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5NOAA/PMEL

December 7, 2023

Abstract

The use of large ensembles of model simulations is growing due to the need to minimize the influence of internal variability in

evaluation of climate models and the detection of climate change induced trends. Yet, exactly how many ensemble members are

required to effectively separate internal variability from climate change varies from model to model and metric to metric. Here

we analyze the first three statistical moments (i.e., mean, variance and skewness) of detrended precipitation and sea surface

temperature (interannual anomalies for variance and skewness) in the eastern equatorial Pacific from observations and ensembles

of Coupled Model Intercomparison Project Phase 6 (CMIP6) climate simulations. We then develop/assess the equations, based

around established statistical theory, for estimating the required ensemble size for a user defined uncertainty range. Our

results show that — as predicted by statistical theory — the uncertainties in ensemble means of these statistics decreases with

the square root of the time series length and/or ensemble size. Further to this, as the uncertainties of these ensemble-mean

statistics are generally similar when computed using pre-Industrial control runs versus historical runs, the pre-industrial runs

can sometimes be used to estimate: i) the number of realizations and years needed for a historical ensemble to adequately

characterize a given statistic; or ii) the expected uncertainty of statistics computed from an existing historical simulation or

ensemble, if a large ensemble is not available.
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Key Points: 15 

 Large ensembles of historical runs and long control runs from climate models are 16 

analyzed to study the uncertainty of the ensemble mean 17 

 The uncertainty of the ensemble mean decreases with the square root of the ensemble size 18 

or the epoch length used to perform the calculation 19 

 A simple equation yields an estimate of the ensemble mean uncertainty or the ensemble 20 

size needed to limit the uncertainty to a given value 21 

 22 

  23 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

Abstract 24 

The use of large ensembles of model simulations is growing due to the need to minimize the 25 

influence of internal variability in evaluation of climate models and the detection of climate 26 

change induced trends. Yet, exactly how many ensemble members are required to effectively 27 

separate internal variability from climate change varies from model to model and metric to 28 

metric. Here we analyze the first three statistical moments (i.e., mean, variance and skewness) of 29 

detrended precipitation and sea surface temperature (interannual anomalies for variance and 30 

skewness) in the eastern equatorial Pacific from observations and ensembles of Coupled Model 31 

Intercomparison Project Phase 6 (CMIP6) climate simulations. We then develop/assess the 32 

equations, based around established statistical theory, for estimating the required ensemble size 33 

for a user defined uncertainty range. Our results show that — as predicted by statistical theory — 34 

the uncertainties in ensemble means of these statistics decreases with the square root of the time 35 

series length and/or ensemble size. Further to this, as the uncertainties of these ensemble-mean 36 

statistics are generally similar when computed using pre-Industrial control runs versus historical 37 

runs, the pre-industrial runs can sometimes be used to estimate: i) the number of realizations and 38 

years needed for a historical ensemble to adequately characterize a given statistic; or ii) the 39 

expected uncertainty of statistics computed from an existing historical simulation or ensemble, if 40 

a large ensemble is not available. 41 

Plain Language Summary 42 

Earth’s climate naturally fluctuates on intraseasonal to interdecadal timescales, confounding the 43 

evaluation of climate models and the detection of trends linked to climate change. To tackle this 44 

challenge, scientists produce ensembles of simulations with identical external forcings (e.g., 45 

volcanic eruptions, greenhouse gas emissions) but plausibly different initial conditions. In this 46 

study we analyze how these ensembles can be used to reduce the uncertainty of the simulated 47 

climate to help guide the design of future ensembles via consideration of the substantial high-48 

performance computing resources. 49 

1. Introduction 50 

The El Niño–Southern Oscillation (ENSO) is the largest source of interannual climate 51 

variability on the planet (see McPhaden et al., 2020 for a review), affecting the global 52 
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atmospheric circulation (Taschetto et al., 2020), severe weather (Goddard & Gershunov, 2020), 53 

wildfire activity (Chen et al., 2017), agriculture (Anderson et al., 2018), fisheries (Bertrand et al., 54 

2020), and economic activity (Cashin et al., 2017). It is a recurring climate pattern involving a 55 

warming (El Niño) or a cooling (La Niña) of the sea surface temperature (SST) in the central and 56 

eastern tropical Pacific Ocean. The pattern shifts back and forth irregularly every two to seven 57 

years, with SST anomalies (SSTA) typically between 1°C to 3°C. 58 

With climate models being primary tools for improving our understanding of Earth’s 59 

past, present and future climate, evaluation of ENSO in climate models has garnered substantial 60 

interest. Knowing how well climate models represent key aspects of the historical climate is 61 

critical for both further model development and to build trust in the model’s ability to simulate 62 

past and future climate. Multiple phases of the Coupled Model Intercomparison Project (CMIP; 63 

Meehl et al., 2000, 2007; Taylor et al., 2012; Eyring et al., 2016) has enabled the benchmarking 64 

of model’s performance across development cycles, as well as identifying the relative strengths 65 

and weaknesses of each model. ENSO has been particularly scrutinized from one phase of the 66 

project to another (AchutaRao & Sperber, 2006; Bellenger et al., 2014; Planton et al., 2021), 67 

highlighting, for example, a reduction of mean state biases and an improvement of the 68 

representation of ENSO variability. 69 

Earth’s climate naturally fluctuates on intraseasonal to interdecadal timescales (hereafter 70 

