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Abstract

Despite the growing use of Aquatic Ecosystem Models (AEMs) for lake modelling, there is currently no widely applicable

framework for their configuration, calibration, and evaluation. To date, calibration is generally based on direct data comparison

of observed vs. modelled state variables using standard statistical techniques, however, this approach may not give a complete

picture of the model’s ability to capture system-scale behaviour that is not prevalent in the state observations, but which

may be important for resource management. The aim of this study is to compare the performance of ‘näıve’ calibration and a

‘system-inspired’ calibration, a new approach that augments the standard state-based calibration with a range of system-inspired

metrics (e.g. thermocline depth, metalimnetic oxygen minima), in an effort to increase the coherence between the simulated

and natural ecosystems. This was achieved by applying a coupled physical-biogeochemical model to a focal site to simulate

temperature and dissolved oxygen. The model was calibrated according to the new system-inspired modelling convention, using

formal calibration techniques. There was a clear improvement in the simulation using parameters optimised on the additional

metrics, which helped to focus calibration on aspects of the system relevant to reservoir management, such as the metalimnetic

oxygen minima. Extending the use of system-inspired metrics for the calibration of models of nutrient cycling, algal blooms,

and greenhouse gas emissions has the potential to greatly improve the prediction of complex ecosystem dynamics.
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Key Points: 10 

 We assessed the use of system-inspired metrics in a novel approach to calibrating aquatic 11 

ecosystem models. 12 

 The use of system-inspired metrics in calibration substantially improved model 13 

performance relative to traditional calibration methods.  14 

 Implementation of system-inspired metrics has the potential to greatly improve model 15 

prediction of complex ecosystem dynamics. 16 

  17 
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Abstract 18 

Despite the growing use of Aquatic Ecosystem Models (AEMs) for lake modelling, there 19 

is currently no widely applicable framework for their configuration, calibration, and evaluation. 20 

To date, calibration is generally based on direct data comparison of observed vs. modelled state 21 

variables using standard statistical techniques, however, this approach may not give a complete 22 

picture of the model’s ability to capture system-scale behaviour that is not prevalent in the state 23 

observations, but which may be important for resource management. The aim of this study is to 24 

compare the performance of ‘naïve’ calibration and a ‘system-inspired’ calibration, a new 25 

approach that augments the standard state-based calibration with a range of system-inspired 26 

metrics (e.g., thermocline depth, metalimnetic oxygen minima), in an effort to increase the 27 

coherence between the simulated and natural ecosystems. This was achieved by applying a 28 

coupled physical-biogeochemical model to a focal site to simulate temperature and dissolved 29 

oxygen. The model was calibrated according to the new system-inspired modelling convention, 30 

using formal calibration techniques. There was a clear improvement in the simulation using 31 

parameters optimised on the additional metrics, which helped to focus calibration on aspects of 32 

the system relevant to reservoir management, such as the metalimnetic oxygen minima. 33 

Extending the use of system-inspired metrics for the calibration of models of nutrient cycling, 34 

algal blooms, and greenhouse gas emissions has the potential to greatly improve the prediction of 35 

complex ecosystem dynamics. 36 

 37 

1 Introduction 38 

The use of process-based Aquatic Ecosystem Models (AEMs) for simulating the water 39 

quality of freshwater ecosystems has substantially increased over the past two decades for 40 

studying the effects of human activities and predicting future changes (Jannsen et al., 2015; 41 

Soares & Calijuri, 2021). These models can be used for several different purposes across various 42 

time and spatial scales, making them useful decision-making tools for addressing the 43 

environmental issues affecting lentic ecosystems (Mooij et al., 2010). For example, recent 44 

advancements have demonstrated their capabilities for the simulation of chemical and biological 45 

variables to investigate anoxia (Carey et al., 2022a; Ladwig et al., 2021), eutrophication 46 

(Arhonditsis & Brett, 2005), and greenhouse gas emissions (Stepanenko et al., 2016), and predict 47 
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harmful algal blooms (Ranjbar et al., 2021). Moreover, they can be used for testing scenarios 48 

related to climate change and increased nutrient loading, which would not otherwise be feasible 49 

to study empirically at the system-scale (e.g., Elhabashy et al., 2023; Nielsen et al., 2014; Trolle 50 

et al., 2011). However, despite their widespread use, there is no consensus as to how best to 51 

configure, calibrate, and evaluate AEMs for lake modelling, leading to the need for new 52 

approaches for historical and future aquatic ecosystem prediction (Frassl et al., 2019). 53 

A major challenge in setting up and applying AEMs is appropriately calibrating model 54 

parameters. The values of model parameters are relatively unknown, in contrast to state 55 

variables, where information regarding values and variability is well established through 56 

empirical measurements (Hipsey et al., 2020). Hence, the scope of calibration requires 57 

identifying the parameter set within the parameter space that best fits observations. However, the 58 

prevalence of unknown model parameters combined with the lack of observed characterisation 59 

data results in equifinality, whereby distinct sets of parameters fit the observed state variable 60 

measurements equally well (Arhonditsis et al., 2008). The equifinality of model solutions can 61 

lead to instances whereby the model simulates the state variables of interest adequately, however 62 

it incorrectly resolves the relevant higher-level processes and system-scale dynamics 63 

(Arhonditsis et al., 2007). In addition to the equifinality of distinct parameter sets, several 64 

possible model structures might be acceptable simulators of the natural system (Janse et al., 65 

2010). The complexity and formulation of process descriptions varies between models, and 66 

between in-model configuration options, which results in structural uncertainty (Refsgaard et al., 67 

2007). These structural variations, whilst not being observable at the state variable level, may 68 

give rise to different process behaviours and system-scale dynamics (Anderson et al., 2010). The 69 

prevalence of equifinality in model solutions, raises the question: how can we better calibrate 70 

and constrain our water quality models? 71 

To incentivise the implementation of all components of the modelling procedure, it is 72 

crucial to establish a common framework for improved calibration, validation, and uncertainty 73 

analysis. Despite the advancement in the process descriptions of AEMs, the level of 74 

predictability they provide has not significantly improved since the 1990s (Arhonditsis & Brett, 75 

2004; Soares & Calijuri, 2021), among others. Like in all fields of environmental modelling, 76 

