
P
os
te
d
on

10
D
ec

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
70
22
45
07
.7
02
18
61
5/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

ANALYSIS OF MHD FLOW OF BLOOD IN STENOSED

ARTERIES WITH RADIALLY VARIABLE VISCOSITY AND

PERIPHERAL PLASMA LAYER THICKNESS BY MEANS OF

FROBENIUS METHOD

Ponalagusamy R.1 and R Ponalagusamy2

1Affiliation not available
2Department of Mathematics, National Institute of Technology

December 10, 2023

1



 1 

 

ANALYSIS OF MHD FLOW OF BLOOD IN STENOSED ARTERIES WITH 

RADIALLY VARIABLE VISCOSITY AND PERIPHERAL PLASMA LAYER 

THICKNESS BY MEANS OF FROBENIUS METHOD 

 

R. Ponalagusamy 

Department of Mathematics, National Institute of Technology, 

 Tiruchirappalli-620 015, Tamilnadu, India.  

(E-mail: rpalagu@nitt.edu) 
 

                 

                                                                                                                             

ABSTRACT 

 A modest effort is made to study the unsteady two-fluid flow of blood in an 

arterial stenosis under the application of a transverse uniform magnetic field by adopting 

Frobenius series method. Plasma fluid in the region of peripheral layer and blood in the 

central region are considered as a Newtonian fluid in character. The Frobenius method 

has been adopted to solve the governing equation for the central region and obtain the 

expression of the velocity profile in that region. It is seen that when the values of 

hematocrit ( mh ) and Hartmann number ( M ) are increasing, the decrease in forwarding 

flow velocity and the rise in reversal (backward) flow velocity are observed. The axial 

velocity is increased due to an increase in the thickness of plasma layer. It is evident that 

the analytical values of velocity obtained from the present study are compared with the 

corresponding numerical results obtained from work done by Ponalagusamy and Tamil 

Selvi (Meccanica, 48(2013), 2427-2438), and there is a good agreement between them.  

 

KEY WORDS  

 Frobenius series method, Oscillatory Blood flow, Plasma layer thickness, 

Magnetic field, Stenosed artery.  

 

1. INTRODUCTION 

  It is well known that human health is severely affected by a common disease 

which is termed as arteriosclerosis. The cardiovascular disease (arteriosclerosis or 

stenosis) that is often occurring is thought of uncommon and atypical growth; which 
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grows at different sites of the cardiovascular flow system under diseased states. Even 

though exact reason accountable for the etiology of the initiation of this phenomenon are 

not yet clearly understood, it was systematically established by clinical and experimental 

observations that the normal blood flow is very much disordered by the existence of a 

mild stenosis in an artery and the chaotic flow further stimuluses the growth of the 

disease and arterial malformation, and change the local rheological behavior of blood [1, 

2]. Since the hydrodynamic and hemodynamic factors play a pivotal role in the genesis 

and the proliferation of arteriosclerosis [3-6], the objective of the present analysis is 

driven to make available a model of blood and obtain precise information about the flow 

velocity. 

 

              The concept of magnetic field on the flow of blood through an artery is used by   

several researchers. Numerous investigations have endeavored on the flow of living 

fluids by taking into account magnetic force with the goal of its prominence to the 

medical meadow [7-9]. It is pertinent to point out here that separation of cells, reduction 

of blood loss during surgical procedure and provocation of occlusion of the feeding 

vessels of cancer tumors are the most remarkable implications of magnetic devices [10, 

11, 12, 13]. Saedi Ardahaie et al. [14] have investigated the effect of magnetic field on 

the blood flow in a porous artery by assuming blood as a third-grade non-Newtonian 

fluid. It is observed that the increase in the magnetic force causes the nanofluid flow to 

impede [15]. Ponalagusamy and Priyadharshini [16] and Bhargava et al. [17] stated that 

we could use the applied magnetic field as a flow control mechanism in medical 

applications. Hence, investigating the pivotal role of the magnetic field on blood flow in 

an artery becomes significant. 

 

                   It is experimentally observed by Bugliarello and Hayden [18] that there 

subsists a cell-free plasma layer near the arterial wall, while blood flows through tubes. 