‘internal variability’), which reduces our ability to detect future ENSO changes with global 71 

warming (e.g., Wittenberg, 2009; Maher et al., 2018; Zheng et al., 2018; Ng et al., 2021) as well 72 

as robustly evaluating model performance (J. Lee et al., 2021). The use of model ensembles 73 

(multiple simulations with each model configuration) is an established approach to identify the 74 

impact of internal variability on model characteristics and projections (e.g., Deser et al., 2020). 75 

It is common to compute the mean, variance, and skewness of a record to describe 76 

respectively our climate’s mean state, variability and asymmetry (e.g., the fact that El Niño 77 

events can reach larger amplitudes than La Niña events). For a record of n time steps, the sample 78 

mean (�̅�), variance (𝜎2) and skewness (𝑔1) can be defined as follows (e.g., Cramér, 1946): 79 

�̅� =
𝟏

𝒏
∑ 𝒙𝒊

𝒏

𝒊=𝟏
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                                                               (1) 80 

𝝈𝟐 =
𝟏

𝒏
∑(𝒙𝒊 − �̅�)𝟐

𝒏

𝒊=𝟏

 

                                                         (2) 81 

𝒈𝟏 =

𝟏
𝒏

∑ (𝒙𝒊 − �̅�)𝟑𝒏
𝒊=𝟏

(
𝟏
𝒏

∑ (𝒙𝒊 − �̅�)𝟐𝒏
𝒊=𝟏 )

𝟐/𝟑
 

                                                       (3) 82 

Figure 1 illustrates the difficulty of evaluating and ranking models using the observed 83 

and modeled 30-year (1985-2014) mean, variance, and skewness of precipitation (PR) and SST 84 

(interannual anomalies are used for variance, and skewness) computed over the region Niño3 85 

(hereafter N3; 90-150°W, 5°S-5°N), a key region for ENSO. The model ensemble from the 86 

CMIP Phase 6 (CMIP6) ensemble (59 different ensembles; red boxplots) displays a large range 87 

of values around the observations (horizontal black lines). If we compare the range of the CMIP6 88 

multi-model ensemble (MME) to that of the single-model initial condition ensemble (made of 33 89 

Historical simulations of IPSL-CM6A-LR model; green boxplots), it is evident that initial 90 

conditions have a considerable impact on PR skewness (Figure 1j), as well as SST variance and 91 

skewness: the IPSL-CM6A-LR ensemble covers 50% or more of the CMIP6 ensemble (Figure 92 

1h,l). 93 

 94 
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 95 

Figure 1. Statistical moments computed with observed and modeled PR and SST. Maps of 96 

observed PR (a,e,i; left column) and SST (c,g,k; right column) over the tropical Pacific Ocean, 97 

alongside Niño3 averaged (black rectangle) modeled (boxplots) and observed (black line) PR 98 

(b,f,j) and SST (d,h,l). Statistical moments are: mean (equation (1); first row), variance (equation 99 

(2); second row) and skewness (equation (3); third row). The epoch 1985-2014 is used for all 100 

datasets. Boxplots represent the distributions of statistics computed from a multi-model ensemble 101 

(MME; 59 CMIP6 ensembles, red) and a single-model ensemble (33 IPSL-CM6A-LR members 102 

described in Boucher et al., 2020; green). Whiskers extend to the 5
th

 and 95
th

 percentiles; boxes 103 

encompass the 25
th

 and 75
th

 percentiles; a diamond marks the mean; and dots indicate values that 104 

fall outside the whiskers. 105 

 106 

Due to the expensive computing cost of running ensembles, modeling centers 107 

contributing to CMIP typically produce a limited number of ensemble simulations (i.e., fewer 108 

than 10 members). However, several studies indicate that 30 to 50 members may be required to 109 

robustly characterize ensemble mean decadal-scale trends of SST variance (Maher et al., 2018; 110 

Milinski et al., 2020; J. Lee et al., 2021). These 3 papers reached their conclusions by analyzing 111 

several large ensembles and randomly selecting members of an ensemble to indicate how many 112 

members are required to obtain a given confidence interval on the ensemble mean. This random 113 

selection-based method is sophisticated but limited by the existing ensemble. In addition, it is 114 
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somewhat complicated for those who simply need to estimate the required ensemble size for a 115 

given expected uncertainty. 116 

In this study, we employ established statistical theory to propose a complementary 117 

approach for estimating the required ensemble size for an expected uncertainty. We provide new 118 

information about the ensemble uncertainty before the ensemble is generated, enabling those 119 

who perform the experiments to decide a priori the number simulations to be performed, given a 120 

level of accuracy needed for a particular application. We provide equations to compute the 121 

uncertainty of the ensemble mean of a given ensemble or to estimate the ensemble size required 122 

to reach a given uncertainty of the ensemble mean, without having to compute random 123 

selections. This yields a framework to quantify how the uncertainty of the ensemble mean is 124 

affected by the ensemble size (section 3.1) and by the epoch length used to compute a statistic 125 