AEMs are simplifications of very complex real-world systems and comprise a significant number 77 

of uncertain model parameters whose true values are unknown and must therefore be estimated. 78 
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Additional sources of uncertainties in process-based models are introduced through model 79 

structural assumptions, and in the assignment of initial and boundary conditions (Beck, 1987), 80 

among others. In response to these issues, several researchers have proposed that the modelling 81 

procedure should include calibration, validation, and sensitivity/uncertainty analysis (e.g., 82 

Jørgensen, 1995; Refsgaard et al., 2007). However, according to a recent review on the state of 83 

process-based lentic aquatic systems modelling, the above-mentioned components of the 84 

modelling procedure were routinely neglected and were only applied in 67% (calibration), 53% 85 

(validation), and 34% (sensitivity/uncertainty analysis) of studies published between 2015 and 86 

2020 (Soares & Calijuri, 2021).  87 

A new framework for the evaluation of aquatic ecosystem models - the 88 

Concept/State/Process/System framework (CSPS; Hipsey et al., 2020) - proposes a system-89 

inspired approach for model evaluation, as a way to extend the traditional model-data 90 

comparison method. The CSPS framework consists of four different validation levels (numbered 91 

0-3) and suggests a suite of advanced metrics and system ‘signatures’ that can be adopted to 92 

assist in assessing the performance and suitability of an AEM simulation (Hipsey et al., 2020). In 93 

addition to the traditional ‘state validation’, the framework encourages targeted evaluation of 94 

process behaviour and system-scale dynamics that can give a more complete picture of the 95 

model’s performance and whether it is fit-for-purpose. In recent case studies, the framework has 96 

been applied to validate ecosystem models of Lake Kinneret (Israel) and the Great Barrier Reef 97 

(Australia), enabling an assessment of each model’s strengths and hidden deficiencies, 98 

highlighting the benefits of this systematic approach (Reger et al., 2023; Robson et al., 2020).  99 

While the CSPS framework proposes a systematic approach to model evaluation, there is 100 

currently no widely applicable framework for the calibration of complex AEMs (e.g., Frassl et 101 

al., 2019; Janssen et al., 2015). To date, calibration is generally based on direct data comparison 102 

of observed vs. modelled state variables using simple quantitative techniques such as the root-103 

mean-square-error (RMSE; Soares & Calijuri, 2021). Consequently, the success of calibration is 104 

dependent on noisy observations of the primary state variables, often limited in quantity, to 105 

adequately constrain the model inputs (Bennett et al., 2013). System-inspired metrics are 106 

applicable indicators of the broader behaviour of the ecosystem, including relevant 107 

dimensionless numbers, stoichiometric indicators, and a variety of relationships between 108 

variables of interest (Hipsey et al., 2020)–quantities that are important for maintaining plausible 109 
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simulated ecosystem behaviour during calibration. Incorporating system-inspired metrics in the 110 

calibration process, in addition to state variables, may compensate for low-quality datasets and 111 

information deficits. This can guide model calibration efforts to best capture ecosystem-scale 112 

dynamics. However, this has not been rigorously assessed relative to a non-system-inspired 113 

calibration approach to date.  114 

Due to the high level of uncertainty of AEMs, incorporating uncertainty analysis in the 115 

modelling procedure is of increasing interest to provide critical estimates of reliability for the 116 

model outcomes. Uncertainty analysis is concerned with establishing bounds around point 117 

predictions to describe the degree of confidence we have in the model results. Herein, 118 

uncertainty analysis is performed by running the model multiple times with different inputs and 119 

configurations, referred to as single-model-ensembles (SMEs; Gal et al., 2014). SMEs can 120 

exploit the sensitivity of the model in question to different parameter sets, boundary conditions, 121 

initial values, and configuration options, and assess how these uncertainties propagate in the 122 

model output (Janssen et al., 2015). Bayesian-based calibration has been increasingly used as it 123 

allows direct assessment of parameter uncertainty (Janse et al., 2010). Instead of estimating one 124 

optimal parameter set, this approach seeks to determine the posterior probability distribution of 125 

model parameters, which convey the likelihood of certain parameter values (Arhonditsis et al., 126 

2007), though this approach has yet to receive broad uptake within the AEM community (Soares 127 

& Calijuri, 2021).  128 

The aim of this study was to answer two research questions: 1) Can applying non-129 

traditional, system-inspired metrics based on the CSPS framework provide additional constraints 130 

that can improve the accuracy of AEMs for water quality prediction? and 2) As system-inspired 131 

metrics have the potential to provide additional constraints to calibration, can they 132 

simultaneously reduce the uncertainty of model results? We compared two calibration 133 

approaches to address the questions. The first approach is naïve calibration, a frequently used 134 

approach based only on the statistical comparison of available observed vs. modelled state 135 

variables. The second approach augments the more traditional naïve calibration with additional 136 

metrics, a new approach that explicitly includes a wide range of supplementary system metrics 137 

(e.g., thermocline depth, metalimnetic oxygen minima) to help maintain the coherence of the 138 

posterior parameter ensemble. Additionally, we explore different objective function formulations 139 

in an effort to understand the interaction between matching historic measurements of system 140 
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state with these new system-inspired metrics. This was undertaken by applying a coupled 141 

physical-biogeochemical model to a focus site to simulate water temperature and dissolved 142 

oxygen (DO), two key drivers of ecological functioning in lakes. Through an ensemble-based 143 

calibration analysis, the performance of the two distinct approaches was evaluated and the 144 

predictive uncertainty of the system-metrics of interest was assessed. With the use of system-145 

inspired metrics in the analysis, we sought to reduce the equifinality of model solutions and 146 

provide a holistic approach for the calibration of complex aquatic ecosystem models. The new 147 

system-inspired calibration convention is scalable to a diversity of lentic systems, and is 148 

anticipated to aid model structural decisions and improve confidence in model predictions of 149 

complex AEMs. 150 

 151 

2 Materials and Methods 152 

2.1 Study site  153 

The focal site of this study was Falling Creek Reservoir (FCR), a small eutrophic 154 

reservoir located in Vinton, southwest Virginia, USA (Figure 1; 37.30, -79.84). FCR is a 155 

drinking water reservoir owned and operated by the Western Virginia Water Authority (WVWA; 156 