Given this, it is desirable to characterize the flow of blood through arteries by a two-fluid 

model instead of a one-fluid model. Haynes [19] and Shukla et al. [20] developed a two-

fluid model for the flow of blood comprising of a core region of suspension of blood cells 

as a Newtonian fluid and a cell-free layer of plasma as a Newtonian fluid of constant 
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viscosity.  Bugliarello and Sevilla [21] conducted experiments on blood flow and 

observed that there is a good agreement between experimentally and theoretically 

measured velocities by assuming core and peripheral fluids as Newtonian fluids with 

different viscosities. Numerous investigators [22-24] have analyzed the flow behavior of 

blood by representing blood as a two-fluid model and compared their theoretical findings 

with experimental observations. The pulsatile flow of blood is studied by Imaeda and 

Goodman [25], Ponalagusamy [26], El-Khatib and Damiano [27], Venkateshwarlu and 

Anand [28] and Ponalagusamy and Kawahara [29].  In these works, the influences of 

magnetic field, radially variable viscosity along with the thickness of plasma-layer are 

not examined. 

 

             Ponalagusamy and Tamil Selvi [30] have utilized finite difference scheme and 

computed results for several physical quantities of important physiological significance to 

have their quantitative measures concerning radially variable viscosity, hematocrit, 

plasma layer thickness, magnetic field and pulsatile Reynolds number. It is felt that 

having analytical expressions for flow variables such as velocity profile, flow rate, wall 

shear stress and flow resistance are essential in order to predict exact quantitative 

measures of above-mentioned flow variables. Hence, an attempt is made in the present 

study, which describes the blood flow in an axially symmetric and radially asymmetric 

stenosed artery consisting of blood (cells suspended in plasma) in the core region and a 

cell-free plasma fluid in the peripheral layer near the wall under a uniform magnetic field 

applied on the flow and obtains analytical expressions for flow variables.  

 

2. FORMULATION OF THE PROBLEM  

 

 Consider an axially symmetric, oscillatory, laminar and fully developed flow of 

blood in arterial stenosis under the application of a uniformly applied magnetic field 2
0H  

(Figs.1 and 2). The flow of blood is characterized by a two-fluid model (a core of blood 

cells suspension surrounded by a peripheral layer of plasma). It is assumed that blood in 

the core region and the peripheral layer of plasma are both Newtonian fluids. We take the 

cylindrical coordinate system ( ,, rz ) whose origin is situated on the blood vessel 
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(stenosed artery) axis (over a letter denotes the dimensional form of the corresponding 

quantity). The momentum equations governing the flow in dimensionless form are given 

by [2, 30]: 
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in the peripheral plasma layer region, 

where 2  is the pulsatile Reynolds number, 
0 is the ratio between density of plasma 

fluid and density of core fluid, t  is the time, p is the pressure,  is a constant, mh  is the 

hematocrit, 2m  is involved in the concentration profile, M  is magnetic parameter or 

Hartmann number, cu  and pu are axial velocities in the core and peripheral plasma 

regions respectively, and 1R  is the radius of the core region in the stenotic region (refer 

[30] for further details). 

The non-dimensional boundary conditions are,   
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The mathematical expression for geometry of the stenosis (in non-dimensional form) is 

given by [30], 
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        = 1, otherwise         

                          

where )2(1 n  is the parameter determining the shape of the stenosis, )(zR  is the radius of 

the artery in the stenotic region, 0L  is the length of the stenosis, d denotes its location 

and B  is expressed as, 

.
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Further s  is the maximum height of the stenosis at 
)1/(1
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0

1
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n
n

L
dz  such that 0.1

0
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R
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and 0R is the radius of the normal (uniform) artery. When 1n = 2, the geometry of stenosis 

becomes symmetric at
2

0L
dz  .  

For a purely oscillatory flow, we shall take the pressure gradient of the form,  
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where sP  is the constant pressure gradient. In view of equation (5), we undertake the 

solutions for ),( truc  and ),( tru p  as, 
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3. SOLUTION 

   The axial velocity in the peripheral plasma region is given by [30],  
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where  
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Using equation(6), equation(1) becomes, 
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The Frobenius series method is adopted to obtain the analytical solution of equation (8). 