(section 3.2). After comparing the uncertainty of the ensemble mean in piControl and historical 126 

runs (section 3.3), we provide test cases using our equations making it possible for others to 127 

estimate the ensemble size for their own applications (section 3.4). 128 

2. Data and methods 129 

2.1. Model simulations and observations 130 

We use piControl and historical runs from the CMIP6 (Eyring et al., 2016). The historical 131 

runs, which aim to simulate the observed climate, are forced by time-varying natural (e.g., orbital 132 

parameters, solar irradiance and volcanic aerosols) and anthropogenic (e.g., aerosols and 133 

greenhouse gas emissions, and land use) forcings that are based on observations (e.g., Durack et 134 

al., 2018). In the piControl run, which is designed to simulate the unforced variability arising 135 

from processes internal to the climate system, natural and anthropogenic forcings are fixed to 136 

their estimated 1850 values. We use 59 ensembles from 53 models for which both historical and 137 

piControl runs are available and the piControl run is at least 300 years long (see Table 1 for the 138 

list of ensembles and their size). We consider 24 of these ensembles as ‘large ensembles’ (LEs) 139 

as they have 10 members or more (for more details about members and ensembles see Text S1 in 140 

Supporting Information S1). A multi-model ensemble (hereafter CMIP6-MME) is created using 141 

the first member of each 59 ensembles. Monthly means are used for all datasets. 142 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

Note that we performed a simple quality: i) we computed piControl’s global mean 143 

surface temperature to verify if the simulated climate is stationary; and ii) we compared the 144 

diagnostics (mean, variance and skewness of N3 PR and N3 SST) computed from piControl and 145 

the corresponding historical runs to verify if the climate statistics are similar. Following this 146 

quality control, simulations of CAS-ESM2-0 and KACE-1-0-G are not used in this study, and the 147 

first 650 years of HadGM3-GC31-LL‘s piControl are also not used (for more details see Text S2 148 

and Figure S1 in Supporting Information S1). 149 

The epoch 1985-2014 of two observations datasets are used, Global Precipitation 150 

Climatology Project Monthly Analysis Product version 2.3 for PR (GPCPv2.3; Adler et al., 151 

2003) and NOAA Optimum Interpolation Sea Surface Temperature version 2 for SST (OISSTv2; 152 

Reynolds et al., 2002). 153 

 154 

Table 1 155 

List of CMIP6 ensembles, their duration for piControl run and size for historical run 156 

Model name Ensemble PI HI   Model name Ensemble PI HI 

ACCESS-CM2 i1p1f1 500 10   GFDL-ESM4 i1p1f1 500 3 

ACCESS-ESM1-5 i1p1f1 1000 40   GISS-E2-1-G_p1f1 i1p1f1 851 12 

AWI-CM-1-1-MR i1p1f1 500 5   GISS-E2-1-G_p1f2 i1p1f2 650 11 

BCC-CSM2-MR i1p1f1 600 3   GISS-E2-1-G_p3f1 i1p3f1 601 9 

BCC-ESM1 i1p1f1 451 3   GISS-E2-1-G_p5f1 i1p5f1 501 9 

CAMS-CSM1-0 i1p1f1 500 2   GISS-E2-1-H_p1f1 i1p1f1 801 10 

CanESM5_p1 i1p1f1 1000 25   GISS-E2-1-H_p1f2 i1p1f2 451 5 

CanESM5_p2 i1p2f1 1051 40   GISS-E2-1-H_p3f1 i1p3f1 451 5 

CanESM5-1 i1p1f1 501 47  GISS-E2-2-G i1p3f1 351 5 

CanESM5-CanOE i1p2f1 501 3   HadGEM3-GC31-LL i1p1f3 1350 55 

CESM2 i1p1f1 1201 11  HadGEM3-GC31-MM i1p1f3 500 4 

CESM2-FV2 i1p1f1 500 3   INM-CM4-8 i1p1f1 531 1 

CESM2-WACCM i1p1f1 500 3   INM-CM5-0 i1p1f1 1201 10 

CESM2-WACCM-FV2 i1p1f1 501 3   IPSL-CM6A-LR i1p1f1 2000 33 

CIESM i1p1f1 500 3   MCM-UA-1-0 i1p1f1 500 1 

CMCC-CM2-SR5 i1p1f1 500 1   MIROC-ES2H i1p4f2 420 3 

CMCC-ESM2 i1p1f1 500 1   MIROC-ES2L i1p1f2 500 30 

CNRM-CM6-1 i1p1f2 500 29   MIROC6 i1p1f1 800 50 

CNRM-CM6-1-HR i1p1f2 300 1  MPI-ESM-1-2-HAM i1p1f1 1000 3 
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CNRM-ESM2-1 i1p1f2 500 10   MPI-ESM1-2-HR i1p1f1 500 10 