Carey et al., 2022a). During construction in 1898, the dominant land use of the watershed was 157 

agriculture, however, the land is now covered by deciduous forest (Gerling et al., 2016). FCR has 158 

a maximum depth of 9.3 m and surface area of 0.119 km
2
 (McClure et al., 2018). It is maintained 159 

at a constant level (full pond) by the WVWA and did not experience significant fluctuations 160 

throughout the duration of this study. The primary inflow to FCR is a tributary with a gauged 161 

weir, that receives water from the upgradient Beaverdam Reservoir (Gerling et al., 2016). FCR 162 

has a dimictic mixing regime and is thermally stratified between April and October, with 163 

intermittent ice cover between December and March (Carey & Breef-Pilz, 2022). 164 

During the summer stratified period, FCR exhibits persistent hypolimnetic anoxia which 165 

has been causing water quality impairment (Carey et al., 2022a). In order to mitigate the water 166 

quality problems, the WVWA deployed a side-stream hypolimnetic oxygenation system (HOx) 167 

in 2012, with the purpose of increasing the dissolved oxygen concentration in the hypolimnion 168 

without altering the thermal stratification of the water column (Gerling et al., 2014). Essentially, 169 
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the HOx system extracts water from the hypolimnion at ~8.5 m depth, injects DO into the water 170 

in a contact chamber, and returns it back to the reservoir at the withdrawal depth. Metalimnetic 171 

oxygen minimum zones (MOMs) commonly develop during the thermally-stratified period since 172 

the deployment of the HOx system (McClure et al., 2018). The HOx system was operational in 173 

summers between 2013 and 2021, with variable oxygen addition levels and durations. In-depth 174 

description of the system and operation details can be found in Gerling et al. (2014) and Carey et 175 

al. (2022a), respectively. Due to the extensive monitoring of the physics, chemistry, and biology 176 

of the site in the last decade, sufficient empirical data for FCR were available for calibration. 177 

 178 

2.2 Modelling framework and methodology 179 

2.2.1 Modelling framework and overview 180 

Our model framework composed a few stages during its development (Figure 2). A 181 

vertical 1D model was developed to simulate the hydrology (including mixing and thermal 182 

stratification) and dissolved oxygen variations in FCR. In this analysis, we built upon the model 183 

previously developed and described by Carey et al. (2022a). We further improved the simulation 184 

by coupling the model with an independent Parameter ESTimation (PEST; Doherty, 2018) 185 

software package to optimise the model performance and compare two different calibration 186 

approaches: naïve and system-inspired calibration. We then tested the impact of different 187 

weighting strategies on the modelling results and assessed the predictive uncertainty of the 188 

system-metrics of interest. The details of model description, set up, and analysis methodologies 189 

are described in the following sections. 190 
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 191 

Figure 1. Map of the Falling Creek Reservoir, Vinton, Virginia, USA: Latitude: 37.30°, 192 

Longitude: -79.84°. The coloured bands indicate the bathymetry contours of the reservoir, 193 

and the red line represents the location of the hypolimnetic oxygenation (HOx) system. 194 
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 195 

Figure 2. The modelling framework including the model setup, calibration, and uncertainty 196 

analysis. The system-inspired calibration includes additional data of following extra metrics: 197 

thermocline depth (TD), Schmidt stability (SS), metalimnetic oxygen minima (MOM), the 198 

number of anoxic layers (NAL). 199 

 200 

2.2.2 Model description 201 

We used the General Lake Model dynamically coupled to the Aquatic EcoDynamics 202 

Modules (GLM-AED; version 3.3.1a2) to simulate the physical and biogeochemical properties 203 

of FCR. GLM is a 1-D open-source model that can resolve the hydrodynamics and 204 

thermodynamics of enclosed water bodies including the water, ice and heat balance, vertical 205 

temperature distribution, transport, and mixing dynamics (Hipsey et al., 2019). The model has 206 

been applied to a range of different water body types across varying climatic regions for 207 

widespread validation and model assessment (Bruce et al., 2018). It requires meteorological, 208 

inflow and outflow driver data and incorporates a flexible Lagrangian layer scheme. In this 209 

approach, a series of horizontal layers contract or expand in response to water fluxes. The 210 

sediment module allows for the setup of zone-specific sediment heating and biogeochemistry. 211 
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GLM is able to simulate dominant FCR hydrodynamic processes, including summer 212 

stratification, ice formation, surface, and deep mixing (Carey et al., 2022a). The in-depth 213 

description of GLM can be found in Hipsey et al. (2019).  214 

The AED modelling library is an open-source project aimed at simulating aquatic 215 

ecosystem dynamics (Hipsey, 2022). It consists of a number of modules such as DO, inorganic 216 

nutrients: C/N/P/Si, organic matter: DOM/POM, tracers, phytoplankton, zooplankton and others. 217 

Each module can work in isolation or combined with other modules, which makes AED suitable 218 

for the simulation of a range of aquatic ecosystems. In this application, the AED configuration 219 

was focused on DO, one of the most important indicators of water quality. In addition to the two 220 

core processes, atmospheric and sediment fluxes, the configuration included oxygen sources and 221 

sinks linked to the dynamics of C, N, P, Si, organic matter, and phytoplankton (see Kurucz et al., 222 

2023, for the full model configuration and parameters). 223 

The GLM-AED model setup for FCR by Carey et al. (2022a) was used as the base model 224 

to build upon in this study. All GLM-AED model configuration files, parameters, and driver data 225 

for FCR were accessed from the Environmental Data Initiative repository (Carey et al., 2022c). 226 

In our configuration, the number of sediment zones was increased to four to better capture the 227 

depth-specific sediment heating and biogeochemistry. Additionally, the boundary condition for 228 

the HOx system deployed in FCR was configured to inject oxygenated water at varying depths in 229 

the hypolimnion. GLM-AED was run from 2015-07-12 to 2019-12-31 at an hourly timestep. The 230 

total simulation period was divided into calibration from 2016-12-01 to 2019-12-31 and 231 

validation from 2015-07-12 to 2016-12-01. 232 

 233 

2.3 Driver (boundary condition) data 234 

GLM-AED driver data included hourly meteorological data, stream inflow data, HOx 235 

system inflow data and outflow data that were retrieved from the EDI Repository (Carey et al., 236 