To apply Frobenius technique, the velocity in the core region csu   is bounded at r = 0. 

The only suitable series solution of equation (8) may be expressed as,   
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where mEC , , mF are arbitrary unknown constants, 2

121 1
m

R   and 2 = mh . It is 

observed from equation (9) that the first and second terms of the right-hand side of 

equation (9) are solutions corresponding to homogeneous and non-homogeneous parts of 

equation (8) respectively. Using equation (9), the analytic solution of equation (8) is 

obtained by tedious mathematical steps involved in the Frobenius method as, 
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with 100  FE  and .0  mm FE   

The axial velocity in the core region is expressed as, 

.),( ti

csc eutru                                                                                                  (11) 

Using analytic expressions for velocities in the plasma layer and core regions respectively 

given by equations (7 & 11), one can readily obtain analytic expressions for flow rate, 

wall shear stress and resistance to flow by employing the corresponding definitions 

mentioned in [30].  

 

4. RESULTS AND DISCUSSION  

                 The motivation of the present work is to obtain the analytic solution for axial 

velocity in the core region by adopting Frobenius method. For a computational purpose, 

the values of the parameters are considered as follows [2, 30, 31,32]: 4.0mh 8.0,6.0, ; 

0.10  ; 0.5,5.22  ; 2.0s ; 0.1,6.0M ; ;10;0.1  sP  ;0.1,9.0,8.0  

 225,135,45t  and 315 . In the present study, exact values of axial velocity with 

respect to radial distance are computed for different values of hematocrit (
mh ), pulsatile 

Reynolds number ( 2 ), Hartmann number ( M ), peripheral plasma layer thickness 

 (  1  ) and time t  as illustrated through Tables (1-7).  

                     The radial distribution of velocity with time ( t ) at the mid-point of the 

stenotic region by considering other parameters involved in the present study are held 

fixed, is tabulated in Tables 1 and 2. It is seen that the increase in the pulsatile Reynolds 
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number ( 2 or Womersley frequency) leads to the increase in the velocity. Another 

remarkable result is regarding the variation of velocity with the plasma layer thickness 

and is shown in Tables 3 and 4. The magnitude of velocity is higher for a two-fluid model 

( 0.1 ) as compared to that of the one-fluid model ( 0.1 ). Furthermore, the 

percentage of decrease of the velocity along the radial direction ( r ) is found to be higher 

in the presence of plasma layer thickness ( 0.1 ) than that of the case of absence of 

plasma layer thickness ( 0.1 ). The same trend has been noticed for the time ( t ) 

considered in the present work. 

                       Tables 4 and 5 reveal the effects of Hartmann number ( M ) on the velocity 

distribution. The forwarding flow velocity (a positive value of velocity) is found to be 

decreased with the increasing value of M , but the reversal flow velocity (a negative value 

of velocity) is increased. These behaviors are attributed due to the fact that the applied 

magnetic field induces a body force known as the Lorentz force which opposes the 

forwarding flow velocity of blood and enhances the reversal flow velocity of blood in the 

core region. The forward and backward flow velocities are decreased with the increase in 

the hematocrit (or the concentration) of blood cells in the core region (Tables 6 and 7). 

The reason is that the increase in the hematocrit (
mh ) of blood cells tends to increase the 

viscous force causing lower the flow velocity. It is pertinent to point out that a 

comparative analysis between the analytic values of velocity obtained from the present 

study and the corresponding numerical results obtained by Ponalagusamy and Tamil 

Selvi [30] is made and it is witnessed that there is a good agreement between them.    
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5. CONCLUSION 

                         The analytic values (or exact values) of axial velocity are computed from 

the present investigation by taking a sum of required terms in power series (the Frobenius 

series) solution so that the magnitude of the difference between the current value and its 

previous value becomes less than 610 . Using the numerical technique with Thomas 

algorithm adopted by Ponalagusamy and Tamilselvi [30], the numerical values of 

velocity are computed by taking the step size 01.0 r in the radial direction. The 

analytic and numerical values of velocity are tabulated in Tables (1-7). A comparison 

between the analytic and numerical values of velocity is found to be fairly good. But the 

order of time complexity of the present method (the Frobenius series method) is )1(  and 

the order of time complexity of Thomas algorithm becomes )(n , where the number of 

the unknown is n . At this juncture, it is pertinent to point out that for a practical problem 

(blood flow phenomenon); an analytic solution (or a closed form solution) can bring out 

the exact mechanism and physical impacts of the problem model under consideration. 

