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Abstract

We study the impacts of a continental slope on instability and mesoscale eddy fluxes in idealized 3-layer numerical model

simulations. The simulations are inspired by and mimic the situation in the Arctic Ocean’s Beaufort Gyre where anti-cyclonic

winds drive anti-cyclonic currents that are guided by the continental slope. The forcing and currents are retrograde with

respect to topographic Rossby waves. The focus of the analysis is on eddy potential vorticity (PV) fluxes and eddy-mean flow

interactions under the Transformed Eulerian Mean framework. Lateral momentum fluxes in the upper layer dominate over the

actual continental slope where eddy form drag, i.e.\ vertical momentum flux, is suppressed due to the topographic PV gradient.

The diagnosis also shows that while eddy momentum fluxes are up-gradient over parts of the slope, the total quasi-geostrophic

PV flux is down-gradient everywhere. We then calculate the linearly unstable modes of the time-mean state and find that the

most unstable mode contains several key features of the observed finite-amplitude fluxes over the slope, including down-gradient

PV fluxes. When accounting for additional unstable modes, all qualitative features of the observed eddy fluxes in the numerical

model are reproduced.
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Abstract15

We study the impacts of a continental slope on instability and mesoscale eddy fluxes in16

idealized 3-layer numerical model simulations. The simulations are inspired by and mimic17

the situation in the Arctic Ocean’s Beaufort Gyre where anti-cyclonic winds drive anti-18

cyclonic currents that are guided by the continental slope. The forcing and currents are19

retrograde with respect to topographic Rossby waves. The focus of the analysis is on eddy20

potential vorticity (PV) fluxes and eddy-mean flow interactions under the Transformed21

Eulerian Mean framework. Lateral momentum fluxes in the upper layer dominate over22

the actual continental slope where eddy form drag, i.e. vertical momentum flux, is sup-23

pressed due to the topographic PV gradient. The diagnosis also shows that while eddy24

momentum fluxes are up-gradient over parts of the slope, the total quasi-geostrophic PV25

flux is down-gradient everywhere. We then calculate the linearly unstable modes of the26

time-mean state and find that the most unstable mode contains several key features of27

the observed finite-amplitude fluxes over the slope, including down-gradient PV fluxes.28

When accounting for additional unstable modes, all qualitative features of the observed29

eddy fluxes in the numerical model are reproduced.30

Plain Language Summary31

The ocean circulation in the Arctic is heavily influenced by the bottom bathymetry.32

Essentially, currents are steered to follow continental slopes and submarine ridges. This33

topographic steering makes transfer of properties across continental slopes difficult, thus34

partially isolating the deep basins from the continental shelves. Oceanic macroturbulence,35

or ’mesoscale eddies’, are able to cross bottom bathymetry, but transport by these fea-36

tures are also hampered. In this study a simplified numerical model is used to learn about37

how bottom bathymetry impacts eddy transport in and out of the Beafort Gyre, a wind-38

driven large-scale gyre in the Arctic Ocean’s Canada Basin. The gyre is the largest reser-39

voir of fresh waters in the Arctic, and understanding how topography controls the ex-40

port of this freshwater is thought to be of crucial importance if climate models are to41

properly simulate a future Arctic Ocean. The study shines light on some key aspects that42

the models need to consider to get transport across the continental slope right.43

1 Introduction44

A wide range of observational and modelling studies have shown that the large-scale45

ocean currents at high northern latitudes are heavily guided by bottom bathymetry (Orvik46

& Niiler, 2002; Koszalka et al., 2011; Isachsen et al., 2012). Certainly, the geostrophically-47

balanced bottom currents need to be. This is because the weak planetary vorticity gra-48

dient at high latitudes leaves the geostrophic flow nearly divergentless. This, in turn, means49

that the bottom vertical velocity—set up by flow up or down bathymetric slopes—must50

be the same order of magnitude as the vertical velocity at the sea surface, which is very51

small indeed. The geostrophic currents further up in the water column are less constrained.52

But rotation of the thermal wind shear away from the bottom flow does require a non-53

trivial organization of vertical velocities or agesotrophic buoyancy transport which is not54

always ensured (Schott & Stommel, 1978; Schott & Zantopp, 1980). So, in practice, even55

surface currents typically feel the continental slopes and ridge systems thousands of me-56

ters below.57

The strong topographic steering of the large-scale geostrophic flow field then brings58

up the question of what processes are responsible for transport of water tracers and sus-59

pended material across topographic gradients. Flow in Ekman layers, both at the sea60

surface and at the bottom, can do so. But away from these frictional boundary layers61

property fluxes across continental slopes and over submarine ridges instead rely on tem-62

poral and/or spatial correlations between velocity and tracer fluctuations. Such fluctu-63

ations may be associated with organized wave phenomena, like tides, or with chaotic mo-64
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tions driven by wind fluctuations. In this study, however, we will focus on the role of the65

mesoscale eddy field which is as ubiquitous in the high north as it is in the rest of the66

world oceans. Even though the velocity field of mesoscale eddies is nearly geostrophic,67

smaller ageostrophic flow components can exchange both passive suspended material and68

active tracers like buoyancy and momentum across continental slopes. Eddy transport69

can thus impact the hydrography and large-scale currents themselves.70

In the high north, such eddy-mean flow interactions have mostly been studied in71

the context of the Beaufort Gyre, a large-scale anti-cyclonic flow feature in the Canada72

Basin of the Arctic Ocean. Here, anti-cyclonic winds drive a surface Ekman convergence73

of freshwater toward the center of the basin. This lifts the sea surface and pushes down74

isopycnals there, driving anti-cyclonic geostrophic currents near the surface and, at the75

same time, a thermal wind shear that reduces these currents at depth. The convergent76

surface Ekman transport itself is thought to be compensated by divergent bottom Ek-77

man currents, so that one can envision a secondary overturning circulation through the78

gyre, inward at the surface, downward in the center of the gyre and outward at the bot-79

tom. In steady state the stratification in the gyre is almost certainly controlled, in part,80

by local air-sea-ice fluxes and small-scale diabatic mixing (Zhang & Steele, 2007; Spall,81

2013). But under the sheltering effect of the sea ice cover, mesoscale eddy transport is82

almost certainly key. Essentially, the available potential energy (APE) field associated83

with the inclined density field drives baroclinic instability and eddy bolus thickness fluxes84

which are thought to counter the wind-driven overturning circulation. And the sum of85

these two opposing overturning cells is the ’residual’ circulation which actually advects86

tracers in and out of the gyre (Davis et al., 2014; Manucharyan & Spall, 2015; Manucharyan87

et al., 2016). On seasonal time scales, the momentum transfer from winds to ocean and88

thus the surface Ekman transport are modulated by the sea ice motion, in what has been89

termed the ”ice-ocean governor’ (Meneghello et al., 2018). But integrated over long time90

scales, and in the limit of weak small-scale mixing, the lowest-order dynamics of the gyre91

appears to be reflecting this relatively simple balance between the opposing wind-driven92

and eddy-driven overturning circulations.93

A potential problem with this model of Ekman–eddy residual overturning circu-94

lation arises from the fact that baroclinic instability is hampered by the presence of the95

continental slopes which confine the Beaufort Gyre. At a most basic level this can be96

understood from the inability of interior dynamics to compensate for the vertical veloc-97

ities generated by an eddy-induced overturning that interacts kinematically with slop-98

ing bathymetry. In essence, topographic potential vorticity (PV) gradients hinder any99

cross-bathymetric flow, be it large-scale or meso-scale. A more rigorous theoretical start-100

ing point is offered by the ’topographic Eady model’ of Blumsack and Gierasch (1972).101

This model, in which a linear bottom slope is added to the Eady model of baroclinic in-102

stability, predicts reduced growth rates and generally also reduced length scales over slop-103

ing bathymetry. But when tested in realistic situations the model generally overestimates104

topographic suppression (Trodahl & Isachsen, 2018). Key limitations of the Eady frame-105

work itself include its inability to account for internal PV thickness gradients in the mid-106

dle of the water column as well as relative vorticity gradients and lateral momentum fluxes.107

This last limitation appears to be most severe over continental slopes, as suggested108

by two idealized numerical studies of wind-driven flows over continental slopes by Wang109

and Stewart (2018) and Manucharyan and Isachsen (2019), hereafter referred to as WS18110

and MI19, respectively. Both studies focused on so-called retrograde flows, where the winds111

drive currents that are in the opposite direction to topographic waves (such waves have112

the coast to their right in the northern hemisphere). And the MI19 study was motivated113

specifically by the Arctic Ocean Beaufort Gyre—whose anti-cyclonic mean flow is ret-114

rograde. These numerical studies confirm that eddy form stress, i.e. the vertical trans-115

fer of momentum which is a signature of active baroclinic instability, is greatly reduced116

over the continental slope. What the eddy field instead does in both of these simulations117
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is to transfer momentum laterally in the surface layers, away from the slope region and118

to a location just off the slope where the bottom is relatively flat. Here, an eddy driven119

jet is formed. And this jet is then baroclinically unstable, allowing the wind momentum120

to finally be transferred to the solid ground below.121

So nature finds its way to tackle the problematic topographic PV gradient. But122

the above-mentioned studies also left some unanswered questions. First, the lateral mo-123

mentum fluxes over the slope in these models were not down-gradient everywhere, so the124

eddy field was not the result of pure barotropic instability in the upper layers. In both125

sets of simulations there was also some indication of reversed eddy form stress and the126

formation of prograde flows over the lower parts of the slope. Thus, the mesoscale dy-127

namics, at least over idealized retrograde slopes, appears to be associated with regions128

of both up-gradient buoyancy fluxes and up-gradient momentum fluxes. WS18 tried to129

interpret the observed behavior in their channel simulation in terms of down-gradient130

PV fluxes, to connect with theories of eddy-driven jets along topography (e.g. Brether-131

ton & Haidvogel, 1976; Holloway, 1992; G. Vallis & Maltrud, 1993). Doing the analy-132

sis along a set of mid-depth isopycnals, they indeed found down-gradient PV fluxes over133

the slope regions. But the same diagnostics also gave indications of up-gradient PV fluxes134

in other parts of their model domain, notably over the flat continental shelf and deep135

basin. Whether this somewhat complex behavior is a real dynamical feature or an ar-136

tifact of their analysis method remains a puzzle.137

Secondly, one wonders how the observed finite-amplitude eddy fluxes, and especially138

the observed up-gradient fluxes, relate to the stability properties of the flow. Specifically,139

it seems natural to ask: can the observed fluxes be explained, at least qualitatively, by140

the eigenvectors of the linearly unstable modes of the large-scale background field? WS18141

assessed linear stability numerically with a quasi-geostrophic 1D vertical mode model142

and observed clear indications of topographic suppression of unstable growth—as well143

as enhanced growth over flat regions off-shore. But, due to the limitations of the 1D frame-144

work, they were unable to properly account for background lateral vorticity gradients145

and thus investigate whether the linearly unstable modes contain a signature of the lat-146

eral momentum fluxes observed in the non-linear fields.147

The present study picks up from the works of WS18 and MI19 by looking closer148

into the dynamics of unstable growth and eddy transport over retrograde continental slopes.149

To focus on the core issues, we simplify the approach even more and study nonlinear fluxes150

as well as linear stability in a 3-layer context, in a circular basin meant to very crudely151

mimic conditions in the Beaufort Gyre. By reducing the vertical resolution so drastically152

we limit the types of instability which may be reproduced, e.g. preventing surface-trapped153

small-scale eddy growth which is frequently observed in the Arctic Ocean halocline (e.g.154

Zhao et al., 2014). What the model will be able to represent, however, is the larger mesoscale155

eddies responsible for the deep overturning circulation in the basin and, it can be argued,156

for the adjustment of the main halocline (the adjustment of the density interface of a157

two-layer system will require a deep overturning). That such an eddy field should ex-158

ist has been suggested by stability calculations from real hydrographic profiles (Meneghello159

et al., 2021) and also by recent satellite-based observations (Kubryakov et al., 2021). We160

nonetheless incorporate three layers instead of two, to allow for an examination of im-161

pacts of internal PV gradients, if there are any.162

The specific issues to be addressed in this idealized 3-layer study are i) the impact163

of a retrograde continental slope on PV fluxes, including an investigation into PV dif-164

fusivities, and ii) the relationship between the observed fluxes and the linearly unstable165

modes of the background state in the model. In order to examine both lateral and ver-166

tical momentum exchanges by unstable modes, we study linear stability in a 2D context—167

in a plane crossing the mean hydrography and mean flow. As will be seen, even under168

the extreme simplification of 3 layers, the linear calculation is able to qualitatively re-169
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produce the key features observed in the full-complexity primitive equation studies men-170

tioned above.171

The manuscript starts with a description of the numerical model and the linear sta-172

bility algorithm. The main results are then organized into a first part describing and an-173

alyzing the fully non-linear fields and then a second part discussing the linear stability174

of the flow. The study wraps up with a brief discussion of obtained results and conclu-175

sions.176

2 Methods177

2.1 Numerical model simulations178

The model used is Aronnax (Doddridge & Radul, 2018a), an open-source idealized179

non-linear isopycnal model, set on a staggered C-grid. The model is configured with an180

explicit free surface and no-slip lateral boundary conditions on an f-plane (a reasonable181

approximation at this high latitude) with Coriolis parameter f = 1.456×10−4 s−1 (the182

value at 90◦N). The harmonic lateral friction coefficient is set to 15m2s−1 and the lin-183

ear bottom drag coefficient set to 2×10−6 s−1, both small enough to allow vigorous eddy184

fields. The horizontal resolution is set to 5 km, compared to a first baroclinic deforma-185

tion radius of about 11 km in all experiments, so the configuration is eddy-permitting.186