2022c). The meteorological dataset consisted of air temperature, relative humidity, shortwave 237 

and longwave radiation, wind speed, and precipitation data from NASA’s North American Land 238 

Data Assimilation System (Xia et al., 2012) from 2013-2021. The inflow data for the primary 239 

tributary consisted of daily discharge, water temperature and chemistry observations from 2013-240 
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2021. The HOx system inflow included daily flow, elevation (the depth at which the oxygenated 241 

flow is injected in the reservoir), water temperature, and chemistry observations from 2013-242 

2021. The daily outflow discharge was estimated to amount to the daily inflow discharge, as the 243 

reservoir did not exhibit significant changes in water level throughout the duration of the study.  244 

 245 

2.4 Calibration and analysis approach 246 

2.4.1 State variable observations 247 

Temperature and dissolved oxygen depth profiles were recorded in FCR from 2013-2021 248 

at the reservoir’s deepest site and were retrieved from the Environmental Data Initiative 249 

Repository (Carey et al., 2022b). In short, temperature and dissolved oxygen depth profiles were 250 

collected with a CTD (Conductivity, Temperature, and Depth) profiler fitted with a SBE 43 251 

Dissolved Oxygen sensor. In addition, discrete depth profiles of temperature and dissolved 252 

oxygen were also collected with YSI water quality probes at approximately 1-m intervals (Carey 253 

et al., 2022d). Samples were collected at the deepest site of FCR (near the dam), and other in-254 

reservoir transects approximately monthly from October to February, fortnightly from March to 255 

May, and weekly from June to September. The YSI temperature profiles complement and fill in 256 

for missing CTD data. The observed temperature and dissolved oxygen profile data were 257 

spatially interpolated among depths on the data collection days to fill in for missing data and to 258 

achieve higher spatial resolution for the calculation of system metrics. Data manipulation, 259 

analysis, visualisation and computations were undertaken in R (version: 4.1.2). 260 

2.4.2 Calibration 261 

The GLM-AED model was coupled with an independent Parameter ESTimation (PEST; 262 

Doherty, 2018a) software package for calibration. PEST was run in estimation mode to minimise 263 

the objective function, which was defined as the sum of the weighted squared difference between 264 

measured observations and the corresponding model predictions. PEST implements the Gauss-265 

Marquardt-Levenberg optimization algorithm for parameter estimation, which is able to rapidly 266 

find the best-fit parameter set in the user-defined parameter space. To accommodate varying 267 

observation types and frequency, the observed data was organised into different observation 268 
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groups which were weighted based on different weighting strategies. Detailed description of the 269 

PEST++ software suite can be found in the PEST++ user manual (Doherty, 2018a). 270 

2.4.3 Naïve vs. system-inspired calibration 271 

The objective function of the naïve calibration (Φ𝑁) was based on direct comparison of 272 

the model predicted and observed temperature (𝑇) and dissolved oxygen (𝐷𝑂) profiles at 0.1 m 273 

below the surface and every metre interval between 1 and 9 m depths below the surface, 274 

resulting in 20 depth-specific comparisons. The weights (𝑤) of the 𝑇 and 𝐷𝑂 observation groups 275 

were set to the reciprocal of the standard deviation of the corresponding measurements. The 276 

objective function was mathematically formulated as follows: 277 

Φ𝑁 = ∑(𝑤𝑇𝑟𝑇𝑖
)2

𝑖

+ ∑(𝑤𝑂𝑟𝑂𝑖
)2

𝑖

 
(1) 

where 𝑖 denotes the number of observations in each observation group, 𝑤𝑇 and 𝑤𝑂 represent the 278 

weighting of the temperature and oxygen observation groups respectively and 𝑟𝑇 and 𝑟𝑂 denote 279 

the temperature and oxygen residuals respectively. The initial, minimum, maximum values and 280 

standard deviations of the parameters included in the adjustable parameter vector are listed in 281 

Table S1. 282 

The objective function of the system-inspired calibration (ΦS) was based on the 283 

comparison of a wide variety of system-based metrics along with the temperature (𝑇) and 284 

dissolved oxygen (𝐷𝑂) profiles. The system metrics in the objective function included the 285 

thermocline depth (𝑇𝐷), Schmidt stability (𝑆𝑆), metalimnetic oxygen minima (𝑀𝑂𝑀), and the 286 

number of anoxic layers per day (𝑁𝐴𝐿), mathematically formulated as follows: 287 

Φ𝑆 = ∑(𝑤𝑇𝑟𝑇𝑖
)2

𝑖

+ ∑(𝑤𝑂𝑟𝑂𝑖
)2

𝑖

+ 

 
(2) 

∑(𝑤𝑇𝐷𝑟𝑇𝐷𝑖
)2

𝑖

+ ∑(𝑤𝑆𝑆𝑟𝑆𝑆𝑖
)2

𝑖

+ ∑(𝑤𝑀𝑂𝑀𝑟𝑀𝑂𝑀𝑖
)2

𝑖

+ ∑(𝑤𝑁𝐴𝐿𝑟𝑁𝐴𝐿𝑖
)2

𝑖
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where 𝑤𝑇𝐷, 𝑤𝑆𝑆, 𝑤𝑀𝑂𝑀, 𝑤𝑁𝐴𝐿, represent the weighting of the TD, SS, MOM and NAL 288 

observation groups respectively, and 𝑟𝑇𝐷, 𝑟𝑆𝑆, 𝑟𝑀𝑂𝑀, 𝑟𝑁𝐴𝐿 denote the TD, SS, MOM, and NAL 289 

residuals respectively.  290 

SS is a stratification index that establishes the resistance of the system to mechanical 291 

mixing and is a good indicator of stratification strength (Idso, 1973). The SS indices were 292 

calculated from the observed temperature profiles on data collection days using the 293 

ts.schmidt.stability function in the rLakeAnalyzer package (Albers et al., 2018). 294 

