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Abstract

A good understanding of the rupture patterns of small earthquakes is essential to understand the differences between earthquakes

of different sizes. However, resolving the source complexity of small events (Mw<5) is challenging, because their seismic

waveforms are distorted during propagation. In this study, we used high-quality seismic waveforms recorded by an excellent

downhole sensor in Japan to directly examine the source complexities of 64 Mw3.3-5.0 short-range earthquakes (< 8 km). We

found that even the waveforms of microearthquakes (Mw < 2) were simple at the sensor, indicating that the waveforms were

scarcely disturbed by structural inhomogeneities. We inferred the moment rate functions from the shapes of the direct P-waves,

which showed diversity in their complexity. Even conservatively estimated, 30% of the events had multiple subevents. The

results suggest that methods that account for complexity, rather than those that assume a simple source pattern, are required

to characterize even small earthquakes.
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Key Points (<140 characters)  13 

1. Short-range (< 8 km) seismic waveforms at an excellent seismic sensor clearly show 14 

the diversity in the complexity in 64 Mw3.3-5 events.  15 

2. Even conservatively estimated, approximately  30% of the events had multiple pulses 16 

that differed significantly from simple source models.  17 

3. Methods that account for complexity rather than those that assume an a priori source 18 

pattern are required to characterize small events.  19 

  20 
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Abstract (150 ≤ 150 words) 21 

A good understanding of the rupture patterns of small earthquakes is essential to 22 

understand the differences between earthquakes of different sizes.  However,  resolving the 23 

source complexity of small events (Mw<5) is challenging,  because their  seismic 24 

waveforms are distorted during propagation. In this study, we used high-quality seismic 25 

waveforms recorded by an excellent downhole sensor in Japan to directly examine the 26 

source complexit ies of 64 Mw3.3-5.0 short-range earthquakes (< 8 km). We found that 27 

even the waveforms of microearthquakes (Mw < 2) were simple at the sensor,  indicating 28 

that the waveforms were scarcely disturbed by structural inhomogeneities.  We inferred 29 

the moment rate functions from the shapes of the direct P-waves, which showed diversity 30 

in their complexity. Even conservatively estimated, 30% of the events had multiple 31 

subevents. The results suggest that methods that account for complexity,  rather than those 32 

that assume a simple source pattern, are required to characterize even small earthquakes.  33 

  34 
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Plain language summary (190 ≤ 200 words) 35 

It  has been established that the source parameters of small earthquakes is similar to that 36 

of large earthquakes. This suggests that  small earthquakes (M<5) may have a similar 37 

degree of complexity as large earthquakes.  However, the complexity of small earthquake 38 

ruptures is usually masked by the propagation effect on seismic waveforms.  In many cases,  39 

the source parameters of small earthquakes are determined based on a model that assumes 40 

that they are  simple without any real complexity.  To evaluate how often complex ruptures 41 

of small earthquakes occur,  high-quality seismic waveforms recorded by an excellent 42 

downhole sensor in Japan for 64 M3.3-5.0 short-range earthquakes (< 8 km) were used. 43 

We confirmed that the waveforms recorded at this sensor are only slightly distorted by 44 

propagation, directly showing the source process of the  M3.3-5.0 earthquakes. The shapes 45 

of the direct P-waveforms show that their source processes are diverse and  that more than 46 

30 percent of the events  have multiple subevents, unlike in commonly-used simple source 47 

models. This suggests that the characterization of small earthquakes may require 48 

quantities such as radiated seismic energy, which can be directly estimated even when 49 

complex ruptures are considered.  50 

 51 

  52 
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1. Introduction  53 

To fully understand earthquakes, information on the time history of the radiation 54 

process is necessary.  Moment-rate function (MRF) supplies essential information on 55 

earthquake source processes. Many researchers have retrieved the MRFs of major 56 

earthquakes (Mw>7) and several MRF databases have been constructed for large 57 

earthquakes, revealing the diversity of their ruptures  (Tanioka & Ruff,  1997; Vallée et 58 

al. ,  2011; Ye et al. ,  2016).  However, for small earthquakes  (Mw<5),  the retrieval of MRFs 59 

is challenging because propagation effects strongly influence their waveform s. 60 