A time-step of 90 s is chosen as a compromise between model stability and computation187

time.188

The domain consists of a circular basin representing the Beaufort Gyre and a rect-189

angular ’nudging channel’ meant to represent a connection to hydrographic conditions190

outside of the gyre. The basin radius is 750 km and the channel dimensions are 500×191

500 km. In the nudging region, layer thicknesses are relaxed towards reference values (see192

below) within a timescale of 0.1 days. The very short nudging time scale ensures that193

thickness anomalies generated by the slope and basin dynamics are washed out within194

the nudging region.195

A linear continental slope is used. In the model’s Beaufort Gyre, i.e. in the circu-196

lar basin, the total depth H is defined as:197

H(r) = H0 +H1 ·min

(
R− r

Ls
, 1

)
, (1)

where r is the radial distance from the gyre centre, R is the gyre radius (750 km), Ls198

is the horizontal extent of the continental slope (variable, depending on the experiment;199

see below), H0 is the minimum depth (500 m) and H1 is the height of the slope (3500 m).200

The nudging channel has the same slope steepness but a rectangular geometry (see Fig.201

1). Finally, we add random noise to the bathymetry to help instigate instability. Although202

white noise would do, we used perlin noise (Perlin, 1985) of amplitude 20 m for a slightly203

more realistic representation of a bumpy bottom.204

The model has three isopycnal layers with interface reduced gravities g′12 = g∆ρ12/ρ0 =205

0.024m s−2 and g′23 = g∆ρ23/ρ0 = 0.008m s−2. The resting layer thicknesses of the206

two top layers are 80 m and 120 m, respectively, while the thickness of the third layer207

varies over the continental slope but is 3800 m in the center basin. These values are loosely208

based on the basin-margin T-S profiles from Lique et al. (2015) and also correspond fairly209

closely with the 3-layer configuration of Manucharyan and Stewart (2022). There is no210

explicit interface friction or diapycnal volume transport between layers.211

Surface forcing is wind stress only (no buoyancy forcing). In the circular domain212

the stress is purely azimuthal and given by213

τθ(r) = a
r

4

(
2− b2r2

)
, (2)
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Figure 1. The bathymetry of one of the model runs that has continental slopes with 4%

steepness. The top panel gives a plan view of the model bathymetry while the bottom panel

shows a cross section through the center of the gyre, with dashed lines indicating the model layer

interfaces at rest (note the break in scale).

where a is chosen such that the maximum anti-cyclonic wind stress curl is equal to 0.02Nm−2,214

and b = 1/R. This profile is similar to that used in Davis et al. (2014) but avoids very215

large wind stress at the center of the gyre. The wind stress curl,216

∇× τ = a
(
1− b2r2

)
, (3)

ramps down quadratically from maximum at the gyre centre to zero at the boundary of217

the circular basin. Outside the circular basin, the stress (in Cartesian directions) is given218

by219

τx = C
( y

r2

)
, (4)

τy = C
(
− x

r2

)
, (5)

where C is chosen to match the values at the boundary to the circular basin.220
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The wind stress is ramped up from zero to the maximum over a 20 year period (fol-221

lowing a hyperbolic tangent profile) and held like this for another 40 years (for a total222

of 60 years), forming the spin-up. The model is then run for an additional 60 years over223

which relevant quantities are calculated and stored from 2-day snapshots. A classic time-224

based Reynold’s decomposition is used to define ’mean’ and ’eddy’ variables, where the225

time-mean is taken over the last 60-year simulation period.226

There are four distinct runs, each corresponding to a different continental slope width—227

corresponding to slope steepness of 1.5%, 2%, 4%, and 6%. One additional simulation228

with vertical sidewalls is also run, although this was not studied in detail.229

2.2 Linear stability calculations230

Since our idealized Beaufort Gyre is circular, the linear stability of the flow is eval-231

uated in a 3-layer stacked shallow-water model cast in cylindrical coordinates (r, θ, layer).232

So, for each layer we use the two inviscid momentum equations and the adiabatic layer233

thickness equation:234

∂u

∂t
+ u

∂u

∂r
+

v

r

∂u

∂θ
− v2

r
− fv = −∂ϕ

∂r
, (6)

∂v

∂t
+ u

∂v

∂r
+

v

r

∂v

∂θ
+

uv

r
+ fu = −1

r

∂ϕ

∂θ
, (7)

∂h

∂t
= −1

r

∂ (ruh)

∂r
− 1

r

∂ (vh)

∂θ
. (8)

Here u and v are the radial and azimuthal velocity components, respectively, f is the Cori-235

olis parameter, ϕ is the kinematic pressure and h is the layer thickness.236

The pressures in the three layers are given by:237

ϕ1 = gη, (9)

ϕ2 = gη + g′12η12, (10)

ϕ3 = gη + g′12η12 + g′23η23, (11)

where η is the sea surface displacement and η12 and η23 are the displacements of the two238

interfaces between the layers. Finally, g is the gravitational acceleration while g′12 and239

g′23 are the two reduced gravities (see above). The total layer thicknesses become240

h1 = H1 + η(r, θ, t)− η12(r, θ, t), (12)

h2 = H2 + η12(r, θ, t)− η23(r, θ, t), (13)

h3 = H3(r) + η23(r, θ, t), (14)

where H1, H2 and H3 are layer thicknesses in the absence of motion. Note that H3 can241

vary in the radial direction to account for bottom topography.242

We now linearize around a azimuthal-mean and time-mean azimuthal flow v̄ which243

is assumed to be in geostrophic balance with the sea surface and density field. So, for244

each layer, we write245

u = u′(r, θ, t), (15)

v = v̄(r) + v′(r, θ, t), (16)

[ϕ, h, η] =
[
ϕ̄, h̄, η̄

]
(r) + [ϕ′, h′, η′] (r, θ, t), (17)

where bars and primes indicate the background state and perturbations, respectively.246

The geostrophic background flow in layer j ∈ [1, 2, 3] is given by247

fv̄j =
∂ϕ̄j

∂r
(18)
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and the linearized equations for the perturbations (assumed to be much smaller than the248

background mean variables) in the same layer take the form249

∂u′
j

∂t
+

v̄j
r

∂u′
j

∂θ
− v̄j

r
v′j − fv′j = −

∂ϕ′
j

∂r
, (19)

∂v′j
∂t

+ u′
j

∂v̄j
∂r

+
v̄j
r

∂v′j
∂θ

+
v̄j
r
u′
j + fu′

j = −1

r

∂ϕ′
j

∂θ
, (20)

∂h′
j

∂t
= −

∂
(
u′
j h̄j

)
∂r

− h̄j

r
u′
j −

h̄j

r

∂v′j
∂θ

− v̄j
r

∂h′
j

∂θ
. (21)

The final step is to assume a wave solution in the azimuthal direction for all per-250

turbations,251 [
u′
j , v

′
j , ϕ

′, h′
j

]
(r, θ, t) = Re

{
[uj , vj , ϕ, hj ] (r)e

i(lθ−ωt)
}
, (22)

where i =
√
−1 and the azimuthal wavenumber l is an integer larger than zero. Insert-252

ing into (19–21) gives the algebraic equation set253

−iωuj + il
v̄j
r
uj −

v̄j
r
vj − fvj = −∂ϕj

∂r
, (23)

−iωvj + u′
j

∂v̄j
∂r

+ il
v̄j
r
vj +

v̄j
r
uj + fuj = −il

1

r
ϕj , (24)

−iωhj = −
∂
(
u′
j h̄j

)
∂r

− h̄j

r
u′
j − il

h̄j

r
v′j − il

v̄j
r
hj .(25)

In practice, we write the pressure and thickness perturbations in terms of sea surface and254

interface displacements, using (10) and (13), so that the equation set is in terms of u,255

v and η. The equations for each layer are then discretized on a staggered grid in the ra-256

dial direction, with v and η variables on the same points and u variables half-way be-257

tween these. After applying the kinematic lateral boundary conditions u = 0 in all three258

layers at the center of the gyre and at the side walls, (23–25) becomes an eigen problem259

(for each wavenumber l) for eigenvalues ω and eigenvectors [uj , vj , ηj ]. We thus rotated260

the Cartesian model variables to a (r, θ) grid, using a 3 km resolution in the radial di-261

rection to avoid any loss of resolution. All fields were then averaged azimuthally. Since262

the radius of our gyre is 750 km and the radial grid spacing is 3 km, we get 250 v/η-points263

and 249 u-points. Thus, for three layers, we get a 2247×2247 eigen problem which is264

solved using the ’eig’ function in Matlab. The imaginary part of eigenvalue ω gives the265

growth rate of any given mode and we keep and study a small number of fastest-growing266

modes for analysis.267

3 Results268

3.1 Finite-amplitude fields269

3.1.1 Overview270

Figure 2 shows radial profiles of the temporally and azimuthally-averaged fields from271

one of the runs, BEAU004. This run, which has a continental slope with steepness 4%272

(a width of 58 km), will be the primary focus throughout the study. However, all runs273

contain similar qualitative features to BEAU004, except one run with vertical side walls.274

The upper and lower panels of the figure show the shape of the two isopycnals and the275

layer azimuthal velocities, respectively. The upper panel also shows the wind stress pro-276

file. As in all other figures, the inner 175 km of the basin are omitted since the focus is277

on the continental slope dynamics. The outer 25 km are also omitted since these con-278

tain wall effects.279

We observe the expected depression of isopycnals towards the center of the basin280

and anti-cyclonic flow in all layers, with a progressively weaker flow at depth. But it’s281
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Figure 2. Temporally and azimuthally-averaged fields from the BEAU004 simulation (having

a bottom slope of 4%). The top panel shows the isopycnals between layers 1 and 2 (blue) and

layers 2 and 3 (red). Shown are also the bottom topography (thick solid line) and the wind stress

profile (dotted black line, arbitrary units). The bottom panel shows the azimuthal velocity pro-

files for the top (blue), middle (red) and bottom (yellow) layers. The flow in the bottom layer is

also shown after multiplication by a factor ten (dashed yellow line). In both panels vertical black

lines indicate the position of the slope break (dashed) and the wind stress maximum (dotted).

Note that the inner 175 km and outer 25 km of the domain have been excluded from this figure.

–9–
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worth comparing the details of the radial flow profiles with what would be expected from282

a linear model of periodic flows around closed ambient PV contours (e.g. Gill, 1968; Nøst283

& Isachsen, 2003). In the absence of lateral momentum fluxes, the bottom stress would284

have to balance the wind stress at any radial position—so the flow strength, at least in285

the bottom layer, would closely track the wind strength. In a stratified fluid such trans-286

fer of wind momentum to the bottom layer would be mediated primarily by eddy form287

stresses, as small-scale turbulent stresses are assumed to be negligible away from the top288

and bottom boundary layers themselves. Figure 2 reveals a much more complex flow pro-289

file. The lower layer has a distinct flow maximum—a jet—which is offset off-shore from290

the wind stress maximum. And, importantly, the flow drops to near zero over the con-291

tinental slope. Apparently, the vertical transfer of momentum to this layer all but van-292

ishes there. This contrasts with the situation in a flat-bottom simulation that has ver-293

tical side walls (not shown). There the lower layer flow maximum coincides nearly per-294

fectly with the wind stress maximum, as would be expected if eddy form stress is able295

to connect the top and bottom frictional layers and if lateral momentum fluxes thus be-296

come unimportant.297

The flow profiles in the upper two layers also only mimic the wind profile in a very298

broad sense. Here too there is a jet, most visible in the top layer, which is slightly off-299

set from the wind stress maximum in the direction of the boundary. As shown in Fig-300

ure 3, in all the simulations the mean-flow maxima do not track the wind maximum but301

rather the configuration of the continental slope. Specifically, the upper layer maximum302

sits on top of the lower break of the continental slope while the lower layer maximum303

is always located slightly seaward of this position. This behavior is in agreement with304

the flows observed in the primitive equation simulations of both WS18 and MI19, but305

here we show that this is a robust feature over a range of bottom slopes. These results306

so far support the hypothesis that baroclinic instability, whose purpose is to transfer wind307

momentum down through the layers and into the solid earth below, is suppressed over308

the continental slope. Eddies instead first transfer the wind momentum in the upper layer309

offshore, to the location where the bottom slope vanishes. Seaward of that location, baro-310

clinic instability can finally kick in to transfer the momentum to the frictional bound-311

ary layer at the bottom (see e.g. Fig. 2 in WS18).312

To start examining this hypothesis, the lateral eddy momentum fluxes in the three313

layers for the BEAU004 run are shown in the upper panel of Figure 4. As for all anal-314

yses in this study, the calculation has been done in cylindrical coordinates where r and315