The TD marks the upper boundary of the hypolimnion and is defined as the depth of the steepest 295 

temperature gradient in the water column during thermal stratification (Ladwig et al., 2021). The 296 

thermocline depths were calculated from the observed temperature profiles on data collection 297 

days in the stratification period (1 April – 30 September) using the ts.thermo.depth 298 

function in the rLakeAnalyzer package with a minimum density gradient of 0.1 g/cm
3
 (Albers et 299 

al., 2018). Comprehensive description of the thermocline depth and Schmidt stability index 300 

computations can be found in Read et al. (2011). The metalimnetic oxygen minimum is a zone of 301 

depleted dissolved oxygen in the middle of the water column, below the thermocline (McClure et 302 

al., 2018). It was expressed as the deviation from the expected oxygen concentration in the 303 

metalimnion, if a linear pattern in dissolved oxygen reduction is assumed from the epilimnion 304 

towards the hypolimnion. The MOM was calculated on each data collection day based on 305 

equations (3) and (4). 306 

𝑀𝑂𝑀 =  𝑂2 (𝑚𝑒𝑡𝑎𝑙𝑖𝑚𝑛𝑖𝑜𝑛) − 𝑂2 (𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑) (3) 

where: 307 

𝑂2 (𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑) =
𝑂2 (𝑒𝑝𝑙𝑖𝑚𝑛𝑖𝑜𝑛) + 𝑂2 (ℎ𝑦𝑝𝑜𝑙𝑖𝑚𝑛𝑖𝑜𝑛)

2
 

(4) 

The spatial and temporal extent of anoxia in FCR was quantified by the number of anoxic layers 308 

per day. The observed NAL was calculated by temporally interpolating the observed DO data on 309 

a daily time step between 1 May and 30 November and spatially interpolating it by 0.1 m. The 310 

number of 0.1 m layers with DO concentrations below the anoxia threshold, set as 1 mg/L, were 311 

added up for each day resulting in a dataset of daily count. In the system-inspired calibration 312 

process, the parameter vector and parameter transformations were equivalent to those of the 313 

naïve calibration.  314 



manuscript submitted to Water Resources Research 

 

Experiments with different objective function weighting schemes for incorporating the 315 

system inspired metrics were undertaken to assess how weighting affects the calibration results 316 

(Table 1). In weighting scheme 1, hereafter referred to as Model w1, the extra metrics 317 

observation groups were given weights that resulted in an approximately equal contribution to 318 

the objective function by each advanced metric at the start of the calibration process (e.g., 319 

Wilsnack et al., 2012). Weighting scheme 2, hereafter referred to as Model w2, followed the 320 

practice of error-based weighting (e.g., Tiedeman et al., 2003), which was calculated as 321 

1/standard deviation of the observation group (Doherty, 2018a), consistent with how state-322 

variables were weighted. Lastly, in weighting scheme 3, hereafter referred to as Model w3, the 323 

weights were set to double that of Model w2. Moreover, the calibration process was repeated for 324 

two different deep mixing configuration sub-module options to evaluate their suitability for 325 

capturing the thermocline within FCR. One configuration adopted hypolimnetic mixing based on 326 

constant vertical diffusivity, hereafter referred to as DM 1, and the other configuration employed 327 

the Weinstock model, hereafter referred to as DM 2. In the latter, the diffusivity varies based on 328 

the strength of stratification and the depth-dependent rate of turbulent dissipation (Hipsey et al., 329 

2019).  330 
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Table 1. Different weighting schemes for incorporating system metrics in the objective function. 331 

The system metrics include the thermocline depth (TD), Schmidt stability (SS), metalimnetic 332 

oxygen minima (MOM), and the number of anoxic layers (NAL). 333 

 Model w1 Model w2 Model w3 

TD 1.8 0.917 1.834 

SS 0.14 0.058 0.115 

MOM 0.02 0.014 0.027 

NAL 0.025 0.052 0.105 

 334 

2.5 Uncertainty analysis 335 

Uncertainty analysis was carried out on the best performing model (Model w2 with DM 336 

2). This analysis was used to explore equifinal solutions by seeking an ensemble of parameter 337 

realisations that all acceptably reproduce both state measurements and the additional metrics. For 338 

this analysis, we used the iterative ensemble smoother algorithm of Chen and Oliver (2013) to 339 

express the prior and posterior parameter distributions. The iterative ensemble smoother 340 

algorithm can be seen as an approximate form of Bayes equation which is combined with 341 

subspace methods to perform ensemble parameter field adjustment (Chen and Oliver, 2013). The 342 

resulting ensemble can hence be considered to include samples of the posterior parameter 343 

distribution. By running the model for each member of the ensemble, the uncertainty in the 344 

model output, arising from the variability in parameter values, can be quantified. In this analysis, 345 

three iterations were undertaken with 300 prior parameter realisations. The prior parameter 346 

realisations were drawn from a multivariate gaussian prior parameter distribution based on the 347 

initial parameter estimates and the specified standard deviation of each parameter. The standard 348 

deviation (𝜎) of each parameter was calculated using equation (5) and the corresponding values 349 

have been listed in Table S1. 350 

𝜎 =  
log10(𝑝𝑎𝑟𝑚𝑎𝑥) − log10(𝑝𝑎𝑟𝑚𝑖𝑛)

4
 

(5) 

The uncertainty arising from measurement noise was also accounted for. To quantify the 351 

measurement noise for each observation type, first, the observed data was linearly interpolated 352 
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on a daily timestep. Second, the moving averages of the interpolated observations were 353 

calculated based on a 7-day window. Finally, the differences between the observed values and 354 

the corresponding moving averages were computed. The standard deviations of these differences 355 

for each observation type represent the noise in the measurements. For each realisation, a 356 

differing calibration dataset (as a result of the additive effect of measurement noise) was used to 357 

adjust each parameter field. 358 

 359 

3 Results 360 

3.1 Naïve calibration 361 

The naïve model successfully captured the dimictic mixing regime as observed in FCR, 362 

with some exceptions. Thermal stratification started to build in March, accompanied with the 363 

oxygen depletion in the bottom water (Figure 3). The modelled temperature profiles depicted the 364 

patterns and characteristics of the observed data reasonably well (Table 2). Modelled 365 

hypolimnetic temperatures showed the greatest agreement with field measurements, relative to 366 

other layers. According to the difference plot (Figure 3e), the greatest deviation between 367 

observed and modelled temperatures occurred in the metalimnion. In the summer of 2017, the 368 

modelled metalimnetic temperatures were predicted to be 2-3 degrees colder than the observed 369 

temperatures. However, in the summers of both 2018 and 2019, the metalimnetic temperatures 370 

were predicted to be approximately 2 degrees warmer than the observations (Figure 3e). The 371 

modelled oxygen profiles showed a good agreement (MEF > 0.5) with oxygen measurements for 372 

most of the time series (Table 2). In 2017 and 2018, the oxygen concentrations were reproduced 373 

well by the model, with moderate over-and under-estimations present. However, in 2019, the 374 

modelled hypolimnetic oxygen concentrations were higher than observations during the summer 375 

period, when the HOx system was in operation (Figure 3f). 376 

Relative to the temperature and DO state variables, the naïve model was less able to 377 

adequately recreate ecosystem-level behaviour, as represented by the system-inspired metrics. In 378 