Because of the difficulty in reliably estimating their details, the source parameters 61 

for small earthquakes are often estimated using  simple source process models.  Precisely,  62 

the stress drop of an earthquake is estimated based on the corner frequencies of the 𝜔2 63 

source spectra of Aki (1967) and Brune (1970) with some pre-assumed source models.  64 

Such models include those of Brune (1970),  Sato and Hirasawa (1973),  Madariaga (1978),  65 

and Kaneko and Shearer (2014).  The assumptions in the above approaches  include that 66 

earthquake rupture is characterized by a simple, single pulse.  It is critical to verify the 67 

validity of these assumptions .  68 

Previous studies have established that earthquake rupture patterns are remarkably 69 

similar for small  and large earthquakes.  Specifically,  they reported that the stress drop  70 

(e.g., Kanamori & Anderson, 1975) and moment-scaled radiated energy (e.g., Ide & 71 

Beroza, 2001) are nearly constant , regardless of the static size of the earthquake. Still ,  72 

debate continues as to whether or not the moment -scaled radiated energy is scale 73 

dependent (e.g., Abercrombie, 1995; Mayeda & Walter , 1996; Izutani & Kanamori , 2001; 74 

Ide & Beroza,  2001; Pérez‐Campos & Beroza, 2001; Prejean & Ellsworth, 2001; Takahashi 75 

et al. ,  2005; Mayeda et al. ,  2005; Baltay et al. ,  2010; Malagnini et al. ,  2014; Nishitsuji & 76 

Mori,  2014; Zollo et al. ,  2014; Denolle & Shearer , 2016; Ye et al. ,  2016; Chounet et al. ,  77 

2018). If  the earthquake rupture is self-similar and independent of its static size,  small 78 

earthquakes may have a similar degree of  complexity as large earthquakes.  Based on the 79 

empirical Green's function (EGF) approach (Mueller, 1985; Hough et al. ,  1997),  several 80 

recent studies have shown that the MRFs of small earthquakes have multiple pulses and a 81 

certain complexity (Courboulex et al.,  1996; Kwiatek, 2008; Holmgren et al.,  2019; 82 
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Pennington et al.,  2023; Yoshida & Kanamori,  2023) . Pennington et al.  (2023) reported 83 

that 60-80% of M2.6-3 events in the Pardfield area  produced complex ruptures based on 84 

the EGF approach. This EGF approach is almost the only method available for retrieving  85 

the MRFs of small earthquakes (Mw<5). However, there is a risk of noise in the EGF, and 86 

differences in reflected waves  owing to slight differences in locations and focal 87 

mechanisms can inadvertently make the MRFs appear more complex  than they really are.   88 

The most direct way to evaluate the complexit ies of MRFs is to directly examine 89 

the displacement waveforms (Kikuchi & Ishida, 1988; Kanamori et al.,  1990; Houston et 90 

al. ,  1998; Harrington and Brodsky, 2009; Lin et al.,  2016).  This approach is simple but 91 

unaffected by potentially problematic assumptions  when dealing with EGFs, such as 92 

neglegilbe differences in path effects and focal mechanisms (Hutchings & Viegas, 2012),  93 

noise in EGFs, and frequency-band limitations.  Kanamori et al. (1990) showed that the 94 

1988 Pasadena ML4.9 event caused a two-pulse rupture based only on the waveforms at a  95 

short-range single station (4 km). Kikuchi and Ishida (1988) used a similar approach to 96 

examine the diversity in the shape of the MRFs of deep (z>50 km) earthquakes in Japan  97 

from far-field P-waves. However, earthquake waveforms are typically affected by 98 

propagation and site effects. The former effects (attenuation and scattering) become more 99 

dominant with increasing source distances and frequencies. Because of their short rupture 100 

durations and the need to investigate high frequencies, t he MRFs of small earthquakes  101 

(Mw<5) cannot be captured by observations at typical observation distances (> 20 km). 102 

Additionally,  soft near-surface sedimentary layers and heterogeneous velocity structures 103 

strongly distort seismic waveforms.  The use of a downhole sensor surrounded by hard 104 

rocks with minimal amplification and attenuation is essential  for retrieving source signals .  105 

