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Abstract

The increase in computational power and richness of Earth system data has allowed new methods for simulating natural
processes with higher precision and accuracy than previously imagined. Older methods to increase skill of computer model
simulations include parameter inference, where the parameters of a forward simulation model are optimized to better represent
reality and allow the model to capture dynamics seen in the observed data. However, these methods are limited by our physical
understanding of the underlying system, making it impossible to capture certain dynamics when the model is under-represented.
Machine learning methods have emerged as a potential tool to bypass the limitations of our physical understanding, and they can
create simulations with much higher skill than previous methods. This work investigates and compares the skill of photosynthesis

simulations from various model formulations including those with optimized parameters and those from machine learning.
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Impact of ML on Solver Performance

Introduction Stomatal Conductance

TRUE TRUE @ OBSERVED We tested empirical models and ML models for stomatal conductance (Fig. 2). Solving for photosynthesis requires an iterative solution to a non-linear
CONTROL RESPONSE RESPONSE ST —— PR — problem. This is what is most costly in the simulations. Can we do better at
l E +257 photo b “guessing” initial guess (x;) using ML-based methods? (Fig. 4).
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possible the observed response (blue dots) (Vrugt and Massoud 2018). Fig. 4. (A) Schematic of iterative root-finding. (B) At low CO,, concentrations
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Parameter estimation (or model calibration) involves searching for parameter D N Random Forests (Diamonds) require more iterations to converge, Neural
values that allow the model to mimic the observed system response. The " ey " ' Networks (Squares) require less, Medlyn (Circles) is between RF and NN.
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calibrated model (Fig. 1) can then be used for simulation and prediction of
different system behaviors. Simulating the original model can be very
expensive, so the goal with parameter estimation is to find the best parameter

0:50=

foe
° .: .‘.\”
) ...
Cond rf

Improved Initial Guess (x0) to the Solver

Simulated Stomatal Conductance

0:25 -

values as rapidly as possible using the smallest number of model simulations. . . C D | |
. L. . . 0.00 - 0.00 - - -
ML-models require training, which can also be costly, but then require much 000 025 050 075 100 135 000 025 050 075 100 135 V\r/]e tS |mul{ar;ced_ E3SIM E.LM CII’N dP a_t”’_che Dlickt.e site f|<:)_r 128 Wars (IZOTRL' ;I;]he
. . . . . . Observed Stomatal Conductance Observed Stomatal Conductance
less compute time to perform simulations that mimic the original model or to _ _ f tOIOSynb eS'Sf _S{O v?_r IS ¢4 teh mi Ilons Of |mes_( '?' ¢ ) _etr?on.wp.arel _ 't'el
mimic the data that it is trained on. A trained ML-model can then be used in Fig. 2. Stomatal Conductance [mol n? s'] compared to data from Lin 2015 ota nurp e_roo7lgra :;)ns 'I'_“ © Sc()j ver us![rr:gta simu al\;on WII N Ot”g'nkabm' Iad
p|ace of the Origina| model to estimate parameter values. Or, the ML model using (A) Ball—Berry, (B) Medlyn, (C) Random Forests with same InpUtS and guteSIS OT Xp= NN ﬁ_l‘(] ane |ne)than ha rl.Jn fathuseS- a. Turad Ie WOr - ta§e y
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ML-based methods require training from observed datasets (Massoud et al., We tested photosynthesis simulations by changing Vc,max parameter/function e e E . A
2023). We compiled information from a collection of various leaf-level data in MAAT-CLMS (Walker et al., 2018) and by using Neural Networks (Fig. 3). humidity S NN details:
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Data-driven ML-based models can be built to simulate leat-level processes. 2 '@ | Change Vc,max R - Vomax LM in the model simulation. Baseline represents the original model simulations
The code to implement these approaches is on GitHub. Future developments £ € 20 Function  LnData | and NN represents the simulations with the NN-based initial guess to the
will be hosted here: (httpS://_C]lthUb.Com/rUb|SCO-Sfa/MLECOthrOIOQV), Zy‘ 8 10 FApR ek - | photosynthesis solver. Overa”’ NN requires less jterations.
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