2017, the thermocline depth (TD) was underestimated by the model and did not follow the trend 379 

in the observed data well (Figure 4a). In 2018 and 2019, the model performed better and depicted 380 

the pattern in the observed TD data adequately. Interestingly, in the two years when a warm bias 381 
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was detected in the modelled temperature profiles, the TD was portrayed better than in the cold 382 

bias year of 2017. The same plot also illustrated the modelled and observed ice cover in the 383 

winter period. In general, the model simulated the presence of ice cover well, however, there 384 

were a few cases when it falsely predicted ice cover, predominantly in January 2018 (Figure 4a). 385 

Trends in the Schmidt stability were captured well, which indicated that the model was capable 386 

of reproducing the stratification strength of the reservoir (Figure 4b). The modelled sediment 387 

temperature in zone 2, which encompassed depths from ~4 m to ~6.5 m, and the modelled and 388 

observed water temperature at 5 m depth, are presented in Figure 4c. We chose this depth for 389 

analysis because it exhibited the greatest deviations between observed and modelled water 390 

temperatures, and was of interest to investigate the related sediment temperatures. While there 391 

was no available observed sediment temperature data for the reservoir, sediment temperatures 392 

are assumed to approximately follow the temperature of the water they are in contact with, which 393 

makes water temperature data a good alternative for comparison. Using the deepest water 394 

temperature data available for this comparison, modelled zone 2 sediment temperatures were in 395 

the range of observations and followed water temperature patterns adequately. In 2018, the 396 

spatial and temporal extent of anoxia was reproduced well by the model (Figure 4d). However, 397 

the extent of anoxia was underestimated by the model in 2017 and 2019. The best agreement 398 

between modelled and observed MOM occurred in 2017, while the deviation was underestimated 399 

in the next year, and a better agreement compared to 2018 was observed in the last year (Figure 400 

4e). 401 
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 402 

Figure 3. Contour plots of modelled (a, b), observed (c, d), and the difference of modelled and 403 

observed temperature and dissolved oxygen profiles (e, f) based on the naive calibration model 404 

with DM 2. The black crosses on plots c and d represent the time and location of the temperature 405 

and dissolved oxygen observations respectively. 406 

  407 
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Table 2. Comparison of the DM 2 naïve and system-inspired models’ performance in simulating 408 

the state-variables: temperature (Temp), dissolved oxygen (DO) and the extra metrics: 409 

thermocline depth (TD), Schmidt stability (SS), metalimentic oxygen minima (MOM), number 410 

of anoxic layers (NAL) during the calibration period based on the model efficiency (MEF) error 411 

metric. The best performing model in simulating each variable was highlighted in bold text. 412 

 Naïve Model w1 Model w2 Model w3 

Temp 0.93 0.93 0.93 0.92 

DO 0.65 0.6 0.63 0.58 

TD 0.14 0.24 0.18 0.15 

SS 0.88 0.88 0.89 0.88 

MOM 0.2 0.35 0.37 0.3 

NAL 0.73 0.75 0.77 0.76 



manuscript submitted to Water Resources Research 

 

 413 

Figure 4. Comparison of observed (Obs.) system-metrics and system-metrics predicted by the 414 

naive calibration model with DM 2 (Naïve). The metrics include thermocline depth (TD) during 415 

the stratified period, ice cover presence and absence in the winter period (a), Schmidt stability 416 

(b), sediment temperature in zone 2 (visualised along with modelled and observed water 417 

temperatures at 5 m depth in zone 2) (c), spatial and temporal extent of anoxia (d), and 418 

metalimnetic oxygen minimum (MOM, e). 419 

 420 

3.2 System-inspired calibration 421 

The augmentation of the objective function with system-inspired metrics generally led to 422 

more realistic simulation results as viewed from a system performance perspective. There were 423 
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no significant differences in the simulation of temperature between the models calibrated with 424 

the system metrics (Table 2). The greatest deviations from the observed temperature data 425 

occurred in the metalimnion, while hypolimnetic temperatures were slightly underestimated. It 426 

appears that the temperature predictions were not sensitive to the choice of weighting strategy 427 

(Figure 5). There were more significant differences present in the simulation of dissolved oxygen 428 

between the system-inspired models, particularly in the simulation of hypolimnetic oxygen 429 

concentrations (Figure 5). The naïve calibration approach demonstrated a slightly better 430 

capability for simulating the DO profile than the system-inspired approach (Table 2). The 431 

calibration results were, to a degree, sensitive to the weighting configuration of the extra metrics 432 

observation groups (Table 2). It seems that the greatest differences occurred in the simulation of 433 

the TD and MOM between the models (Figure 6). Overall, Model w2 seemed to outcompete the 434 

other models in most aspects, however the differences were not significant. The worst 435 

performing model in all respects was Model w3, where the weights of the extra metrics 436 

observation groups were set to double that of Model w2. 437 
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 438 

Figure 5. Water temperature (temp) and dissolved oxygen (DO) concentration in the epilimnion, 439 

metalimnion, and hypolimnion simulated by the three models with different weighting schemes 440 

based on the system-inspired approach with DM 2 (Model w1, Model w2, Model w3). 441 
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 442 

