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Abstract

One of the outstanding questions in lightning research is how dart leaders (also called recoil leaders or K-leaders) initiate
and develop during a lightning flash. Dart leaders travel quickly (106-107 m/s) along previously ionized channels and occur
intermittently in the later stage of a flash. We have recently reported some insights into dart leader initiation and development
based on our BIMAP-3D observations. In this presentation we will expand on that work by combining observations and
modeling to try to understand the observed dart leader behaviors. BIMAP-3D consists of two broadband interferometric
mapping and polarization (BIMAP) systems that are separated by 11.5km at Los Alamos National Laboratory. Each station
maps the lightning VHF sources in a 2D space, and the combination of the 2-station measurements provides a detailed 3D
source map. A fast antenna is also included at each station for electric field change measurements. Our previously reported
observations suggest dart leaders commonly exhibit an initial acceleration, followed by a more gradual deceleration to a stop.
We also modeled the dart leader electric field change with a simple configuration of two point-charges, finding that the modeled
tip charge increased in magnitude during the initial acceleration in some simple cases. We now employ a more sophisticated
model to better understand the distribution of charge along the dart leader channel, and the background electric field in which
the dart leader develops.
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Figure 4 shows the potential distribution, linear charge density, and current distribution along the channel

We present electric fields using the atmospheric electricity sign convention, so a positive field will accelerate : _ _ _ _
for the n=2 case. Each curve is a snapshot of the entire channel at a particular time, and the location of the

One of the outstanding questions in lightning research is how dart leaders (also called recoil leaders or K-leaders) electrons “forward” in the cloud or “up” from the ground. Figure 2 shows the result of estimating the ambient

initiate and develop during a lightning flash. Dart leaders travel quickly (10°-107 m/s) along previously ionized  cloud electric field as a polynomial of degrees between n=0 and n=4. In general, the field is decreasing along negative dart leader tip can be tracked as a sharp upward jump in each plot at the transition between the
channels and occur intermittently in the later stage of a flash. We have recently reported some insights into dart  the channel for n > 0. This is essentially the field distribution we predicted in Jensen et al. (2023) to explain active leader and the inactive channel.
leader initiation and development based on our BIMAP-3D observations. In this presentation we will expand on  why dart leaders accelerate initially and then slow down to a stop. _ o o _ _ _ _
that work by combining observations and modeling to try to understand the observed dart leader behaviors. The charge density at the tip increases initially, but then the tip charge density decreases while leaving a
BIMAP-3D consists of two broadband interferometric mapping and polarization (BIMAP) systems that are  The estimated ambient field is low (1-10 kV/m), but this is consistent with previous lightning activity reducing significant amount of negative charge along the middie of the channel. The magnitude of the charge
separated by 11.5km at Los Alamos National Laboratory. Each station maps the lightning VHF sources in a 2D the field along the channel. The tip field starts very low (~150 kV/m), but this could be near the breakdown density is 10-100x smaller than typical estimates of around 1 C/km, but this is consistent with a channel
space, and the combination of the 2-station measurements provides a detailed 3D source map. A fast antenna is  threshold if the channel is still at ~3000 K from previous activity. The low tip field may also explain why dart field 10-100x smaller than the ~100 kV/m E-field a stepped leader in virgin air would propagate through.
also included at each station for electric field change measurements. Our previously reported observations leaders appear so narrow in VHF (Hare et al. 2023, Shao et al. 2023), because the field more than a few The modeled current for this dart leader has a peak value of about -500 A, which seems reasonable.
suggest dart leaders commonly exhibit an initial acceleration, followed by a more gradual deceleration to a stop. meters from the tip would be well below the negative streamer stability threshold.
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