E3SM-1-0 i1p1f1 500 5   MPI-ESM1-2-LR i1p1f1 1000 50 

E3SM-2-0 i1p1f1 500 21   MRI-ESM2-0 i1p1f1 701 10 

EC-Earth3 i1p1f1 1105 18  NESM3 i1p1f1 500 5 

EC-Earth3-AerChem i1p1f1 500 3   NorCPM1 i1p1f1 1500 30 

EC-Earth3-CC i1p1f1 505 10  NorESM2-LM i1p1f1 501 3 

EC-Earth3-Veg i1p1f1 500 7   NorESM2-MM i1p1f1 500 3 

EC-Earth3-Veg-LR i1p1f1 501 3   SAM0-UNICON i1p1f1 700 1 

FGOALS-f3-L i1p1f1 561 3   TaiESM1 i1p1f1 500 1 

FGOALS-g3 i1p1f1 700 6   UKESM1-0-LL i1p1f2 1880 15 

GFDL-CM4 i1p1f1 500 1       

Note. Model ensembles considered as LEs are bolded. The member column indicates the fixed 157 

initialization procedures (i), physical parameterizations (p), and forcings (f) used for the 158 

ensemble. If several ensembles are available, the varying parameter is added to the model’s 159 

name. The piControl column (PI) indicates the duration of the run, in years. The historical 160 

column (HI) indicates the number of members. Ensembles available as of October 2023. Further 161 

information on each model at https://es-doc.org/cmip6/. 162 

 163 

2.2. Methodology 164 

2.2.1. Diagnostics 165 

The mean (�̅�; equation (1)), variance (𝜎2; equation (2)) and skewness (𝑔1; equation (3)) 166 

of N3 averaged PR and SST are analyzed. To do so, the domain average is computed, then the 167 

time series are analyzed using epoch lengths ranging from 30 to 150 years (every 15 years, i.e., 168 

30, 45, 60, etc.). Each epoch is analyzed independently, the linear trend is removed (computed 169 

over the given epoch) and, for the variance and skewness, the seasonal cycle is removed 170 

(computed over the given epoch). The 30-year epochs are utilized as the reference climate as 171 

recommended by the World Meteorological Organization (WMO). This epoch length also 172 

roughly corresponds to the overlapping epoch between the satellite era (1980-present) and the 173 

CMIP6’s historical run (1850-2014). These calculations are done using the CLIVAR ENSO 174 

metrics package (Planton et al., 2021), executed via the PCMDI Metrics Package framework 175 

(Lee et al., 2023). 176 
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2.2.2. Creating piControl and historical distributions 177 

For piControl, distributions are created by computing the statistics over non-overlapping 178 

epochs. This means that the epoch length influences the number of values in piControl 179 

distributions: for a 300-years long run, 10 values will be available using 30-year epochs, but only 180 

2 using 150-year epochs. For historical ensembles, distributions are created using members with 181 

identical initialization procedure, physics and forcing (see Text S1 in Supporting Information S1 182 

for more details). The statistics are computed independently over a given epoch length every 5 183 

years (e.g., 1850-1879, 1855-1884, 1860-1889, etc.). The intra-ensemble mean (𝐸�̅�) and intra-184 

ensemble standard deviation (𝐸𝜎) of each distribution represent an estimated mean value and 185 

internal variability of a given ensemble for a given epoch length at a given time (time is 186 

considered only for historical ensembles). See Text S3 and Figure S2 in Supporting Information 187 

S1 for a detailed demonstration of how the distributions are created. 188 

2.2.3. Degrees of freedom 189 

When considering time series, each time step is not fully independent from the others. 190 

The number of effectively independent time steps (i.e., number of degrees of freedom) can be 191 

estimated using: 192 

𝑛∗ =
𝑛

1 + ∑ 𝜌𝑖
2𝐿

𝑖=1

 

(4) 193 

where the autocorrelation function (𝜌) is summed over the number of time steps (L) necessary to 194 

reach the first two sign changes (e.g., Russon et al., 2014; Atwood et al., 2017). 195 

2.2.4. Combinations 196 

In sections 3.1 and 3.3 the intra-ensemble standard deviation (𝐸𝜎) is computed using a 197 

given sample size (k) which is smaller or equal to the ensemble size (N). To do so, combinations 198 

(meaning that the order does not matter) of k distinct members of the ensemble are generated. 199 

The number of combinations used depends on the ensemble size and the sample size. If a large 200 

number of combinations are possible, 10,000 distinct combinations are randomly selected. The 201 

statistic is then averaged across combinations. 202 
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2.2.5. Standard errors 203 

Given a random sample [𝑥1, ⋯ , 𝑥𝑛] from a normal distribution 𝑁(𝜇, 𝜎2), the Standard 204 

Error (SE) of the sample mean (𝑆𝐸�̅�; e.g., Chapter 4 p. 76 of von Storch & Zwiers, 1999), sample 205 

variance (𝑆𝐸𝜎2; e.g., Chapter 4 p. 77 of von Storch & Zwiers, 1999) and sample skewness (𝑆𝐸𝑔1
; 206 

e.g., Wright & Herrington, 2011) are: 207 

𝑆𝐸�̅� =
𝜎

√𝑛
 

(5) 208 

𝑆𝐸𝜎2 = 𝜎2√
2

𝑛 − 1
 

(6) 209 

𝑆𝐸𝑔1
= √

6(𝑛 − 2)

(𝑛 + 1)(𝑛 + 3)
 

(7) 210 

where n is the number of independent samples (i.e., 𝑛∗ for time series). 211 

2.2.6. Confidence intervals and uncertainty of the ensemble mean 212 

Using this random sample [𝑥1, ⋯ , 𝑥𝑛], the 𝑝 × 100% confidence intervals of the true 213 