Figure 6. Comparison of the observed system-metrics (Obs.) and the system-metrics predicted 443 

by the three models with different weighting schemes based on the system-inspired approach 444 

with DM 2 (Model w1, Model w2, Model w3). The metrics include thermocline depth during the 445 

stratified period (a), Schmidt stability (b), the spatial and temporal extent of anoxia (c), and the 446 

metalimnetic oxygen minima (d). Figure 6c illustrates the number of models that predict a 447 

certain pixel to be anoxic within the water column. 448 

 449 

3.3 Comparison of calibration approaches and configurations 450 

Compared to the reference model (Carey et al., 2022a), the performance of the PEST 451 

calibrated GLM-AED models was substantially improved both in the calibration and validation 452 

period (Figure 7). The greatest improvement corresponded to the prediction of the DO profile 453 

and the oxygen related system metrics such as MOM and the spatial and temporal extent of 454 

anoxia quantified by the number of anoxic layers per day. Interestingly, the difference in 455 

performance was less pronounced when moving from the naïve calibration to the system-inspired 456 

approach. When system metrics were added to the objective function, there was a clear 457 
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improvement in the model’s ability to capture the behaviour of these extra metrics, which led to 458 

increased coherence between the system-scale dynamics of the simulated and natural ecosystem. 459 

However, there was a slight trade-off in accuracy between the simulation of extra metrics and the 460 

DO profile, while the accuracy of the temperature profile remained the same (Table 2). The loss 461 

in the MEF of the DO profile was less than 0.1 for all weighting strategies, while the gain in the 462 

MEF of the extra metrics was greater than 0.1 in the majority of cases. The choice of the deep 463 

mixing model structure had a significant effect on model performance. While hypolimnetic 464 

mixing with constant diffusivity was more suitable for the simulation of the TD and the MOM, 465 

the Weinstock model of diffusivity was able to better capture the spatial and temporal extent of 466 

anoxia in the reservoir during the calibration period. However, during the validation period, the 467 

models based on the Weinstock model of diffusivity also demonstrated superior performance in 468 

capturing the TD and MOM, in addition to the extent of anoxia. In general, model performance 469 

was better in the calibration period except for simulating the MOM, which was better captured 470 

during the validation period. 471 
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 472 

Figure 7. Comparison of model efficiency (MEF) between models with two different deep 473 

mixing configurations during the calibration and validation periods. One deep mixing 474 

configuration is based on constant diffusivity (DM 1) and the other configuration employs the 475 

Weinstock model to determine the diffusivity (DM 2). The red coloring corresponds to poor 476 

model performance (MEF < 0), the yellow colouring corresponds to acceptable model 477 

performance (0 < MEF< 0.5), and the green colouring corresponds to good model performance 478 

(MEF > 0.5).  479 

 480 

3.4 Uncertainty analysis 481 

The uncertainty in predicting two system-inspired metrics of interest, the TD and the 482 

MOM, was significantly reduced post-calibration compared to pre-calibration (Figure 8). The 483 
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propagation of parameter uncertainty prior to calibration was greater in predicting the MOM, 484 

which also exhibited a more substantial reduction in uncertainty post calibration than the TD. 485 

However, the resulting narrow fan of the posterior distributions suggests high confidence in the 486 

prediction of both metrics. As expected, for both the TD and the MOM, the range of predictions 487 

based on the posterior distribution followed a similar pattern as the calibrated models illustrated 488 

in Figure 6a and Figure 6d. The likely range of thermocline depth outputs based on the prior 489 

distribution did not fully encompass all observation points (Figure 8a). This suggests that the 490 

maximum expected parameter uncertainty (i.e., the prior) doesn’t include a wide enough range of 491 

model outputs to capture all observation points, which could be a manifestation of model 492 

structural error. 493 

 494 

 495 

Figure 8. Prior and posterior probability distributions of the thermocline depth (a) and the 496 

metalimnetic oxygen minima (b) predictions compared to observations. 497 
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4 Discussion 498 

This study aimed to answer the question of whether non-traditional, system-inspired 499 

metrics of ecosystem state or function can improve model performance and assist in 500 

characterising uncertainty. By incorporating system-inspired metrics in the objective function, a 501 

highly targeted model calibration was achieved, leading to greater understanding of the 502 

ecosystem. 503 

This new calibration approach augmented the objective function with non-traditional 504 

system-inspired metrics that amplify aspects of the state observations that represent theoretically 505 

important characteristics of overall ecosystem behaviour. Specifically, we chose thermocline 506 

depth (TD) and Schmidt stability as system-inspired metrics quantitatively summarizing the 507 

thermal structure of the reservoir because they integrate whole-ecosystem hydrodynamics 508 

(Wilhelm & Adrian, 2008). Since the deployment of the HOx system in FCR, metalimnetic 509 

oxygen minimum zones frequently arise during the stratified period (McClure et al., 2018). To 510 

quantify this particular property of the system, we developed a MOM metric to quantify how 511 

much the actual DO concentration in the metalimnion deviates from the expected concentration 512 

(equations (3) and (4)). Additionally, a metric linked to the model’s ability to capture the extent 513 

of anoxia in the water column was defined as the number of anoxic layers per day (NAL). We 514 

were unable to use other metrics such as the Anoxic Factor (AF), which has been proposed to 515 

describe the spatial and temporal dimensions of anoxia per season (Nürnberg, 1995), because it 516 

is more suitable for quantifying long-term changes in anoxia in the hypolimnion (e.g., Ladwig et 517 

al., 2021), not short-term dynamics. Whilst ice cover was used for the post-calibration evaluation 518 

of the naïve model, its explicit implementation in the PEST objective function was abandoned 519 

due to the binary nature of ice cover data. Finally, although the parameters of the sediment model 520 

were included in the adjustable parameter vector, the calibration of zone-specific sediment 521 

temperature was not feasible due to a lack of observed sediment temperature data.  522 

This case study presented four system-inspired metrics relevant to FCR, however, it is 523 

important to note that these metrics are not the only options available. When selecting metrics, 524 

researchers should consider their study site and choose advanced metrics that are most suitable to 525 

their specific research question. The two case studies that previously applied the CSPS 526 

framework for model validation provide numerous examples of system-metrics and characteristic 527 
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signatures both for marine (Robson et al., 2020) and freshwater applications (Regev et al., 2023). 528 