However, few situations exist in which these conditions are met.  106 

In northern Ibaraki Prefecture, Japan, the National Research Institute for Earth 107 

Science and Disaster Resilience  (NIED) Hi-net operates an excellent  borehole seismic 108 

station (N.JUOH), which helps to investigate  this issue. The downhole sensor of this 109 

station is confined by granite rock with high velocity (Vp=5.4 km/s, Vs=3.2 km/s; 110 

https://www.kyoshin.bosai.go.jp/cgi -bin/kyoshin/db/siteimage.cgi?0+/IBRH14+kik+pdf ),  111 

and the site amplification effect can be well taken into account . Intense seismicity has 112 

https://www.kyoshin.bosai.go.jp/cgi-bin/kyoshin/db/siteimage.cgi?0+/IBRH14+kik+pdf
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occurred in this region since the 2011 M9 Tohoku earthquake (Fig. 1 ; more than 50,000 113 

earthquakes of M J M A  ≥ 1; Yoshida et al.,  2015 and 2019),  and this downhole sensor has 114 

recorded many earthquake waveforms within ten kilometers.   115 

 116 

 117 

 118 

 119 

Figure 1.  (a) Map showing the location of the study region.  The red rectangle indicates 120 

the area shown in Fig.  (c). (b) Histogram of Mw of the earthquakes to be analyzed.  (c) 121 

Map showing the study region. The red cross denotes the  station (N. JUOH) whose 122 

waveforms are analyzed in this study.  The beach-balls represent the earthquake focal 123 

mecanisms listed in the F-net moment tensor catalog (Kubo et al.,  2002), with red ones 124 

showing the events to be analyzed. Gray circles  show the hypocenters of shallow 125 

earthquakes (z < 40 km) with the JMA magnitude 𝑀JMA ≥ 2.0 from January 1,  2003, to 126 

September 30, 2022. The circle sizes correspond to the diameters of Eshelby 's (1957) 127 
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circular fault  with a stress drop of 3 MPa.  128 

 129 

This study examines  the diversity of the MRFs of small earthquakes (Mw3.3-5.0) 130 

based on the close-range waveforms of direct P-waves. To evaluate the propagation effect, 131 

which is a problem when looking directly at waveforms, we refer red to the waveforms of 132 

small earthquakes and synthetic  waveforms based on a simple one-dimensional structure.  133 

A comparison of the observed waveforms with their synthetic counterparts helps evaluate  134 

the effects , including the geometrical spreading and surface reflections above the 135 

downhole sensor.   136 

 137 

2. Characteristics of Observed Waveforms 138 

Figure 2 shows the observed vertical components of  the displacement waveforms 139 

for three events. The seismometer was a 1 Hz velocity meter , and we removed the 140 

instrument responses. The waveforms were very clean because of the short distances and 141 

hard bedrock conditions The first waveform is for the M J M A1.4 event,  high-pass filtered 142 

at 0.8 Hz to account for signal -to-noise ratio (Figs. 2a). The second and third correspond 143 

to M J M A3.5 and M J M A4.4, respectively,  high-pass filtered at 0.12 Hz (Figs.  2b-c). The 144 

second waveform was recorded at a horizontal distance of 1.7 km from the hypocenter  and 145 

the contributions of intermediate and near-field terms between the onsets of  P and S waves 146 

(Fig. 2b). The P-waveform of the first event shows two pulses of approximately 0.04s 147 

apart  (pink area in Fig.  2a),  which represent waves that arrived directly at the downhole 148 

sensor and waves that arrived after being reflected by the ground surface directly above.  149 

 150 

 151 



8 

 

 152 

Figure 2. Displacement waveforms of three events obtained at the station to be used  153 

(N.JUOH) and the synthetic waveforms. Above: observed waveforms. Bottom: synthetic  154 

waveforms. The pink area indicates the direct P wave. The synthetic waveforms were 155 

estimated using the moment tensors estimated in this study, shown in this figure.  The 156 

timing at which t=0 represents the onset of the P -wave.  157 

 158 

The use of synthetic waveforms is helpful  for evaluating the propagation effects . 159 

The code of Zhu and Rivera (2002) , based on the wavenumber integration method , was 160 

used to compute synthetic waveforms. The assumed seismic wave velocity structure  is 161 