θ are the radial coordinate and azimuthal angle, respectively, and u and v are the cor-316

responding velocity components. The ’eddy’ flux shown is thus u′v′, where the overline317

indicates a combined azimuthal and temporal mean and the primes indicate deviations318

from such means. A positive value indicates a shore-ward flux of cyclonic momentum319

or, alternatively, a seaward flux of anti-cyclonic momentum. We see that, in the directly-320

forced top layer, eddies indeed transfer anti-cyclonic momentum seaward over and around321

the continental slope. There is an onshore flux of anti-cyclonic momentum in the deep322

basin, but this is quite weak. Finally, there is also a weak offshore flux in the middle layer323

but not in the lower layer.324

Is the flow in the upper layer barotropically unstable? In helping to assess this, the325

lower panel of the figure shows the kinetic energy (KE) conversion rate:326

Cbt = −h̄u′v′
∂v̄

∂r
, . (26)

A positive Cbt value indicates that azimuthal momentum is fluxed out of the mean flow,327

thus broadening any existing current and reducing mean-flow KE—the classic signature328

of barotropic instability. The diagnostic here, however, indicates a somewhat more com-329

plex picture, with momentum fluxed into the mean upper layer jet over the continen-330

tal slope and out of the jet seaward of the slope. Eddies are therefore sharpening the jet,331

i.e. forming it, over the continental slope, and then broadening it over the flat regions332
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Figure 3. The positions of the velocity maximum in the top layer (blue crosses) and in the

lower layer (red x’es) as a function of the position of the bottom of the continental slope. Also

shown are the positions of the peak in the top layer eddy form drag (black circles).
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Figure 4. Upper panel: lateral eddy momentum fluxes for the BEAU004 simulation. Lower

panel: the corresponding barotropic energy conversion rate. The solid lines indicate upper layer

(blue), middle layer (red) and lower layer (yellow). Vertical dashed line indicates the position of

the slope break.

further offshore. How this behavior relates to the linear stability of the flow will be ex-333

amined in the next section. But first we continue to examine how the finite-amplitude334

eddy fluxes relate to the observed mean flow. For this, the key quantity of interest is the335

eddy momentum flux convergence, one part of which can be deduced from the radial deriva-336

tive of the flux in the top panel of Figure 4, i.e. from the slope of the flux curve. This337

shows that the maximum convergence of lateral (anti-cyclonic) momentum flux in the338

top two layers takes place over the lower layer velocity maximum. It therefore appears339

that eddy fluxes may be driving the lower layer; but a more comprehensive picture will340

require actual diagnostics of vertical eddy momentum fluxes.341

3.1.2 PV fluxes342

The net impact of combined lateral and vertical eddy momentum fluxes can be cap-343

tured in a thickness-weighted average of the azimuthal momentum equation. An approx-344

imate Transformed Eulerian Mean (TEM) expression for a given layer, in polar coordi-345

nates and assuming quasi-geostrophic (QG) scaling for the eddy motions, is (for a deriva-346

tion in Cartesian coordinates, see G. K. Vallis, 2017, chapter 10):347

∂v̄

∂t
+ fū∗ = −1

r

∂

∂r

(
r u′v′

)
+

1

h̄

(
ϕ′ 1

r

∂η′t
∂θ

− ϕ′ 1

r

∂η′b
∂θ

)
+

τ̄θt
h̄

− τ̄θb
h̄
, (27)

where the overbar now only indicates an azimuthal average. Here ηt and ηb are top and348

bottom interfaces, and τθt and τθb represent small-scale turbulent vertical momentum fluxes349

through those interfaces (turbulent stresses). Note, finally, that ū∗ in the Coriolis term350
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is the time-varying residual radial velocity of the layer,351

ū∗ = ū+
u′h′

h̄
, (28)

i.e. the effective mass transport velocity. So the lateral (radial) convergence of azimuthal352

momentum fluxes, in combination with a vertical convergence of interfacial form stress353

and/or turbulent stress, can accelerate the flow in the layer. Just like turbulent stresses354

τ̄θ, the form stresses ϕ′ (∂η′/r∂θ) can be interpreted as vertical (downward) fluxes of az-355

imuthal momentum.356

Under continued QG scaling, and using the periodicity of the domain, the conver-357

gence of the lateral momentum flux can be written in terms of an eddy vorticity flux,358

and the form stresses can be rewritten in terms of eddy advection of interface heights.359

The balance can thus be recast as360

∂v̄

∂t
+ fū∗ = −u′ζ ′ +

f

h̄

(
u′η′t − u′η′b

)
+

τ̄θt
h̄

− τ̄θb
h̄
, (29)

where ζ is relative vorticity. Finally, taking the difference of the two height advection361

terms gives362

∂v̄

∂t
+ fū∗ = −u′q′ +

τ̄θt
h̄

− τ̄θb
h̄
, (30)

where u′q′ is the QG PV flux,363

u′q′ = u′ζ ′ − f

h̄
u′h′, (31)

i.e. the QG approximation of the total eddy PV flux. The eddy forcing of the azimuthal364

mean flow of any given layer therefore consists of a lateral vorticity flux and a lateral thick-365

ness flux or, alternatively, a form drag. Figure 5 shows the long-term mean of the two366

contributions to the (negative) PV flux for each of the three layers in the same BEAU004367

run. So we plot −u′ζ ′ and (f/h̄)u′h′ for each layer. A very robust signal, which is also368

present in all other runs (not shown), is the reduced eddy form drag in the top layer over369

the continental slope. By inspection of Figure 2, this is the region with the greatest ther-370

mal wind shear. Therefore, the region with the highest baroclinicity experiences a re-371

duced form drag—a behavior which is consistent with the suspected suppression of baro-372

clinic instability over a sloping bottom. The slope region is instead dominated by lat-373

eral eddy vorticity fluxes. As pointed out by MI19, these lateral fluxes tend to drive a374

cyclonic flow in the top layer or, more appropriately to our configuration here, to counter375

the anti-cyclonic flow set up by the wind forcing.376

The eddy form drag increases in magnitude and dominates seaward of the conti-377

nental slope, consistent with the notion that baroclinic instability can kick in here, trans-378

ferring momentum to the layers below. The net effect is observed in Figure 2, i.e. a spin-379

up of the lower layer. In fact, the peak in upper layer eddy form drag coincides almost380

precisely with the center of the lower layer jet, as can be seen by comparing red crosses381

and black circles in Figure 3. It is also worth noting that the location of the maximum382

upper layer form drag corresponds to the largest lateral vorticity flux in the same layer.383

Eddy vorticity fluxes are therefore forcing the upper layer anti-cyclonically immediately384

off the continental slope, creating a jet there.385

Fluxes in the middle layer are much weaker. But, more importantly, the eddy vor-386

ticity and thickness fluxes consistently oppose one another within this layer, tending to387

produce a very weak total PV flux. As a result, in this purely wind-driven setting, the388

middle layer appears to be rather dynamically inactive. In the lower layer, both fluxes389

all but vanish over the continental slope. The lower layer is therefore practically unforced390

there, at least by eddy fluxes. However, seaward of the slope the layer experiences a neg-391

ative thickness flux, i.e. a negative form drag which again can be interpreted as a con-392

vergence of downward momentum fluxes. So it is here, off the continental slope, where393

the lower layer can finally be accelerated anti-cyclonically.394
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Figure 5. The two components of the negative eddy PV flux (see eqns. 30 and 31) in the

BEAU004 run: negative vorticity flux −u′ζ′ (dashed lines) and lateral thickness flux (f/h̄)u′h′

(solid lines) for each of the three layers (blue=top, red=middle and yellow=bottom). Vertical

dashed line indicates the position of the slope break.
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Figure 6. Top panel: the background PV gradient for each layer in the BEAU004 run; the

dashed lines show the estimates multiplied by 100. Lower panel: PV diffusivities. Blue=top,

red=middle and yellow=lower layer. The diffusivities in the middle layer oscillate between ex-

tremely large positive and negative values from about 470 km to the slope break. Vertical dashed

line indicates the position of the slope break.

Adding the two flux components to form a total QG PV flux (not shown) reveals395

what can already be seen from Figure 5, namely that eddy PV fluxes decelerate the wind-396

driven anti-cyclonic flow in the top layer everywhere. These fluxes force the lower layer397

anti-cyclonically but, importantly, only seaward of the continental slope. Over the slope398

itself, the lower layer is practically unforced. Finally, the calculation reveals a near-zero399

eddy forcing of the middle layer everywhere. There are eddy momentum fluxes passing400

through this layer, but in the equilibrated state these are not convergent.401

A PV eddy diffusivity can be estimated by first forming the total QG PV flux from402

the sum of the two components above and dividing by the background PV gradient. For403

units to match when merging QG and shallow-water formulations, the flux needs to be404

multiplied by the layer thicknesses. The PV gradient and the calculated diffusivity are405

in Figure 6. The background gradient will be discussed below, but the figure clearly shows406

that diffusivities in all three layers are positive nearly everywhere. Between 470 km and407

the slope break, diffusivities in the middle layer oscillate between extremely high pos-408

itive and negative values. This behavior is tied to an extremely weak PV gradient in that409

layer which also switches sign there (see below). Except for this, diffusivities in all three410

layers take on similar forms and, interestingly, the upper and lower layer diffusivities are411

nearly equal. But, since the PV flux vanishes in the lower layer over the continental slope,412

the diffusivity there goes to zero.413
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3.2 The linear stability of the mean flow414

3.2.1 Integral constraints and growth rates415

We now turn to the linear stability properties of the background flow and ask whether416

the linearly unstable modes can explain at least some of the finite-amplitude fluxes dis-417

cussed above. That they should do is in no way obvious, given the real possibility for418

nonlinear interactions to dominate the morphology of the equilibrated eddy field, result-419

ing in e.g. an inverse energy cascade that brings energy away from the linear prediction.420

Before conducting actual calculations that provide growth rates and modal struc-421

tures of unstable waves, some intuition may be collected by re-examining the background422

PV gradients shown in Figure 6 in light of the general integral constraints which state423

that a necessary condition for instability is that the lateral PV gradient changes sign some-424

where in the domain (see e.g. G. K. Vallis, 2017). We first note that the PV gradient425

does not change sign in the top layer, so the lateral momentum fluxes observed in that426

layer are likely not tied to pure barotropic instability (in agreement with the fact that427

momentum fluxes there are both up and down the background velocity gradient). The428

lateral gradient does change in the lower layer, right at the slope break, but background429

velocities here are small (Fig. 2) and lateral eddy momentum fluxes negligible (Fig. 4).430

This sign change is therefore unlikely to govern the stability properties significantly. A431

more notable feature is that the PV gradient does not change sign between the layers432

over the continental slope. This is indeed consistent with the prediction of the modified433

Eady model of Blumsack and Gierasch (1972), that very steep retrograde bottom slopes434

can stabilize the flow. There is, however, a sign change between the top and bottom layer435

immediately offshore of the slope break and then on-wards toward the basin center. As436

such, the integral considerations suggest that baroclinic instability is the primary mech-437

anism at play. However, as suggested by the findings of the previous section, lateral mo-438

mentum and vorticity fluxes are likely involved as well.439

As above, the focus will be on the BEAU004 run. Using temporally and azimuthally-440

averaged fields from this simulation, the eigenvalue problem was solved for a set of in-441

teger azimuthal wavenumbers from 1 to 40 (wavenumber 1 corresponds to one wavelength442

spanning the circumference of the basin, etc.). For each wavenumber, the six fastest-growing443

unstable modes were then recorded, and the growth rates for these modes are plotted444

in Figure 7. There is some overlap between unstable modes, especially at low wavenum-445

bers. But one ’lobe’ of unstable modes stands out, producing the absolute fastest growth446

at l = 15. A second distinct lobe takes over at higher wavenumbers, with fastest growth447

at l = 31. As will be seen below, these two lobes both contribute to the observed PV448

fluxes over the model domain.449

3.2.2 The l = 15 mode450

The thickness and vorticity fluxes of the most unstable mode at l = 15 are shown451

in Figure 8. These are to be compared with the corresponding finite-amplitude fluxes452

shown in Figure 5. Absolute magnitudes should not be compared, as these are arbitrary453

for the linear calculations (the eigenvector of each mode has norm one). But the spa-454

tial structure can be compared with that seen in the finite-amplitude fields. The linear455

prediction shows both similarities with and differences from the fully turbulent fields.456

The enhanced finite-amplitude vorticity flux in the top layer over the slope is not cap-457

tured well by the linear mode, but both the suppression of thickness fluxes over the slope458

and an emergence and dominance of this contribution right off the slope are captured.459

It is also worth observing that the mode contains a near perfect cancellation between460

thickness flux and vorticity flux in the middle layer, reflecting the near-zero PV gradi-461

ent in that layer. Importantly, the mode captures the negative thickness flux right off462

the slope in the lower layer, i.e. a negative form drag which tends to drive anti-cyclonic463

flow there.464
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Figure 7. The growth rates of the six fastest-growing unstable modes in the BEAU004 simu-

lation.
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Figure 8. Same as Figure 5 but now calculated from the eigenvector of the fastest-growing

unstable linear mode for wavenumber l = 15.