(unknown) mean 𝜇 is (e.g., Chapter 5 p. 92 of von Storch and Zwiers, 1999): 214 

(�̅� − 𝑍
𝜎

√𝑛
≤ 𝜇 ≤ �̅� + 𝑍

𝜎

√𝑛
) 

(8) 215 

Where Z is the 0.5 + 𝑝/2 quantile of the normal distribution and n is the number of independent 216 

samples (i.e., 𝑛∗ for time series). In the paper the 95% confidence interval is used (Z=1.96). 217 

If we approximate the distribution of statistics computed on each member of an ensemble 218 

with a normal distribution (central limit theorem; e.g., Chapter 2 p. 35 of von Storch and Zwiers, 219 
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1999), we can define the absolute uncertainty of the ensemble mean (∆) as the error on each side 220 

of the true (unknown) ensemble mean: 221 

∆= 𝑍
𝐸𝜎

√𝑁
 

(9) 222 

where 𝐸𝜎 is the intra-ensemble standard deviation and N is the ensemble size. 223 

It is sometimes useful to define the uncertainty relative to intra-ensemble mean (𝐸�̅�), 224 

hereafter ‘relative uncertainty’ (∆𝑟= 100 ∆ 𝐸�̅�⁄ ). However, the relative uncertainty can become 225 

minuscule when 𝐸�̅� ≫ 1 (e.g., for N3 SST mean; not shown), or gigantic when 𝐸�̅� ≪ 1 (e.g., for 226 

N3 SSTA skewness; not shown). For simplicity, we use the absolute uncertainty (∆) in all 227 

sections but in section 3.4 in which the relative uncertainty (∆𝑟) in some cases. The main results 228 

of this paper are not altered if the relative uncertainty is used (not shown) and we verified that 229 

the uncertainties computed with equation (9) are very similar to that computed using random 230 

sampling (see Text S4 and Figure S3 in Supporting Information S1). 231 

3. Results 232 

3.1. Influence of the ensemble size on the uncertainty 233 

In the literature, the uncertainty of the intra-ensemble mean (∆) is usually computed with 234 

a random sampling and authors define one ensemble size for one given uncertainty (e.g., Maher 235 

et al., 2018; Milinski et al., 2020; J. Lee et al., 2021). Using equation (9), one can analyze the 236 

relationship between ensemble size and uncertainty, as well as confronting our results with the 237 

theory: the uncertainty of ensemble mean should decrease with the square root of the ensemble 238 

size. 239 

Figure 2 shows the ratio of the absolute uncertainty (∆) computed with piControl and 240 

historical ensembles using combinations (see section 2.2.4) of 10 to the maximum number of 241 

members (every 5 members) divided by ∆ computed with the maximum number of members. 242 

Therefore, the horizontal axis represents the fraction of the ensemble size used for the 243 

computation. The results are presented for epoch lengths ranging from 30 to 150 years (15-year 244 

intervals) from the CMIP6-MME and 14 LEs with at least 15 members. We select here larger 245 
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LEs compared to our initial threshold as we are creating synthetic ensembles of a smaller sizes 246 

and the minimum size of these synthetic ensembles is 10. There is a total of 188 curves (15 247 

datasets x 9 epoch lengths = 135 for the historical run, and 53 for the piControl run as the 248 

ensemble size decreases and fall below the 15 members threshold when the epoch length 249 

increases). All 15 datasets align almost perfectly on the theory (dashed black lines) for all three 250 

statistical moments computed with N3 PR and N3 SST. 251 

The only notable discrepancy comes from the piControl ensembles of N3 PRA variance 252 

computed with the MPI-ESM1-2-LR (yellow-green left-pointing markers in Figure 2c). This is 253 

due to the ability of MPI-ESM1-2-LR to simulate extremely rare but extremely large N3 PRA 254 

during El Niño events. In the 1000-year piControl simulation, anomalies of 5 mm.day
-1

 are 255 

reached during five events (equivalent to ~9 standard deviations), including one reaching more 256 

than 9 mm.day
-1

 (more than 16 standard deviations). If these events are removed, this simulation 257 

falls back in the rank and follows the theory (not shown). 258 

 259 
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Figure 2. Evolution of the uncertainty of the ensemble mean (∆; equation (9)) as a function of 261 

the fraction of the ensemble used. Uncertainty computed for N3 PR (first column) and N3 SST 262 

(second column) mean (first row), variance (second row) and skewness (third row). The dashed 263 

black line in each panel represents the theoretical improvement of the uncertainty with the square 264 

root of the fraction of the ensemble used. The uncertainty of the ensemble mean is computed 265 

using all epoch lengths and all epochs of the piControl (dotted lines) and historical (solid lines) 266 

runs from 14 LEs with at least 15 members and the CMIP6-MME. 267 

 268 

3.2. Influence of the epoch length on the uncertainty 269 

The epoch length used to perform an analysis is of utmost importance. Indeed, Cai et al. 270 

(2022) demonstrate that the lack of consensus about whether ENSO amplitude will increase with 271 

climate change in the Intergovernmental Panel on Climate Change Sixth Assessment Report 272 

(IPCC AR6; J.-Y. Lee et al., 2021) can be explained by the short 20-year epoch used. By using 273 