Hasegawa et al.  (1978),  used in routine processing at Tohoku University.  Based on the 162 

NIED Hi-net logging information,  the velocities in the shallow 10 m was changed.  The 163 

empirical relationship proposed by Brocher (2008) was used to assume depth-dependent 164 

density and Q structures (Fig.  S1) following the procedure described by Yamaya et al.  165 

(2022).  The source duration was set to 0.01s to obtain the impulse response.  The moment 166 

tensors for M J M A3.5 and MJ M A4.4 events were obtained from the F-net catalog (Kubo et 167 

al. ,  2002).  The moment tensor solution for the M J M A1.4 event was estimated by taking the 168 

amplitude ratios of nearby earthquakes listed in the nearby F-net moment catalog , based 169 

on the method of Yoshida et al.  (2019).   170 

The synthetic waveforms (vertical displacements) for these three events are shown 171 

in Fig. 2. These results agree well with the characteristics of the observed waveforms.  172 

The agreement for the MJ M A1.4 (Mw1.9) event at such high frequencies supports our 173 

assumption that these short-range data  are scarcely disturbed by structural 174 
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inhomogeneities.  A comparison between  the observed spectrum of the P wave of this event 175 

and that of the synthetic one showed no systematic deviations (Fig.  S2a).  Although there  176 

are slight deviations reflecting the incompleteness of the structural  model, they are 177 

negligible when discussing the  macroscopic shape of the MRFs.  178 

The details differ between the observed and synthetic waveforms for M J M A  3.5 and 179 

4.4 events because the synthetic waveforms do not include the effects of the MRFs (Figs.  180 

2b-c).  Reflecting this finiteness, the spectra of the observed waveforms of the two events 181 

deviate from the synthetic spectra to smaller values above a certain frequency (corner 182 

frequency) (Fig. S2b, c) . This difference can be attributed to the effects of the MRFs on 183 

these events.  184 

 185 

3. Complexity of moment-rate functions of 64 Mw3.3-5.0 events 186 

Figure 3 shows the P-wave displacement waveforms of the vertical component for 187 

1.0 s for 64 target events . A high-pass filter (cutoff frequency of 0.5 Hz) was applied,  188 

and the signs were adjusted to make the first onset  positive. Waveforms for longer 189 

windows (2.5 s) are shown in Fig. S3. The shapes of the direct P-waves show diversity; 190 

some are simple, consisting of a single pulse  (gray), whereas others are more complex 191 

(blue).  192 
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 193 

 194 

Figure 3.  Enlargement of direct  P-waves for 64 MW3.3-5.0 earthquakes.  They are 195 

arranged in order of Mw from smallest to largest.  Triangles indicate the peaks of 196 

detected subevents.  𝑛p indicates the number of detected subevents.  The waveforms are 197 

shown in blue for earthquakes with more than two subevents .  The lower right panel 198 

shows the MRF of Brune's (1970) model.  199 

 200 

Given that the displacement waveform of the far -field P-wave is proportional to the 201 

MRF, this diversity may directly represent the diversity in the source process.  In contrast,  202 
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the waveforms of the small earthquakes (M J M A<2) occurring in the vicinity (within 1 km) 203 

of each earthquake were simple  and similar , with essentially  one pulse (Fig. S4).  There 204 

were exceptions with two short-interval pulses (<0.04s) due to surface reflections,  as 205 

shown in Fig. 2(a). This downhole sensor is located at a depth of 100 m. Therefore, two 206 

pulses are naturally observed owing to surface reflection.  The synthetic  waveforms 207 

computed at the location of each target event always had two pulses (Fig. S5).  This effect 208 

appears mainly at > 20 Hz and almost disappears when a 20 Hz low-pass filter is applied 209 

(Fig. S6).  Based on the empirical relationship of earthquakes in global settings by  Duputel 210 

et al.  (2013), the centroid time of an Mw2 event is approximately 0.028 s, which may 211 

mask two pulses owing to surface reflection. The presence of surface reflections limits  212 

the minimum duration of the MRFs inferred from direct inspection of the P-wave to 213 

approximately 0.1 s.  214 

The durations of the direct P-waves of the Mw 3.3-5.0 events are longer than 0.1 s 215 