Figure 9 shows the total PV fluxes (the sum of the thickness and vorticty flux) and465

the calculated PV diffusivity of the mode (using the PV gradient plotted in Fig. 6). As466

for fluxes in the finite-amplitude field, the mode is hindering the wind-induced anti-cyclonic467

flow in the top layer and instead accelerating the lower layer. The diffusivities are pos-468

itive in all three layers but noisy in the middle layer where both PV gradient and net469

fluxes all but vanish. As already seen above, the impact of this mode is maximal imme-470

diately offshore of the slope—where the lower layer jet is observed.471

So this fastest-growing linear mode at wavenumber l = 15 contains several of the472

essential characteristics of the finite-amplitude eddy fluxes around the continental slope.473

One might even be tempted to argue that, to a first approximation, the finite-amplitude474

fluxes are spread-out, or diffused, versions of the linear predictions. Such diffusion of the475

signal would be consistent with finite-amplitude eddy stirring of the active tracers in the476

problem. There are, however, notable discrepancies. Important to the focus here is that477

the linear mode has a near-zero form drag over the slope in the upper layer, whereas the478

finite-amplitude fields show a more gradual fall-off. The linear mode is also not able to479

reproduce the strong relative vorticity flux over the entire slope region.480

The discrepancy in the deep basin further offshore is perhaps the most noticeable481

difference. There, the thickness fluxes and PV diffusivities vanish completely in the lin-482

ear l = 15 mode, whereas they remain finite in the fully-turbulent field. That there is483

an active thickness flux and form stress here, in the deep basin, is consistent with the484

sustained sign reversal of the PV gradient between the upper and lower layers (Fig. 6).485

Yet, these fluxes can not be related to the fastest-growing mode.486
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Figure 9. Top panel: the total QG PV fluxes calculated from the eigenvector of the fastest-

growing unstable linear mode for wavenumber l = 15. Bottom panel: the corresponding PV

diffusivities. Blue=top, red=middle and yellow=lower layer.
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Figure 10. Lateral thickness fluxes (f/h̄)u′h′ in the upper layer calculated from the eigen-

vectors of the linear stability calculations, for mode 1 (fastest-growing; upper), mode 2 (second

fastest-growing; middle) and mode 3 (third fastest-growing; lower). Magnitudes are arbitrary, but

red and blue colors signify positive and values, respectively. Vertical dashed line indicates the

position of the slope break.

3.2.3 Other unstable modes487

Do other unstable modes contribute to the observed finite-amplitude fluxes, par-488

ticularly over the upper parts of the continental slope and over the deep basin? Some489

indication can be had from Figures 10 and 11, which show thickness fluxes and negative490

vorticity fluxes in the top layer for the three fastest-growing linear modes at each wavenum-491

ber. Here, the estimates have been scaled by the growth rate for each mode. The result-492

ing values (colors in the figure) should not be taken as indication of the exact level at493

which each mode would equilibrate if allowed to grow to finite amplitude. But scaling494

by the growth rate should nevertheless give some crude indication of the relative impor-495

tance of the various modes.496

As was already evident from Figure 7, the fastest-growing mode at l = 15 is part497

of a dynamical feature which is unstable across a range of wavenumbers. Figures 10 and498

11 suggest that this main lobe dominates both thickness and relative vorticity fluxes im-499

mediately offshore of the slope. It is also responsible for part of the vorticity flux over500

the slope itself, particularly over the lower part. However, as already seen above, the lat-501

eral vorticity flux of this mode falls to zero over the upper parts of the continental slope.502

There, the second lobe, which has fastest unstable growth for l > 20, dominates the503

vorticity flux.504

What these calculations show, more generally, is that other unstable modes are re-505

sponsible for both components of the PV flux over the deep basin away from the slope.506
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Figure 11. Negative lateral vorticity fluxes −u′ζ′ in the upper layer calculated from the

eigenvectors of the linear stability calculations, for mode 1 (fastest-growing; upper), mode 2 (sec-

ond fastest-growing; middle) and mode 3 (third fastest-growing; lower). Magnitudes are arbitrary,

but red and blue colors signify positive and negative values, respectively. Vertical dashed line

indicates the position of the slope break.
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Figure 12. Sketch of eddy fluxes of anticyclonic momentum and the resulting azimuthal mean

flow in the three layers. Black arrows show wind and bottom stresses, while red and blue dashed

arrows show lateral momentum fluxes and form stresses, respectively.

This supports the interpretation that much of the finite-amplitude flux pattern seen in507

Figure 5 is a diffuse version of the linear mode fluxes—if one integrates over several un-508

stable modes. One possible exception is the thickness flux over the continental slope; here509

all linear modes contain near-vanishing thickness fluxes, whereas the fully-turbulent fields510

reveal a more gradual fall-off. This important feature of the slope dynamics thus appears511

to be a truly finite-amplitude non-linear effect.512

4 Discussion and conclusions513

Much of the dynamical behavior observed in this study can be seen as confirma-514

tion of the results presented by WS18 and MI19. However, by idealizing the model fur-515

ther, to three isopycnal layers only, we have been able to extract somewhat cleaner sig-516

nals. Quite clearly, eddy form stress, i.e. the vertical transfer of the wind-induced anti-517

cyclonic momentum, is hampered over the model’s retrograde continental slope. But na-518

ture still finds a way, by transporting the wind momentum offshore to relatively flat re-519

gions where it can be efficiently transferred to lower layers and into the ground. The lat-520

eral eddy fluxes in upper layers are a direct result of the suppressed vertical momentum521

flux over the continental slope. The resulting pile-up of wind momentum over the slope522

sets up a strong lateral velocity shear between the flat and non-flat regions—which lat-523

eral shear instability tries to reduce. Figure 12 gives a rough sketch of the situation (see524

also Figure 2 of Wang & Stewart, 2018).525

Perhaps the biggest advantage of the present 3-layer formulation is the ease with526

which one can investigate the linear stability properties of the background flow in a 2D527

framework. The very obvious role of lateral momentum fluxes seen in these model runs,528

as well as in the simulations of WS18 and MI19, points to the need for such 2D anal-529

ysis. The classical 1D QG stability analysis conducted by WS18 is unable to pick up the530

dynamics responsible for the lateral fluxes. Earlier 2D stability analyses has typically531

used prescribed analytic background fields (e.g. Lozier & Reed, 2005; Ghaffari et al., 2018)532

and have thus not been able to compare directly with finite-amplitude fluxes. Here we533

have seen that several of the qualitative features of the observed PV flux in the model534

are reproduced by the fastest-growing unstable mode. But, importantly, other unstable535
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modes also contribute, both over the slope region and in the offshore deep basin. The536

linear calculations do not give any information on equilibrated energy levels and, hence,537

cannot reproduce the strength of eddy fluxes. But the fact that the observed finite-amplitude538

fluxes largely resemble diffuse versions of the linear predictions can be taken as a reminder539

that geophysical flows often adjust themselves into a marginally-unstable state at the540

wave-turbulence boundary, at least in the presence of a strong ambient PV gradient (e.g.541

Schneider & Walker, 2006).542

As seen, even the 3-layer model was unnecessarily complex, as the middle layer in543

these simulations turned out to be dynamically passive. Indeed, separate 2-layer model544

simulations (not shown) contained all the key large-scale flow and eddy flux features dis-545

cussed above. This is in agreement with the arguments that, in a purely wind-driven sys-546

tem, i.e. one that experiences barotropic forcing, there is no obvious mechanism which547

can produce internal PV gradients (Manucharyan & Stewart, 2022). So one may be tempted548

to conclude that a vertical discretization to two layers is valid for purely wind-driven sys-549

tems. It is important to remember, however, that the real ocean also experiences buoy-550

ancy forcing at the surface where isopycnal layers outcrop, as well as diapycnal mixing551

in the interior. Both processes can give rise to interior thickness PV gradients that would552

add to the picture observed in these simulations.553

In the real Arctic Ocean, interior layer thickness gradients do exist, as e.g. shown554

in Figure 9 of Meneghello et al. (2021). Observations and model studies from the cen-555

tral Beafort Gyre also suggest that these gradients are dynamically responsible for the556

presence of sub-surface eddies that act to reduce those very gradients. These eddies have557

modest vertical and lateral scales, typically a few hundred meters and a few tens of kilo-558

meters, respectively. In comparison, the fastest-growing mode l = 15 in our set-up will559

have a half-wavelength of about 135 km around bottom of the continental slope (r =560

650 km). So one is justified in questioning whether these simulations, as well as earlier561

similar model studies, are of any relevance for the situation in the Beaufort Gyre. It is562

worth noting, however, that most observations and theoretical studies of such smaller-563

scale halocline eddies have focused on the central gyre rather than on the continental564

slope along the rim of the gyre. And the possibility exists that the eddy dynamics is fun-565

damentally different between these two regions. An indication of this may be a notable566

difference in vertical EKE profiles collected by four long-term mooring in the Beafort Gyre.567

As shown in Figure 1 of Manucharyan and Stewart (2022), three moorings that are sit-568

uated well within the gyre all reveal EKE maxima in the 50–250 m depth range, with569

rapid fall-off both above and below. In contrast, the last mooring which is situated over570

the continental slope off the Chukchi Plateau observed the highest EKE levels at the sur-571

face and, importantly, non-negligible energy levels at the bottom. The analysis of Manucharyan572

and Stewart (2022) do not reveal whether velocity fluctuations in upper and lower lay-573

ers at this last mooring are correlated, i.e. whether the vertical EKE structure reflects574

a deep unstable mode. If that turns out to be the case, then one can anticipate that the575

lateral scales are also larger than those of the interior halocline eddies.576

There is another peculiarity tied to the large lateral scales obtained in the present577

stability calculations. In the modified Eady theory of Blumsack and Gierasch (1972), the578

fastest-growing unstable mode over a retrograde slope has a lateral scale comparable to579

the internal deformation radius—which is of order 15 km in these simulations. Again,580

the fastest-growing linear mode found here is much larger than that. But the modified581

Eady problem does not tackle lateral shears and lateral momentum fluxes. As it turns582

out, the most unstable mode in our simulations takes on a scale which is approximately583

that of the width of the lateral shear zone. And this, in turn, appears to be set by the584

width of the continental slope. So it is possible that the internal deformation radius is585

no longer the most relevant length scale for the problem at hand—and neither along the586

Beaufort Gyre continental slope.587
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An interesting signal obtained in this layer model, both in the linear calculations588

and the fully-turbulent field, was the consistently down-gradient PV flux. The diagnosed589

PV diffusivity in the middle layer was, unsurprisingly, noisy due to the near-vanishing590

PV gradient there. But in all three layers the diffusivity was largely positive. Just as im-591

portant to our dynamical understanding was the vanishing diffusivity and PV flux in the592

lower layer over the continental slope. So the lower layer was not forced over the slope593

and, as seen in Figure 2, had near-zero flow there. This last result is in slight disagree-594

ment with WS18 and MI19 who found weak but non-zero prograde currents over the lower595

parts of their continental slope. Eddy-driven prograde flows, bottom-trapped in strat-596

ified systems, are predicted by both minimum enstrophy and maximum entropy argu-597

ments (Bretherton & Haidvogel, 1976; Salmon et al., 1976; Venaille, 2012). We are un-598

able to explain why prograde flows do not arise in the 3-layer simulations here, but note599

that such eddy-induced prograde flows—here in the opposite direction to the wind forcing—600

imply a local raising of APE near the bottom and thus depend on the energetics of the601

eddy field.602

The most severe limitation of the study, in addition to the model’s low vertical res-603

olution and inability to form small surface-trapped eddies, may be its neglect of irreg-604

ular bottom variations, like corrugations and canyons. The possible excitation of stand-605

ing topographic waves under the retrograde conditions we are studying here may give606

rise to additional form stresses that impact both buoyancy and momentum budgets to607

lowest order, as shown, by e.g. WS18. Bottom corrugations can also add form stress for608

prograde flows, but this does not involve energy accumulation into standing waves and609

thus appears to be of much lower importance (Bai et al., 2021). Given that the Arctic610

Ocean’s Beaufort Gyre is in fact retrograde, further investigation into this issue seems611

warranted.612

If lateral momentum fluxes are still important, even if form stresses from stand-613

ing waves are acting, then any topographically-aware mesoscale eddy parameterization614

for use in coarse-grained climate models needs to account for this. The results obtained615

here should be a reminder that a successful formulation needs to i) include lateral mo-616

mentum fluxes and ii) be constrained to ensure down-gradient transport of full PV through-617

out the water column. Additionally, in the situation studied here with smooth topog-618

raphy, the parameterized PV flux should vanish over steep retrograde topography, a re-619

sult which is also predicted by the modified Eady model of Blumsack and Gierasch (1972).620