100-year epochs, Cai et al. (2022) show that ~80% of the models (only one member per model is 274 

used) indicate an increase of ENSO amplitude, depending on the scenario. Doing so, they argue 275 

that with longer epochs the uncertainty of the statistic decreases. For simple diagnostics (like the 276 

first three statistical moments), the statistical theory clearly highlights this effect: if one uses 277 

equations (5), (6) and (7) with 𝜎 and n respectively equal to the standard deviation of the time 278 

series and the number of independent time steps (𝑛∗), the three equations indicate a decrease in 279 

the error of these statistics with the square root of the number of independent time steps. 280 

Now, does it mean the intra-ensemble standard deviation (𝐸𝜎) decreases at the same rate 281 

when the epoch length is increased? Figure 3 shows the ratio of the uncertainty of the ensemble 282 

mean (∆) computed with historical ensembles using epoch lengths of 30 to 150 years (15-year 283 

intervals) divided by ∆ computed with 150-year epochs. Epoch lengths (i.e., time steps) are used 284 

instead of independent number of time steps as the latter is proportional to the number of time 285 

steps: if T time steps are independent in a 150-year epoch, ~T/2 are independent in a 75-year 286 

epoch (not shown). The results are presented for all 24 LEs and the CMIP6-MME, using the 287 

maximum number of members of each ensemble (25 curves in each panel). Although the 288 

magnitude of the uncertainty reduction is more model dependent than for the influence of the 289 

ensemble size (section 3.1), most datasets show an improvement that is broadly consistent with 290 
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the theory (dashed black lines) for all three statistical moments computed with N3 PR and N3 291 

SST. 292 

However, for N3 SST mean (Figure 3b) and N3 PRA skewness (Figure 3e), several 293 

ensembles are clearly departing from the theory. For these ensembles and diagnostics, the intra-294 

ensemble standard deviation (𝐸𝜎) is not increasing as fast as expected (or even decreases), with 295 

decreasing epoch length. The exact reason is beyond the scope of this paper but three simple 296 

reasons may explain this result: i) equations (5), (6) and (7) are valid when the sample is drawn 297 

from a normal distribution but N3 PRA and N3 SSTA (to a smaller extent) distributions are 298 

skewed (Figure 3j,l); ii) a small sized LE can randomly deviate from the theory (see Text S5 and 299 

Figure S4 in Supporting Information S1); and iii) long term trends are not linear (not shown), 300 

which is not taken into account by our methodology (time series of each epoch are detrended 301 

linearly and independently) and may falsely increase the standard deviations computed with long 302 

time series. 303 

The behavior of the CMIP6-MME is also notable: varying the epoch length has no 304 

influence on the uncertainty. This is due to the fact that increasing the epoch length only 305 

attenuates the internal variability within each model, it does not reduce the inter-model 306 

differences. So, if one wants to detect a change in a statistical value (e.g., related to climate 307 

change) using the CMIP6-MME, increasing the epoch length will not reduce the uncertainty. 308 

One may detect a change only if it is large enough between the considered epochs. 309 

While the uncertainty should similarly increase with decreasing epoch length in the 310 

piControl run, it is not easy to prove it due to the methodology used to create the distributions 311 

(see section 2.2.2). Indeed, with the piControl run increasing the epoch length implies a smaller 312 

number of samples, reducing our ability to robustly compute the standard deviation of the 313 

distribution (𝐸𝜎). In addition, for a given epoch length we obtain a single value of the 314 

uncertainty, while with the historical run we obtain an uncertainty value for each partially 315 

overlapping epoch (e.g., using 30-year epochs we obtain 28 uncertainty values, one for 1850-316 

1879, another for 1855-1884, etc.). Despite these methodological issues, with a long piControl 317 

run (~2000 years), the uncertainty of the ensemble mean would follow the theory (not shown). 318 

Thus, both ensemble size and epoch length can be used to improve the uncertainty of the 319 

ensemble mean to obtain a more robust evaluation of the climate models. However, decreases in 320 
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uncertainty with increasing the ensemble size almost perfectly follow expectations from theory, 321 

while increasing the epoch length may not have the desired influence if time series are not 322 

relatively constant or for diagnostics more complex than the first three statistical moments. 323 

 324 
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Figure 3. Evolution of the uncertainty of the ensemble mean (∆; equation (9)) as a function of 326 

the fraction of 150-year used for the computation. Uncertainty computed for N3 PR (first 327 

column) and N3 SST (second column) mean (first row), variance (second row) and skewness 328 

(third row). The dashed black line in each panel represents the theoretical improvement of the 329 

uncertainty with the square root of the fraction of 150-year used. Uncertainty computed using all 330 

epochs of the historical run from CMIP6-MME and all 24 LEs (using the maximum ensemble 331 

size). Note that panel e does not have the same vertical range as the other panels. 332 

 333 

3.3. Uncertainty in piControl vs. historical runs 334 

Thompson et al., (2015) proposed that a piControl run provides a robust estimate of the 335 

simulated internal variability and therefore a single member per model is needed. This approach 336 

assumes that the internal variability is not changing with climate change, and that this single 337 

member is close to the center of the distribution (as the confidence interval is centered on the 338 

ensemble mean). Nevertheless, if the internal variability in piControl and historical runs are 339 

similar, one could use the piControl run to estimate a priori the number of members to compute 340 

for the historical run. 341 

We compare now the uncertainty of the ensemble mean (∆) computed from the 24 342 

historical LEs and the CMIP6-MME with the corresponding piControl runs (Figure 4), using 343 

combinations of k members (see section 2.2.4), k being the minimum sample size between the 344 

historical and piControl distributions. Here, we only use 30-year epochs as some piControl runs 345 

are only 300-years long, i.e., 10 non-overlapping epochs, which is already a relatively small 346 

sample size to compute a standard deviation (we verified that the relationship is similar with 347 

other epoch length; not shown). The CMIP6-MME is not included for the N3 SST mean (Figure 348 

