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Abstract

The increase in computational power and richness of Earth system data has allowed new methods for simulating natural

processes with higher precision and accuracy than previously imagined. Older methods to increase skill of computer model

simulations include parameter inference, where the parameters of a forward simulation model are optimized to better represent

reality and allow the model to capture dynamics seen in the observed data. However, these methods are limited by our physical

understanding of the underlying system, making it impossible to capture certain dynamics when the model is under-represented.

Machine learning methods have emerged as a potential tool to bypass the limitations of our physical understanding, and they can

create simulations with much higher skill than previous methods. This work investigates and compares the skill of photosynthesis

simulations from various model formulations including those with optimized parameters and those from machine learning.
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Fig. 1. Schematic overview of the parameter estimation problem (model 
calibration). The model parameters are adjusted iteratively so that the 
simulated response of the model (solid lines) approximates as closely as 
possible the observed response (blue dots) (Vrugt and Massoud 2018).

Parameter estimation (or model calibration) involves searching for parameter 
values that allow the model to mimic the observed system response. The 
calibrated model (Fig. 1) can then be used for simulation and prediction of 
different system behaviors. Simulating the original model can be very 
expensive, so the goal with parameter estimation is to find the best parameter 
values as rapidly as possible using the smallest number of model simulations. 
ML-models require training, which can also be costly, but then require much 
less compute time to perform simulations that mimic the original model or to 
mimic the data that it is trained on. A trained ML-model can then be used in 
place of the original model to estimate parameter values. Or, the ML model 
can be used to simulate the system without reliance on the original model.

ML-based methods require training from observed datasets (Massoud et al., 
2023). We compiled information from a collection of various leaf-level data 
(e.g., Lin et al. 2015; Anderegg et al. 2018; Han et al. 2022). This curated 
dataset is used to develop initial ML models shown in Fig. 2 and 3.

Data-driven ML-based models can be built to simulate leaf-level processes. 
The code to implement these approaches is on GitHub. Future developments 
will be hosted here: (https://github.com/rubisco-sfa/MLEcohydrology), 

Introduction

We tested empirical models and ML models for stomatal conductance (Fig. 2). 

Fig. 2. Stomatal Conductance [mol m-2 s-1] compared to data from Lin 2015 
using (A) Ball-Berry, (B) Medlyn, (C) Random Forests with same inputs and 
(D) RF with additional inputs. Inputs to A-B-C: leaf-level CO2, photosynthesis, 
and VPD. Additional inputs to D: transpiration, soil moisture index, PARin.

We tested photosynthesis simulations by changing Vc,max parameter/function 
in MAAT-CLM5 (Walker et al., 2018) and by using Neural Networks (Fig. 3).

Fig. 3. Photosynthesis for a Broadleaf Deciduous Temperate Trees PFT using 
MAAT-CLM5 empirical formulation with (A) different Vc,max parameters and 
(B) functions and (C) using Neural Networks compared to data from Lin 2015. 

Stomatal Conductance

Solving for photosynthesis requires an iterative solution to a non-linear 
problem. This is what is most costly in the simulations. Can we do better at 
“guessing” initial guess (x0) using ML-based methods? (Fig. 4).

Fig. 4. (A) Schematic of iterative root-finding. (B) At low CO2 concentrations 
(low photosynthesis) equations are harder to solve requiring more iterations. 
Random Forests (Diamonds) require more iterations to converge, Neural 
Networks (Squares) require less, Medlyn (Circles) is between RF and NN.

We simulated E3SM-ELM-CNP at the Duke site for 158 years (I20TR). The 
photosynthesis solver is called millions of times (Fig. 5). We compared the 
total number of iterations in the solver using a simulation with original initial 
guess of x0=0.7*Ca (baseline) and a run that uses a Neural Network-based 
initial guess (NN). Therefore, the physics of the original model is maintained.
 

Fig. 5. Bar plots of the total number of iterations for all photosynthesis solves 
in the model simulation. Baseline represents the original model simulations 
and NN represents the simulations with the NN-based initial guess to the 
photosynthesis solver. Overall, NN requires less iterations.

Is parameter inference a disappearing practice? No. However, it is a 
changing practice. The use of ML-based models with ESMs will help 
advance parameter inference. We no longer must rely on costly ESM 
simulations to estimate parameter values. We can now infer parameters 
through data-driven machine learning approaches, by building surrogate 
models of original ESMs, or by trying novel methods like improving the 
initial guess to the photosynthesis solvers using NNs.

Impact of ML on Solver Performance 

Data Curation & ML Training

import intake cat = 
intake.open_catalog("https://raw.githubusercontent.c
om/nocollier/MLPhotoSynthesis/main/data/leaf-
level.yaml") 
df = cat['Lin2015'].read() 

Ball-Berry and Medlyn with inputs: 
leaf-level CO2, photosynthesis, and VPD 

Random Forest with same (left) and additional 
(right) inputs as empirical functions.

A B

C D

Photosynthesis

Change Vc,max 
Parameter

Change Vc,max 
Function

Neural Network 
Formulation

A

B

C

Photosynthesis (A) vs CO2 concentration (ca_conc) 
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Improved Initial Guess (x0) to the Solver

Inputs:
"x0", # initial guess of the 
solution
"lmr_z", # leaf maintenance 
respiration rate (umol CO2/m**2/s)
"par_z", # par absorbed per unit 
lai for canopy layer (w/m**2)
"rh_can", # canopy air relative 
humidity
"gb_mol", # leaf boundary layer 
conductance (umol H2O/m**2/s)
"je", # electron transport rate 
(umol electrons/m**2/s)
"cair", # Atmospheric CO2 partial 
pressure (Pa)
Outputs:
"xf", # final value of the solution

Total Number of iterations
Baseline:  3,227,440

NN: 2,380,728

NN details: 
single layer, dense, 
sigmoid activation, 

64 neurons, 
513 trainable parameters.
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Conclusions

Command to load data: 
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