But here, again, more work needs to be done in the situation where bottom corrugations621

are present—as they obviously are in the real ocean. Early assessments by Wang and622

Stewart (2020) suggest that standing waves contribute, but that eddy form stress is still623

reduced over retrograde slopes. This should not come as a surprise; any exchanges of624

semi-rigid water columns across sloping topography—the rigidity stemming from Earth’s625

rotation—should be hampered.626
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Abstract15

We study the impacts of a continental slope on instability and mesoscale eddy fluxes in16

idealized 3-layer numerical model simulations. The simulations are inspired by and mimic17

the situation in the Arctic Ocean’s Beaufort Gyre where anti-cyclonic winds drive anti-18

cyclonic currents that are guided by the continental slope. The forcing and currents are19

retrograde with respect to topographic Rossby waves. The focus of the analysis is on eddy20

potential vorticity (PV) fluxes and eddy-mean flow interactions under the Transformed21

Eulerian Mean framework. Lateral momentum fluxes in the upper layer dominate over22

the actual continental slope where eddy form drag, i.e. vertical momentum flux, is sup-23

pressed due to the topographic PV gradient. The diagnosis also shows that while eddy24

momentum fluxes are up-gradient over parts of the slope, the total quasi-geostrophic PV25

flux is down-gradient everywhere. We then calculate the linearly unstable modes of the26

time-mean state and find that the most unstable mode contains several key features of27

the observed finite-amplitude fluxes over the slope, including down-gradient PV fluxes.28

When accounting for additional unstable modes, all qualitative features of the observed29

eddy fluxes in the numerical model are reproduced.30

Plain Language Summary31

The ocean circulation in the Arctic is heavily influenced by the bottom bathymetry.32

Essentially, currents are steered to follow continental slopes and submarine ridges. This33

topographic steering makes transfer of properties across continental slopes difficult, thus34

partially isolating the deep basins from the continental shelves. Oceanic macroturbulence,35

or ’mesoscale eddies’, are able to cross bottom bathymetry, but transport by these fea-36

tures are also hampered. In this study a simplified numerical model is used to learn about37

how bottom bathymetry impacts eddy transport in and out of the Beafort Gyre, a wind-38

driven large-scale gyre in the Arctic Ocean’s Canada Basin. The gyre is the largest reser-39

voir of fresh waters in the Arctic, and understanding how topography controls the ex-40

port of this freshwater is thought to be of crucial importance if climate models are to41

properly simulate a future Arctic Ocean. The study shines light on some key aspects that42

the models need to consider to get transport across the continental slope right.43

1 Introduction44

A wide range of observational and modelling studies have shown that the large-scale45

ocean currents at high northern latitudes are heavily guided by bottom bathymetry (Orvik46

& Niiler, 2002; Koszalka et al., 2011; Isachsen et al., 2012). Certainly, the geostrophically-47

balanced bottom currents need to be. This is because the weak planetary vorticity gra-48

dient at high latitudes leaves the geostrophic flow nearly divergentless. This, in turn, means49

that the bottom vertical velocity—set up by flow up or down bathymetric slopes—must50

be the same order of magnitude as the vertical velocity at the sea surface, which is very51

small indeed. The geostrophic currents further up in the water column are less constrained.52

But rotation of the thermal wind shear away from the bottom flow does require a non-53

trivial organization of vertical velocities or agesotrophic buoyancy transport which is not54

always ensured (Schott & Stommel, 1978; Schott & Zantopp, 1980). So, in practice, even55

surface currents typically feel the continental slopes and ridge systems thousands of me-56

ters below.57

The strong topographic steering of the large-scale geostrophic flow field then brings58

up the question of what processes are responsible for transport of water tracers and sus-59

pended material across topographic gradients. Flow in Ekman layers, both at the sea60

surface and at the bottom, can do so. But away from these frictional boundary layers61

property fluxes across continental slopes and over submarine ridges instead rely on tem-62

poral and/or spatial correlations between velocity and tracer fluctuations. Such fluctu-63

ations may be associated with organized wave phenomena, like tides, or with chaotic mo-64
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tions driven by wind fluctuations. In this study, however, we will focus on the role of the65

mesoscale eddy field which is as ubiquitous in the high north as it is in the rest of the66

world oceans. Even though the velocity field of mesoscale eddies is nearly geostrophic,67

smaller ageostrophic flow components can exchange both passive suspended material and68

active tracers like buoyancy and momentum across continental slopes. Eddy transport69

can thus impact the hydrography and large-scale currents themselves.70

In the high north, such eddy-mean flow interactions have mostly been studied in71

the context of the Beaufort Gyre, a large-scale anti-cyclonic flow feature in the Canada72

Basin of the Arctic Ocean. Here, anti-cyclonic winds drive a surface Ekman convergence73

of freshwater toward the center of the basin. This lifts the sea surface and pushes down74

isopycnals there, driving anti-cyclonic geostrophic currents near the surface and, at the75

same time, a thermal wind shear that reduces these currents at depth. The convergent76

surface Ekman transport itself is thought to be compensated by divergent bottom Ek-77

man currents, so that one can envision a secondary overturning circulation through the78

gyre, inward at the surface, downward in the center of the gyre and outward at the bot-79

tom. In steady state the stratification in the gyre is almost certainly controlled, in part,80

by local air-sea-ice fluxes and small-scale diabatic mixing (Zhang & Steele, 2007; Spall,81

2013). But under the sheltering effect of the sea ice cover, mesoscale eddy transport is82

almost certainly key. Essentially, the available potential energy (APE) field associated83

with the inclined density field drives baroclinic instability and eddy bolus thickness fluxes84

which are thought to counter the wind-driven overturning circulation. And the sum of85

these two opposing overturning cells is the ’residual’ circulation which actually advects86

tracers in and out of the gyre (Davis et al., 2014; Manucharyan & Spall, 2015; Manucharyan87

et al., 2016). On seasonal time scales, the momentum transfer from winds to ocean and88

thus the surface Ekman transport are modulated by the sea ice motion, in what has been89

termed the ”ice-ocean governor’ (Meneghello et al., 2018). But integrated over long time90

scales, and in the limit of weak small-scale mixing, the lowest-order dynamics of the gyre91

appears to be reflecting this relatively simple balance between the opposing wind-driven92

and eddy-driven overturning circulations.93

A potential problem with this model of Ekman–eddy residual overturning circu-94

lation arises from the fact that baroclinic instability is hampered by the presence of the95

continental slopes which confine the Beaufort Gyre. At a most basic level this can be96

understood from the inability of interior dynamics to compensate for the vertical veloc-97

ities generated by an eddy-induced overturning that interacts kinematically with slop-98

ing bathymetry. In essence, topographic potential vorticity (PV) gradients hinder any99

cross-bathymetric flow, be it large-scale or meso-scale. A more rigorous theoretical start-100

ing point is offered by the ’topographic Eady model’ of Blumsack and Gierasch (1972).101

This model, in which a linear bottom slope is added to the Eady model of baroclinic in-102

stability, predicts reduced growth rates and generally also reduced length scales over slop-103

ing bathymetry. But when tested in realistic situations the model generally overestimates104

topographic suppression (Trodahl & Isachsen, 2018). Key limitations of the Eady frame-105

work itself include its inability to account for internal PV thickness gradients in the mid-106

dle of the water column as well as relative vorticity gradients and lateral momentum fluxes.107

This last limitation appears to be most severe over continental slopes, as suggested108

by two idealized numerical studies of wind-driven flows over continental slopes by Wang109

and Stewart (2018) and Manucharyan and Isachsen (2019), hereafter referred to as WS18110

and MI19, respectively. Both studies focused on so-called retrograde flows, where the winds111

drive currents that are in the opposite direction to topographic waves (such waves have112

the coast to their right in the northern hemisphere). And the MI19 study was motivated113

specifically by the Arctic Ocean Beaufort Gyre—whose anti-cyclonic mean flow is ret-114

rograde. These numerical studies confirm that eddy form stress, i.e. the vertical trans-115

fer of momentum which is a signature of active baroclinic instability, is greatly reduced116

over the continental slope. What the eddy field instead does in both of these simulations117
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is to transfer momentum laterally in the surface layers, away from the slope region and118

to a location just off the slope where the bottom is relatively flat. Here, an eddy driven119

jet is formed. And this jet is then baroclinically unstable, allowing the wind momentum120

to finally be transferred to the solid ground below.121

So nature finds its way to tackle the problematic topographic PV gradient. But122

the above-mentioned studies also left some unanswered questions. First, the lateral mo-123

mentum fluxes over the slope in these models were not down-gradient everywhere, so the124

eddy field was not the result of pure barotropic instability in the upper layers. In both125

sets of simulations there was also some indication of reversed eddy form stress and the126

formation of prograde flows over the lower parts of the slope. Thus, the mesoscale dy-127

namics, at least over idealized retrograde slopes, appears to be associated with regions128

of both up-gradient buoyancy fluxes and up-gradient momentum fluxes. WS18 tried to129

interpret the observed behavior in their channel simulation in terms of down-gradient130

PV fluxes, to connect with theories of eddy-driven jets along topography (e.g. Brether-131

ton & Haidvogel, 1976; Holloway, 1992; G. Vallis & Maltrud, 1993). Doing the analy-132

sis along a set of mid-depth isopycnals, they indeed found down-gradient PV fluxes over133

the slope regions. But the same diagnostics also gave indications of up-gradient PV fluxes134

in other parts of their model domain, notably over the flat continental shelf and deep135

basin. Whether this somewhat complex behavior is a real dynamical feature or an ar-136

tifact of their analysis method remains a puzzle.137

Secondly, one wonders how the observed finite-amplitude eddy fluxes, and especially138

the observed up-gradient fluxes, relate to the stability properties of the flow. Specifically,139

it seems natural to ask: can the observed fluxes be explained, at least qualitatively, by140

the eigenvectors of the linearly unstable modes of the large-scale background field? WS18141

assessed linear stability numerically with a quasi-geostrophic 1D vertical mode model142

and observed clear indications of topographic suppression of unstable growth—as well143

as enhanced growth over flat regions off-shore. But, due to the limitations of the 1D frame-144

work, they were unable to properly account for background lateral vorticity gradients145

and thus investigate whether the linearly unstable modes contain a signature of the lat-146

eral momentum fluxes observed in the non-linear fields.147

The present study picks up from the works of WS18 and MI19 by looking closer148

into the dynamics of unstable growth and eddy transport over retrograde continental slopes.149

To focus on the core issues, we simplify the approach even more and study nonlinear fluxes150

as well as linear stability in a 3-layer context, in a circular basin meant to very crudely151

mimic conditions in the Beaufort Gyre. By reducing the vertical resolution so drastically152

we limit the types of instability which may be reproduced, e.g. preventing surface-trapped153

small-scale eddy growth which is frequently observed in the Arctic Ocean halocline (e.g.154

Zhao et al., 2014). What the model will be able to represent, however, is the larger mesoscale155

eddies responsible for the deep overturning circulation in the basin and, it can be argued,156

for the adjustment of the main halocline (the adjustment of the density interface of a157

two-layer system will require a deep overturning). That such an eddy field should ex-158

ist has been suggested by stability calculations from real hydrographic profiles (Meneghello159

et al., 2021) and also by recent satellite-based observations (Kubryakov et al., 2021). We160

nonetheless incorporate three layers instead of two, to allow for an examination of im-161

pacts of internal PV gradients, if there are any.162

The specific issues to be addressed in this idealized 3-layer study are i) the impact163

of a retrograde continental slope on PV fluxes, including an investigation into PV dif-164

fusivities, and ii) the relationship between the observed fluxes and the linearly unstable165

modes of the background state in the model. In order to examine both lateral and ver-166

tical momentum exchanges by unstable modes, we study linear stability in a 2D context—167

in a plane crossing the mean hydrography and mean flow. As will be seen, even under168

the extreme simplification of 3 layers, the linear calculation is able to qualitatively re-169
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produce the key features observed in the full-complexity primitive equation studies men-170

tioned above.171

The manuscript starts with a description of the numerical model and the linear sta-172

bility algorithm. The main results are then organized into a first part describing and an-173

alyzing the fully non-linear fields and then a second part discussing the linear stability174

of the flow. The study wraps up with a brief discussion of obtained results and conclu-175

sions.176

2 Methods177

2.1 Numerical model simulations178

The model used is Aronnax (Doddridge & Radul, 2018a), an open-source idealized179

non-linear isopycnal model, set on a staggered C-grid. The model is configured with an180

explicit free surface and no-slip lateral boundary conditions on an f-plane (a reasonable181

approximation at this high latitude) with Coriolis parameter f = 1.456×10−4 s−1 (the182

value at 90◦N). The harmonic lateral friction coefficient is set to 15m2s−1 and the lin-183

ear bottom drag coefficient set to 2×10−6 s−1, both small enough to allow vigorous eddy184

fields. The horizontal resolution is set to 5 km, compared to a first baroclinic deforma-185

tion radius of about 11 km in all experiments, so the configuration is eddy-permitting.186