4b) as the uncertainty is ~100% larger than the largest uncertainty computed with LEs and would 349 

spuriously increase the correlations (not shown). This is linked to the fact that the difference 350 

from one model to another (the mean state bias of the models) is much larger than the difference 351 

between a member of a given model to another member of the same model (i.e., the mean state 352 

modulation by the internal variability). 353 
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This analysis reveals that four of the six diagnostics (Figure 4a,c,d,e) produce an almost 354 

perfect match between historical and piControl runs (correlation > 0.9, slope ~1, intercept ~0). 355 

The relationship is not as good in the other two diagnostics (correlation ~0.7, slope ~0.6, 356 

intercept > 0; Figure 4b,f,), with better uncertainties in the historical compared to the piControl 357 

run when the uncertainty value is large. Overall, the piControl run is a good proxy of the 358 

uncertainty of the historical run, meaning that the control simulation can be used when the 359 

historical ensemble is small, or to estimate the size of the historical ensemble before computing 360 

it. This is useful for modelers because multiple control runs may be performed during the model 361 

development or tuning process, well-before historical runs are performed. 362 

 363 
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Figure 4. Uncertainty of the ensemble mean (∆; equation (9)) computed from historical vs. the 365 

piControl runs. Uncertainty computed using 30-year epochs for N3 PR (first column) and N3 366 

SST (second column) mean state (first row), variance (second row) and skewness (third row). 367 

Uncertainty computed in the 24 LEs and the CMIP6-MME using the minimum sample size of 368 

historical and the piControl runs. For the historical run, the uncertainty is computed for all 369 

epochs and averaged. The solid black line in each panel represents the linear regression. The 370 

corresponding correlation (r), regression slope (s) and p-value (p) are indicated at the bottom of 371 

each panel.  372 

 373 

3.4. Estimating the ensemble size 374 

There are many papers in the literature proposing a minimum number of members, often 375 

termed the Required Ensemble Size (RES), that should be computed for a particular application 376 

such as ENSO (e.g., Maher et al., 2018; Milinski et al., 2020; J. Lee et al., 2021). Here, we 377 

propose a method that one can apply to estimate the required ensemble size for a particular 378 

application, before the ensemble is generated. Indeed, the RES can be estimated by rearranging 379 

equation (9): 380 

𝑅𝐸𝑆 = (𝑍
𝐸𝜎

∆
)

2

 

(10) 381 

Therefore, we can easily estimate the RES given an absolute (∆) or relative (∆𝑟=382 

100 ∆ 𝐸�̅�⁄ ) uncertainty. The main advantage of computing the RES using equation (10) is that it 383 

is not limited by the size of the existing ensemble (which is one limitation of computing the RES 384 

using random sampling). Note that both methods lead to equivalent results (see Text S6 and 385 

Figure S5 in Supporting Information S1). 386 

When defining the RES in this section, we limit it to 60 members even if in some cases 387 

more members would be needed. We decided to cap the number of members as we aim here to 388 

describe methodologies and order of magnitudes, not to provide exact numbers. In addition, this 389 

cap is already larger than any LE computed for past CMIP exercises. 390 
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There are several ways in which this proposed formula may be utilized. Firstly, one can 391 

estimate the RES to reach a given uncertainty. Here we estimate the RES needed to reach an 392 

absolute uncertainty (∆) of 0.05°C and 0.1 for N3 SST mean and skewness respectively (Figure 393 

5b,f; gold), a relative uncertainty (∆𝑟) of 5% for N3 PR mean (Figure 5a; gold) and of 20% for 394 

N3 PR variance and skewness, as well as N3 SST variance (Figure 5c,d,e; gold). To reach these 395 

uncertainties, the IPSL-CM6A-LR ensemble (green triangles) requires less than 20 members. On 396 

average across CMIP6 ensembles (boxplot), less than 30 members are required, while focusing 397 

on individual models three models require ensembles with more than 60 members for N3 PR 398 

variance and N3 SST skewness. It is also interesting to note that the RES can be three times 399 

larger for N3 PR variance compared to N3 SST variance to reach the same relative uncertainty 400 

(20%), meaning that the internal variability of N3 PR variance is larger relative to that of N3 401 

SST variance. This is likely linked to the fact that precipitation is more nonlinear, implying 402 

stronger interdecadal modulation of its variance. 403 

Secondly, one may want to know the sign of the ensemble’s bias and set the absolute 404 

uncertainty to a confidence interval on the absolute difference between ensemble mean and 405 

observational dataset (for the 95% confidence interval, ∆= 𝑃5|𝐸�̅� − 𝑜𝑏𝑠|; Figure 5; black). 406 