The precise information obtained from the analytical solutions of the mathematical model 

(whenever it is possible to obtain) over that of numerical solution could lead to the 

development of diagnostic tools for effective treatment of patients suffering from severe 

diseases [31]. 
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r t = 450 t = 1350 t = 2250 t = 3150 

Numerical  
Solution 

Series 
Solutio

n 
(m =10) 

Numerica
l  

Solution 

Series 
Solutio

n 
(m =10) 

Numerica
l  

Solution 

Series 
Solutio

n 
(m =10) 

Numerica
l  

Solution 

Series 
Solutio

n 
(m =10) 

0.00 1.1312 1.1306 -0.9145 -0.9143 -1.1312 -1.1306 0.9145 0.9143 

0.08 1.1189 1.1187 -0.9091 -0.9090 -1.1189 -1.1187 0.9091 0.9090 

0.16 1.0818 1.0817 -0.8927 -0.8927 -1.0818 -1.0817 0.8927 0.8927 

0.24 1.0196 1.0195 -0.8647 -0.8646 -1.0196 -1.0195 0.8647 0.8646 

0.32 0.9316 0.9316 -0.8239 -0.8239 -0.9317 -0.9316 0.8239 0.8239 

0.40 0.8170 0.8169 -0.7688 -0.7688 -0.8170 -0.8169 0.7688 0.7688 

0.48 0.6743 0.6743 -0.6971 -0.6971 -0.6743 -0.6743 0.6971 0.6971 

0.56 0.5021 0.5021 -0.6058 -0.6058 -0.5021 -0.5021 0.6058 0.6058 

0.64 0.2984 0.2984 -0.4910 -0.4910 -0.2984 -0.2984 0.4910 0.4910 

0.72 0.1617 0.1617 -0.2561 -0.2561 -0.1617 -0.1617 0.2561 0.2561 

0.75 0.1041 0.1041 -0.1624 -0.1624 -0.1041 -0.1041 0.1624 0.1624 

0.78 0.0429 0.0429 -0.0659 -0.0659 -0.0429 -0.0429 0.0659 0.0659 

0.80 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Table 1. Comparison between Numerical solution and Power-series solution for velocity 

distribution with time t at the mid-point of stenosed tube (α2 = 2.5, M = 0.6, γ = 0.8 and 

mh = 0.4) 
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r t = 450 t = 1350 t = 2250 t = 3150 

Numerical  
Solution 

Series 
Solutio

n 
(m =10) 

Numerica
l  

Solution 

Series 
Solutio

n 
(m =10) 

Numerica
l  

Solution 

Series 
Solutio

n 
(m =10) 

Numerica
l  

Solution 

Series 
Solutio

n 
(m =10) 

0.00 1.1357 1.1350 -0.7133 -0.7132 -1.1357 -1.1350 0.7133 0.7132 

0.08 1.1217 1.1214 -0.7117 -0.7117 -1.1217 -1.1214 0.7117 0.7117 

0.16 1.0793 1.0791 -0.7066 -0.7066 -1.0793 -1.0791 0.7066 0.7066 

0.24 1.0080 1.0079 -0.6971 -0.6970 -1.0080 -1.0079 0.6971 0.6971 

0.32 0.9070 0.9069 -0.6814 -0.6814 -0.9070 -0.9069 0.6814 0.6814 

0.40 0.7751 0.7750 -0.6571 -0.6571 -0.7751 -0.7750 0.6571 0.6571 

0.48 0.6106 0.6106 -0.6207 -0.6207 -0.6106 -0.6106 0.6207 0.6207 

0.56 0.4117 0.4117 -0.5676 -0.5676 -0.4117 -0.4117 0.5676 0.5676 

0.64 0.1761 0.1761 -0.4916 -0.4916 -0.1761 -0.1761 0.4916 0.4916 

0.72 0.1019 0.1019 -0.2566 -0.2566 -0.1019 -0.1019 0.2566 0.2566 

0.75 0.0672 0.0672 -0.1628 -0.1628 -0.0672 -0.0672 0.1628 0.1628 

0.78 0.0284 0.0284 -0.0660 -0.0660 -0.0284 -0.0284 0.0660 0.0660 

0.80 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Table 2. Comparison between Numerical solution and Power-series solution for velocity 