(Fig. 3). It is reasonable to assume that the diversity of the obtained P-waveforms of 216 

Mw3.3-5.0 events represents the diversity of the  MRFs. Following Houston et al.  (1998), 217 

we measured the complexity using the number of subevents  in the time function before 218 

the S-wave arrival . The number of bumps was determined by the number of times the time 219 

derivatives of the waveforms crossed zero. We imposed the following conditions to  avoid 220 

counting minor peaks due to surface reflections  or noise: (1) The peak amplitude must be 221 

greater than 50% of the amplitude of the maximum peak. (2) The time interval between 222 

peaks should be greater than 0.05s.  (3) The elapsed time from the previous peak should 223 

be less than 0.5 s.  Fig. 4(a) shows the histogram of  the number of subevents thus obtained. 224 

For 42 of the 64 events, the number of subevents was one, whereas for 22 events, the 225 

number of subevents was two or more.  Even when the observed waveforms of Mw3.3 -5 226 

were low-pass filtered at 20 Hz, lit t le change  was observed in this trend (Fig.  S7).  227 

 228 

 229 

 230 

 231 
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 232 

 233 

Figure 4. Histograms of the number of subevents estimated from the short-range 234 

waveforms and MRFs.  The colored bars represent all events , and the lines indicate events 235 

with 𝑀𝑤 ≥ 4.0.  (a) Direct P-wave, (b) MRFs obtained from the synthetic Green functions, 236 

and (c) MRFs obtained from the EGFs.  237 

 238 

Our direct waveform inspection was slightly affected by propagation.  To remove 239 

this contamination, we deconvolved the observed seismic waveforms using synthetic 240 

Green's functions (Fig.  S6). These theoretical waveforms were computed based on the 241 

moment tensors and locations of each event. The hypocenter of each event was relocated 242 

based on the same velocity structure used to calculate the synthetic waveforms (Hasegawa 243 

et al.,  1978), but from the hypocenters listed in the JMA catalog, with lit t le change.  For 244 

the deconvolution, we used the iterative time-domain deconvolution algorithm of Ligorria 245 

and Ammon (1999), which employs the method of Kikuchi and Kanamori (1982) .  246 

Deconvolution was performed with a non-negative constraint  using a 20 Hz Butterworth 247 

low-pass filter for stabilization , and results were obtained only when the recovery was 248 

greater than 80%.  249 

Figure 5 shows the derived MRFs of 59 events . They maintained the original 250 

waveform shapes because of the minor impact of  the propagation effect . Unlike the 251 

original waveforms, they were slightly affected by instability during deconvolution (e.g., 252 

third or tenth event).  However,  counting the number of subevents from these MRFs, 27 253 

out of 59 events had two or more subevents  (46%; Fig.  4b), similar to the original 254 
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waveform result .  Similarly, Fig.  4(c) shows the number of subevents when deconvolution 255 

was performed using the waveforms of nearby small earthquakes as the EGF (Figs.  S8).  256 

The frequency band was set to f < 10 Hz to avoid the effects of  finite durations of small 257 

events.  This result  is also similar to the original result,  in that 29 of the 59 (49 %) had 258 

multiple pulses.  The increased proportion of complex events in the post -deconvolution 259 

results may be due in part to the effects of the deconvolution instability.  260 

 261 

 262 
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 263 

Fig. 5 .  Estimated moment-rate functions based on the deconvolution by synthetic 264 

waveforms. Triangles indicate the peaks of detected subevents.  𝑛p indicates the number 265 

of detected subevents. An x mark indicates an event for which deconvolution did not 266 

work. The lower right panel shows the MRF of Brune's (1970) model.  267 

 268 

Compiling the results of previous studies that examined a few small events with an 269 

extensive network suggests that it is common for small events to exhibit complexity  (Ide,  270 
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2001; Yamada et al.,  2005; Uchide & Ide ,  2010; Taira et al. ,  2015; Wu et al.,  2019).  271 