A time-step of 90 s is chosen as a compromise between model stability and computation187

time.188

The domain consists of a circular basin representing the Beaufort Gyre and a rect-189

angular ’nudging channel’ meant to represent a connection to hydrographic conditions190

outside of the gyre. The basin radius is 750 km and the channel dimensions are 500×191

500 km. In the nudging region, layer thicknesses are relaxed towards reference values (see192

below) within a timescale of 0.1 days. The very short nudging time scale ensures that193

thickness anomalies generated by the slope and basin dynamics are washed out within194

the nudging region.195

A linear continental slope is used. In the model’s Beaufort Gyre, i.e. in the circu-196

lar basin, the total depth H is defined as:197

H(r) = H0 +H1 ·min

(
R− r

Ls
, 1

)
, (1)

where r is the radial distance from the gyre centre, R is the gyre radius (750 km), Ls198

is the horizontal extent of the continental slope (variable, depending on the experiment;199

see below), H0 is the minimum depth (500 m) and H1 is the height of the slope (3500 m).200

The nudging channel has the same slope steepness but a rectangular geometry (see Fig.201

1). Finally, we add random noise to the bathymetry to help instigate instability. Although202

white noise would do, we used perlin noise (Perlin, 1985) of amplitude 20 m for a slightly203

more realistic representation of a bumpy bottom.204

The model has three isopycnal layers with interface reduced gravities g′12 = g∆ρ12/ρ0 =205

0.024m s−2 and g′23 = g∆ρ23/ρ0 = 0.008m s−2. The resting layer thicknesses of the206

two top layers are 80 m and 120 m, respectively, while the thickness of the third layer207

varies over the continental slope but is 3800 m in the center basin. These values are loosely208

based on the basin-margin T-S profiles from Lique et al. (2015) and also correspond fairly209

closely with the 3-layer configuration of Manucharyan and Stewart (2022). There is no210

explicit interface friction or diapycnal volume transport between layers.211

Surface forcing is wind stress only (no buoyancy forcing). In the circular domain212

the stress is purely azimuthal and given by213

τθ(r) = a
r

4

(
2− b2r2

)
, (2)
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Figure 1. The bathymetry of one of the model runs that has continental slopes with 4%

steepness. The top panel gives a plan view of the model bathymetry while the bottom panel

shows a cross section through the center of the gyre, with dashed lines indicating the model layer

interfaces at rest (note the break in scale).

where a is chosen such that the maximum anti-cyclonic wind stress curl is equal to 0.02Nm−2,214

and b = 1/R. This profile is similar to that used in Davis et al. (2014) but avoids very215

large wind stress at the center of the gyre. The wind stress curl,216

∇× τ = a
(
1− b2r2

)
, (3)

ramps down quadratically from maximum at the gyre centre to zero at the boundary of217

the circular basin. Outside the circular basin, the stress (in Cartesian directions) is given218

by219

τx = C
( y

r2

)
, (4)

τy = C
(
− x

r2

)
, (5)

where C is chosen to match the values at the boundary to the circular basin.220
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The wind stress is ramped up from zero to the maximum over a 20 year period (fol-221

lowing a hyperbolic tangent profile) and held like this for another 40 years (for a total222

of 60 years), forming the spin-up. The model is then run for an additional 60 years over223

which relevant quantities are calculated and stored from 2-day snapshots. A classic time-224

based Reynold’s decomposition is used to define ’mean’ and ’eddy’ variables, where the225

time-mean is taken over the last 60-year simulation period.226

There are four distinct runs, each corresponding to a different continental slope width—227

corresponding to slope steepness of 1.5%, 2%, 4%, and 6%. One additional simulation228

with vertical sidewalls is also run, although this was not studied in detail.229

2.2 Linear stability calculations230

Since our idealized Beaufort Gyre is circular, the linear stability of the flow is eval-231

uated in a 3-layer stacked shallow-water model cast in cylindrical coordinates (r, θ, layer).232

So, for each layer we use the two inviscid momentum equations and the adiabatic layer233

thickness equation:234

∂u

∂t
+ u

∂u

∂r
+

v

r

∂u

∂θ
− v2

r
− fv = −∂ϕ

∂r
, (6)

∂v

∂t
+ u

∂v

∂r
+

v

r

∂v

∂θ
+

uv

r
+ fu = −1

r

∂ϕ

∂θ
, (7)

∂h

∂t
= −1

r

∂ (ruh)

∂r
− 1

r

∂ (vh)

∂θ
. (8)

Here u and v are the radial and azimuthal velocity components, respectively, f is the Cori-235

olis parameter, ϕ is the kinematic pressure and h is the layer thickness.236

The pressures in the three layers are given by:237

ϕ1 = gη, (9)

ϕ2 = gη + g′12η12, (10)

ϕ3 = gη + g′12η12 + g′23η23, (11)

where η is the sea surface displacement and η12 and η23 are the displacements of the two238

interfaces between the layers. Finally, g is the gravitational acceleration while g′12 and239

g′23 are the two reduced gravities (see above). The total layer thicknesses become240

h1 = H1 + η(r, θ, t)− η12(r, θ, t), (12)

h2 = H2 + η12(r, θ, t)− η23(r, θ, t), (13)

h3 = H3(r) + η23(r, θ, t), (14)

where H1, H2 and H3 are layer thicknesses in the absence of motion. Note that H3 can241

vary in the radial direction to account for bottom topography.242

We now linearize around a azimuthal-mean and time-mean azimuthal flow v̄ which243

is assumed to be in geostrophic balance with the sea surface and density field. So, for244

each layer, we write245

u = u′(r, θ, t), (15)

v = v̄(r) + v′(r, θ, t), (16)

[ϕ, h, η] =
[
ϕ̄, h̄, η̄

]
(r) + [ϕ′, h′, η′] (r, θ, t), (17)

where bars and primes indicate the background state and perturbations, respectively.246

The geostrophic background flow in layer j ∈ [1, 2, 3] is given by247

fv̄j =
∂ϕ̄j

∂r
(18)
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and the linearized equations for the perturbations (assumed to be much smaller than the248

background mean variables) in the same layer take the form249

∂u′
j

∂t
+

v̄j
r

∂u′
j

∂θ
− v̄j

r
v′j − fv′j = −

∂ϕ′
j

∂r
, (19)

∂v′j
∂t

+ u′
j

∂v̄j
∂r

+
v̄j
r

∂v′j
∂θ

+
v̄j
r
u′
j + fu′

j = −1

r

∂ϕ′
j

∂θ
, (20)

∂h′
j

∂t
= −

∂
(
u′
j h̄j

)
∂r

− h̄j

r
u′
j −

h̄j

r

∂v′j
∂θ

− v̄j
r

∂h′
j

∂θ
. (21)

The final step is to assume a wave solution in the azimuthal direction for all per-250

turbations,251 [
u′
j , v

′
j , ϕ

′, h′
j

]
(r, θ, t) = Re

{
[uj , vj , ϕ, hj ] (r)e

i(lθ−ωt)
}
, (22)

where i =
√
−1 and the azimuthal wavenumber l is an integer larger than zero. Insert-252

ing into (19–21) gives the algebraic equation set253

−iωuj + il
v̄j
r
uj −

v̄j
r
vj − fvj = −∂ϕj

∂r
, (23)

−iωvj + u′
j

∂v̄j
∂r

+ il
v̄j
r
vj +

v̄j
r
uj + fuj = −il

1

r
ϕj , (24)

−iωhj = −
∂
(
u′
j h̄j

)
∂r

− h̄j

r
u′
j − il

h̄j

r
v′j − il

v̄j
r
hj .(25)

In practice, we write the pressure and thickness perturbations in terms of sea surface and254

interface displacements, using (10) and (13), so that the equation set is in terms of u,255

v and η. The equations for each layer are then discretized on a staggered grid in the ra-256

dial direction, with v and η variables on the same points and u variables half-way be-257

tween these. After applying the kinematic lateral boundary conditions u = 0 in all three258

layers at the center of the gyre and at the side walls, (23–25) becomes an eigen problem259

(for each wavenumber l) for eigenvalues ω and eigenvectors [uj , vj , ηj ]. We thus rotated260

the Cartesian model variables to a (r, θ) grid, using a 3 km resolution in the radial di-261

rection to avoid any loss of resolution. All fields were then averaged azimuthally. Since262

the radius of our gyre is 750 km and the radial grid spacing is 3 km, we get 250 v/η-points263

and 249 u-points. Thus, for three layers, we get a 2247×2247 eigen problem which is264

solved using the ’eig’ function in Matlab. The imaginary part of eigenvalue ω gives the265

growth rate of any given mode and we keep and study a small number of fastest-growing266

modes for analysis.267

3 Results268

3.1 Finite-amplitude fields269

3.1.1 Overview270

Figure 2 shows radial profiles of the temporally and azimuthally-averaged fields from271

one of the runs, BEAU004. This run, which has a continental slope with steepness 4%272

(a width of 58 km), will be the primary focus throughout the study. However, all runs273

contain similar qualitative features to BEAU004, except one run with vertical side walls.274

The upper and lower panels of the figure show the shape of the two isopycnals and the275

layer azimuthal velocities, respectively. The upper panel also shows the wind stress pro-276

file. As in all other figures, the inner 175 km of the basin are omitted since the focus is277

on the continental slope dynamics. The outer 25 km are also omitted since these con-278

tain wall effects.279

We observe the expected depression of isopycnals towards the center of the basin280

and anti-cyclonic flow in all layers, with a progressively weaker flow at depth. But it’s281
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Figure 2. Temporally and azimuthally-averaged fields from the BEAU004 simulation (having

a bottom slope of 4%). The top panel shows the isopycnals between layers 1 and 2 (blue) and

layers 2 and 3 (red). Shown are also the bottom topography (thick solid line) and the wind stress

profile (dotted black line, arbitrary units). The bottom panel shows the azimuthal velocity pro-

files for the top (blue), middle (red) and bottom (yellow) layers. The flow in the bottom layer is

also shown after multiplication by a factor ten (dashed yellow line). In both panels vertical black

lines indicate the position of the slope break (dashed) and the wind stress maximum (dotted).

Note that the inner 175 km and outer 25 km of the domain have been excluded from this figure.
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worth comparing the details of the radial flow profiles with what would be expected from282

a linear model of periodic flows around closed ambient PV contours (e.g. Gill, 1968; Nøst283

& Isachsen, 2003). In the absence of lateral momentum fluxes, the bottom stress would284

have to balance the wind stress at any radial position—so the flow strength, at least in285

the bottom layer, would closely track the wind strength. In a stratified fluid such trans-286

fer of wind momentum to the bottom layer would be mediated primarily by eddy form287

stresses, as small-scale turbulent stresses are assumed to be negligible away from the top288

and bottom boundary layers themselves. Figure 2 reveals a much more complex flow pro-289

file. The lower layer has a distinct flow maximum—a jet—which is offset off-shore from290

the wind stress maximum. And, importantly, the flow drops to near zero over the con-291

tinental slope. Apparently, the vertical transfer of momentum to this layer all but van-292

ishes there. This contrasts with the situation in a flat-bottom simulation that has ver-293

tical side walls (not shown). There the lower layer flow maximum coincides nearly per-294

fectly with the wind stress maximum, as would be expected if eddy form stress is able295

to connect the top and bottom frictional layers and if lateral momentum fluxes thus be-296

come unimportant.297

The flow profiles in the upper two layers also only mimic the wind profile in a very298

broad sense. Here too there is a jet, most visible in the top layer, which is slightly off-299

set from the wind stress maximum in the direction of the boundary. As shown in Fig-300

ure 3, in all the simulations the mean-flow maxima do not track the wind maximum but301

rather the configuration of the continental slope. Specifically, the upper layer maximum302

sits on top of the lower break of the continental slope while the lower layer maximum303

is always located slightly seaward of this position. This behavior is in agreement with304

the flows observed in the primitive equation simulations of both WS18 and MI19, but305

here we show that this is a robust feature over a range of bottom slopes. These results306

so far support the hypothesis that baroclinic instability, whose purpose is to transfer wind307

momentum down through the layers and into the solid earth below, is suppressed over308

the continental slope. Eddies instead first transfer the wind momentum in the upper layer309

offshore, to the location where the bottom slope vanishes. Seaward of that location, baro-310

clinic instability can finally kick in to transfer the momentum to the frictional bound-311

ary layer at the bottom (see e.g. Fig. 2 in WS18).312

To start examining this hypothesis, the lateral eddy momentum fluxes in the three313

layers for the BEAU004 run are shown in the upper panel of Figure 4. As for all anal-314

yses in this study, the calculation has been done in cylindrical coordinates where r and315