distribution with time t at the mid-point of stenosed tube (α2 = 5, M = 0.6, γ = 0.8 and 

mh = 0.4) 
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r t = 450 t = 1350 t = 2250 t = 3150 

Numerical  
Solution 

Series 
Solutio

n 
(m =12) 

Numerica
l  

Solution 

Series 
Solutio

n 
(m =12) 

Numerica
l  

Solution 

Series 
Solutio

n 
(m =12) 

Numerica
l  

Solution 

Series 
Solutio

n 
(m =12) 

0.00 1.1177 1.1171 -0.5344 -0.5344 -1.1177 -1.1171 0.5344 0.5344 

0.08 1.1063 1.1060 -0.5332 -0.5332 -1.1063 -1.1060 0.5332 0.5332 

0.16 1.0718 1.0716 -0.5291 -0.5291 -1.0718 -1.0716 0.5291 0.5291 

0.24 1.0137 1.0136 -0.5214 -0.5214 -1.0137 -1.0136 0.5214 0.5214 

0.32 0.9313 0.9311 -0.5089 -0.5089 -0.9313 -0.9311 0.5089 0.5089 

0.40 0.8232 0.8231 -0.4894 -0.4894 -0.8232 -0.8231 0.4894 0.4894 

0.48 0.6880 0.6879 -0.4603 -0.4603 -0.6880 -0.6879 0.4603 0.4603 

0.56 0.5238 0.5237 -0.4178 -0.4177 -0.5238 -0.5237 0.4178 0.4177 

0.64 0.3280 0.3280 -0.3568 -0.3568 -0.3280 -0.3280 0.3568 0.3568 

0.72 0.0982 0.0982 -0.2707 -0.2707 -0.0982 -0.0982 0.2707 0.2707 

0.75 0.0649 0.0649 -0.1715 -0.1715 -0.0649 -0.0649 0.1715 0.1715 

0.78 0.0275 0.0275 -0.0695 -0.0695 -0.0275 -0.0275 0.0695 0.0695 

0.80 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Table 3. Comparison between Numerical solution and Power-series solution for velocity 

distribution with time t at the mid-point of stenosed tube (α2 = 5, M = 1.0, γ = 0.9 and 

mh = 0.4) 
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r t = 450 t = 1350 t = 2250 t = 3150 

Numerical  
Solution 

Series 
Solutio

n 
(m =12) 

Numerica
l  

Solution 

Series 
Solutio

n 
(m =12) 

Numerica
l  

Solution 

Series 
Solutio

n 
(m =12) 

Numerica
l  

Solution 

Series 
Solutio

n 
(m =12) 

0.00 1.1067 1.1060 -0.3686 -0.3686 -1.1067 -1.1060 0.3686 0.3686 

0.08 1.0967 1.0964 -0.3671 -0.3671 -1.0967 -1.0964 0.3671 0.3671 

0.16 1.0667 1.0665 -0.3623 -0.3624 -1.0667 -1.0665 0.3623 0.3624 

0.24 1.0163 1.0160 -0.3537 -0.3537 -1.0163 -1.0160 0.3537 0.3537 

0.32 0.9447 0.9445 -0.3400 -0.3401 -0.9447 -0.9445 0.3400 0.3401 

0.40 0.8512 0.8510 -0.3196 -0.3196 -0.8512 -0.8510 0.3196 0.3197 

0.48 0.7343 0.7341 -0.2901 -0.2901 -0.7343 -0.7341 0.2901 0.2902 

0.56 0.5927 0.5925 -0.2484 -0.2484 -0.5927 -0.5925 0.2484 0.2484 

0.64 0.4246 0.4244 -0.1901 -0.1901 -0.4246 -0.4244 0.1901 0.1901 

0.72 0.2278 0.2276 -0.1098 -0.1098 -0.2278 -0.2276 0.1098 0.1098 

0.75 0.1461 0.1460 -0.0725 -0.0725 -0.1461 -0.1460 0.0725 0.0725 

0.78 0.0600 0.0599 -0.0307 -0.0307 -0.0600 -0.0599 0.0307 0.0307 

0.80 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Table 4. Comparison between Numerical solution and Power-series solution for velocity 

