vs. modeled 1990-2019 values for each of the eight GCMS.  
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