θ are the radial coordinate and azimuthal angle, respectively, and u and v are the cor-316

responding velocity components. The ’eddy’ flux shown is thus u′v′, where the overline317

indicates a combined azimuthal and temporal mean and the primes indicate deviations318

from such means. A positive value indicates a shore-ward flux of cyclonic momentum319

or, alternatively, a seaward flux of anti-cyclonic momentum. We see that, in the directly-320

forced top layer, eddies indeed transfer anti-cyclonic momentum seaward over and around321

the continental slope. There is an onshore flux of anti-cyclonic momentum in the deep322

basin, but this is quite weak. Finally, there is also a weak offshore flux in the middle layer323

but not in the lower layer.324

Is the flow in the upper layer barotropically unstable? In helping to assess this, the325

lower panel of the figure shows the kinetic energy (KE) conversion rate:326

Cbt = −h̄u′v′
∂v̄

∂r
, . (26)

A positive Cbt value indicates that azimuthal momentum is fluxed out of the mean flow,327

thus broadening any existing current and reducing mean-flow KE—the classic signature328

of barotropic instability. The diagnostic here, however, indicates a somewhat more com-329

plex picture, with momentum fluxed into the mean upper layer jet over the continen-330

tal slope and out of the jet seaward of the slope. Eddies are therefore sharpening the jet,331

i.e. forming it, over the continental slope, and then broadening it over the flat regions332
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Figure 3. The positions of the velocity maximum in the top layer (blue crosses) and in the

lower layer (red x’es) as a function of the position of the bottom of the continental slope. Also

shown are the positions of the peak in the top layer eddy form drag (black circles).
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Figure 4. Upper panel: lateral eddy momentum fluxes for the BEAU004 simulation. Lower

panel: the corresponding barotropic energy conversion rate. The solid lines indicate upper layer

(blue), middle layer (red) and lower layer (yellow). Vertical dashed line indicates the position of

the slope break.

further offshore. How this behavior relates to the linear stability of the flow will be ex-333

amined in the next section. But first we continue to examine how the finite-amplitude334

eddy fluxes relate to the observed mean flow. For this, the key quantity of interest is the335

eddy momentum flux convergence, one part of which can be deduced from the radial deriva-336

tive of the flux in the top panel of Figure 4, i.e. from the slope of the flux curve. This337

shows that the maximum convergence of lateral (anti-cyclonic) momentum flux in the338

top two layers takes place over the lower layer velocity maximum. It therefore appears339

that eddy fluxes may be driving the lower layer; but a more comprehensive picture will340

require actual diagnostics of vertical eddy momentum fluxes.341

3.1.2 PV fluxes342

The net impact of combined lateral and vertical eddy momentum fluxes can be cap-343

tured in a thickness-weighted average of the azimuthal momentum equation. An approx-344

imate Transformed Eulerian Mean (TEM) expression for a given layer, in polar coordi-345

nates and assuming quasi-geostrophic (QG) scaling for the eddy motions, is (for a deriva-346

tion in Cartesian coordinates, see G. K. Vallis, 2017, chapter 10):347

∂v̄

∂t
+ fū∗ = −1

r

∂

∂r

(
r u′v′

)
+

1

h̄

(
ϕ′ 1

r

∂η′t
∂θ

− ϕ′ 1

r

∂η′b
∂θ

)
+

τ̄θt
h̄

− τ̄θb
h̄
, (27)

where the overbar now only indicates an azimuthal average. Here ηt and ηb are top and348

bottom interfaces, and τθt and τθb represent small-scale turbulent vertical momentum fluxes349

through those interfaces (turbulent stresses). Note, finally, that ū∗ in the Coriolis term350

–12–



manuscript submitted to JGR: Oceans

is the time-varying residual radial velocity of the layer,351

ū∗ = ū+
u′h′

h̄
, (28)

i.e. the effective mass transport velocity. So the lateral (radial) convergence of azimuthal352

momentum fluxes, in combination with a vertical convergence of interfacial form stress353

and/or turbulent stress, can accelerate the flow in the layer. Just like turbulent stresses354

τ̄θ, the form stresses ϕ′ (∂η′/r∂θ) can be interpreted as vertical (downward) fluxes of az-355

imuthal momentum.356

Under continued QG scaling, and using the periodicity of the domain, the conver-357

gence of the lateral momentum flux can be written in terms of an eddy vorticity flux,358

and the form stresses can be rewritten in terms of eddy advection of interface heights.359

The balance can thus be recast as360

∂v̄

∂t
+ fū∗ = −u′ζ ′ +

f

h̄

(
u′η′t − u′η′b

)
+

τ̄θt
h̄

− τ̄θb
h̄
, (29)

where ζ is relative vorticity. Finally, taking the difference of the two height advection361

terms gives362

∂v̄

∂t
+ fū∗ = −u′q′ +

τ̄θt
h̄

− τ̄θb
h̄
, (30)

where u′q′ is the QG PV flux,363

u′q′ = u′ζ ′ − f

h̄
u′h′, (31)

i.e. the QG approximation of the total eddy PV flux. The eddy forcing of the azimuthal364

mean flow of any given layer therefore consists of a lateral vorticity flux and a lateral thick-365

ness flux or, alternatively, a form drag. Figure 5 shows the long-term mean of the two366

contributions to the (negative) PV flux for each of the three layers in the same BEAU004367

run. So we plot −u′ζ ′ and (f/h̄)u′h′ for each layer. A very robust signal, which is also368

present in all other runs (not shown), is the reduced eddy form drag in the top layer over369

the continental slope. By inspection of Figure 2, this is the region with the greatest ther-370

mal wind shear. Therefore, the region with the highest baroclinicity experiences a re-371

duced form drag—a behavior which is consistent with the suspected suppression of baro-372

clinic instability over a sloping bottom. The slope region is instead dominated by lat-373

eral eddy vorticity fluxes. As pointed out by MI19, these lateral fluxes tend to drive a374

cyclonic flow in the top layer or, more appropriately to our configuration here, to counter375

the anti-cyclonic flow set up by the wind forcing.376

The eddy form drag increases in magnitude and dominates seaward of the conti-377

nental slope, consistent with the notion that baroclinic instability can kick in here, trans-378

ferring momentum to the layers below. The net effect is observed in Figure 2, i.e. a spin-379

up of the lower layer. In fact, the peak in upper layer eddy form drag coincides almost380

precisely with the center of the lower layer jet, as can be seen by comparing red crosses381

and black circles in Figure 3. It is also worth noting that the location of the maximum382

upper layer form drag corresponds to the largest lateral vorticity flux in the same layer.383

Eddy vorticity fluxes are therefore forcing the upper layer anti-cyclonically immediately384

off the continental slope, creating a jet there.385

Fluxes in the middle layer are much weaker. But, more importantly, the eddy vor-386

ticity and thickness fluxes consistently oppose one another within this layer, tending to387

produce a very weak total PV flux. As a result, in this purely wind-driven setting, the388

middle layer appears to be rather dynamically inactive. In the lower layer, both fluxes389

all but vanish over the continental slope. The lower layer is therefore practically unforced390

there, at least by eddy fluxes. However, seaward of the slope the layer experiences a neg-391

ative thickness flux, i.e. a negative form drag which again can be interpreted as a con-392

vergence of downward momentum fluxes. So it is here, off the continental slope, where393

the lower layer can finally be accelerated anti-cyclonically.394
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Figure 5. The two components of the negative eddy PV flux (see eqns. 30 and 31) in the

BEAU004 run: negative vorticity flux −u′ζ′ (dashed lines) and lateral thickness flux (f/h̄)u′h′

(solid lines) for each of the three layers (blue=top, red=middle and yellow=bottom). Vertical

dashed line indicates the position of the slope break.
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Figure 6. Top panel: the background PV gradient for each layer in the BEAU004 run; the

dashed lines show the estimates multiplied by 100. Lower panel: PV diffusivities. Blue=top,

red=middle and yellow=lower layer. The diffusivities in the middle layer oscillate between ex-

tremely large positive and negative values from about 470 km to the slope break. Vertical dashed

line indicates the position of the slope break.

Adding the two flux components to form a total QG PV flux (not shown) reveals395

what can already be seen from Figure 5, namely that eddy PV fluxes decelerate the wind-396

driven anti-cyclonic flow in the top layer everywhere. These fluxes force the lower layer397

anti-cyclonically but, importantly, only seaward of the continental slope. Over the slope398

itself, the lower layer is practically unforced. Finally, the calculation reveals a near-zero399

eddy forcing of the middle layer everywhere. There are eddy momentum fluxes passing400

through this layer, but in the equilibrated state these are not convergent.401

A PV eddy diffusivity can be estimated by first forming the total QG PV flux from402

the sum of the two components above and dividing by the background PV gradient. For403

units to match when merging QG and shallow-water formulations, the flux needs to be404

multiplied by the layer thicknesses. The PV gradient and the calculated diffusivity are405

in Figure 6. The background gradient will be discussed below, but the figure clearly shows406

that diffusivities in all three layers are positive nearly everywhere. Between 470 km and407

the slope break, diffusivities in the middle layer oscillate between extremely high pos-408

itive and negative values. This behavior is tied to an extremely weak PV gradient in that409

layer which also switches sign there (see below). Except for this, diffusivities in all three410

layers take on similar forms and, interestingly, the upper and lower layer diffusivities are411

nearly equal. But, since the PV flux vanishes in the lower layer over the continental slope,412

the diffusivity there goes to zero.413
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3.2 The linear stability of the mean flow414

3.2.1 Integral constraints and growth rates415

We now turn to the linear stability properties of the background flow and ask whether416

the linearly unstable modes can explain at least some of the finite-amplitude fluxes dis-417

cussed above. That they should do is in no way obvious, given the real possibility for418

nonlinear interactions to dominate the morphology of the equilibrated eddy field, result-419

ing in e.g. an inverse energy cascade that brings energy away from the linear prediction.420

Before conducting actual calculations that provide growth rates and modal struc-421

tures of unstable waves, some intuition may be collected by re-examining the background422

PV gradients shown in Figure 6 in light of the general integral constraints which state423

that a necessary condition for instability is that the lateral PV gradient changes sign some-424

where in the domain (see e.g. G. K. Vallis, 2017). We first note that the PV gradient425

does not change sign in the top layer, so the lateral momentum fluxes observed in that426

layer are likely not tied to pure barotropic instability (in agreement with the fact that427

momentum fluxes there are both up and down the background velocity gradient). The428

lateral gradient does change in the lower layer, right at the slope break, but background429

velocities here are small (Fig. 2) and lateral eddy momentum fluxes negligible (Fig. 4).430

This sign change is therefore unlikely to govern the stability properties significantly. A431

more notable feature is that the PV gradient does not change sign between the layers432

over the continental slope. This is indeed consistent with the prediction of the modified433

Eady model of Blumsack and Gierasch (1972), that very steep retrograde bottom slopes434

can stabilize the flow. There is, however, a sign change between the top and bottom layer435

immediately offshore of the slope break and then on-wards toward the basin center. As436

such, the integral considerations suggest that baroclinic instability is the primary mech-437

anism at play. However, as suggested by the findings of the previous section, lateral mo-438

mentum and vorticity fluxes are likely involved as well.439

As above, the focus will be on the BEAU004 run. Using temporally and azimuthally-440

averaged fields from this simulation, the eigenvalue problem was solved for a set of in-441

teger azimuthal wavenumbers from 1 to 40 (wavenumber 1 corresponds to one wavelength442

spanning the circumference of the basin, etc.). For each wavenumber, the six fastest-growing443

unstable modes were then recorded, and the growth rates for these modes are plotted444

in Figure 7. There is some overlap between unstable modes, especially at low wavenum-445

bers. But one ’lobe’ of unstable modes stands out, producing the absolute fastest growth446

at l = 15. A second distinct lobe takes over at higher wavenumbers, with fastest growth447

at l = 31. As will be seen below, these two lobes both contribute to the observed PV448

fluxes over the model domain.449

3.2.2 The l = 15 mode450

The thickness and vorticity fluxes of the most unstable mode at l = 15 are shown451

in Figure 8. These are to be compared with the corresponding finite-amplitude fluxes452

shown in Figure 5. Absolute magnitudes should not be compared, as these are arbitrary453

for the linear calculations (the eigenvector of each mode has norm one). But the spa-454

tial structure can be compared with that seen in the finite-amplitude fields. The linear455

prediction shows both similarities with and differences from the fully turbulent fields.456

The enhanced finite-amplitude vorticity flux in the top layer over the slope is not cap-457

tured well by the linear mode, but both the suppression of thickness fluxes over the slope458

and an emergence and dominance of this contribution right off the slope are captured.459

It is also worth observing that the mode contains a near perfect cancellation between460

thickness flux and vorticity flux in the middle layer, reflecting the near-zero PV gradi-461

ent in that layer. Importantly, the mode captures the negative thickness flux right off462

the slope in the lower layer, i.e. a negative form drag which tends to drive anti-cyclonic463

flow there.464
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Figure 7. The growth rates of the six fastest-growing unstable modes in the BEAU004 simu-

lation.
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Figure 8. Same as Figure 5 but now calculated from the eigenvector of the fastest-growing

unstable linear mode for wavenumber l = 15.