distribution with time t at the mid-point of stenosed tube (α2 = 5, M = 1.0, γ = 1.0 and 

mh = 0.4) 
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r t = 450 t = 1350 t = 2250 t = 3150 

Numerical  
Solution 

Series 
Solutio

n 
(m =10) 

Numerica
l  

Solution 

Series 
Solutio

n 
(m =10) 

Numerica
l  

Solution 

Series 
Solutio

n 
(m =10) 

Numerica
l  

Solution 

Series 
Solutio

n 
(m =10) 

0.00 1.1762 1.1769 -0.3610 -0.3611 -1.1762 -1.1769 0.3610 0.3611 

0.08 1.1658 1.1662 -0.3597 -0.3597 -1.1658 -1.1662 0.3597 0.3597 

0.16 1.1334 1.1337 -0.3554 -0.3554 -1.1334 -1.1337 0.3554 0.3554 

0.24 1.0789 1.0792 -0.3474 -0.3474 -1.0789 -1.0792 0.3474 0.3474 

0.32 1.0018 1.0021 -0.3346 -0.3346 -1.0018 -1.0021 0.3346 0.3346 

0.40 0.9012 0.9014 -0.3152 -0.3152 -0.9012 -0.9014 0.3152 0.3152 

0.48 0.7760 0.7762 -0.2867 -0.2868 -0.7760 -0.7762 0.2867 0.2868 

0.56 0.6249 0.6251 -0.2460 -0.2460 -0.6249 -0.6251 0.2460 0.2460 

0.64 0.4464 0.4465 -0.1887 -0.1887 -0.4464 -0.4465 0.1887 0.1887 

0.72 0.2387 0.2388 -0.1091 -0.1091 -0.2387 -0.2388 0.1091 0.1092 

0.75 0.1529 0.1530 -0.0721 -0.0722 -0.1529 -0.1530 0.0721 0.0722 

0.78 0.0627 0.0627 -0.0305 -0.0305 -0.0627 -0.0627 0.0305 0.0306 

0.80 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Table 5. Comparison between Numerical solution and Power-series solution for velocity 

distribution with time t at the mid-point of stenosed tube (α2 = 5, M = 0.6, γ = 1.0 and 

mh = 0.4) 
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r t = 450 t = 1350 t = 2250 t = 3150 

Numerical  
Solution 

Series 
Solutio

n 
(m =12) 

Numerica
l  

Solution 

Series 
Solutio

n 
(m =12) 

Numerica
l  

Solution 

Series 
Solutio

n 
(m =12) 

Numerica
l  

Solution 

Series 
Solutio

n 
(m =12) 