Yoshida and Kanamori (2023) studied more than 1700 Mw3-7 earthquakes in Japan based 272 

on the radiated energy enhancement factor (REEF ; Ye et al.,  2018). Their results showed 273 

that 30% of the analyzed events showed significant complexity (REEF>5),  although the 274 

used frequency range was relatively narrow (up to approximately  7 Hz for Mw4 events).  275 

Those complex events tended to have significantly different source spectra from the 𝜔2-276 

model,  as expected (Madariaga,  1979).  This study obtained consistent  trends for 64 277 

earthquakes by directly examining waveforms at a single station.  Uchide and Imanishi 278 

(2016) examined the source spectra of M3.2 -4 events in this region by spectral ratios and 279 

showed that many events  deviate from the 𝜔2-model. Combined with our time-domain 280 

results, these may reflect a large number of complex events, even at this scale.  281 

In the case of all  three outcomes (Fig.  4),  the number of subevents tends to be large 282 

for events with 𝑀𝑤 ≥ 4,  which may be at least partly attributed to the temporal resolution 283 

of MRFs. With a given minimum resolvable duration (0.1 s) and sampling interval (0.01 284 

s), resolving subevents for earthquakes with relatively short duration s was difficult . This 285 

suggests that our complexity estimate may be underestimated; when measured only for 286 

Mw>4 earthquakes, 13 out of 22 events (59 %) showed multiple pulses.  287 

Our estimated MRFs (Figs. 3, 4, and S8) exhibited various  shapes. Some are simple 288 

and have a single pulse,  similar to the source models often used for the estimation of the 289 

stress drop, such as those of Brune (1970), Sato and Hirasawa (1973), and Madariaga 290 

(1978). The green MRF in Figs. 3 and 5 show the MRF of Brune (1970) for comparison. 291 

However,  even modest estimates show that approximately  30 % have multiple pulses that 292 

differ significantly from the above source models. The widely used source models produce 293 

erroneous results when applied to such complex events (Abercrombie,  2021; Liu et al.,  294 

2023). The present results suggest that methods that account for complexity, rather than 295 

those that assume a simple rupture pattern, are required to characterize even small 296 

earthquakes.  One approach is to estimate the spatial variation of a spatially heterogeneous 297 

slip distribution/stress drop from seismic waveform s. However, the estimation 298 

uncertainties are very large owing to the degrees of freedom  (Adams et al. ,  2016).  299 

The radiated energy is a different physical quantity than the stress drop, but  can 300 
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be estimated in principle directly from seismic waveform data without requiring a specific  301 

source model  (e.g. , Kanamori et al.,  2020) . Many source models have a one-to-one 302 

relationship between the radiated energy and stress drop through model-specific radiation 303 

efficiency. Ji et al.  (2022) proposed estimating the stress drop based on radiated energy 304 

because radiation efficiency takes similar values in various source models.  Snoke (1987) 305 

reported that estimating the stress drop from the apparent stress (moment -scale radiated 306 

energy multiplied by rigidity) is more stable . However, because radiation efficiency is 307 

not constant in reality (Venkataraman & Kanamori , 2004), i t may be better to distinguish 308 

between stress drop and (moment-scaled) radiated energy and directly use radiated energy. 309 

Estimating the radiated energies of small earthquakes is not always straightforward 310 

because of strong propagation effects and frequency band limitations  (Abercrombie, 2021) . 311 

However, radiated energy is a quantity that can characterize small earthquakes regardless 312 

of their complexity and may be a suitable parameter for characterizing the source process 313 

of small earthquakes.  314 

 315 

4. Conclusion 316 

Short-range (< 8 km) seismic waveforms recorded at  a downhole sensor surrounded 317 

by granite  (Vp=5.4 km/s, Vs=3.2 km/s) clearly show the diversity in the complexity of 318 

the moment-rate functions for 64 Mw3.3-5.0 earthquakes.  Even conservatively estimated, 319 

approximately 30% of the events had multiple pulses that differed significantly from 320 

simple source models.  These results suggest that methods that account for complexity,  321 

rather than those that assume an a priori source process , are required to characterize even 322 

small earthquakes.  Despite the difficulties in estimation, the present results  suggest  that 323 

using quantities such as radiated energy or moment -scale radiated energy is preferable  as 324 

they can be estimated without assuming an a priori source process.  325 

 326 
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