Figure 9 shows the total PV fluxes (the sum of the thickness and vorticty flux) and465

the calculated PV diffusivity of the mode (using the PV gradient plotted in Fig. 6). As466

for fluxes in the finite-amplitude field, the mode is hindering the wind-induced anti-cyclonic467

flow in the top layer and instead accelerating the lower layer. The diffusivities are pos-468

itive in all three layers but noisy in the middle layer where both PV gradient and net469

fluxes all but vanish. As already seen above, the impact of this mode is maximal imme-470

diately offshore of the slope—where the lower layer jet is observed.471

So this fastest-growing linear mode at wavenumber l = 15 contains several of the472

essential characteristics of the finite-amplitude eddy fluxes around the continental slope.473

One might even be tempted to argue that, to a first approximation, the finite-amplitude474

fluxes are spread-out, or diffused, versions of the linear predictions. Such diffusion of the475

signal would be consistent with finite-amplitude eddy stirring of the active tracers in the476

problem. There are, however, notable discrepancies. Important to the focus here is that477

the linear mode has a near-zero form drag over the slope in the upper layer, whereas the478

finite-amplitude fields show a more gradual fall-off. The linear mode is also not able to479

reproduce the strong relative vorticity flux over the entire slope region.480

The discrepancy in the deep basin further offshore is perhaps the most noticeable481

difference. There, the thickness fluxes and PV diffusivities vanish completely in the lin-482

ear l = 15 mode, whereas they remain finite in the fully-turbulent field. That there is483

an active thickness flux and form stress here, in the deep basin, is consistent with the484

sustained sign reversal of the PV gradient between the upper and lower layers (Fig. 6).485

Yet, these fluxes can not be related to the fastest-growing mode.486
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Figure 9. Top panel: the total QG PV fluxes calculated from the eigenvector of the fastest-

growing unstable linear mode for wavenumber l = 15. Bottom panel: the corresponding PV

diffusivities. Blue=top, red=middle and yellow=lower layer.
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Figure 10. Lateral thickness fluxes (f/h̄)u′h′ in the upper layer calculated from the eigen-

vectors of the linear stability calculations, for mode 1 (fastest-growing; upper), mode 2 (second

fastest-growing; middle) and mode 3 (third fastest-growing; lower). Magnitudes are arbitrary, but

red and blue colors signify positive and values, respectively. Vertical dashed line indicates the

position of the slope break.

3.2.3 Other unstable modes487

Do other unstable modes contribute to the observed finite-amplitude fluxes, par-488

ticularly over the upper parts of the continental slope and over the deep basin? Some489

indication can be had from Figures 10 and 11, which show thickness fluxes and negative490

vorticity fluxes in the top layer for the three fastest-growing linear modes at each wavenum-491

ber. Here, the estimates have been scaled by the growth rate for each mode. The result-492

ing values (colors in the figure) should not be taken as indication of the exact level at493

which each mode would equilibrate if allowed to grow to finite amplitude. But scaling494

by the growth rate should nevertheless give some crude indication of the relative impor-495

tance of the various modes.496

As was already evident from Figure 7, the fastest-growing mode at l = 15 is part497

of a dynamical feature which is unstable across a range of wavenumbers. Figures 10 and498

11 suggest that this main lobe dominates both thickness and relative vorticity fluxes im-499

mediately offshore of the slope. It is also responsible for part of the vorticity flux over500

the slope itself, particularly over the lower part. However, as already seen above, the lat-501

eral vorticity flux of this mode falls to zero over the upper parts of the continental slope.502

There, the second lobe, which has fastest unstable growth for l > 20, dominates the503

vorticity flux.504

What these calculations show, more generally, is that other unstable modes are re-505

sponsible for both components of the PV flux over the deep basin away from the slope.506
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Figure 11. Negative lateral vorticity fluxes −u′ζ′ in the upper layer calculated from the

eigenvectors of the linear stability calculations, for mode 1 (fastest-growing; upper), mode 2 (sec-

ond fastest-growing; middle) and mode 3 (third fastest-growing; lower). Magnitudes are arbitrary,

but red and blue colors signify positive and negative values, respectively. Vertical dashed line

indicates the position of the slope break.
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Figure 12. Sketch of eddy fluxes of anticyclonic momentum and the resulting azimuthal mean

flow in the three layers. Black arrows show wind and bottom stresses, while red and blue dashed

arrows show lateral momentum fluxes and form stresses, respectively.

This supports the interpretation that much of the finite-amplitude flux pattern seen in507

Figure 5 is a diffuse version of the linear mode fluxes—if one integrates over several un-508

stable modes. One possible exception is the thickness flux over the continental slope; here509

all linear modes contain near-vanishing thickness fluxes, whereas the fully-turbulent fields510

reveal a more gradual fall-off. This important feature of the slope dynamics thus appears511

to be a truly finite-amplitude non-linear effect.512

4 Discussion and conclusions513

Much of the dynamical behavior observed in this study can be seen as confirma-514

tion of the results presented by WS18 and MI19. However, by idealizing the model fur-515

ther, to three isopycnal layers only, we have been able to extract somewhat cleaner sig-516

nals. Quite clearly, eddy form stress, i.e. the vertical transfer of the wind-induced anti-517

cyclonic momentum, is hampered over the model’s retrograde continental slope. But na-518

ture still finds a way, by transporting the wind momentum offshore to relatively flat re-519

gions where it can be efficiently transferred to lower layers and into the ground. The lat-520

eral eddy fluxes in upper layers are a direct result of the suppressed vertical momentum521

flux over the continental slope. The resulting pile-up of wind momentum over the slope522

sets up a strong lateral velocity shear between the flat and non-flat regions—which lat-523

eral shear instability tries to reduce. Figure 12 gives a rough sketch of the situation (see524

also Figure 2 of Wang & Stewart, 2018).525

Perhaps the biggest advantage of the present 3-layer formulation is the ease with526

which one can investigate the linear stability properties of the background flow in a 2D527

framework. The very obvious role of lateral momentum fluxes seen in these model runs,528

as well as in the simulations of WS18 and MI19, points to the need for such 2D anal-529

ysis. The classical 1D QG stability analysis conducted by WS18 is unable to pick up the530

dynamics responsible for the lateral fluxes. Earlier 2D stability analyses has typically531

used prescribed analytic background fields (e.g. Lozier & Reed, 2005; Ghaffari et al., 2018)532

and have thus not been able to compare directly with finite-amplitude fluxes. Here we533

have seen that several of the qualitative features of the observed PV flux in the model534

are reproduced by the fastest-growing unstable mode. But, importantly, other unstable535
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modes also contribute, both over the slope region and in the offshore deep basin. The536

linear calculations do not give any information on equilibrated energy levels and, hence,537

cannot reproduce the strength of eddy fluxes. But the fact that the observed finite-amplitude538

fluxes largely resemble diffuse versions of the linear predictions can be taken as a reminder539

that geophysical flows often adjust themselves into a marginally-unstable state at the540

wave-turbulence boundary, at least in the presence of a strong ambient PV gradient (e.g.541

Schneider & Walker, 2006).542

As seen, even the 3-layer model was unnecessarily complex, as the middle layer in543

these simulations turned out to be dynamically passive. Indeed, separate 2-layer model544

simulations (not shown) contained all the key large-scale flow and eddy flux features dis-545

cussed above. This is in agreement with the arguments that, in a purely wind-driven sys-546

tem, i.e. one that experiences barotropic forcing, there is no obvious mechanism which547

can produce internal PV gradients (Manucharyan & Stewart, 2022). So one may be tempted548

to conclude that a vertical discretization to two layers is valid for purely wind-driven sys-549

tems. It is important to remember, however, that the real ocean also experiences buoy-550

ancy forcing at the surface where isopycnal layers outcrop, as well as diapycnal mixing551

in the interior. Both processes can give rise to interior thickness PV gradients that would552

add to the picture observed in these simulations.553

In the real Arctic Ocean, interior layer thickness gradients do exist, as e.g. shown554

in Figure 9 of Meneghello et al. (2021). Observations and model studies from the cen-555

tral Beafort Gyre also suggest that these gradients are dynamically responsible for the556

presence of sub-surface eddies that act to reduce those very gradients. These eddies have557

modest vertical and lateral scales, typically a few hundred meters and a few tens of kilo-558

meters, respectively. In comparison, the fastest-growing mode l = 15 in our set-up will559

have a half-wavelength of about 135 km around bottom of the continental slope (r =560

650 km). So one is justified in questioning whether these simulations, as well as earlier561

similar model studies, are of any relevance for the situation in the Beaufort Gyre. It is562

worth noting, however, that most observations and theoretical studies of such smaller-563

scale halocline eddies have focused on the central gyre rather than on the continental564

slope along the rim of the gyre. And the possibility exists that the eddy dynamics is fun-565

damentally different between these two regions. An indication of this may be a notable566

difference in vertical EKE profiles collected by four long-term mooring in the Beafort Gyre.567

As shown in Figure 1 of Manucharyan and Stewart (2022), three moorings that are sit-568

uated well within the gyre all reveal EKE maxima in the 50–250 m depth range, with569

rapid fall-off both above and below. In contrast, the last mooring which is situated over570

the continental slope off the Chukchi Plateau observed the highest EKE levels at the sur-571

face and, importantly, non-negligible energy levels at the bottom. The analysis of Manucharyan572

and Stewart (2022) do not reveal whether velocity fluctuations in upper and lower lay-573

ers at this last mooring are correlated, i.e. whether the vertical EKE structure reflects574

a deep unstable mode. If that turns out to be the case, then one can anticipate that the575

lateral scales are also larger than those of the interior halocline eddies.576

There is another peculiarity tied to the large lateral scales obtained in the present577

stability calculations. In the modified Eady theory of Blumsack and Gierasch (1972), the578

fastest-growing unstable mode over a retrograde slope has a lateral scale comparable to579

the internal deformation radius—which is of order 15 km in these simulations. Again,580

the fastest-growing linear mode found here is much larger than that. But the modified581

Eady problem does not tackle lateral shears and lateral momentum fluxes. As it turns582

out, the most unstable mode in our simulations takes on a scale which is approximately583

that of the width of the lateral shear zone. And this, in turn, appears to be set by the584

width of the continental slope. So it is possible that the internal deformation radius is585

no longer the most relevant length scale for the problem at hand—and neither along the586

Beaufort Gyre continental slope.587
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An interesting signal obtained in this layer model, both in the linear calculations588

and the fully-turbulent field, was the consistently down-gradient PV flux. The diagnosed589

PV diffusivity in the middle layer was, unsurprisingly, noisy due to the near-vanishing590

PV gradient there. But in all three layers the diffusivity was largely positive. Just as im-591

portant to our dynamical understanding was the vanishing diffusivity and PV flux in the592

lower layer over the continental slope. So the lower layer was not forced over the slope593

and, as seen in Figure 2, had near-zero flow there. This last result is in slight disagree-594

ment with WS18 and MI19 who found weak but non-zero prograde currents over the lower595

parts of their continental slope. Eddy-driven prograde flows, bottom-trapped in strat-596

ified systems, are predicted by both minimum enstrophy and maximum entropy argu-597

ments (Bretherton & Haidvogel, 1976; Salmon et al., 1976; Venaille, 2012). We are un-598

able to explain why prograde flows do not arise in the 3-layer simulations here, but note599

that such eddy-induced prograde flows—here in the opposite direction to the wind forcing—600

imply a local raising of APE near the bottom and thus depend on the energetics of the601

eddy field.602

The most severe limitation of the study, in addition to the model’s low vertical res-603

olution and inability to form small surface-trapped eddies, may be its neglect of irreg-604

ular bottom variations, like corrugations and canyons. The possible excitation of stand-605

ing topographic waves under the retrograde conditions we are studying here may give606

rise to additional form stresses that impact both buoyancy and momentum budgets to607

lowest order, as shown, by e.g. WS18. Bottom corrugations can also add form stress for608

prograde flows, but this does not involve energy accumulation into standing waves and609

thus appears to be of much lower importance (Bai et al., 2021). Given that the Arctic610

Ocean’s Beaufort Gyre is in fact retrograde, further investigation into this issue seems611

warranted.612

If lateral momentum fluxes are still important, even if form stresses from stand-613

ing waves are acting, then any topographically-aware mesoscale eddy parameterization614

for use in coarse-grained climate models needs to account for this. The results obtained615

here should be a reminder that a successful formulation needs to i) include lateral mo-616

mentum fluxes and ii) be constrained to ensure down-gradient transport of full PV through-617

out the water column. Additionally, in the situation studied here with smooth topog-618

raphy, the parameterized PV flux should vanish over steep retrograde topography, a re-619

sult which is also predicted by the modified Eady model of Blumsack and Gierasch (1972).620

But here, again, more work needs to be done in the situation where bottom corrugations621

are present—as they obviously are in the real ocean. Early assessments by Wang and622

Stewart (2020) suggest that standing waves contribute, but that eddy form stress is still623

reduced over retrograde slopes. This should not come as a surprise; any exchanges of624

semi-rigid water columns across sloping topography—the rigidity stemming from Earth’s625

rotation—should be hampered.626
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