Knowing the sign of the bias can be usually achieved with less than 20 members for all CMIP6 407 

ensembles (e.g., 11 is the maximum RES needed for the IPSL-CM6A-LR ensemble). In some 408 

cases, the RES can be very high because the model bias is extremely small (this was also the 409 

case in J. Lee et al., 2021). A second criteria could be introduced to avoid this issue, e.g., limiting 410 

the desired uncertainty with a fraction of the observed value (e.g., ∆= 𝑚𝑎𝑥(𝑃5|𝐸�̅� −411 

𝑜𝑏𝑠|, 0.05 𝑜𝑏𝑠)). 412 

Finally, one can desire a robust ranking of CMIP6 ensembles, implying to limit the 413 

overlap of the confidence interval of each model. This can be done by setting the absolute 414 

uncertainty to a fraction of the CMIP6 distribution (∆= 0.1 𝐶𝑀𝐼𝑃6′𝑠 𝐼𝑄𝑅; Figure 5; red). In this 415 

case, CMIP6 ensembles (boxplot) can be correctly ranked only for N3 PR and N3 SST means, 416 

for which no ensemble needs to be larger than 27. For the other four diagnostics (N3 PR and N3 417 

SST variances and skewness) the desired uncertainty is largely out of reach (i.e., ~30% of 418 

ensembles do not reach it within 60 members for N3 PR and N3 SST variances, and ~85% for 419 

N3 PR and N3 SST skewness). Note that the desired uncertainty specified is quite loose, in that 420 
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even if it is reached, ranking of models would be difficult. For instance, 30 ensembles are found 421 

within the IQR and each of their ensemble means would be within a range equivalent to 0.2xIQR 422 

(0.1 IQR on each side of the mean), implying an important overlap between the uncertainty of 423 

each ensemble. According to our results, it would be hard to provide a robust ranking of CMIP6 424 

ensembles for N3 PR and N3 SST variances and virtually impossible to do it for N3 PR and N3 425 

SST skewness. 426 

 427 
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Figure 5. Ensemble sizes required to limit the uncertainty to a desired value (equation (10)). 429 

RES computed with the 59 piControl distributions to reach a given uncertainty (gold), to know 430 

the sign of the model bias at the 95% confidence level (∆= 𝑷𝟓|𝑬�̅� − 𝒐𝒃𝒔|; black) and to limit the 431 

overlap of the confidence interval of each model (∆= 𝟎. 𝟏 𝑪𝑴𝑰𝑷𝟔′𝒔 𝑰𝑸𝑹; red). RES computed 432 

for N3 PR (first column) and N3 SST (second column) mean (first row), variance (second row) 433 

and skewness (third row). Green triangles represent the RES for IPSL-CM6A-LR. Boxplots 434 

represent the distribution of values computed using all CMIP6 ensembles: whiskers extend to the 435 

5
th

 and 95
th

 percentiles; boxes encompass the 25
th

 and 75
th

 percentiles; a diamond marks the 436 

mean; and dots indicate values that fall outside the whiskers. 437 

 438 

4. Conclusions 439 

We analyzed the first three statistical moments (mean, variance, and skewness) of N3 PR 440 

and N3 SST computed on all available CMIP6 piControl and historical ensembles (24 large 441 

ensembles and the CMIP6-MME made of the first member from 59 ensembles) to better describe 442 

how ensemble means are influenced by ensemble size and the length of the epoch used to 443 

compute the statistic. The key results are the following: 444 

● The uncertainty of the intra-ensemble mean (∆) decreases according to theory, with the 445 

square root of the ensemble size. Thus, if one has an ensemble with an uncertainty ∆, and 446 

wishes to reduce it to half ∆, the ensemble size must be quadrupled. 447 

● The epoch length generally has a similar effect on ∆ (does not apply to a multi-model 448 

ensemble) but there are more inter-model differences, probably linked to the non-normality 449 

of the distributions, the relatively small ensemble sizes, and the nonlinearity of climate 450 

change trends in simulated historical runs. 451 

● There is a good correspondence between the ∆ computed with an historical LE and with the 452 

corresponding piControl. This implies that one can use a piControl run to estimate in 453 

advance how many historical members must be computed to obtain a given ∆, or to estimate 454 

∆ of a small historical ensemble. 455 

● With our methodology one can simply estimate the ensemble size to fit one’s purpose, 456 

regardless of the ensemble size already computed (if a random sampling is used, as in 457 
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Milinski et al., 2020, one can estimate the ensemble size only if it is smaller than the one 458 

already computed). 459 

The methodology that we propose to estimate the ensemble size complements the random 460 

sampling performed by Milinski et al., (2020) and J. Lee et al., (2021), but at a much smaller 461 

computation cost (no random selections). As we provide the mathematical formulae to compute 462 

the uncertainty of an ensemble mean (equation (9)) or the ensemble size required to reach a 463 

given uncertainty of the ensemble mean (equation (10)), our results have numerous advantages. 464 

Our equations can be used by any model user to fit their own purpose. One can also extrapolate 465 

their results: using a computation done with a given ensemble size and a given epoch length one 466 

can estimate the uncertainty for other ensemble sizes or epoch lengths. And finally, we used 467 

simple statistics to illustrate how statistical theory can be applied to climate science, but 468 

equations (9) and (10) can be used for any diagnostic using any variable if the distributions are 469 

approximately normal. 470 
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