These additional metrics include N fixation, community respiration, phytoplankton community 529 

structure, along with others.  530 

The implementation of extra metrics focused calibration on the most relevant aspects of 531 

the simulation. As expected, explicit inclusion of the metrics in the objective function resulted in 532 

a clear improvement in the simulation of the ecosystem behaviours that the metrics were 533 

designed to represent. However, the simulated dissolved oxygen profile suffered a slight loss of 534 

accuracy, while the temperature profile remained the same. This trade-off is likely a result of 535 

achieving a greater overall objective function reduction by minimising the error between system 536 

metrics model predictions and observations rather than the oxygen depth profile. Ultimately, this 537 

trade-off was deemed acceptable, as it enabled refocusing the calibration efforts on specific 538 

characteristics of the system, resulting in a more targeted approach. However, the overall model 539 

prediction accuracy has not improved significantly from the naïve approach to the system-540 

inspired approach. One contributing factor is that the observed dataset of state-variable 541 

measurements exhibited great spatial and temporal resolution. Hence, adding extra metrics to the 542 

calibration process may improve model predictions to a greater extent where there is a lack of 543 

observed data, more uncertainty, and in this case the introduction of additional information to the 544 

model is more valuable (Sousa et al., 2023). Given that model prediction accuracy generally 545 

diminishes with increased model level (hydrodynamic - abiotic - biotic) (Soares & Calijuri, 546 

2021), the key elements presented in this paper have the potential to improve simulations of 547 

nutrient cycling, greenhouse gas emissions, and other higher-level processes. 548 

Assigning weights to extra metrics added a subjective element to the calibration process, 549 

and overweighting these metrics resulted in degrading model performance. In this study, the 550 

sensitivity of the calibration results to different weighting schemes was explored (Figure 9). 551 

Weighting scheme 1 and 2 exhibited negligible differences, while the application of weighting 552 

scheme 3 led to diminishing model performance with respect to the prediction of both state-553 

variables and system metrics. It was expected that greater weight added to the extra metrics 554 

observation groups may lead to a loss in state variable accuracy, however interestingly, it also 555 

led to poorer prediction of the extra metrics. Consequently, achieving an optimal balance in 556 

weighting is crucial, as giving unproportionate high weights to selected observation groups could 557 

result in overfitting that degrades the overall model performance. 558 
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 559 

 560 

Figure 9. Convergence of the objective function in the case of the naïve model and the system-561 

inspired models with different extra metrics weighting schemes during the calibration process. 562 

The deep mixing configuration of the models illustrated here is based on is based on the 563 

Weinstock model of diffusivity (DM 2).  564 

 565 

Incorporating extra metrics in the calibration process can improve the evaluation of 566 

model structural decisions and eliminate the need for ad-hoc selection. When two or more 567 

possible model structures have been identified to capture the study site, system-inspired metrics 568 

can be used in the context of comparing model structures. In cases when two different models 569 

perform equally well in predicting state-variables, comparing their ability to capture system 570 

dynamics helps to shed light on previously hidden strengths and weaknesses (Hipsey et al., 571 

2020). Comparing the two deep mixing models based on the system-inspired metrics revealed 572 

that the constant diffusivity model performed better in simulating the TD and the MOM, while it 573 

did not capture the anoxic conditions in the metalimnion well during the calibration period. The 574 
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Weinstock model was more effective in depicting the spatial and temporal extent of anoxia. As 575 

this study forms the basis for simulating methane in FCR, the Weinstock model configuration 576 

was preferable. The Weinstock model’s strength was the simulation of anoxic conditions, a 577 

prerequisite of methane production (Borrel et al., 2011). Consequently, extra metrics can assist in 578 

aligning model structural decisions with current and future modelling endeavour and can serve as 579 

a valuable tool in model development. 580 

System-inspired metrics provide valuable insights into prediction uncertainty. Both the 581 

TD and MOM prediction uncertainty was significantly reduced after calibration. This substantial 582 

reduction in parameter uncertainty is due to a well-determined inverse problem consisting of a 583 

great number of observations and a relatively small number of adjustable parameters. The 584 

parameters were highly identifiable from observations, which led to narrow posterior parameter 585 

probability distributions of the metrics. While prediction uncertainty included parameter 586 

uncertainty and measurement noise, model structure uncertainty was not accounted for. Model 587 

structure uncertainty is a significant source of prediction uncertainty; however, it is challenging 588 

to quantify and is often neglected (Refsgaard et al., 2006). The variation in the model output 589 

induced only by altering the deep mixing configuration indicates that model structure uncertainty 590 

could be a significant source of overall prediction uncertainty.  591 

The implementation of extra metrics in the calibration process assists in evaluating when 592 

a model is ‘successfully’ calibrated. While calibration is established as one of the essential steps 593 

of the modelling procedure (Refsgaard et al., 2007), what is regarded as a ‘successful’ calibration 594 

is less clear. Finding the most suitable parameter set is an iterative process, whereby after each 595 

iteration, the calibration performance is examined (Mai, 2023). This is done by checking if the 596 

calibrated model accurately represents the features of the observed data (Jakeman et al., 2006). 597 

Whether the model is fit for purpose, and cannot be significantly improved by further calibration 598 

is based on expert knowledge. However, identifying the point of diminishing returns in model fit 599 

is a challenging task. Using system-inspired metrics for evaluating the performance of a model in 600 

the calibration process has much potential for providing reassurance that the study site is 601 

captured well on the system-level, and help ensure the model is fit for purpose. 602 
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5 Conclusion 603 

Here, our use of system-metrics in calibration and uncertainty analysis workflows 604 

provides new insight into how to assess AEMs of stratified lakes. We found that introducing 605 

metrics relevant to the local system operation and modelling aim allowed for a targeted 606 

calibration. Marginal reduction in the accuracy of state-variables to improve the prediction of 607 

system-metrics was a worthwhile trade-off in our reservoir example. The calibration results were 608 

sensitive to the weighting scheme applied to the extra metrics, and over-weighting them led to 609 

degrading overall model performance. The use of uncertainty analysis for estimating the range of 610 

likely values of system-inspired metrics can assist in optimising reservoir management. For 611 

instance, quantifying the uncertainty in simulating the MOM, can facilitate the operation of the 612 

local reservoir oxygenation system. The list of system-inspired metrics applied in this study is to 613 

be extended over time for a number of applications. Altogether, developing system-metrics to 614 

assist in the calibration of nutrient cycling and greenhouse gas emission simulations has the 615 

potential to significantly improve the predictive accuracy of complex AEMs. 616 

 617 
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