0.00 1.0792 1.0785 -0.5385 -0.5385 -1.0792 -1.0785 0.5385 0.5385 

0.08 1.0685 1.0683 -0.5371 -0.5371 -1.0685 -1.0683 0.5371 0.5371 

0.16 1.0365 1.0363 -0.5327 -0.5327 -1.0365 -1.0363 0.5327 0.5327 

0.24 0.9824 0.9822 -0.5245 -0.5245 -0.9824 -0.9822 0.5245 0.5245 

0.32 0.9052 0.9051 -0.5113 -0.5113 -0.9052 -0.9051 0.5113 0.5114 

0.40 0.8034 0.8033 -0.4913 -0.4914 -0.8034 -0.8033 0.4913 0.4914 

0.48 0.6750 0.6748 -0.4619 -0.4619 -0.6750 -0.6748 0.4619 0.4619 

0.56 0.5171 0.5170 -0.4191 -0.4191 -0.5171 -0.5170 0.4191 0.4191 

0.64 0.3263 0.3262 -0.3578 -0.3578 -0.3263 -0.3262 0.3578 0.3579 

0.72 0.0982 0.0982 -0.2707 -0.2707 -0.0982 -0.0982 0.2707 0.2707 

0.75 0.0649 0.0649 -0.1715 -0.1715 -0.0649 -0.0649 0.1715 0.1715 

0.78 0.0275 0.0275 -0.0695 -0.0695 -0.0275 -0.0275 0.0695 0.0695 

0.80 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Table 6. Comparison between Numerical solution and Power-series solution for velocity 

distribution with time t at the mid-point of stenosed tube (α2 = 5, M = 1.0, γ = 0.9 and 

mh = 0.6) 
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r t = 450 t = 1350 t = 2250 t = 3150 

Numerical  
Solution 

Series 
Solutio

n 
(m =12) 

Numerica
l  

Solution 

Series 
Solutio

n 
(m =12) 

Numerica
l  

Solution 

Series 
Solutio

n 
(m =12) 

Numerica
l  

Solution 

Series 
Solutio

n 
(m =12) 

0.00 1.0439 1.0434 -0.5414 -0.5413 -1.0439 -1.0434 0.5314 0.5313 

0.08 1.0340 1.0338 -0.5399 -0.5399 -1.0340 -1.0338 0.5299 0.5299 

0.16 1.0041 1.0040 -0.5352 -0.5352 -1.0041 -1.0040 0.5252 0.5252 

0.24 0.9535 0.9534 -0.5266 -0.5266 -0.9535 -0.9534 0.5166 0.5166 

0.32 0.8810 0.8809 -0.5131 -0.5131 -0.8810 -0.8809 0.5031 0.5031 

0.40 0.7848 0.7847 -0.4927 -0.4928 -0.7848 -0.7847 0.4827 0.4828 

0.48 0.6624 0.6623 -0.4630 -0.4631 -0.6624 -0.6623 0.4530 0.4531 

0.56 0.5105 0.5105 -0.4202 -0.4202 -0.5105 -0.5105 0.4102 0.4102 

0.64 0.3245 0.3245 -0.3588 -0.3588 -0.3245 -0.3245 0.3488 0.3488 

0.72 0.0982 0.0982 -0.2707 -0.2707 -0.0982 -0.0982 0.2707 0.2707 

0.75 0.0649 0.0649 -0.1715 -0.1715 -0.0649 -0.0649 0.1715 0.1715 

0.78 0.0275 0.0275 -0.0695 -0.0695 -0.0275 -0.0275 0.0695 0.0695 

0.80 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Table 7. Comparison between Numerical solution and Power-series solution for velocity 

distribution with time t at the mid-point of stenosed tube (α2 = 5, M = 1.0, γ = 0.9 and 

mh = 0.8) 
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Nomenclature  

(bar indicates the dimensional form of a corresponding quantity) 

d             location of stenosis 

2

0H         strength of the magnetic field  

mh           hematocrit 

0J           Bessel function of the first kind of order zero 

0L           length of the stenosis 

2m         power parameter in the concentration profile 

M         Hartmann number (or Magnetic parameter) 

1n          the parameter that determines the shape of the stenosis 

p          pressure 

sp         constant pressure gradient 

r           radial direction 

0R         the radius of the normal artery 

)(zR     the radius of an artery in the stenotic region 

)(1 zR    the radius of the core region in the stenotic region 

t            time 

pc uu ,   fluid velocities in the core and plasma regions respectively 

csu        core fluid velocity under steady flow condition 



 18 

psu       plasma fluid velocity under steady flow condition 

z         axial direction 

 

Greek symbols 

2        Womersley number or pulsatile Reynolds number 

          parameter involved in the concentration profile 

0         the ratio between the density of plasma fluid and density of core fluid 

          plasma layer thickness 

s         the maximum height of the stenosis 

          the ratio of radii of the core region and artery in the stenotic region 

pc  ,    shear stresses in the core and plasma regions respectively  

          the frequency of oscillations 

 

Subscripts 

c          core region 

p         plasma region 
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